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Introduction to Course

Some themes that have occupied time-series econometricians and
empirical macroeconomists in the last decade or so:

1. Low-frequency variability: (1) unit roots, near unit roots, cointegration,
fractional models, and so forth; (11) time varying parameters; (111)
stochastic volatility; (iv) HAC covariance matrices; (v) long-run
1dentification in SVAR

2. Identification: methods for dealing with “weak” 1dentification in linear
models (linear IV, SVAR) and nonlinear models (GMM).

3. Forecasting: (1) inference procedures for relative forecast performance
of existing models; (i1) potential improvements in forecasts from using
many predictors
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Some tools used:

1. VARs, spectra, filters, GMM, asymptotic approximations from CLT
and LLN.

2. Functional CLT

3. Simulation Methods (MCMC, Bootstrap)

We will talk about these themes and tools. This will not be a
comprehensive literature review. Our goal 1s present some key 1deas as
simply as possible.
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July 14: Preliminaries and inference

1. Spectral preliminaries and applications, linear filtering theory (MW)
2. Functional central limit theory and structural breaks (testing) (MW)
3. Many instruments/weak identification in GMM I (JS)

4. Many instruments/weak 1dentification in GMM II (JS)
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July 15: Methods for macroeconometric modeling

5. The Kalman filter, nonlinear filtering, and Markov Chain Monte Carlo
(MW)

6. Specification and estimation of models with stochastic time variation
(MW)

7. Recent developments in structural VAR modeling (JS)

8. Econometrics of DSGE models (JS)
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July 16: HAC, forecasting-related topics

9. Heteroskedasticity- and autocorrelation consistent (HAC) standard
errors (MW)

10. Forecast assessment (MW)

11. Dynamic factor models and forecasting with many predictors (JS)

12. Macro modeling with many predictors (JS)
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Time Series Basics (and notation)

(References: Hayashi (2000), Hamilton (1994), ..., lots of other books)

1. {Y,}: asequence of random variables
2. Stochastic Process: The probability law governing {Y;}
3. Realization: One draw from the process, {y;}

4. Strict Stationarity: The process is strictly stationary 1f the probability
distribution of (¥,Y,,,....Y ) 1s 1identical to the probability distribution of

Y.,Y.,,....Y., ) forall #, 7, and k. (Thus, all joint distributions are time
invariant.)

5. Autocovariances: y,, =cov(Y,,Y,,)
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6. Autocorrelations: p,, = cor(Y, ,Yt;k)

7. Covariance Stationarity: The process 1s covariance stationary 1f 1, =
E(Y,) =p and 5, = 5 for all ¢ and £.

8. White noise: A process 1s called white noise if it 1s covariance
stationary and 1= 0 and y, = 0 for £ # 0.

9. Martingale: Y; follows a martingale process if E(Y.+; | F;) = Y;, where F,
< F,. 1s the time ¢ information set.

10. Martingale Difference Process: Y, follows a martingale process 1f
E(Y+1 | F)=0. {Y,} is called a martingale difference sequence or “mds.”
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11. The Lag Operator: L lags the elements of a sequence by one period.
Ly, = yr, Lzyt = y,-0,. If b denotes a constant, then bLY, = L(bY,) = bY,.

12. Linear filter: Let {c;} denote a sequence of constants and

c(L)=c, L +c L™+ . +eptelt ...+l

S

denote a polynomial in L. Note that X, = c(L)Y; = Zj:_rc ;Y._, 1s amoving

average of Y,. c¢(L) 1s sometimes called a linear filter (for reasons discussed
below) and X 1s called a filtered version of Y.

13. AR(p) process: {L)Y,; = & where L) =(1 — $L — ... — #,[”) and & is
white noise.

14. MA(q) process: Y, = &L)g where AL)=(1 — 6L — ... — g,L7) and &
1s white noise.
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15. ARMA(p,q): L)Y, = &L)e.

16. Wold decomposition theorem (e.g., Brockwell and Davis (1991))
Suppose Y, 1s generated by a linearly indeterministic covariance stationary

process. Then Y, can be represented as
Y=gt g1t gt ...,

where & is white noise with variance o;, )~ ¢ <o, and

&=Y,— Proj(Y,| lags of ¥,) (so that & 1s “fundamental”).
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17. Spectral Representation Theorem(e.g, Brockwell and Davis (1991)):
Suppose Y, 1s a covariance stationary zero mean process, then there exists

an orthogonal-increment process Z( @) such that

(1) Var(Z(w)) = F(w)

and

(i) X; = j " dZ ()

-7

where F'1s the spectral distribution function of the process. (The spectral
density, S(w), is the density associated with F.)

This 1s a useful and important decomposition, and we’ll spend some time
discussing it.
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Some questions

1. How important are the “seasonal” or “business cycle” components 1in
Y;?

2. Can we measure the variability at a particular frequency? Frequency 0
(long-run) will be particularly important as that 1s what HAC Covariance

matrices are all about.

3. Can we 1solate/eliminate the “seasonal” (“business-cycle’”) component?

4. Can we estimate the business cycle or “gap” component in real time? If
so, how accurate 1s our estimate?
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1. Spectral representation of a covariance stationary stochastic
process

Deterministic process:

(a) Y,=cos(wt), strictly periodic with period = 2—7[, Yo =1, amplitude = 1.
W

(b) Y, = axcos(wt) + bxsin(wt) , strictly period with period = 2—”, Yo=a,

w
amplitude = Va’ +b°
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Stochastic Process:

Y; = axcos(wt) + bxsin(wrt) , a and b are random variables, 0-mean,

mutually uncorrelated, with common variance o”.

2" _ moments :
E(Y,) =0
Var(Y)) = o°x{cos”(wt) + sin’(@t) } = o

Cov(Y,Y, ) =c*{cos(awt)cos(aw(t —k)) +sin(wt)sin(a(t — k))} = o~ cos(wk)
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Stochastic Process with more components:

n

Y, =Z {a;cos(w,t)+b, sin(w,t)}, {a;,b;} are uncorrelated 0-mean random
j=1

variables, with Var(a)) = Var(b)) = o;

d
2™ _ moments :

E(Y) =0

Var(Y,) = Zaf. (Decomposition of variance)
j=1

Cov(Y,Yp) = Zaf. cos(w,k)  (Decomposition of auto-covariances)
j=1
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Stochastic Process with even more components:
Y = jo” cos(wt)da(w) + jo” sin(ot)db(®)

da(w) and db(w): random variables, 0-mean, mutually uncorrelated,
uncorrelated across frequency, with common variance that depends on
frequency. This variance function 1s called the spectrum.
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A convenient change of notation:

Y; = axcos(wt) + bxsin(wr)

1 . 1 .
=—e“(a—ib)+—e "“(a+1ib
5 ( ) 5 ( )

=e’g+e’’g

where i = v—1 and €'“ = cos(®) + i xsin(w), g = %(a —ib) and g 1s the

complex conjugate of g.

Lecture 1 - 19, July 21, 2008



Similarly
Y = jo” cos(wt)da(w) + jo”sin(wx)db(a))

= %]{em (da(w) —idb(w)) +— | e (da(w) + idb(w))

O e

1
2

- j ¢ d7 (o)

where dZ(w) = %(da(a)) — idb(w)) for > 0 and dZ(w) =dZ(-w) for w <O.

Because da and db have mean zero, so does dZ. Denote the variance of
dZ(w) as Var(dZ(w)) = E(dZ(w)dZ (») )=S(w)d @, and using the assumption
that da and db are uncorrelated across frequency E(dZ(w)dZ(w)')=0 for w
* .
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Second moments of Y:

E(Y) = E{j ede(a))} = j ¢ E(dZ(w)) =0

7T -7

T

n=EYY )= EQXY._)= E{ | ei“’tdZ(a))]T. e"a’““dZ(a))}

-7

¢ e P E(dZ(w)dZ (@)

3 i]'—;ﬁ

= [ e S(w)dw

Setting k=0, » = Var(Y) = j S(w)dw
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Summarizing

1. S(w)dw can be interpreted as the variance of the cyclical component of

Y corresponding to the frequency w. The period of this component is

period = 2—7Z

®
2. S(w) >0 (it 1s a variance)

3. S(w) = S(—w). Because of this symmetry, plots of the spectrum are
presented 0 < w < .

4. n= fﬂ ¢ S(w)dw can be inverted to yield

1 0 . 1 0
S(w) = py. > ey, ; {7/0 +2> 7, cos(a)k)}
k=1

/A — T
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The Spectrum of Building Permits

Figure 2
Spectrum of Building Permits

Ln(Spectral Power)
SN

0 0.5 1 15 2 25 3
Frequency

Most of the mass in the spectrum is concentrated around the seven peaks evident in the plot. (These peaks are
sufficiently large that spectrum is plotted on a log scale.) The first peak occurs at frequency @ = 0.07
corresponding to a period of 90 months. The other peaks occur at frequencies 27/12, 4n/12, 67/12, 8n/12,
8n/12, and w. These are peaks for the seasonal frequencies: the first corresponds to a period of 12 months, and
the others are the seasonal “harmonics” 6, 4, 3, 2.4, 2 months. (These harmonics are necessary to reproduce an
arbitrary — not necessary sinesoidal — seasonal pattern.)
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“Long-Run Variance”

The long-run variance 1s S(O) the variance of the 0- frequency (or oo period

component). Since S(@) = Z ey, then S(0) = — Z 7. . This plays

72- k=—c0 T k=
an 1mportant role 1n statistical inference. To see Why, suppose Y, 1s
covariance stationary with mean £ Then

var(NT (¥ = 1)) = var(%i wlj

:%{T% +(T =D +r)+T =2, + 7o)+ A 7))

T-1

= > 7]——2](?/ +7.))

Jj=—T+1

If the autocovariances are “l1-summable” so that Z j17;|<oo then

o0

)= >y, =275(0)

j=o0

var(

HMH
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2. Spectral Properties of Filters (Moving Averages)

Let x,= c(L)y;, where ¢(L)=c_.L "+ ...+ ¢’ so that x is a moving
average of y with weights given by the ¢’s.

How does c¢(L) change the cyclical properties of y? To study this, suppose
that y is strictly periodic

y,=2cos(awf) =e' "+ e '

with period p = 2—”
®

A simple representation for x follows:
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X, = Z ¢y Z p'ot=i) 4 priel= J)]

-r

_ it —iwj —iwt Z iwj _ ot —i® —iwt i@
e che +e c.e e“cle™)+e “c(e”)
j=r Jj=r

c(e'”) is a complex number, say c(e'”) = a + ib, where a = Re[c(€'®)] and

b = Im[c(€'”)]. Write this number in polar form as

C(emj = (a” +b”)*[cos() +isin(d)] =

a

]m[c(ei”)]]

2 2Ny i —ioNTE _ -1 é _ -1
where g =(a” +b°)> =[c(e”)c(e )]’ and € =tan ( j tan [Re[c(ei”)]
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Thus

i0
ge
_ g[ eia)[t—%] 4 e—ia)[t—%]]

ao{d-)

So that the filter ¢(L) “amplifies” y by the factor g and shifts y back in

it %
Xt =e ge +e

time by 2 time units.
®

e Note that g and & depend on @, and so 1t makes since to write them

as g(w) and & w).
e o(w) 1s called the filter gain (or sometimes the amplitude gain).
e A w) 1s called the filter phase.

o g(w)’ = c(e'”)c(e”'”) is called the power transfer function of the filter.
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Examples
. e(L)=L"
c(e'”) = €"” = cos(2w) + isin(2w)

so that

O(w) =tan'[ S 20

|1=2w
COS2m

and £ =2 time periods. Also g(e) = |c(¢®)| = 1.
0]
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2. (Sargent (1979)) Kuznets Filter for annual data: Let

a(L)=Q1/5 L7 +L"'+L+L +I

(which ”smooths” the series) and
b(L)=(L" - I

(which forms centered ten-year differences), then the Kuznets filter 1s
c(L) =b(L)a(L)

g(®) = |c(e")| = |b(e'®)| |a(e'”)| , which are easily computed for a grid of
values using Gauss, Matlab, Excel, etc.
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Gain of Kuznets Filter

Power
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Frequency

Peak at w = 0.30
Period = 21/0.30 = 21 years.
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Example 3: Census X-11 Seasonal Adjustment

The linear operations in X-11 can be summarized by the filter
x“=X11(L)x,, X1 1(L) 1s a 2-sided filter constructed in 8-steps (Young

(1968) and Wallis (1974).
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8-steps:

X11-1. Form an initial estimate of 7C as TC 1 = A (L)x,, where A (L) is the centered 12-month moving average filter 4 (L) = Zi:_6 bij , with
b‘a =1/24, and bj =1/12, for -5<j<5.

~1 —1
X11-2. Form an initial estimate of S+/7 as SI, =x, —TC,

A1 ~1 .
X11-3. Form an initial estimate of S, as S, = S,(L*)SI,, where S,(L?) = Zj}z c lez, , and where ¢, are weights from a 3x3 moving average

(ie., 1/9,2/9,3/9,2/9,1/9).

X11-4. Adjust the estimates of S so that they add to zero (approximately) over any 12 month period as S tz =3, (L)S‘ 1 , where S,(L)=1-4,(L),
where 4 (L) 1s defined in step 1.

—2 ~
X11-5. Form a second estimate of 7C as TC; = 4,(L)(x, =S ,2 ), where 4,(L) denotes a “Henderson” moving average filter. (The 13 -term
Henderson moving average filter is given by A4,(L) = 21,6:_6 A, L, with 4,,=2402, 4,, = 2143, 4,, =.1474, 4,, =.0655, 4,, =0,
4,5, =-0279, 4, ,=-.0194.)

X11-6. Form a third estimate of S as S, = S, (L?)(x, —7/"&2) , where S;(L?)= z;_3 d L*',and where d, are weights from a 3x5 moving
average (i.e.,, 1/15, 2/15, 3/15, 3/15, 3/15, 2/15, 1/15).

X11-7. Adjust the estimates of S so that they add to zero (approximately) over any 12 month period as S ? =3, (L)§ ;3 , where S,(L) is defined in
step 4.

X11-8. Form a final seasonally adjusted value as x* =x, — S j .

Lecture 1 - 34, July 21, 2008
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Spectra of Commonly Used Stochastic Processes

Suppose that y has spectrum S,(®), and x, = c(L)x,.
What 1s the spectrum of x?

Because the frequency components of x are the frequency components
of y scaled by the factor g(w)e'®” , the spectra of x and y are related by

S@) = g(0)’S(@) = c(e)c(e”")S ().
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Let & denote a serially uncorrelated (“white noise’) process. Its spectrum

1s S{w) = ZL{% + 22:_1 7, cos(a)k)} =o’/2r.
- _

If y, follows an ARMA process, then it can be represented as
AL)y: = AL)&, or y, = c(L)& with c(L) = AL)/ L).

The spectrum of y 1s then
, 0(e”)0(e™™) 1
T Pe)ple) 2x

S, (@) =c(e”)c(e™)S,(w) =0,

Writing this out ...
(1 0" —...—qui‘]a’)(l—ﬁle—i“’ —...—Qqe_i"‘") 1
4 (1 pe’ —.—g " V1-ge —..—pe ") 2n
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A Classical Problem in Signal Processing: Constructing a Band-Pass Filter
(see Baxter and King (1999) for discussion)

Let ¢(L) = Z ¢,L’. Suppose that we set the phase of ¢(L) to be equal to 0

j=o0

(and thus c(L) 1s symmetric symmetric: ¢; = ¢-;) and we want

0 elsewhere

gain(c(L)) =|e(€”) |= c(€”) = {

lfOI‘—QSO)SQ}

(where the second equality follows because c¢(L) 1s symmetric).

The calculation 1s straightforward
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Because c(e™) = Z ce, thenc, = 2rx)”" J‘:[ e c(e”)dw (an identity)
Jj=—00
Setting the gain equal to unity over the desired frequencies and carrying
out the integration yields
1

| —sin(wj) for j =0
¢, =Qry' —e2,=1""

i o

gforj=0
T

Comments:

e The values of ¢, die out at the rate j
e 1—c(L) passes everything except —w < w <@ . Differences of low-
pass filters can be used to pass any set of frequencies.

e Baxter and King (199) show that ¢, (L) = Z’;z_k ¢,L’ is an optimal

finite order approximation to ¢(L) in the sense that the gain of ¢;(L)
is as close (L*-norm) as possible to the gain of ¢(L) for a k-order
filter.
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Minimum MSE One-Sided Filters

Problem: these filters are two-sided with weights that die out slowly. This
introduces “endpoint” problems. Geweke (1978) provides a simple way to
implement a minimum MSE estimator using data available in real time.
(See Christiano and Fitzgerald (2003) for an alternative approach.)

Geweke’s calculation: if x, =c(L)y, = > ¢y,

[=—00

Optimal estimate of x, given {y }
E(x, |{y}})= Z GE, 1y} m)

—ZQ%+ZQ%+ZQM

]=—00 i=T+1

where the y.’s denote forecasts and backcasts of y; constructed from the
data {y,}
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These forecasts and backcasts can be constructed using AR, ARMA, VAR
or other models. See Findley et. al (1991) for a description of how this 1s
implemented 1n X-12.

The variance of the error associated with using {y}_, is

varlx, - EGx, |y, 1= varl Y. e B, 14,4 = v )

i

This looks messy, but it 1sn’t.

Note: Geweke was concerned with the X11 filter, but his result applies to
any linear filter (BandPass, HP, X11, ... ).
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Two-Sided Band-Pass Estimates: Logarithm of the Index of Industrial Production
(From Watson (2007))

A. Actual and Trend B. Gap
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Notes: These panels show that estimated values of the band-pass estimates of the trend (periods > 96 months), the gap
(periods < 96 months), and the business cycle (periods between 18 and 96 months). Panel D shows the standard errors of the
estimates relative to values constructed using a symmetric 100-year moving average. Values shown in panel A correspond to

logarithms, while values shown in panels B-D are percentage points.
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Two-Sided (Solid) and One-Sided (Dashed) Band-Pass Estimates:
Index of Industrial Production

A. Trend B. Gap
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Standard Errors of One-Sided Band-Pass Estimates: AR (Univariate) and VAR
(Multivariate) Forecasts

YGap YBuSinessCycle
1-sided 1-sided

Series AR VAR AR VAR

Ind. Prod. 2.01 1.88 1.88 1.80

Unemp. Rate 0.46 0.41 0.43 0.40

Employment 0.78 0.77 0.75 0.75

Real GDP 1.03 0.86 0.95 0.83

Notes: This table summarizes results for the four series shown in the first column. The entries under “AR” are the standard errors of one-sided band-pass
estimates constructed using forecasts constructed by univariate AR models with six lags. The entries under “VAR” are the standard errors of one-sided band-
pass estimates constructed using forecasts constructed by VAR models with six lags for monthly models and four lags for quarterly models. The VAR models
included the series of interest and first difference of inflation, the term spread, and building permits. Monthly models were estimated over 1960:9-2006:11, and

guarterly models were estimated over 1961:111-2006:11.
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Regressions Using Filtered Data

Suppose y; = x,/+ u, where E(ux,) =0

filtered
t

=c(L)y, and x"*" = ¢(L)x, .

t

Consider using the filtered data y

Write yﬁltered — xtﬁltered 'IB 4+ utﬁltered

t

DOGS E( xtﬁlteredutﬁltered) — O ‘?

This requires that x be “strictly exogenous”. (Same reasoning for NOT
doing GLS in time series regression.)
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3. Multivariate spectra

If y,is a scalar, S(w)=(2x)" Z A.e"is the spectrum and represents the

j=—"

variance of the complex valued Cramér increment, dZ(), in

y, = f ¢’dZ(w). This can be generalized.

Let Y, : nx1 vector, with j’th autocovariance matrix I'; = V(Y,Y";) . Let

S(@)=Q2x)" > T e
Jj=—®
so that S(w) 1s an nxn matrix. The spectral representation 1s as above, but
now dZ(m) 1s an nx1 complex-valued random vector with spectral density
matrix S(w). S(w) can be interpreted as a covariance matrix for the

increments dZ(w). The diagonal elements of S(w) are the (univariate)
spectra of the series. The off-diagonal elements are the “Cross-spectra”.
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The cross-spectra are complex valued, with S;(@) = S, (@). Cross spectra

are often summarized using the following: The real part of S;( w)
sometimes called the co-spectrum and the i1maginary part is called the
quadrature spectrum. Then, consider the following definitions:

_ S;(0)
Coherence(w) \/Sﬁ @5,@
. _[5;(0)]
Gain; () = 5. (@)

Phase;(®) = tan™ [ ~Im(3, (@) j
Re(S; ()
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To interpret these quantities, consider two scalars, Y and X with spectra Sy,

Sy, and cross-spectra Syy. Consider the regression of Y, onto leads and lags
of X;:

=Y ¢, X, +u,=c(L)X, + u

j=—o0

Because u and X are uncorrelated at all leads and lags: Sy(w) =

c(e)*SH @) + Su( ).

Moreover: E(Y,X,..) = Z ¢ E(X_X_)= Z CEXX_.)=D,¢V,

J=— J=— J=—

where y1s denotes the autocovariances of X. Thus

Sy @) = (27n)" Z e " z Cili ™ 27)" Z ce' Ze 7, = cle")Sxw)

fk=—00 Jj=—® [=—o0

Thus, the gain and phase of the cross-spectrum 1s recognized as the gain
and phase of c(L).
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4. Spectral Estimation

AR/VAR/ARMA Parametric Estimators: Suppose ®(L)Y, = O(L)g, where

Y may be a vector and & 1s white noise with covariance matrix 2,. The
spectral density matrix of Y 1s

S @) = O(e'”) 'O(e”)Z,O(e ) D(e )"

A parametric estimator uses estimated values of the AR, MA parameters
and X..

Example (VAR(1)): ({—®PL)Y,= g
S (@)= -De™”)'S (I -de ™)

Nonparametric Estimators: To be discussed in Lecture 9 in the context of
HAC covariance matrix estimators.
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