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Abstract

We examine how precipitation, moderate temperatures, and extreme temperatures influ-
enced corn yields in Indiana between 1901-2005. Using a fine-scale weather data set of daily
weather records we find that the effects of precipitation and extreme heat evolved over time.
While the detrimental effect of either too much or too little water seems to have steadily
diminished over time, the evolution of tolerance to extreme heat is highly nonlinear, growing
with the adoption of hybrid corn in the 1940’s, peaking around 1960, and then declining.
Corn in Indiana is most sensitive to extreme temperatures at the end of our sample. Since cli-
mate change models predict an increase in extreme temperatures, the big question is whether
the next breeding cycles can increase both average yields and heat tolerance simultaneously
as in the period 1940-1960, or whether an continued increase in average yields can only be
achieved at the expense of more sensitivity to extreme heat as in the period from 1960 on-
wards.
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1 Introduction

With evidence accumulating that greenhouse gas concentrations are warming the world’s

climate, there is growing interest in the potential impacts that may occur under different

warming scenarios, and on how economies might adapt to changing climatic conditions.

Agriculture is of particular interest due to the fact that climate is a direct natural input in the

production process. Agriculture in developed nations, and particularly in the United States,

has received considerable attention. Wealthier nations produce a disproportionate share of

the world’s agricultural commodities, at least partly due to their relatively more temperate

climates. Accordingly, climate change impacts on agriculture in developed nations, and

particularly the United States, the world’s largest producer, have broad implications for

food supply and prices worldwide.

In recent research, we have conducted detailed statistical analyses of the relationship

between weather and crop yields of corn, soybeans, and cotton, three of the four largest U.S.

crops, all of which are important for world commodity prices (Schlenker and Roberts 2008).

Corn and soybeans are two are the world’s four staple commodities that form the basis of

most our calories.1 The U.S. produces about 40 percent of world production in these two

crops, making it, by far, the world’s largest producer and exporter of these crops. Cotton

is grown in the warmer Southern areas of the United States and might be better suited

to warmer temperatures. We find that yields of all three crops grow roughly linearly in

temperature up to a threshold above which yield growth declines sharply. The threshold

varies by crop and is slightly higher for cotton, the warm weather crop. For all three crops,

the slope of the decline above the optimum temperature for yield growth is significantly

steeper than the incline below the optimum temperature. If we hold growing areas fixed

and extrapolate from this relationship what yields might be as the climate warms, projected

impacts are quite severe: production-weighted average yields decrease by 30-46% before the

end of the century under the slowest (B1) warming scenario and decrease by 63-82% under

the most rapid warming scenario (A1FI). These projected declines are driven by strongly

negative yield growth when temperatures exceed 29-32 degrees Celsius combined with the

sharp increase in the projected frequency of these extreme temperatures under projections

by Hadley III climate model.

There are several reasons to believe these projected damages might overstate actual

potential damages. As the climate warms, agricultural production will work to adapt to

1Rice and wheat are the other two.
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those changes in a ways that mitigate losses and exploit potential gains as much as possible.

The most difficult economic questions pertain to how large these adaptation possibilities

may be. One obvious and inexpensive form of adaptation would be to simply change the

locations where crops are grown. As climates change, so will geographical comparative

advantages, so we should not expect crops to be grown the same locations as they are grown

today. Ascertaining the potential impact of climate changes therefore calls for analysis of

yield potentials of major crops across the globe, even in places where many crops are not

grown today. Such analysis can be quite complex and requires some strong assumptions

about the suitability of different soil types. For example, there is uncertainty about soil

dynamics in the Tundra, a region that is currently too cold to farm but might become

farmable under warming. Chapin et al. (1995) conduct experiments of soil changes in Alaska

and find that the 3-year response in experimental plots are a bad predictor of 9-year changes

in experimental plots. The authors emphasize the difficulty of predicting long-term changes

using short-term heat waves.

In neither our earlier work nor in this paper do we attempt such a comprehensive analysis.

Rather, by focusing on major crops in the U.S., a climatically diverse country that generates

the world’s largest agricultural output, we examine forms of potential adaptation observable

in historical data. These historical adaptations (or lack thereof) may provide some insight

into the scope and nature of potential adaptations that may be available as the climate

changes.

Our earlier research found the same nonlinear relationship between yield growth and

temperatures when the analysis is narrowed to consider only cooler northern U.S. states

or only warmer southern U.S. states. We also found the same relationship if we examined

only the early half of the sample (1950-1977), or only the latter half of the sample (1978-

2006). These comparisons suggest that innovations since 1950, while increasing average

yields approximately three-fold, have not increased relative heat tolerance. And since most

regions of the U.S. currently have temperature distributions that are warmer than optimal,

there has existed at least some incentive to breed or engineer more heat tolerance into plants.

It would appear other kinds of innovations were less costly than development of improved

heat tolerance.

Perhaps most indicative of limited adaptation possibilities (albeit still holding growing

locations fixed), we found comparable and distinctively non-linear temperature-yield rela-

tionships when considering only geographic variations in climate paired with average yields

in a county and when considering only time-series variations in weather paired with the av-
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erage U.S. annual yield. The time-series relationship identifies a response function in which

farmers have little scope to adjust their managerial decisions in the face of arguably random

(from the perspective of farmers) weather shocks. In contrast, the cross-sectional relation-

ship compares areas with different expected weather outcomes, i.e., different climates, and

thus accounts for a fully adaptive response by farmers, much as might be expected with cli-

mate change. The fact that these relationships are similar suggests that, at least historically

from 1950 to 2006, there has been little scope for adaptation conditional on the locations

where these key crops were grown. This finding is consistent with some earlier work using

the hedonic approach, which considers cross-sectional variations in climate to land values

(Schlenker et al. 2006).2

Where this earlier work found little evidence of adaptation to warmer temperatures be-

tween 1950 and 2006, in this paper we look to the earlier and potentially more interesting

period between 1901 and 1950. Our focus on this period is motivated in large part by Sutch’s

(2008) research. Sutch argues that the adoption of hybrid corn, one of history’s most remark-

able and well documented technological revolutions, was precipitated in part by the extreme

weather events of the 1930s. In particular, he argues that hybrid corn demonstrated partic-

ularly high yields relative to open-pollinated (non-hybrid) corn during 1934 and 1936, which

(by our own crop-related measures) remain the most extreme on record. Thus, it could be

that our earlier analysis did not look back far enough to the timing of the key innovation

leading to the green revolution.

Specifically, in this paper we examine a panel of corn yields from 1901-2005, a time period

2Mendelsohn et al. (1994) first introduced the Ricardian method to measure the effects of climate change
on agriculture by estimating a cross-sectional relationship between county-level farmland values and climatic
variables in the United States. The predicted impact of changing climatic variables depend largely on the
set of weights. Under the cropland weights (fraction of a county that is cropland) the predicted impacts are
severely negative, and under the crop-revenue weights (the value of agricultural production sold) the effects
are beneficial. The reason why the results diverged under various weights is access to highly subsidized
irrigation water rights in the Western United States. These subsidized water rights capitalize into farmland
values (Schlenker et al. 2007). Since access to subsidized water rights is correlated with temperature, an
increase in temperature implicitly assumes an increase in subsidies, which should not be counted as a
societal benefit. The crop-revenue weights aggravate the problem because highly irrigated counties in the
Western United States account for a large share of overall revenues, yet the fraction of the county that is
cropland (cropland weights) is small. Schlenker et al. (2005) show that if the analysis is limited to rainfed
agriculture, the results converge and become unambiguously negative under both sets of weights. (Deschênes
and Greenstone 2007) recently proposed to use year-to-year variation in weather to estimate the relationship
between profits or yields and weather. They find that agricultural profits and yields are independent of
weather. However, their weather data set contains many irregularities and their profit measure, which is
the difference between sales in a given year minus expenditures, does not account for storage behavior that
smooth profits between periods. Once the data errors are corrected, projected climate change effects on
yields are again unambiguously negative (Fisher et al. 2009).
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that includes a full 35 years before the beginning of the green revolution as well as some

70 years after the first adoption of hybrid corn on a significant scale. Our analysis focuses

mainly on the state of Indiana, which sits in the middle of the so-called ”Corn Belt” and is

the nation’s third largest corn growing state. Our focus on Indiana is mainly due to data

availability: it turns out that Indiana has the most comprehensive record of detailed daily

weather data that are electronically available. Such detailed weather data is necessary in

order to apply our methods of analysis, which require suitably accurate estimates of the en-

tire distribution of temperature outcomes in order to account for variations in temperatures,

both within and across all days of each growing season. This detail facilitates correct iden-

tification of nonlinear temperature effects, which can be diluted from measurement error, or

if temperatures are averaged over time or space. The key focus of our analysis is to exam-

ine how heat tolerance and drought tolerance has changed over time, with some particular

focus on the time period following the great heat waves of 1934 and 1936 and subsequent

widespread adoption of hybrid corn.

2 Corn Yields and Weather in Indiana

Figure 1 presents the evolution of average corn yields in Indiana over the 20th century. These

yield data are publicly available from the U.S. Department of Agriculture’s National Agri-

cultural Statistical Service (USDA-NASS). All of our data sources are described in further

detail in the data appendix. The graph shows the average yield in the state for all years

between 1901 and 2005 as black diamonds. For years after 1928, when county-level data be-

comes available, a box plot shows the range and inter-quartile range of yields across counties

in Indiana.

Before 1940 there was no discernible trend in yields. This is true even if one were to

extend the time series back many decades before 1901, the earliest year shown on in the

figure. Around 1940 yields started a sharp upward linear trend that appears ongoing even

today. Typical yields in Indiana were between 30 and 40 bushels per acre before 1940, yet

today, a typical Indiana farmer can expect 150 to 160 bushels per acre. Yield variance

increased along with typical yields, so we will model the natural log of yield per acre.

As discussed in greater length by Sutch (2008), the beginning of the upward trend in

yields began around the time when many key events occurred simultaneously. The Great

Depression in the 1930s was followed by the onset of World War II in 1938, which drove

commodity prices up sharply from their lows in the early Depression years. At least equally
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important though was the early adoption of hybrid corn, starting in Iowa and quickly ex-

panding to Illinois, Indiana, and beyond. The superior yields of hybrid corn was discovered

in 1918 but it was not until later, perhaps after 1936, that seed production became commer-

cially viable and high-yielding enough for farmers to adopt.

Also, in the decade before 1940, the Midwest, including Indiana, experienced both the

hottest and driest temperatures on record for the growing-season months between March

through August, shown in the panels of Figure 2. The left graphs shows yearly weather

shocks in extreme heat (degree days 29◦C, further described below) over the growing season.

The right graph shows precipitation deviations from average climatic conditions. The decade

of poor weather in the 1930s was most accentuated in the two drought years of 1934 and

1936, which brought about the great Dust Bowl, an event of massive wind erosion in states

west and south of Indiana. In those years average yields in Indiana were just 27.6 and 25.6

bushels per acre, two of the three worst yields on record for the state during the 20th century.

Indiana still fared much better than states west and south of Indiana. Iowa harvested just

60 percent of its planted acreage in 1934–an all time low–and Dust Bowl states of Nebraska

and Kansas were nearly total losses in these years.

Construction of the weather variables presented in Figure 2 is further detailed in the

appendix. We construct these data from daily individual weather stations in Indiana. Ge-

ographical interpolation is achieved by linking it with the PRISM weather data sets, which

gives monthly observations on a 2.5x2.5 mile grid for the entire united States. Indiana is the

only state in the U.S. for which the National Climatic Data Center of the National Oceanic

and Atmospheric Administration reports having more than three weather stations in the

early part of the century. The availability of good, fine-sale weather data is essential for

identifying non-linear weather effects since these effects can be diluted with measurement

error or if values are averaged over time and space. The geographical locations of weather

stations in Indiana that we use to construct our data set for each 25-year period are shown

in Figure 3.

The challenge for a regression model that relates yields to weather outcomes is in map-

ping an entire season of temperature and precipitation outcomes to a single yield response.

We achieve this by assuming temperature effects on yields are cumulative over time and

that yield is proportional to total exposure. This implies temperature effects are additively

substitutable over time, i.e., we sum the daily outcomes over all days of the growing season.

Earlier work has shown that there are three weather variables that give the best out-of-

sample predictions of corn yields: (i) total precipitation pit in county i in year t; (ii) degree
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days above 29◦C (ddH
it ), which captures the harmful effects of high temperatures; and (iii)

degree days between 10◦C and 29◦C degrees (ddM
it ), which measures the beneficial effects of

moderate temperatures (Schlenker and Roberts 2008). Each measure is simply a truncated

integral over the temperature distribution within a day, as outlined below.

Degree days above 29◦C (high temperature measure) are defined as:

ddH
it =

August 31st∑

j=March 1st

∫ ∞

T=29

(T − 29)hitj(T )dT

where T is temperature (in degrees Celsius) and hitj(T ) is the estimated density of time at

each degree during day j in year t in county i. Since the measure is sensitive to geographic

variation in temperatures, as wells as variations within and across all days in the growing

season, we spend considerable care in estimating hitj(T ). Further details are given in the

data appendix.

The second temperature measure is degree days between 10◦C and 29◦C (moderate tem-

perature measure) are defined as:

ddM
it =

August 31st∑

j=March 1st

∫ 29

T=10

(T − 29)hitj(T )dT.

3 Regression Model

Where earlier research took care in determining the precise nature of the nonlinear relation-

ship between temperature and yields, in this paper we take as given the two temperature

measures described above that are informed by this earlier work. Here our focus is to explore

how the relationship between yields and weather has changed over the 105 years from 1901 to

2005. We use a flexible restricted cubic spline model that allows temperature and non-linear

precipitation associations to change smoothly over time. Specifically, the regression model

is:

yit = β0ddM
it + β1ddH

it + fp(pit) + ft(t) + fM(t) ∗ ddM
it + fH(t)ddH

it + ft2(t)fp2(pit) + ci + εit

where yit denotes the natural log of yield in county i and year t, ddM
it and ddH

it are the

degree day measures described above, pit is precipitation, and the function fx(·) are splines

of time or precipitation. Each of the functions is approximated using 5 knots, located at

the 0.05, 0.275, 0.5, 0.725 and 0.95 quantiles of the empirical distribution. For time trend
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knot locations are 1932, 1949, 1967, 1984, and 2001; for precipitation they are 38.9, 51.6,

58, 65.0, and 79.0. The early knot in the time trend is due to the fact that we have only

state-level observations prior to 1929, and thus fewer data points per year than after 1929

when we have county-level observations. We also include separate intercepts for each county

(i.e., fixed effects, denoted ci) to account for unobserved time-invariant heterogeneity, like

soil quality.

Estimation restricted cubic spline models is easily done using ordinary least squares.

Since the errors within each year are likely correlated in space, we adjust our standard errors

to account for this (clustering the errors by year) and possible heteroscedasticity using the

Huber-White method.

4 Results

The main regression results are shown in figure 4. This figure shows the effects of each of the

four variables, time, precipitation, ddM and ddH while holding all other three variables fixed

at approximately their median value. These results are characteristically similar to what

we found in our earlier work that focused on the period from 1950-2005: there is a sharp

upward trend in yields over time as shown in the top left panel. Yields have an inverted-U

shape with rainfall as shown in the top right panel. Yields increase gradually with temperate

degree days between 10◦C and 29◦C as shown in the bottom left panel. Finally, yields decline

sharply with extreme heat, measured as degree days above 29◦C, as shown in the bottom

right panel.

These median-value predictions, however, do not show how these relationships have

changed over time. We explore how these relationships change over time in figure 5 for

precipitation, figure 6 for extreme heat ddH , and figure 8 for moderate temperatures ddM .

Each of these figures plots the relationship of the three weather variables at three points

in time. In the appendix we show plots for 15 years covering the entire span of ddH and

precipitation.

The effects of both precipitation and extreme heat have shifted markedly over time.

Figure 5 shows that the influence of precipitation has nearly vanished over time. We believe

that two explantation are most likely responsible for the fact that yields are no longer directly

linked to rainfall during the growing season. First, a lack of precipitation in the growing

season might be counter-balanced with irrigation. Continued mechanization of agriculture

has lead to the gradual expansion of pivot irrigation systems that can provide supplementary
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water during especially dry periods. While only a minority of corn fields in Indiana have

pivot irrigation systems, the ones that do are probably more prone to dryness or have sandier

soils. Second, seed companies may have bred increased drought tolerance into corn plant

varieties.

While climate models vary considerably in their predictions for precipitation changes,

with some forecasting increases and others decreases, evidence from weather and yields in

Indiana suggest this may be of little economic consideration. However, it should be noted

that the marginal effect of moderate temperatures (ddM) was negative during the years

of the worst drought years in the 1930s. This suggests that under significant multi-year

water shortages the effect of temperatures was more harmful. Since we have not experienced

droughts of such severity in the recent past, it is less clear what the effects of such severe

droughts would be in more recent years.

Heat tolerance seems to have increased in Figure 6 up until 1960 followed by a sharp

decline after 1960. Figure 7 shows the marginal effect of extreme heat, i.e., the slope of the

regression line in Figure 6 over all years in our sample. The effect of an additional degree day

above 29◦C is lowest around 1960 and most damaging in recent years when corn varieties

were optimized for maximum average yields.3 The magnitude of the negative coefficient on

ddH is nearly three times as large in 2000 as it is in 1960, and about twice as large in 1901

as compared to 1960.

Estimated slopes in the early years of figure 7 should be interpreted with some caution

because there are much fewer data points before to 1929 than afterward, since only state

level data are available in the earlier period and county level data afterward. Our spline

model places more emphasis where there are more data and linearizes the model in the tails

of the data. Closer inspection of the data do suggest that much of the increase in heat

tolerance actually took place between 1940 and 1960, rather than being a steady smooth

trend up from 1901.4 This interpretation would be consistent with the relatively stable

farming technologies between 1901 and 1936 and rapid technological after 1940. This would

also be consistent with Sutch’s historical account of the adoption of hybrid corn.

The most interesting and relevant finding that speaks to implications for climate change

is the sharp decline in tolerance to extreme heat since 1960. This finding is a powerful coun-

terpoint the apparent increase in drought tolerance. Under the latest climate change models,

a sharp rise in maximum temperatures is predicted to significantly increase the occurrence

3The appendix lists the evolution of the precipitation and temperature effects at 15 points in Figures A3
and A4 instead of three points in time to make the transition of the relationships more visible.

4We intend to present evidence of this in a revised draft.

8



of temperatures above 29◦C. Since degree days above 29◦C are a truncated temperature

variable, modest shifts in the temperature distribution can have a large relative influence on

this temperature measure. For example, a 1◦C warming from 29.5◦C to 30.5◦C triples degree

days above 29◦C. The historic average number of degree days above 29◦C is 25 in Indiana.

Under the Hadley II model (IS92a scenario) the number is predicted to increase by 19 at

the end of this century. Under the much warmer Hadley III model, degree days above 29◦C

are projected to increase by 104 under the slow-warming B1 scenario. Thus, even under the

slowest-warming scenario, typical weather outcomes in the latter part of this century will

be far worse than the worst drought years in the historical record, 1934 and 1936 (refer to

figure 1). Under the fastest-warming A1FI scenario, degree days above 29◦C are projected

to increase by 330, making the measure in a typical year about 3.5 times worse than the

worst year on record.

Finally, the relationship between the moderate temperature measure (ddM , degree days

10-29◦C) and log yields has grown more positive with time. This pattern is not statistically

significant and thus may be spurious. A summary of significance tests is reported in table 1.

For all factors besides ddM , and all their non-linear interactions with time, have strong

statistical significance.

5 Conclusions

This paper has extended earlier research on the the link between weather and yields by

examining how various weather variables are associated with corn yields in Indiana for the

period 1901-2005. We use restricted cubic spline regressions to let the effect of precipitation,

moderate heat, and extreme heat evolve over time in a flexible way. Results for each variable

while holding all other variables constant at their median outcomes is comparable to results

we obtained for a model using county-level corn yields for all counties east of the 100 degree

meridian in the years 1950-2005.

The median association, however, obscures significant evolution of precipitation and tem-

perature effects over time. The effect of precipitation during the growing season is dimin-

ished. We hypothesize that attenuation of precipitation effects stems from increased use of

supplemental irrigation and development of more drought tolerant crops. A countervailing

evolution has made corn in Indiana farm more sensitive to extreme heat. The nonlinear

evolution of heat tolerance over time increases until about 1960 and then decreases sharply,

with the most damaging marginal effect of temperatures above 29◦C occurring most recently.
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This might be due to the fact that maximizing corn plants for average yields also makes them

more sensitive to suboptimal growing conditions.

Implications for climate change impacts are hence mixed: on the one hand, the sensitivity

to extreme heat is highest at the end of the sample and the one feature all climate models

agree on is that these extreme heat events are likely to increase, even though the size of

the increase varies tremendously between model and emission scenarios. On the other hand,

there was a period between 1940-1960 when both heat tolerance and average yields increased

at the same time. The question is whether recent increases in yields could only be achieved

by making plants less heat resistent, or whether future breeding cycles can increase both

heat tolerance and average yields at the same time.
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Figure 1: Average Yields in Indiana 1901-2008

1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

Notes: Graph shows history of corn yields in Indiana. State level averages are shown as diamonds. The
range of yields among Indiana’s counties is shown as boxplots: The box give the 25%-75% quartile range,
the median is shown as a solid line, and whiskers extend to the minimum and maximum. A locally weighted
regression (bandwidth of 10 years) is shown as black line.
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Figure 2: Weather Shocks in Indiana 1901-2005

1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

Notes: Graphs shows weather shocks, i.e., the difference to averages in a location. The left graph shows
results for degree days above 29◦C and the right graph for total precipitation during the growing season
March-August. State level averages are shown as diamonds. The range of weather shocks among Indiana’s
counties is shown as boxplots: The box give the 25%-75% quartile range, the median is shown as a solid line,
and whiskers extend to the minimum and maximum. A locally weighted regression (bandwidth of 10 years)
is shown as black line.
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Table 1: Analysis of Variance for Log Yield

d.f. PartialSS MS F P
Degree Days > 29C
Factor+Interaction with Time 5 1.440 0.288 13.62 <0.0001
Interaction with Time 4 0.22 0.055 2.61 0.0339

Degree Days 10-29C
Factor+Interaction 5 0.18 0.036 1.71 0.1297
Interaction with Time 4 0.14 0.034 1.62 0.1662

Precipitation
Factor+Interactions 11 1.86 0.169 7.97 <0.0001
Interaction with Time 7 0.46 0.065 3.09 0.0030
All Nonlinear Components 6 0.57 0.095 4.48 0.0002

Time Trend
Factor+All interactions 19 52.95 2.787 131.71 <0.0001
All Interactions 15 0.86 0.058 2.72 0.0004
All Nonlinear Components 12 1.17 0.098 4.62 <0.0001

TOTAL NONLINEAR 18 1.99 0.111 5.24 <0.0001
TOTAL 25 132.53 5.301 250.56 <0.0001
ERROR 6950 147.05 0.021

Notes: The table reports F tests for the joint significance of key explanatory variables and
their interactions with other variables. The Precipitation factor, for example, is estimated
as a restricted cubic spline plus a separate restricted cubic spline of precipitation interacted
with a restricted cubic spline of time. This allows precipitation effects to shift over time
in a nonlinear way, as illustrated in figure 5. Splines are restricted in the sense that they
are forced to be linear in the tails of the data. All Interactions refers to model components
where the factor is interacted with other variables (usually a spline of time). All Nonlinear
Components tests all higher-order covariates that capture curvature in either the variable
itself or in the interaction of the variable with another variable. These tests shows we fail
to reject insignificance of all the factors, nonlinearity, and nonlinear interactions, except for
the moderate temperature variable, Degree Days 10-29C. All splines are estimated with five
knots, located at the 0.05, 0.275, 0.5, 0.725 and 0.95 quantiles of the explanatory variable’s
empirical distribution. For time trend the knot locations are 1932, 1949, 1967, 1984, and
2001; for precipitation they are 38.9, 51.6, 58, 65.0, and 79.0. The early knot in the time
trend is due there being only state-level data before 1929. The splines are estimated using
ordinary least squares using four degrees of freedom for each one, given segments outside the
lower and upper knots are forced to be linear. Interactions of two splines (in the case of time
and precipitation) use 7 degrees of freedom. All test statistics use the Huber-White method
to adjust the variance-covariance matrix for heteroscedasticity and correlated (clustered)
errors in each year. The model also includes intercepts for each county (i.e., fixed effects).
Estimation was done using the R package Design written by Frank Harrell.
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Appendix

A1 Data Appendix

This appendix outlines in further detail how we construct our data set.

A1.1 Yield Data

Yield data was obtained from the National Agricultural Statistics Service (accessed March

2009). Yearly state-level yields in Indiana are available from 1866 onwards.5 County-level

yields in Indiana are available starting in 1929.6 We follow the definition of the Department

of Agriculture and calculate yields as the ratio of total production divided by area harvested.

The traditional definition of yields might overstate actual yields if some fields are not

harvested. In a sensitivity check we define yields as total production divided by all acres

planted. Unfortunately, area planted is only available from 1926 onwards for state totals and

from 1972 for individual counties and hence significantly reduces our sample period. The left

panel of Figure A1 displays the fraction of the planted area that was harvested in Indiana

over time. While there is an upward trend, especially during the 30s, the right panel shows

that the year-to-year variation in yields is similar for each definition of yields.

A1.2 Weather Data

Degree days were constructed from daily weather data. We obtained daily observations from

the National Climatic Data Center Cooperative station network.7 The data include daily

minimum and maximum temperature as well as precipitation. While the NCDC data has

great temporal coverage, we combine it with the PRISM weather data set that provides

better spatial coverage.8 The latter gives monthly minimum and maximum temperatures on

a 2.5x2.5 mile grid for the United States from 1895 onward.

To construct a consistent set of weather data, we followed the following procedure for

each 25-year period starting in 1901, 1910, 1920, 1930, ..., 1980.

(i) For each of our three weather variables (minimum and maximum temperature as well

as precipitation) we determine the set of stations with a consistent record, which we

5http://www.nass.usda.gov/QuickStats/Create Federal All.jsp
6http://www.nass.usda.gov/QuickStats/Create County All.jsp
7http://ols.nndc.noaa.gov/plolstore/plsql/olstore.prodspecific?prodnum=C00447-CDR-S0001
8http://www.prism.oregonstate.edu/
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chose to be stations that moved at most by 2.5 miles during the time period and had

at most three missing values in at least 90 percent of the months.

(ii) We fill the missing observations at stations with consistent records obtained in step

(i) by regressing daily values at each station on daily values at the seven closest sta-

tions including half-month fixed effects. We use a linear regression for minimum and

maximum temperature and a Tobit regression for precipitation, which has several ob-

servations at the truncation value of zero. Intuitively, the regression estimates are

used to fill the missing values with a weighted average of surrounding stations with

non-missing observations to give us a complete weather record at the stations with

consistent weather records.

(iii) We calculated monthly averages for the stations with consistent records in step (i)

(iv) We regress the monthly values at each PRISM grid on the monthly averages at the

seven closest weather stations from step (iii) including month fixed effects, again using

a linear regression for minimum and maximum temperature and a Tobit model for

precipitation. The R-squares are generally in excess of 0.999, suggesting that the

PRISM data set is a weighted average of individual stations and we uncovered the

weights.

(v) We apply the regression results from step (iv) to the daily weather station data from

step (ii) to derive daily weather measures at each 2.5x2.5 mile PRISM grid cell.

(vi) We fit a sinusoidal curve between the minimum and maximum temperature of each

day to calculate degree days accounting for the within day distribution of temperatures

(Snyder 1985). We evaluate degree days for each bound between -5◦C and +50◦C using

1◦ steps at each 2.5x2.5 mile PRISM grid.

Once we have the daily observations on the PRISM grid, we aggregate them spatially

(vii) We obtained the fraction of each PRISM grid cell that is cropland from a one-time

LandSat satellite scan in 1992. County-level weather variables are the cropland-

weighted average of all PRISM grid cells in a county.

(viii) State-level weather data are the weighted average of all county-level measures in step

(vii), were the weights are the amount of harvested corn area reported in the yield

data. Since harvested corn area is not reported on a county-level before 1929, we use

ii



the average harvested corn area in each county in the years 1929-2005 as weights for

years prior to 1929.

Finally, we aggregate the data temporally

(ix) We define the growing season as the months March through August and add degree

days as well as precipitation for all days in these months. Since total precipitation over

the growing season is insensitivity to the within-day and between-day distribution, we

use the monthly totals in the PRISM data set. For possibly daily interactions between

precipitation and temperature we use the interpolated daily precipitation data.

Since it was impossible to get a sufficiently large set of weather stations which had

consistent nonmissing records for the entire sample period 1901-2005, we instead derived

the measure for 25-year intervals, starting in 1901, 1910, 1920, up to 1980. The results of

interpolation series for extreme heat in the state of Indiana (degree days above 29◦C) are

displayed in colors in Figure A2. They appear to overlap tightly. One might still wonder

whether the state results hide the fact that there are substantial errors in the county level

data that get averaged out. To examine this further, we take the difference of all overlapping

series in the county data. The mean absolute difference is 2.2 degree days above 29◦C and

the root mean squared prediction error is 3.1 degree days above 29◦C, suggesting that the

overlapping fit is reasonably close. Our weather data uses the average of all overlapping

series.

A2 Sensitivity Checks

Figure 5 and Figure 6 in the main paper examined how the effect of damaging extreme heat

evolved over time at three points in time. To further break down this evolution, we replicate

these figures using 15 points in time in Figure A3 and Figure A4, respectively.
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Figure A1: Fraction of Corn Area Planted that is Harvested

1940 1950 1960 1970 1980 1990 2000
Year

1940 1950 1960 1970 1980 1990 2000
Year

 

Production Divided by Area Harvested
Production Divided by Area Planted

Notes: Left panel shows the ratio of the corn area harvested to the area planted in Indiana 1926-2005
as black diamonds as well as a locally weighted regression with a bandwidth of one decade as grey solid line.
The right panel shows yields under the two different definitions. Production divided by area harvested is
show as black diamonds, and production divided by area planted as grey triangle.
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Figure A2: Interpolation Accuracy (1901-2005)

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

Notes: Graph shows degree days above 29◦C in Indiana for each overlapping 25-year interpolation period
starting in 1901-1925, 1910-1935, ..., until 1980-2005.
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