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1. FCLT 
 
The Functional Central Limit Theorem 
 
Problem:  Suppose εt ~ iid(0, 2

εσ )  (or weakly correlated with long-run 

variance 2
εσ ), xt = 

1

t

i
i
ε

=
∑ , and we need to approximate the distribution of a 

function of (x1, x2, x3, … xT), say 2

1

T

t
t

x
=
∑ . 

 
Solution: Notice xt = 1

t
ii
ε

=∑ = xt−1 + εt. This suggests an approximation 
based on a normally distributed (CLT for first equality) random walk 
(second equality).  The tool used for the approximation is the Functional 
Central Limit Theorem. 
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Some familiar notions 
 
1. Convergence in distribution or “weak convergence”: ξT, T = 1, 2, … is a 
sequence of random variables.  ξT 

d
→ξ means that the probability 

distribution function (PDF) of ξT converges to the PDF of ξ.  As a 
practical matter this means that we can approximate the PDF of ξT using 
the PDF of ξ when T is large. 
 
2. Central Limit Theorem: Let εt be a mds(0, 2

εσ ) with 2+δ moments and  

ξT = 
1

1 T

t
tT
ε

=
∑ . Then ξT d

→ξ ~ N(0, 2
εσ ). 

 
3. Continuous mapping theorem.  Let g be a continuous function and  
ξT 

d
→ξ, then g(ξT) 

d
→g(ξ). (Example ξT is the usual t-statistic, and  

ξT 
d
→ξ ~ N(0, 1), then 2 2 2

1

d

Tξ ξ χ→ ∼ . 
 
 
These ideas can be extended to random functions: 
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A Random Function: The Wiener Process,  a continuous-time stochastic 
process sometimes called Standard Brownian Motion that will play the 
role of a “standard normal” in the relevant function space. 

 
Denote the process by W(s) defined on s[0,1] א with the following 
properties  
 
1. W(0) = 0  
 
2. For any dates 0 ≤ t1 < t2 < … < tk ≤ 1, W(t2)−W(t1), W(t3)−W(t4), … , 
W(tk)−W(tk−1) are independent normally distributed random variables with 
W(ti)−W(ti−1) ~ N(0, ti−ti−1).  
 
3. Realizations of W(s) are continuous w.p. 1.  
 
From (1) and (2), note that W(1) ~ N(0,1).  
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Another Random Function: Suppose εt ~ iidN(0,1), t = 1, … , T,  and let 
ξT(s) denote the function that linearly interpolates between the points 

ξT(t/T) = 
1

1 t

i
iT
ε

=
∑ .   

 
Can we use W to approximate the probability law of ξT(s) if T is large? 
 
 
More generally, we want to know whether the probability distibution of a 
random function can be well approximated by the PDF of another 
(perhaps simpler, maybe Gaussian) function when T is large. Formally, we 
want to study weak convergence on function spaces.  
 
 
Useful References: Hall and Heyde (1980), Davidson (1994), Andrews 
(1994) 
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Suppose we limit our attention to continuous functions on s [0,1]א (the 
space of such functions is denoted C[0,1]), and we define the distance 
between two functions, say x and y as  d(x,y) = sup0 ≤ s ≤ 1 |x(s) – y(s)|.  
 
Three key theorems (Hall and Heyde (1980) and Davidson (1994, part 
VI): 
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Important Theorm 1:  (Hall and Heyde Theorem A.2) Weak Convergence 
of random functions on C[0,1] 
 
Weak convergence (denoted “ ξT ⇒ ξ ”) follows from (i) and (ii), where 
 
(i) Let 0 ≤ s1 < s2 … < sk ≤ 1, a set of k points. Suppose that (ξT(s1), ξT(s2), 
… , ξT(sk)) 

d
→(ξ(s1), ξ(s2), … , ξ(sk)) for any set of k points, {si}. 

 
(ii) The function ξT(s) is “tight” (or more generally satisfies “stochastic 
equicontinuity” as discussed in Andrews (1994)), meaning 
 
(a) For each ε > 0, Prob[sup|s−t|<δ|ξT(s) − ξT(t)| > ε ] → 0 as δ →0 
uniformly in T.  (This says that the function ξT does not get too “wild” as T 
grows.) 
 
(b) Prob[|ξT(0)| > δ] → 0 as δ → ∞ uniformly in T. (This says the function 
can’t get too crazy at the origin ast T grows.) 
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Important Theorem 2: (Hall on Heyde Theorem A.3) Continuous Mapping 
Theorem  
 
 
Let g: C[0,1] →\  be a continuous function and suppose ξT(.)⇒ξ(.).  
 
 
Then g(ξT) ⇒g(ξ). 
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Important Theorem 3: (Hall and Heyde) Functional Central Limit 
Theorem:  
 
Suppose εt ~ mds with variance 2

εσ and bounded 2+δ moments for some δ 
> 0.  
 
(a) Let ( )T sξ denote the function that linearly interpolates between the 

points ξ(t/T) = 
1

1 t

i
iT
ε

=
∑ . Then ξT ⇒σεW, where W is a Wiener process 

(standard Brownian motion). 
 

(b) The results can be extended to ( )T sξ =
[ ]

1

1 sT

i
iT
ε

=
∑ , the step-function 

interpolation, where [ . ] is the “less than or equal to integer function” (so 
that [3.1] = 3, [3.0] = 3, [3.9999] = 3, and so forth). 
 
See Davidson Ch. 29 for extensions.
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 An Example:  

 (1): Let 
1

t

t i
i

x ε
=

=∑ , where εi  is mds(0, 2
εσ ), and let 

[ ]

[ ]
1

1 1( )
sT

T i sT
i

s x
T T

ξ ε
=

= =∑  

be a step function approximation of  W(s).  
 
 
Then 
  

1 1

3 2 1/2 0 0
1 1 1

1 1 1 ( ) ( )
T T t

t i T
t t i

x s ds W s ds
T T T ε εε σ ξ σ/

= = =

⎡ ⎤
= = ⇒⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∫ ∫  
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Additional persistence …  
 
Suppose at = εt − θεt−1 = θ(L)εt, and xt = xt−1 + at. 
 
Then 
 

T−1/2xt = 1/2 1/2 1/2 1/2
1 0

1 1 1
( ) (1 ) ( )

t t t

i i i i t
i i i

T a T T Tε θε θ ε θ ε ε− − − −
−

= = =

= − = − + −∑ ∑ ∑  

 
But θT−1/2(εt − ε0)  is negligible, so that  T−1/2x[sT] ֜ (1− θ)σεW(s). 
 

This generalizes: suppose at = θ(L)εt and 
0

| |i
i

i θ
∞

=
∑  < ∞ (so that the MA 

coefficients are “one-summable”), then T−1/2x[sT] ֜ θ(1)σεW(s). 
 
 
Note: θ(1)σε is the “long-run” standard deviation of a.  
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What does this all mean? 
 
Suppose I want to approximate the 95th quantile of the distribution of, say, 
 

vT = 3 2
1

1 T

t
t

x
T /

=
∑ . Because vT ֜

1

0
( )v W s dsεσ= ∫ , I can use the 95th quantile of v 

are the approximator. 
 
 
How do I find (or approximate) the 95th quantile of v? 
 

Use Monte Carlo draws of 3/2

1 1

N t

i
t i

N zεσ
−

= =
∑∑  where zi ~ iidN(0,1) and N is 

very large. 
 
This approximation works well when T is reasonably large, and does not 
require knowledge of the distribution of x. 
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2.  Overview of TVP topics 
 

Models 
 
Linear regression:   yt = xt′βt + εt 
 
IV Regression (Linear GMM):  E{zt (yt – xt′βt)} = 0 
 
Nonlinear Model (GMM, NLLS, Stochastic Volatility, …) 
 
Simple model as leading case (variables are scalars):   

 
yt = βt + εt   

                       
βt is the local level (“mean”) of yt. 
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Time variation in β 
 

Discrete Breaks: 
 

Single Break:  βt = 
 for 

 for 
t

t
β τ

β δ τ
≤⎧

⎨ + >⎩
 

 

Two Breaks:  
1

1 1 2

1 2 2

 for 
 for 

 for 
t

t
t
t

β τ
β β δ τ τ

β δ δ τ

≤⎧
⎪= + < ≤⎨
⎪ + + >⎩

 

 
Multiple Breaks:  ….  
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Stochastic Breaks/Markov Switching (Hamilton (1989)):  

 
2-Regime Model: 
 

βt = 
 when 0

 when 1
t

t

s
s

β
β δ

=⎧ ⎫
⎨ ⎬+ =⎩ ⎭

,  

 
st follows a Markov process P(st = i|st−1 = j) = pij 
 

Multiple Regimes …  
 

Other Stochastic Breaks: …  
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“Continuous” Evolution: 
 
 

Random Walk/Martingale:   βt = βt−1 + ηt 
 
ARIMA Model:  βt ~ ARIMA(p,d,q) 
 
 
In simple model: yt = βt + εt,  
 
these are “unobserved component” models (Harvey (1989), Nerlove, 
Grether and Carvalho (1995)) 
 
with the familiar simple forecast functions    
 
yt+1/t = (1−θ)−1 1

0
i

t ii
yθ∞ +

−=∑ . 



 Lecture 2 - 18,  July 21, 2008 

Relationship between models: 
 

 
(1) “Discrete” vs. “Continuous” – Not very important  
  
 (a)  βt = βt−1 + ηt.   If distribution of η has point mass at zero, this is a 
model with occasional discrete shifts in β.  
 
 (b) Elliott and Müller (2006). Optimal tests are very similar if number 
of “breaks” is large (say, 3). 
 
 (c) Discrete breaks and long-memory (fractional process for β): 
Diebold and Inoue (2001) and Davidson and Sibbertsen (2005)  

 
 



 Lecture 2 - 19,  July 21, 2008 

(2) Strongly mean-reverting or not – can be more important 
 
βt ~ ARMA with small AR roots, βt ~ recurrent Markov Switching  
 
vs. 
 
βt ~ RW (or AR with large root), βt has “breaks” with little structure. 
 
 
(a)  Difference important for forecasting 
 
(b) Not important for “tracking” (smoothing) 
 
 
(3) Deterministic vs. Stochastic …  
 

Important for forecasting (we will return to this)  
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 What does TVP mean?  
 
• Suppose Yt is a covariance stationary vector. Then subsets of Y are 

covariance stationary 
o Yt ~ ARMA, then subsets of Y are ~ ARMA (where order depends 

on the subset chosen). Thus, finding TVP in univariate or bivariate 
models indicates TVP in larger models that include Y. 
 

• Time variation in conditional mean or variance? 
o  Φ(L)Yt = εt , Φ = Φt  and/or Σε = Σε,t 

 
o  Suppose Γ(L)Xt = et, and Y is a subset of X. Then  

 C(L)Yt = ,
1

( )
xn

i i t
i

A L e
=
∑ . Changes in the relative variances of ,i te  

will induce changes in both Φ and Σε in the marginal 
representation for Y.  Thus, finding Φ-TVP in Y model does not 
imply Γ-TVP in X model (but it does imply Γ and/or Σe TVP).  
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Evidence on TVP in Macro 
 

• VARs 
o SW (1996): 5700 Bivariate VARs involving Post-war U.S. macro 

series. Reject null of constant VAR coefficient (Φ) in over 50% of 
cases using tests with size = 10%. 

o Many others …  
    

• Volatility (Great Moderation) 
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2. Testing Problems 
 

Tests for a break 
 
Model:   yt = βt + εt, where εt ~ iid (0, 2

εσ ) 
 

 

βt = 
 for 

 for 
t

t
β τ

β δ τ
≤⎧

⎨ + >⎩
 

  
 
Null and alternative:  Ho:  δ = 0 vs.  Ho:  δ ≠ 0 
 
 
Tests for Ho vs. Ha depends on whether τ  is known or unknown.   
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Chow Tests (known break date) 
 

Least squares estimator of δ :  � 2 1Y Yδ = −  
 

where  1
1

1
t

t
Y y

τ

τ =

= ∑  and 2
1

1 T

t
t

Y y
T ττ = +

=
− ∑    

 

Wald statistic:  
� 2

2 1 1

1
ˆ ( )W

Tε τ τ

δξ
σ −

=
+

 

 

Follows from  
2

1 ~ ( )
a

eY N σβ
τ

,  and 
2

2 ~ ( )
a

Y N
T

εσβ δ
τ

+ ,
−

 and they are 

independent. 
 
Under Ho  ξW is distributed as a 2

1χ  random variable in large (τ and T−τ) 
samples.  Thus, critical values for the test can be determined from the χ2 
distribution. 
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Quandt Tests (Sup Wald or QLR) (unknown break date) 
 
 

Quandt (1960) suggested computing the Chow statistic for a large number 
of possible values of τ and using the largest of these as the test statistics.  

 
QLR statistic:  

1 2

max ( )Q Wτ τ τ
ξ ξ τ

≤ ≤
=  

 
where the Chow statistic ξW is now indexed by the break date.  
 
 
The problem is then to find the distribution of ξQ under the null (it will not 
be χ2), so that the critical value for the test can be determined.   
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 Let s = τ/T. Under the null δ = 0, and (now using s as the index), we can 
then write ξW  as  
 

[ ] 21 1
[ ] [(1 ) ]1 [ ] 1

, 2 1 1
[ ] [(1 ) ]

[ ] 21 1 1 1
(1 )1 [ ] 1

2 1 1
(1 )

2 21 1
(1 )

1 1
(1 )

[ ]1( )
ˆ

[ ]1
ˆ

[ ( ) ( (1) ( ))] [ ( ) (1)]
(1 )

o

sT T
H t tsT s Tt t sT

W T
e sT s T

sT T
t ts sT Tt t sT

e s s

a a a a a
T T Ts s T T

s s

s

W s W W s W s sW
s s

ε ε
ξ

σ

ε ε

σ

−= = +

−

−= = +

−

−

−

−
=

+

−
=

+

− − −
= =

+ −

∑ ∑

∑ ∑  

where ( )a
TW s  = [ ]

1

1 1
ˆ

sT
ttTε

ε
σ =∑ , and the last equality follows from 

multiplying the numerator and denominator by 2 2(1 )s s−  and simplifying. 
 

Thus, using FCLT, ξW,T ( ) ⇒ ξ( ), where ξ(s) = 
2[ ( ) (1)]

(1 )
W s sW

s s
−
−

. 



 Lecture 2 - 26,  July 21, 2008 

Suppose that τ1  is chosen as [λT] and τ2 is chosen as [(1−λ)T], where  
0 <  λ < 0.5. Then  
 

Qξ = ,
(1 )

sup ( )W T
s

s
λ λ

ξ
≤ ≤ −

, and 
(1 )

sup ( )Q
s

s
λ λ

ξ ξ
≤ ≤ −

⇒  
 

 
It has become standard practice to use a value of λ = 0.15. Using this 
value of λ, the 1%, 5% and 10% critical values for the test are: 12.16, 8.68 
and 7.12. (These can be compared to the corresponding critical values of 
the χ2 distribution of 6.63, 3.84 and 2.71).  
 
The results have been derived here for the case of a single constant 
regressor. Exensions to the case of multiple (non-constant) regressors can 
be found in Andrews (1993) (Critical values for the test statistic are also 
given in Andrews (1993) with corrections in Andrews (2003), reprinted in 
Stock and Watson (2006).)  
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Optimal Tests when the break point (τ) is unknown 
 
The QLR test seems very sensible, but is there a more powerful 
procedure?  Andrews and Ploberger (1993) develop optimal tests (most 
powerful) for this (and related) problems.   
 
Recall the Neyman-Pearson (NP) lemma: consider two simple hypotheses 
 
  Ho: Y ~ fo(y)    vs.    Ha: Y ~ fa(y),  
 
then the most powerful test rejects Ho for large values of the Likelihood 
Ratio, LR = fa(Y)/fo(Y), the ratio of the densities evaluated at the realized 
value of the random variable. 
 
Here: likelihoods depend on parameters δ, β, σε, and τ, where δ = 0 under 
Ho). (δ, β, σε) are easily handled in the NP framework.   τ  is more of a 
problem. It is unknown, and if Ho is true, it is irrelevant (τ is 
“unidentified” under the null). Andrews and Ploberger (AP) attack this 
problem. 
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One way to motivate the AP approach: suppose τ is a random variable 
with a known distribution, say Fτ .  Then the density of Y is a mixture: 
 
Y ~ fa(y)  where fa(y) = Eτ[ fa(y|τ)].   
 
The LR test (ignoring (δ, β, σε) for convenience) is then   
 
LR = Eτ[ fa(y|τ)]/fo(Y). 
 
The interpretation of this test is (equivalently) that it is (i) the most 
powerful for τ ~ Fτ, or (ii) it maximizes Fτ-weighted power for fixed 
values of τ. 
 
This approach to dealing with nuisance parameters (here τ) that are 
unidentified under Ho is now standard. 
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The specific form of the test depends on the weight function Fτ, (AP 
suggest a uniform distribution on τ) and how large δ is assumed to be 
under the alternative.    
 
When δ is “small,” the test statistic turns out to be simple average of ξW(τ) 
over all possible break dates.   Sometimes this test statistic is called the 
“Mean Wald” statistic. 
 
When δ is “large,” the test statistic turns out to be a simple average of 
exp(0.5×ξW(τ)) over all possible break dates. Sometimes this test statistic 
is called the “Exponential Wald” statistic. 
 
Importantly, as it turns out, the AP exponential Wald test statistic is 
typically dominated by the largest values of ξW(τ). This means the QLR 
statistic behaves very much like the exponential Wald test statistic and is, 
in this sense, essentially an optimal test.  
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 Tests for martingale time variation  
 
Write the model as 
 

yt  = βt + εt with  βt = βt−1 + γet 
  
where et is iidN(0, 2

εσ ) and is independent of εi  for all t and i. (As a 
normalization, the variances of ε  and e are assumed to be equal.) For 
simplicity suppose that β0 = 0. (Non-zero values are handled by restricting 
tests to be invariant to adding a constant to the data.)   
 
Let Y = (y1, … yT)′, so that Y ~ N(0, 2

εσ Ω(γ)), where Ω(γ) = I + γ2A, where 
A = [aij] with aij = min(i,j).  
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From King (1980), the optimal test of Ho: γ = 0 vs. Ha: γ = γa, can be 
constructed using the likelihood ratio statistic . The LR statistic is given by  
 

 1
2

1( ) exp{ [ ( ) ]}
2a aLR Y Y Y Y

ε

γ γ
σ

′ − ′=| Ω | − Ω −  

so that the test rejects the null for large values of  
1( )aY Y

Y Y
γ′ −

′

Ω .  

 
 
Optimal tests require a choice of γa, which measures the amount of time 
variation under the alternative.  A common way to choose γa is to use a 
value so that, whenγ = γa, the test has a pre-specified power, often 50%.   
 
Generally, this test (called a “point optimal” or “point optimal invariant” 
test) has near optimal power for a wide range of values of γ. A good rule 
of thumb (from Stock-Watson (1998) is to set γa = 7/T.)  
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A well known version of this test uses the local ( 2
aγ  small) approximation  

 
1 2 1 2( ) [ ] 1a a aI A Aγ γ γ− −Ω = + ≈ − . 

 
In this case, the test rejects for large values of  
 

Y AY
Y Y

ψ
′

′=  

 
which is a version of the locally best test of Nyblom (1989).  
 
 
Because A=PP′ where P is a lower triangular matrix of 1’s, the test 

statistic can be written as  Q Q
Y Y

ψ
′

′= , where Q=P′Y (so that T
t ii t

q y
=

=∑ ). The 

statistic can then be written as 
2

2
1 1

2 2
1 1

( )
T

T Tt
it t i t

T T
t tt t

p y

y y
ψ = = =

= =

= = .
∑ ∑ ∑
∑ ∑
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To derive the distribution of the statistic under the null, write (under the 

null) yt = β0 + εt, and 
[ ]

1

1 ( )
T

t
tT
ε ξ

=

⇒∑
i

i , where ξ(s) = σεW(s).  Thus 

  
21 1 11 21

2 01
1

( )
( (1) ( ))

o
T T

H
iT Tt i t

T
tT t

y
T W W s ds

y
ψ= = =

=

= ⇒ −∑ ∑
∫∑

. 

 

In most empirical applications, β0 is non-zero and unknown, and in this 
case the test statistic is   
 

21 1
1 1

21
1

ˆ( )

ˆ

T T
iT Tt i t

T
tT t

T
ε

ψ
ε

= = =

=

= ∑ ∑
∑

, where ˆ
t̂ tyε β= −  is the OLS residual. In this 

case, one can show that 
11 2

0
( ( ) (1))

oH

T W s sW dsψ= ⇒ −∫  
 
(In Lecture 6, I’ll denote T−1ψ   by ξNyblom because it is a version of the 
Nyblom test statistic.) 



 Lecture 2 - 34,  July 21, 2008 

Regressors: 
 
 Example studied above: yt = βt + εt 
 
 Regressors: yt = xt′βt + εt    
 
 Heuristic with  βt = βt−1 + γηt,  β0 = 0 
 
  xtyt = xtxt′βt + xtεt = Σxxβt    + xtεt   +   (xtxt′ − Σxx)βt 
 
                                         = Σxxβt   +   et    +       mtβt 
 

Test statistic depends on 1/2 1/2 1/2 1/2

1 1 1 1

t t t t

t t xx t t t t
i i i i

T y x T T e T mβ β− − − −

= = = =

= Σ + +∑ ∑ ∑ ∑  

With mt(x) “well-behaved,” the final term is negligible.  
 
Hansen (2000) studies the effect of changes in the x process on standard 
TVP tests. 
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HAC Corrections:  yt = xt′βt + εt   where Var(xtεt) ≠ 2

εσ ΣXX. 
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Power Comparisons of Tests 
 
1. Elliott-Müller (2006): Discrete Break DGP:   yt = μt + αxt + εt, where μt 
follows a discrete break process. 
 

 
 
Tests for martingale variation (qLL, Ny) have power that is similar to tests 
for discrete break (SupF=QLR, AP). 
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2. Stock-Watson (1998): Martingale TVP DGP:  yt = βt + εt 
 

 
 

Tests for a discrete break (QLR, EW, MW) have power that is similar to 
tests for martingale variation (L, POI) 
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Summary 

 

1.FCLT (tool) 

2.Overview of TVP topics  

a.  Persistent vs. mean reverting TVP 

3.Testing problems 

a.  Discrete break and AP approach 

4.Tests 

a. Little difference between tests for discrete break and persistent 
“continuous” variation.  What do you conclude when the null of 
stability is rejected? 

 


