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Abstract

A number of stylized facts have been documented about the extensive margin of

trade�which �rms export, and how many products they send to how many destina-

tions. We argue that the sparse nature of trade data is crucial to understanding these

stylized facts. Trade data are collected through customs forms, one for each export

shipment, specifying the country of destination and the product code. Typically the

number of observations�that is, total shipments�is low relative to the number of pos-

sible classi�cations�e.g., countries and product codes. Given the sparse data, we note

that some of the reported facts would be expected to arise even if exports shipments

were randomly allocated across classi�cations. These facts are thus not informative of

the underlying economic decisions. We propose a statistical model to account for the

sparsity of trade data. We formalize the assignment of shipments to categories as balls

falling into bins. The balls-and-bins model quantitatively reproduces the prevalence of

zero product-level trade �ows across export destinations. The model also accounts for

�rm-level facts: as in the data, most �rms export a single product to a single country

but these �rms represent a tiny fraction of total exports. In contrast, the balls-and-bins

cannot reproduce the small fraction of exporters among U.S. �rms, and overpredicts

their size premium relative to non-exporters. We argue that the balls-and-bins model

is a useful statistical tool to discern the interesting facts in disaggregated trade data

from patterns arising mechanically through chance.

1 Introduction

International trade has long been concerned with aggregate patterns�what and how much
countries trade�and their welfare implications. Recently, �nely disaggregated trade data
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have become available and have had an enormous impact on the �eld. This has spurred a
fast-growing research that documents the extensive margin in trade�which �rms export,
and how many products they send to how many destinations. This, in turn, has lead to new
theories in international trade.

A number of stylized facts have been documented about the extensive margin of trade:
(1) Most product-level trade �ows across countries are zero; (2) the incidence of non-zero
trade �ows follows a gravity equation; (3) only a small fraction of �rms export; (4) exporters
are larger than non-exporters; (5) most �rms export a single product to a single country;
(6) most exports are done by multi-product, multi-destination exporters.1 These facts have
proven to be very robust across datasets from various years in various countries.

We argue that the sparse nature of trade data is crucial to understanding these stylized
facts. Trade data are collected through customs forms, one for each export shipment, specify-
ing the country of destination and the product code. Typically the number of observations�
that is, total shipments�is low relative to the number of possible classi�cations�country
and product code pairs. For example, there were about 24 million shipments originating
in the U.S. in 2000. However, there are 229 countries and 8,867 product codes with active
trade, so a shipment can have more than 2 million possible classi�cations. We should then
not be surprised to observe empty categories, or to learn that the U.S. does not export all
products to all countries.

Given the sparsity of the data, how do we interpret a missing trade �ow? Take the
example of �vessels for passenger and freight transport.� Switzerland did not import a vessel
from the United States in 2005. Being a landlocked country, it probably never will. At
the same time, 130 of the 188 coastal countries did not import a vessel either: they have a
positive demand for American vessels yet do not buy one every year.

In this paper we propose a statistical model to account for the sparsity of trade data.
We formalize the assignment of shipments to categories as balls falling into bins. Each
shipment constitutes a discrete unit (the ball), which, in turn, is allocated into mutually
exclusive categories (the bins). This structure is inherent to disaggregate trade data: we
observe a given number of shipments and each of them is classi�ed into a unique category.
Because we want an atheoretical account of the sparsity of the data, the model assigns
balls to bins at random. That is, a ball falling in a particular bin is an independent and
identically distributed random event whose probability distribution is determined solely by
the distribution of bin sizes.

In spite of its simplicity, the balls-and-bins model has a rich set of predictions. After a
number of balls, some bins may end up empty and some will not. Among the latter some
will contain a large number of balls, some few. These are taken to be the model's predictions
for the extensive and intensive margin, respectively. We can derive analytically the relevant
moments. Given a number of balls and a bin size distribution, we show how to compute the

1The following is a necessarily incomplete list of references. Helpman, Melitz and Rubinstein (2007) and
Baldwin and Harrigan (2007) for facts 1 and 2; Haveman and Hummels (2004) and Hummels and Klenow
(2001, 2005) for fact 1; Bernard and Jensen (1999) and Bernard, Eaton, Jensen and Kortum (2003) for facts
3 and 4; Bernard, Jensen and Schott (2007) for facts 3 to 6; Bernard, Jensen, Redding and Schott (2007)
for facts 2 to 6; and Eaton, Kortum and Kramarz (2004, 2007) for facts 5 and 6. See the main text and the
Appendix for further discussion.
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prevalence of zeros and how it varies with the number of balls and the skewness of the bin-
size distribution. These are indeed all the model's systematic relationships between export
�ows and the extensive margin: the assignment of balls to bins is random.

We are interested, though, in a quantitative evaluation. For this we set the number of
balls equal to the number of observed shipments in the trade �ow of interest (for example,
total trade between two countries or total exports by a given �rm).2 For the dimension of
choice (product codes or destination countries) we construct the bin size distribution using
aggregate �ows. For example, there are 8,867 bins for the 10-digit Harmonized System
product codes, with each bin size set to the corresponding share in total U.S. exports. The
calibration accounts for the fact that the U.S. exports some products more than others,
but it assumes no systematic di�erences across destination countries in the composition of
exports.

The results are striking: the balls-and-bins model quantitatively reproduces many of
the stylized facts on the extensive margin in trade. Table 1 summarizes our �ndings. For
twelve statistics we report the data and the corresponding prediction by the model�the
details on both are in the main text. Zero product-level trade �ows are as prevalent in the
model as in the data; indeed the pattern of zeros across export destinations is also the same.
Despite the number of export shipments (24 million) exceeding the potential product�country
pairs (about 2 million), the model makes clear that zeros are to be expected: in a random
assignment, the �rst ball to fall in a non-empty bin comes very early�what is known as the
birthday paradox�and thus empty bins are prevalent. Moreover, there is a large variation
in the size of the trade �ows and categories. Trade with most of the 229 countries is very
small and most of the 8,867 traded HS codes are tiny. It is exactly for these country-product
pairs that the trade �ows are missing in the data. They go missing in the model as well: few
balls and tiny bins make for many empty bins.

The model also accounts for �rm-level facts: as in the data, most �rms export a single
product to a single country but these �rms represent a very small fraction of total exports.
The skewness in the distribution of exports across �rms is essential to understand the success
of the balls-and-bins model. Most exporters are tiny and are hence assigned only one ball
in the model. They are thus predicted to be single-product, single-country exporters.3 This
�nding suggests that once we account for the skewness of export sales, the incidence and
relative size of single- and multi-product exporters follow.

What do we learn when the balls-and-bins model matches a particular fact? Surely we
are not suggesting that �rms actually ship their goods at random! Our view, instead, is that
we cannot conclude anything : if a fact cannot falsify the balls-and-bins model, it will also
fail to identify the relevant economic theory and thus should not be the basis to favor any
model. Indeed, as long as a model correctly predicts aggregate �ows, it will be able to match
the stylized facts by introducing a small amount of discreteness and su�cient idiosyncratic
variation to reproduce the sparse nature of the data.

2Unfortunately we do not have access to shipment data at the �rm level. In this case we approximate the
number of shipments by dividing the �rm-level trade �ows into balls of $36,000 � the value of the average
export transaction in the U.S. in 2000.

3The average exports of the bottom three quarters of all exporters are just $75,000. By contrast, the top
one quarter of exporters export $20 million on average.
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Description Data Balls-and-bins
HS10-level product×country U.S. export �ows

Share of zeros 82% 72%
OLS coe�cient of nonzero �ow on GDP 0.08 0.10

Firm×country U.S. export �ows
Share of zeros 98% 96%
Gravity equation for �rms, GDP OLS coe�cient 0.71 0.56

Single-product exporters
Fraction over total exporters 42% 43%
Share of total exports 0.4% 0.3%

Single-destination exporters
Fraction over total exporters 64% 44%
Share of total exports 3.3% 0.3%

Single-destination, single-product exporters
Fraction over total exporters 40% 43%
Share of total exports 0.2% 0.3%

Exporters in U.S. manufacturing
Fraction over total �rms 18% 74%
Size-premium of exporters 4.4 34

Table 1: Summary of Findings
Details on sources, data and model are in the main text and in the Appendix.

We can also learn from the balls-and-bins model when it misses a data pattern. For
example, we attempt to predict the share of exporters among manufacturing �rms. In the
balls-and-bins model 74 percent of �rms will export � in contrast with 18 percent in the
data. Surprisingly, the model also overpredicts the export size premium. This suggests that
the split between exporters and non-exporters goes well beyond the di�erence in size.

We view the balls-and-bins model as a useful statistical tool that can quantitatively
discern the interesting facts from the patterns arising mechanically through chance. It can
be applied to any categorical dataset, such as the division of total exports by products, �rms,
or destination countries. These datasets contain a lot of information: it is crucial that we
focus on the facts that will help us di�erentiate among competing trade theories as well as
inform the development of new ones. We should emphasize that we believe there will be no
shortage of interesting facts in the data.

Given our results, it is natural to ask why trade data are sparse. A look at average
shipment sizes across products suggests that indivisibilities are important. The largest ship-
ments observed include aircraft, spacecraft, and tanker ships. Some goods are divisible but
storage and transportation limitations make it unpractical to do so. For example, the median
shipment size of enriched uranium is $13 million.4

4As Hummels, Lugovskyy and Skiba (2008) document, minimum scale requirements are also paramount
in maritime trade.
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We must emphasize, though, that we treat shipments as discrete because they are the
�nest unit of observation possible. While trade theories predict a stable system of �ows,
datasets consist of a �nite number of transactions for a given interval of time. The Census
dataset for a given year should thus be treated as a sample of the underlying system, even
if it constitutes the universe of shipments in that particular year.5

A paper close to us in spirit is Ellison and Glaeser (1997). They ask whether the observed
levels of geographic concentration of industries are greater than would be expected to arise
randomly. To this end they introduce a �dartboard� model of �rm location. In contrast with
our results, the �dartboard� model rea�rms the previous results on geographic concentration.
Ellison and Glaeser (1997) are also able to provide a new index for geographic concentration
which takes a value of zero under the dartboard model and thus controls for the mechanical
degree of concentration arising from randomness. Such an index is more di�cult for trade
facts, which do not focus on a particular dimension.

The questions sparsity brings are similar to the debate about the theoretical content of
the gravity equation for bilateral trade �ows. The gravity equation is hugely successful in
predicting trade �ows, yet it may be of limited use in distinguishing trade theories. Deardor�
(1998) argues that �just about any plausible model of trade would yield something very like
the gravity equation,� hence the gravity equation should not be the basis for favoring one
theory over another. Evenett and Keller (2002) and Haveman and Hummels (2004) also show
that the gravity equation is consistent with both complete and incomplete specialization
models.

Our paper is also related to a large literature that tests the robustness of empirical �nd-
ings through Monte Carlo techniques or sensitivity analysis. To our knowledge these tests
have not been commonplace in international trade. An early exception is the analysis on
trade-related international R&D spillovers in Keller (1998). There has also been some work
on the robustness of gravity equation models. Ghosh and Yamarik (2004) use Leamer ex-
treme bounds analysis to construct a rigorous test of speci�cation uncertainty and �nd that
the trade creation e�ect associated with regional trading arrangements is fragile. Ander-
son, Ferrantino, and Schaefer (2004) use Monte Carlo experiments to explore alternative
speci�cations of the gravity model and �nd coe�cient bias to be pervasive.

The paper is organized as follows. The next section presents some new evidence that
illustrates that trade datasets are sparse. Section 3 describes the setup of the balls-and-bins
model and characterizes some of its properties. Section 4 presents the empirical facts on
missing product-level trade �ows and discusses how the balls-and-bins model matches these
facts. Section 5 conducts the same exercise for �rm-level trade �ows. Section 6 discusses the
extensive margin of products and destination countries at the �rm level. Section 7 looks at
whether the balls-and-bins model can predict the number and size of exporters. Section 8
o�ers some extensions. Finally, Section 9 concludes. The Appendix provides extensions to
the main model, and describes in detail the datasets used in the cited papers.

5See Appendix C on how to map trade models into discrete datasets.
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2 Trade data are sparse

According to the �U.S. Exports of Merchandise� published by the Census Bureau, there were
21.6 million export shipments in 2005.6 Each shipment is assigned a unique product code
out of 8,988 potential codes (of which 8,867 had positive exports in 2005) and one out of 229
destination countries.7 That makes about 2 million potential product�country categories, or
about one for each 11 shipments.

The average number of shipments per category masks enormous skewness in the number
of shipments across categories. Looking at destination countries �rst, Canada had the most
shipments, 7.35 million. Equatorial Guinea, the median buyer of U.S. exports, had only 2,641
shipments. There is a similar skewness across product categories. The product category with
the most shipments is �parts and accessories, for motor vehicles of headings 8701 to 8705,
n.e.s.o.i.,� with 386,619 shipments. The median product category had only 480 shipments.

Shipments are even sparser once we divide them up by both destination countries and
products. Of all the positive product�country export �ows, the median only consists of 4
shipments, and around 29% of product�country categories have only 1 shipment. Table 2
summarizes the distribution of the number of shipments across product�country categories.

Number of shipments Frequency
1 28.7%
2 12.8%
3 7.8%
4 5.4%
5 4.1%
6-9 9.9%

10 and above 31.4%

Table 2: Number of shipments across product�country categories

That even positive �ows have so few observations clearly indicates that the dataset is too
sparse to make strong inference from zeros. In other words, the large fraction of ones should
make us doubt that the zeros are observationally di�erent.

Let us take the opportunity to explore further why the trade data are sparse. A look
at shipment sizes suggests that they are the result of the indivisibility of the product. The
typical shipment is rather small; the median shipment size is $12,800. As Table 3 shows, 94%
of products have a shipment size below $50,000. There is, however, substantial variation in
shipment sizes. The biggest shipment is a single shipment of �cargo aircraft of an unladen
weight exceeding 15,000 kg� to Singapore, in the amount of $245 million.

Some products are bulky by their very nature. The biggest shipments include aircraft ($42
million), spacecraft ($5 million), tanker ships ($15 million) and �oating drilling platforms ($5

6We focus on U.S. data which are widely used in the above-mentioned empirical studies. As we argue
below, we expect such sparsity to be a prevalent feature of all transaction-level trade data. See the Data
Appendix for more detailed description of the Census export data.

7Some of these entities are not really countries but are small territories. Results do not change substan-
tially if one restricts the analysis to the 191 actual countries.
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Shipments size Frequency
less than $5,000 2.3%

$5�10,000 34.3%
$10�20,000 40.4%
$20�50,000 16.9%

$50,000�1 million 5.7%
above $1 million 0.6%

Table 3: Shipment sizes across product categories

million). Some products are inherently divisible but storage and transportation limitations
make it unpractical to do so. For example, the median shipment size of enriched uranium is
$13 million.

More formally, product dummies explain 40% of the variance of log shipment sizes. By
contrast, destination-country dummies only explain 4% of the variation. Distance to the
destination country is not signi�cantly correlated with shipment sizes.

We can further explore the e�ect of physical indivisibility on shipment sizes by looking
at the 2,374 products that report �numbers� as the units of quantity. These are classi�ed to
be indivisible by the Census Bureau.8 Overall, the weight of the product explains most of
the variation in shipment size; the rank correlation between the two is 0.72. Products with
the 100 biggest shipment size have a median weight of 6.5 metric tons. By contrast, the ones
with the 100 smallest shipment size have a median weight of 1.2 kilograms.

To summarize, there is suggestive evidence that the indivisibility present in this dataset
is mostly related to product characteristics rather than the economic environment. We thus
expect sparsity to arise in other trade datasets as well.

3 A model of balls and bins

We model the assignment of export shipments to categories as balls falling into bins. The
balls-and-bins model reproduces the structure inherent in disaggregate trade data. A trade
�ow (such as total exports from the U.S. to Argentina, or total exports of a given �rm) is
composed of a �nite number of shipments, each of them a discrete unit of observation (the
balls). Every shipment has been classi�ed into mutually exclusive categories, for example,
into one of the 10-digit Harmonized System product classi�cations (the bins).

Formally, let n ∈ N be the number of balls (observations). Let K ∈ N be the number of
bins (categories), each of them indexed by subscript i ∈ {1, 2, · · · , K}. The probability that
any given ball lands in bin i is given by the bin size si, with 0 < si ≤ 1 and

∑K
i=1 si = 1.

Thus where a ball lands is independent of the number and location of the other balls.
The state of the system is given by the full distribution of balls across bins, {x1, x2, · · · , xK}.

Clearly, this distribution is a random variable. Since we are primarily interested in the �ex-
tensive margin,� that is, the split between empty and non-empty bins, we de�ne di to be an

8Such products include, among others, bulky machinery and transportation equipment, but also smaller
items such as valves, integrated circuits and other parts; books, apparel, and live animals.
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indicator variable that takes the value of 1 if bin i is non-empty, xi > 0, and 0 otherwise.
The �intensive margin� will be given by the number of balls per non-empty bin.

Figure 1 shows that the balls-and-bins model looks as simple as it sounds. Figure 1A
depicts �ve bins, ordered by size. Figure 1B shows a particular realization after throwing
seven balls. Bins 3 and 5 are empty and thus we have d3 = d5 = 0.
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Figure 1: Balls and bins

We can derive the key moments of the model analytically. For given bin sizes {s1, s2, ..., sK},
the joint probability of a number of balls {x1, x2, ..., xK}, is given by the multinomial distri-
bution,

Pr(x1, x2, ..., xK) =
n!

x1!x2! · · ·xK !
sx1

1 s
x2
2 · · · s

xK
K ,

where n =
∑K

i=1 xi. Note that, given a total number of balls n, the particular number of
balls in two given bins, xi and xj, are not independent random variables. A ball falling in
bin i is a ball less falling elsewhere, so it reduces the expected number of balls in bin j.

The model has a known probability distribution for the extensive margin. After dropping
n balls the expected value of di is the probability that bin i receives at least one of those:

E(di|n) = 1− Pr(xi = 0|n) = 1− (1− si)n.

Each ball has a (1−si) probability of landing elsewhere. Where a ball lands is an independent
event, therefore the probability that none of n balls fall in a given bin i is (1−si)n. Obviously,
as the number of balls increases, it is less and less likely that any given bin remains empty.
In the limit, as n→∞, the probability Pr(xi = 0|n) is zero for all bins i ∈ K.

We denote the total number of non-empty bins by k,

k =
K∑
i=1

di.

Clearly, k is a random variable itself with k ∈ {1, 2, ..., K}. Since the number of non-empty
bins is a sum of random variables, we easily obtain that

E(k|n) =
K∑
i=1

[1− (1− si)n] . (1)
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This is our key statistic out of the balls-and-bins model. We will use it to derive many
of the stylized facts on the extensive margin, both at the country and at the �rm level.
The comparative statics with respect to the number of balls are as one would expect: more
shipments increase the expected number of non-empty bins. Note that the model is very
stark in its prediction as the number of shipments grows large: the number of empty bins
converges almost surely to zero.

The expected number of non-empty bins also depends on the distribution of bin sizes.
Two bins of equal size �ll up very fast: toss a coin ten times and with almost absolute
certainty the coin will have turned heads some times and tails some others. But if a bin is,
say, 10 times the size of the other, then a lot of balls may be needed to hit the small bin.
This property of the model will play an important role later, as in many of the quantitative
exercises the distribution of bin sizes is particularly skewed.

Formally, the expected number of non-empty bins (1) is convex in si for all n ≥ 2. This
implies that as we even out a bin-size distribution the expected number of non-empty bins
increases.

Proposition 1. Let {si} be a bin size distribution and let

{s̃i} = α{si}+ (1− α)1/K (2)

for α ∈ [0, 1]. Then for all n ≥ 2 the expected number of non-empty bins under {s̃i} is not
less than under {si}.

Figure 2 plots the expected number of non-empty bins against the number of balls for
5 symmetric bins. The �rst few balls fall into distinct bins almost surely. Because of
that, as long as balls are few, the number of �lled bins is close to the number of balls and
the relationship is essentially linear. In other words, most adjustment is on the �extensive
margin.� As the number of balls increases, it is more and more likely that balls fall in non-
empty bins, and the number of �lled bins trails the number of balls.9 Eventually, all bins get
�lled, and the relationship �attens out. The remaining balls can only add to the �intensive
margin.� More formally, as n→∞, the number of non-empty bins converges to K.

In some occasions we will focus not on the extensive margin but on zeros, that is, the
number of empty bins. It is, of course, trivial to derive the corresponding statistic:

K − E(k|n) =
K∑
i=1

(1− si)n.

This is clearly decreasing in the number of balls, n.
We are also interested in the proportion of �rms that sell only one product or serve only

one country. To this end we derive the probability that a single bin contains all the balls or,
equivalently, that exactly one bin is non-empty. Each ball had si probability of falling into

9The �rst ball falling to a non-empty bins comes very early, roughly in proportion to the square root of
the number of bins,

√
K. This is sometimes known as the �birthday paradox:� it takes only 23 balls before

any one of 365 equal-sized bins will contain two or more balls with probability 1/2.
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Figure 2: The extensive margin

bin i, so with probability sni all balls fell in bin i. Of course this could happen to any of the
K bins, but they are mutually exclusive events. Hence,

Pr(k = 1|n) =
K∑
i=1

sni . (3)

The probability of a single non-empty bin decreases with the number of balls, n, and increases
with the dispersion of bin sizes. Again, the model becomes degenerate as the number of balls
grows: the probability of a single non-empty bin rapidly converges to zero.

3.1 Aggregate Statistics

So far we have derived the relevant moments for a single trade �ow. Often, however, we
will be interested in aggregate statistics that involve many trade �ows. For example, we will
look at the fraction of empty product categories for total U.S. exports as well as how this
fraction varies across destinations.

In order to derive aggregate statistics we need to work with the dataset as a whole. The
key di�erence is that each shipment is now classi�ed along many dimensions. For example,
in a dataset containing all U.S. export each shipment is given one HS code as well as one
export destination out of 229 di�erent countries.

We introduce a two-dimensional version of the balls-and-bins model, where each shipment
is randomly assigned a classi�cation in two systems, with T and K categories.10 Visually,

10It is also easy to extend the model to higher-dimensional classi�cation systems.
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one can think of throwing balls over a T by K grid of bins as in Figure 3. Each classi�cation
system comes with its size distribution, v1, v2, ..., vT and s1, s2, ..., sK , which in Figure 3 pin
down the size of rows and columns, respectively. The probability of a given ball falling in
the bin (i, j) is visj so the ball is randomly and independently allocated across classi�cation
systems.  
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Figure 3: Balls and bins: T by K case

There is, conceptually, nothing di�erent from the previous case: we can always re-arrange
the grid into a row of bins of length TK. We can thus use the formulas derived before. For
example, if we are interested in the expected total number of non-empty bins after throwing
n balls, we have that

E(k|n) =
T∑
j=1

K∑
i=1

[1− (1− visj)n]. (4)

The advantage of the two-dimensional version is that it allows us to easily work with
conditional moments, for example, the number of empty product bins for a given country.
For each realization of ball throws there will be a number of balls in each row and in each
column, denoted n1, n2, ..., nT and m1,m2, ...,mK , respectively. (Note that ni or mj may be
zero.) Figure 4 illustrates. We can then ask the distribution of balls across columns 1, 2, ..., K
within a given row with nj balls. Since the classi�cation in each system is independent, this
is equivalent to the exercise we started the section with. Highlighted in Figure 4 is row j = 4.
It is the same as in Figure 1, we only need to substitute n by n4.

More interestingly, we can compute the statistics of interest given a distribution of balls
n1, n2, ..., nT across rows. This will allow us, for example, to derive how the fraction of zero
product-level bilateral �ows varies across U.S. export destinations using the actual aggregate
export �ows. As discussed above, the conditional statistics for any given row are as in the
�rst version of the model. Let kt denote the number of non-empty bins in row t. We can
thus easily construct the distribution of the expected number of non-empty bins per category
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Figure 4: Balls and bins: T by K case

t ∈ T using (1):

E(kt|nt) =
K∑
i=1

[1− (1− si)nt ], (5)

for nt ∈ {n1, n2, ..., nT}. The expected total number of non-empty bins given {n1, n2, ..., nT}
is thus

E(k|n1, n2, ..., nT ) =
T∑
j=1

K∑
i=1

[1− (1− si)nj ]. (6)

It is important to note that, since {n1, n2, ..., nT} is a random variable, conditional aggregate
statistics will not coincide with the corresponding unconditional expectation E(k|n) with
n =

∑T
j=1 nj.

Similarly, we can compute the probability of a single non-empty bin for each row using
(3). Then we can derive the proportion of rows which are expected to contain a single
non-empty bin. Since the number of empty bins is independent across rows,

Pr(kt = 1|n1, n2, ..., nT ) =
T∑
j=1

K∑
i=1

s
nj

i .

In practice we will sometimes approximate the distribution of balls across rows {n1, n2, ..., nT}
with some parametric distribution. Appendix A shows how to compute aggregate statistics
in this case. The Appendix also describes how to compute the fraction of balls that are
expected to fall into single non-empty bin rows: this is useful when we want to derive the
fraction of exports originated in single-product or single-destination exporters.
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4 Zeros in product-level trade �ows

The �rst data pattern we explore is the prevalence of product-level zeros (i.e., missing trade
�ows) in country-level exports. In other words, we look at the extensive margin of products
when the units of observation are countries. We later discuss �rm-level evidence.

We also take the chance to carefully describe how we map the data to the balls-and-bins
model and back. The methodology is essentially the same for every exercise in the paper.

4.1 The facts

Baldwin and Harrigan (2007) recently reported that most potential destination-country prod-
uct combinations are missing in U.S. exports. In 2005, the U.S. exported 8,867 di�erent 10-
digit Harmonized System categories to 229 di�erent countries. Of these 2,030,543 potential
trade �ows, 1,666,046 (or 82%) were missing.11 In other words, the average country only
bought 18% of the 8,877 products the U.S. exports. Helpman, Melitz and Rubinstein (2007)
look at the country-level zeros in the gravity equation. Of all potential country pairs, only
about 50% have positive trade in either direction.12

Empirical regularity 1. Most of the potential product-country export �ows are zero �
82% of them in the U.S.

Other levels of aggregation lead to a similar incidence of zeros. Table 4 reports the
incidence of zeros for four classi�cation levels. Zeros only stop being prevalent at the very
broad, 2-digit level.

Classi�cation Number of bins Incidence of zeros
10-digit 8,877 82%
6-digit 5,182 79%
4-digit 1,244 66%
2-digit 97 36%

Table 4: The incidence of zeros under di�erent classi�cations

Baldwin and Harrigan (2007) then report how the incidence of zeros relate to the size
of the importer and its distance to the U.S. Larger countries that are closer buy a larger
variety of products. Here we replicate a regression close to their speci�cation. For the
top 99 trading partners of the U.S., we regress the incidence of a positive export �ow on
real GDP of the importer, real GDP per capita, and the distance of the importer from the
U.S. Distance is divided in the same categories as in Baldwin and Harrigan (2007). We use
a linear probability model, so coe�cients can be understood as marginal e�ects.

11Haveman and Hummels (2004) report a similar incidence of zeros for imports.
12Hummels and Klenow (2005) also look at the product-margin of aggregate exports. They have a di�erent

measure of the extensive margin.
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Non-zero
trade �ow

Real GDP
0.081***
(0.007)

Real GDP per capita
0.025**
(0.009)

Distance = 0
0.330***
(0.060)

0 < distance < 4000km
0.259***
(0.027)

4000 < distance < 7800 omitted

7800 < distance < 14000
0.006
(0.033)

Distance > 14000
0.054
(0.037)

Observations 877,833
Clusters 99
R2 0.24

Table 5: Non-zero �ows and gravity � The data (Baldwin and Harrigan, 2007)

Table 5 reports the results.13 Larger countries are more likely to import any given
product. The same is true for richer countries. The incidence of non-zero �ows decreases
with distance: closer countries have more non-zero �ows than farther countries (the omitted
category is the intermediate distance).

Empirical regularity 2. The incidence of non-zero product exports increases with destination-
country size and decreases with distance.

4.2 From the data to the model

In order to map the balls-and-bins model to the data, we proceed as follows. The trade �ow
of interest is the total U.S. exports to a given country, that is, we will have as many trade
�ows as destination countries (229). We measure the number of shipments going to a country
to calibrate the number of balls. For example, Canada (the biggest importer) received 7.4
million shipments in 2005. Equatorial Guinea, the median buyer of U.S. exports, had 2,641
shipments.

The bins correspond to the 8,867 10-digit HS categories in which the U.S. exports at all.
The size of each bin (si) is the share of each HS code in total U.S. exports in 2005. That

13Standard errors are clustered at the country level. These results are comparable to Table 4 of Baldwin
and Harrigan (2007). The coe�cients are similar, but not identical, potentially due to somewhat di�erent
real GDP measures.
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is, we divide the number of export shipments in a given HS code with the total number of
shipments (21.6 million).14

We then calculate the expected number of non-empty bins for each country using the
previous formula (1),

E(kc|nc) =
8867∑
i=1

[1− (1− si)nc ],

where nc is the number of balls for country c and kc is the number of non-empty HS categories
in exports to country c. The expected number of non-empty bins overall is then

E(k|n1, n2, ..., n229) =
229∑
c=1

kc.

Note that we are computing the expectation conditional on the number of export shipments
from the U.S. to each country. To retrieve the incidence of zeros we only need to substract
from and divide by the appropiate number of categories; 8,867 if we are looking at the zeros
for a particular trade �ow, or 229×8,867 for overall U.S. exports.

The assumption underlying this calibration is that each destination country would buy
the same basket of American products in exactly the same proportions. The only di�erence
across countries is that smaller countries (such as Equatorial Guinea) have a smaller sample
of shipments�drawn from the same distribution�than larger ones (such as Canada). Most
trade theories are concerned with the di�erences in the structure of trade across countries:
our calibration provides a neutral, atheoretical benchmark.

4.3 The model's predictions

We �nd that indeed most of potential product-level bilateral �ows are zero in the model.
The expected share of zeros is 72%, surprisingly close to the data (82%). That is, seven out
of every eight zeros are to be expected given the sparsity of the data. Table 6 reports the
predicted fraction of zeros for other levels of sectoral aggregation. The model's predictions
track the observed incidence of zeros pretty well at all levels.

Classi�cation Number of bins Data Balls and bins
10-digit 8,867 82% 72%
6-digit 5,182 79% 68%
4-digit 1,244 66% 52%
2-digit 97 36% 23%
Section 21 16% 10%

Table 6: The incidence of zeros under di�erent classi�cations

14We ignore the 121 HS codes for which we did not observe any shipment in 2005. It is possible to account
for the missing bins with a simple speci�cation: if anything, ignoring the missing bins reduces the expected
fraction of zeros in the model.
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Moreover the model matches quantitatively the pattern of zeros across �ows in the data.
To show this, we plot the number of exported products for each destination country against
the total number of export shipments to that country in Figure 5. The dots represent the
actual number of products in the data, the line is the predicted number of non-empty bins
for each country. We already know that the balls-and-bins model somewhat underpredicts
zeros, hence overpredicts the number of exported products, but the shape of the relationship
to total exports is strikingly similar.15

0
2

4
6

8
10

0 5 10 15
Total number of shipments (log)

Number of exported products (log) Expected number of non-empty bins (log)

Figure 5: The number of shipments and the number of products

Zeros are more likely to occur in small export �ows (those with few balls). This already
suggests that non-zero �ows may follow a gravity equation, as total export �ows are well
known to adhere to gravity. We then try to replicate the gravity speci�cation in Baldwin and
Harrigan (2007). We take the predicted probability of a non-zero �ow (1 − (1 − si)nc) and
regress it on the gravity variables such as country size and distance.16 We emphasize that
the balls-and-bins model has nothing to say about gravity, but given that the total number
of balls (nc) is highly correlated with the gravity variables, we may �nd some signi�cant
correlations.

The second column of Table 7 reports the results. For convenience, the �rst column
repeats the regression on non-zero �ows in the data. Bigger and closer countries are more
likely to have a non-zero �ow under the balls-and-bins model, just as in the data. Moreover,
the magnitudes of the coe�cients are surprisingly similar. The only exception are the two
countries bordering the U.S. (�distance= 0�), Canada and Mexico. These seem to import
more HS codes in the data than under the balls-and-bins model.

15In fact, in section 8, we show that a small change in the size of the ball achieves a perfect �t.
16We take the distance categories from Table 3 of Baldwin and Harrigan (2007). Real GDP is taken from

the World Development Indicators.
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Non-zero
trade �ow

B+B
model

Real GDP
0.081***
(0.007)

0.100***
(0.008)

Real GDP per capita
0.025**
(0.009)

0.036***
(0.010)

Distance = 0
0.330***
(0.060)

0.210***
(0.032)

0 < distance < 4000km
0.259***
(0.027)

0.275***
(0.032)

4000 < distance < 7800 omitted omitted

7800 < distance < 14000
0.006
(0.033)

-0.014
(0.035)

Distance > 14000
0.054
(0.037)

0.045
(0.048)

Observations 877,833 877,833
Clusters 99 99
R2 0.24 0.46

Table 7: Non-zero �ows and gravity � Balls and bins

Quantitatively, the dispersion in �ow and bin sizes plays an important role. In both cases
the distribution is skewed, that is, some product categories and U.S. trade partners are very
large, but the vast majority of product categories and trade partners are very small. It is
precisely for the combination of latter (small country export for a small product category)
than we have the missing trade �ows in the data. And it is precisely for smaller bins and
fewer balls that the model predicts the most zeros. For comparison, we �nd 53% zeros if we
assume that all 8,867 HS codes have the same size.

Let us start with the distribution of bin sizes. The size of the average bin is 1/8867 =
1.13 × 10−4. However, the size distribution across bins is rather skewed. The size of the
median bin is 2.2× 10−5, about �ve times smaller than the average.

What is the source of this skewness across product categories? Category sizes may partly
re�ect the export specialization of the U.S., as higher exports of a product make that product
category bigger. However, they are also a�ected by the nature of the classi�cation system. As
an illustration, we �ag all product categories that contain either of the words �parts,� �other,�
and �n.e.s.o.i.� (for �not elsewhere speci�ed or included�) as catch-all categories. These are
probably heterogeneous aggregates of various products. Of the 100 biggest categories, 69 are
such catch-all. In contrast, only 8 of the 100 smallest categories are catch-all.

The skewness of trade �ows is also important. Canada alone accounts for more than one
�fth of total U.S. exports; the top �ve U.S. trade partners account for more than a half of
the total.

It is important to emphasize that it is the dispersion in bin sizes, and not some particular
bins being large and other small, that leads the balls-and-bins to predict so many zeros. To
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check for this we re-run the model with the bin-size distribution calibrated to the HS shares
of U.S. exports to Canada and Mexico only. These two trade �ows contain very few zeros
and so the size distribution of bins would not be a�ected by the large incidence of zeros
in the data. The predicted fraction of zeros under these bin sizes is 76%. We �nd similar
predictions if we use the shares of other countries or some exogenous bin-size distribution
with skewness. In Appendix C, we show how to use theories to pin down bin sizes. We also
show that zeros will be prevalent irrespective of the particular model used to calibrate bin
sizes.

5 Zeros in �rm-level trade �ows

We can also ask about zeros in �rm-level trade �ows: we �nd a remarkably similar pattern.
Bernard, Jensen and Schott (2007) report that the average exporting �rm in 2000 shipped
goods to only 3.5 countries from a total of 229.17 In other words, 98 percent of potential
�rm�country trade �ows are zero.

Again, the zero trade �ows follow a well-de�ned spatial pattern. Firm-level export zeros
are more frequent for small, distant countries. In other words, the number of �rms exporting
to a particular destination increases with country size and decreases with distance.

Table 8 reproduces column 2 of Table 6 from Bernard, Jensen, Redding and Schott (2007).
The log number of exporting �rms is regressed on log GDP of the destination country and
its log distance from the U.S.

Log number of
exporting �rms

Log GDP
0.71***
(0.04)

Log distance
−1.14***
(0.16)

Observations 175
R2 0.74

Table 8: Exporting �rms and gravity � The data (Bernard, Jensen, Redding and Schott,
2007)

We can calibrate the balls-and-bins model similarly to the previous exercise. The key
di�erence is that now we need to create bins for �rms as opposed to product categories. We
take the number and sizes of exporting �rms as given. In other words, we only try to explain
the allocation of exporting �rms across destination markets, we do not analyze the question
of which �rms export. That is done in Section 7.

The number of balls per destination country are again taken by counting the shipments
going to that country. The total number of bins equals the number of exporting �rms,

17Bernard, Jensen and Schott (2007), page 11.
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167,217.18 Because there are many more �rm bins than we had product bins, we already
expect that many more bins remain empty.

The size distribution of �rm bins is calibrated as follows. We take the size distribution
of �rm-level export �ows from Bernard, Jensen and Schott (2007). Their Table 3 contains
a Lorenz curve of exports: What fraction of exports is accounted for by the top 1, 5, 10,
25, and 50% of exporters? The following table reports the fraction of �rms and the average
exports in each of these percentile bins.

Export percentile Fraction of �rms Average exports
99− 100 0.01 $413 million
95− 99 0.04 $15.5 million
90− 95 0.05 $3.37 million
75− 90 0.15 $886,000
50− 75 0.25 $184,000
0− 50 0.50 $20,500
Total 1.00 $5.11 million

Table 9: The distribution of �rm-level exports � Bernard, Jensen and Schott (2007)

There is a striking skewness in the distribution of exports across �rms. While the average
�rm exports $5.11 million, the bottom half of exporters export only $20,500.19 The top 1%
of exporters account for 80.9% of total exports.

We approximate the distribution of exports with a lognormal distribution with mean
µ = 11 and standard deviation σ = 3. This matches the mean exports of $5.11 million and
has a median exports of $59,300. The lognormal distribution does a good job in matching
the Lorenz curve reported in Bernard, Jensen and Schott (2007).20 The size distribution of
bins will then inherit this lognormal distribution with the additional normalization that the
bin sizes add up to one.

The underlying assumption here is that all countries could be served by all the exporting
�rms, only that small countries draw a smaller sample of shipments and may end up with
fewer �rms. We assume no systematic sorting of �rms into destination markets, hence this
exercise provides a natural benchmark.

The balls-and-bins model predicts that 96 percent of the potential �rm×country trade
�ows is going to be zero. This is very close to the 98 percent we see in the data. What
about the distribution of �rm zeros across destinations? For each country, we can calculate
the expected number of non-empty �rm bins. We can then regress (the log of) this number
on GDP and distance.21

18Bernard, Jensen and Schott (2007), Table 2.
19Note that this is conditional on having positive exports. A large fraction of �rms have zero exports and

are omitted from this analysis.
20A Pareto distribution does similarly well and leads to similar results.
21We take GDP (in current-price USD) from the World Development Indicators. We take distance from

the bilateral distance dataset of CEPII.
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Table 10 presents the results. For convenience, we reproduced the regression estimate by
Bernard, Jensen, Redding and Schott (2007) in the �rst column.22 The coe�cient estimates
in the simulated regression are similar to the ones in the actual data. Just as in the data,
bigger, closer countries are served by more exporters: the more balls are thrown, the less
bins will be left empty.

Log number of
exporting �rms

Log number of
non-empty bins

Log GDP
0.71***
(0.04)

0.56***
(0.03)

Log distance
−1.14***
(0.16)

−0.95***
(0.13)

Observations 175 181
R2 0.74 0.75

Table 10: Exporting �rms and gravity � Balls and bins

Interestingly, given that there are so many �rm bins, the skewness in �rm exports does not
play as big a role as it did for product bins; most �rm bins are going to remain empty anyway.
We also calibrated �rm bins to the distribution of overall sales in manufacturing (Table 12),
which resulted in 93% of �rm�country bins remaining empty and a 0.60 elasticity of the
number of �rms exporting to a country with respect to country size. When using 167,217
symmetric �rm bins, we got 82% empty bins and an elasticity of 0.72. The results seem
to be driven by the fact that the number of exporting �rms is far larger than the number
of shipments for a typical country. (Recall that the median country received only 2,641
shipments.)

Again, this does not imply that the assignment of �rms to destination markets is indeed
random. The only conclusion we can draw is that the variation in market size is so huge
given the sparsity of the data that any model that accounts for both can match the gravity
equation of �rms � even if the assignment of �rms is random.

6 Firm-level export patterns

We then turn to evidence on the extensive margin at the level of individual exporting �rms.
In this section we ask how many products �rms export and how many destinations they
serve. Note that the universe of interest is the set of exporting �rms, because the empirical
facts are usually reported only for �rms that have some exports.23 This way we can use the
balls-and-bins model to understand these moments despite the split between exporters and
non-exporters being very di�erent from random (as we will see in the next section).

22Because we may have used somewhat di�erent data sources, especially for distance, we have 181 des-
tination countries in contrast to the 175 countries of Bernard, Jensen, Redding and Schott (2007). The
di�erences in coverage, however, are likely very small.

23Though export datasets can be merged with domestic data such as in Bernard, Jensen, and Schott (2007)
and Eaton, Kortum and Kramarz (2004).
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The key stylized facts about the extensive margin at the �rm level are that while most
�rms exports a single product to a single country, the bulk of exports is done by multi-
product, multi-destination exporters.24

To start with, 42% of the �rms export only a single product, de�ned by the 10-digit HS
code. While being a little less than half of the total �rms, they account for a tiny fraction
of total exports, 0.4%.

Empirical regularity 3. 42% of �rms export a single product (de�ned as a 10-digit HS
code). These �rms account for only 0.4% of exports.

A similar pattern exists for �rms that export to a single country. These �rms account for
a little less than two thirds of the total, but still amount to a small fraction of total exports.

Empirical regularity 4. 64% of �rms export to a single country. These �rms account for
only 3.3% of exports.

But perhaps the most striking fact corresponds to the fraction of �rms that export a
single product to a single country. These �rms represent 40% of the total exporters yet
account only for a miniscule 0.2 % of total exports.

Empirical regularity 5. 40% of �rms export a single product to a single country. These
�rms account for only 0.2% of total exports.

We use the same bin sizes as for the aggregate �ows to calibrate the bins. The 10-digit
HS codes are calibrated to the aggregate export share of each HS code in total U.S. exports
in 2005. The size of each country bin is calibrated to the share of that country in total
U.S. export �ows.25 The following table lists the �ve biggest country bins.

Country Share
Canada 0.341
Mexico 0.189
Japan 0.041
United Kingdom 0.035
Germany 0.030

Table 11: The �ve biggest country bins

We assume each �rm has a di�erent number of export balls. Because we do not have
data on the number of shipments at the �rm level, we calibrate the number of balls to the
distribution of exports across �rms, reported in Table 9. We approximate the distribution
of exports with a lognormal distribution with µ = 11 and σ = 3. This matches the mean
exports of $5.11 million and has a median exports of $59,300. Corresponding to the average

24The following facts are for U.S. merchandise trade in 2002, reported in Bernard, Jensen, Redding and
Schott (2007), Table 4.

25The assumption here is that the structure of aggregate exports did not change too much between 2002
and 2005.
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size of export shipments in 2000, we take each $36,000 of export sales to represent one ball,
rounding up. Because of the extreme skewness in the distribution of exports by �rm, many
�rms will end up with just one export ball.

The predicted fraction of single-product exporters is 43%. This is very close to the actual
fraction in the data (42%). The predicted fraction of exports coming from single-product
producers is 0.3%, close to the actual 0.4%.

Let us see how the balls-and-bins model manages to reproduce the fraction of single-
product exporters with such precision. In the model practically all single-product exporters
have only one ball. This is because with 8,867 HS codes, the second ball is very likely to
fall into an HS category di�erent from the �rst one. Only 0.3% of two-ball exporters are
single-product exporters. The key to understanding the incidence of single-product exporters
is that there are plenty of very small exporters, who export $36,000 or less.

The model underpredicts the data with respect to the fraction of single-country exporters,
44% in the model for 64% in the data. The reason is that the fraction of single-country
exporters falls sharply with �rms with the second and third balls. For example, the model
predicts that only 11% of �rms with two shipments export both of them to Canada (and
less than 4% to Mexico). We conjecture that the fraction of relatively-large exporters that
export only to Canada (and possibly Mexico) is signi�cantly higher in the data than in the
model, indicating possible large market or proximity e�ects.

Last but not least, the balls-and-bins is right on the spot with respect to the fraction of
single-product, single-country exporters.

Note that a fraction of 40% of single-product, single-country exporters implies that most
single-product exporters are also single-country exporters, and vice versa. Is this surprising?
The balls-and-bins model makes it clear the fact follows from the presence of many small
exporters. Almost all single-product exporters have only one ball, and these are all going
to be single-country exporters. And this exactly what we see in the data. The conditional
probability of single-country exporters among single-product exporters is 99.9% in the model,
close to the 96% in the data.

We conclude that the split between single-destination, single-product �rms and the rest is
very much in line with what we would expect given the skewness of the exporter distribution.

Of course, this does not mean there are no interesting facts in the data! First, without all
the reported facts we would have not been able to establish the importance of the skewness
of the export distribution. Second, there are interesting deviations from randomness. We
have already pointed to the fact that exporters to NAFTA countries exhibit some di�erences:
they are more likely to export multiple products and are larger than expected.

7 Exporting �rms

We now move on to the di�erences between exporting and non-exporting �rms. It is a well-
established fact that exporters are few and they are signi�cantly larger than non-exporting
�rms.

22



According to the survey by Bernard, Jensen, Redding and Schott (2007), only 18% of
manufacturing �rms export at all. The fraction drops to about 3% when all �rms outside
manufacturing are included.26 Other studies have con�rmed the scarcity of exporters. Plant-
level statistics also fall in the same pattern. For the quantitative exercise, we stay with the
fraction of exporters among U.S. manufacturing �rms.

Empirical regularity 6. Exporters are few � only 18% of manufacturing �rms export in
the U.S.

The second fact is that exporters sell signi�cantly more than non-exporters � about 4.4
times more than non-exporters according to Bernard, Jensen, Redding and Schott (2007).
Again, �rms outside manufacturing and plant-level evidence reveal similar patterns. That
exporters are few and they are larger than non-exporters have been con�rmed in other
datasets, in other settings, with other measures of size.

Empirical regularity 7. Exporters are large � among U.S. manufacturing �rms, exporters
sell 4.4 times more than non-exporters.

We follow essentially the same steps as before to map the model to the data. The key
di�erence is that now the output �ow will include total sales, not only exports. As before
we obtain the number of balls n per �rm by dividing its total sales by $36,000 and rounding
up.27

We thus need data on total sales per �rm in order to construct the distribution of balls
(πn). Unfortunately we do not have direct access to this data for the U.S. The 2002 Statistics
of U.S. Businesses of the Census, though, reports the number and total sales of �rms in each
of eight size bins (see Table 12).

Size bin Fraction of �rms Average sales
0�$100,000 0.145 $55,600
$100,000�$500,000 0.305 $257,000
$500,000�$1 million 0.144 $718,000
$1�5 million 0.257 $2.26 million
$5�10 million 0.060 $6.84 million
$10�50 million 0.063 $19.3 million
$50�100 million 0.010 $56.4 million
over $100 million 0.015 $670 million
Total 1.000 $13.2 million

Table 12: The distribution of �rm sales in manufacturing � Census

As it is well known, there is enormous skewness in the size distribution of �rms. Whereas
59% of �rms sell less than $1 million, the average �rm sells $13.2 million. We approximate

26See Table 2 in Bernard, Jensen, Redding and Schott (2007). The data is from the 2002 Economic Census.
27In the previous section we used evidence on the average shipment value to pin down the �ball size.� We

have no direct equivalent for total sales. In Section 8 we document the results for di�erent balls sizes.
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the distribution of �rm sales by a lognormal distribution with µ = 13.4 and σ = 2.44.
This corresponds to median sales of $680,000 and average sales of $13.2 million. We also
experimented with �tting a Pareto distribution with similar results.

To distinguish between exporters and non-exporters we only need two bins: one for do-
mestic sales, the other for foreign sales. In the 2002 Economic Census, there were 297,873
manufacturing �rms. Their total receipts amounted to $3.94 trillion. Exports of manufac-
tured goods amounted to $545 billion in 2002.28 That is, 13.9% of manufacturing receipts
come from exports. This pins down the size of the domestic bin at 0.861 and the size of the
export bin at 0.139.

Our �nding here is that exporters are much less common in the data than they would
be if sales were randomly allocated between the domestic and abroad market: 74% of the
manufacturing �rms should be exporting according to the balls-and-bins model, compared
to 18% in the data.

It is easy to see why the model overpredicts the fraction of exporters. The probability
that a �rm with n balls of total sales does not export is

(1− s)n = 0.86n.

Because where each ball ends up is independent of the distribution of existing balls, each
$36,000 has quite a high chance to end up going to a foreign market. Among the smallest
�rms, that is, with one ball, 14% of them export. This is already a very high number given
that only 18% of total manufacturing �rms export. It obviously gets worse. Almost half of
the �rms with a paltry $100,000 of total sales should export. It is clear that this is not the
case in the data: exporting is a more unlikely event than the random assignment of sales
across markets would indicate.

The unconditional probability of exporting is convex in the fraction of exports, s, so if
there is heterogeneity across industries, the aggregate economy will contain fewer exporters
than predicted by the average s. However, at the 3-digit level, this heterogeneity is rather
small, and does not change the exporting probability substantially.

The model's prediction for the exporter's size premium is also o�. Surprisingly, though,
the model overpredicts the size of exporters. That is, despite exporters being four �fths
of total �rms in the model for one �fth in the data, the model predicts that exporters are
34 times larger than non-exporters on average, while in the data they are �only� 4.4 times
larger. In terms of the exporter size premium, in log sales, the di�erence in the model is
3.53, for 1.48 in the data.29

To understand why exporters are larger under balls-and-bins than in the data, note that
balls-and-bins implies that the largest �rms export with a probability close to one. Even
the median �rm that has $660,000 dollars in sales, corresponding to 18 balls, exports with
probability 0.93. The skewness of the �rm sales distribution then implies that the average
�rm in the top half of the distribution is much larger than any of the non-exporters, who
mainly come from the bottom half. The fact that the size premium is smaller in the data

28Bureau of the Census, FT-900, �International Trade in Goods and Services.� We converted all �gures to
2000 dollars.

29In Appendix A we formally derive the exporter's size premium and include a parametric example.
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suggests that the sorting of exporters and non-exporters by size is not as strong as predicted
by the model. In other words, there have to be a substantial fraction of very large �rms that
do not export � in contrast with the model.

Summarizing, what do we learn from the balls-and-bins miss? First, the split between
exporters and non-exporters is not just a matter of chance: there is some economic force
that makes the two types of �rms quite di�erent. Second, the data has a weak sorting of
exporters by size: exporters are smaller, not larger, than expected.30

8 Robustness

In our analysis of zeros in product-level trade we had access to the observed number of
shipments for each �ow of interest. Unfortunately shipment data is not always available at
the desired level. For example in Section 6 we had to approximate the number of shipments
by dividing the �rm-level trade �ow into balls of $36,000 (the value of the average export
shipment in the U.S. in 2000). In this case we want to know how sensitive are results with
respect to the ball-size calibration as well as how to account for ball-size heterogeneity.

In this Section we discuss our results for di�erent ball-size calibrations as well as a useful
speci�cation for ball-size heterogeneity. We focus on product-level trade �ows since in this
case we can compare the results under the calibration with the results with the actual number
of shipments.

8.1 Di�erent ball-size calibration

If shipment data are not available, we can specify a ball-size and convert a trade �ow into a
discrete number of balls. Using the actual average size of export shipments ensures the total
number of shipments in the exercise is the same as in the data.

We redo here our results for di�erent ball-size calibrations. First we experiment with ball
sizes equal and larger than the average size of an export: $36,000, $100,000, and $500,000.
From an economic point of view, it may well be the case that the relevant decisions involve
multiple transactions simultaneously and a calibration with a larger ball size would be ap-
propriate. Second, we report results for smaller ball sizes $18,000 and $2,500 (the lowest
observed value of export transactions given the reporting rules of the Census Bureau). These
calibrations illustrate neatly the slow rate of convergence to the continuous model: the num-
ber of shipments under the smaller ball-size calibrations is orders of magnitude larger than
the documented evidence yet sparsity still gives rise to zeros.

Table 13 shows our quantitative results for ball sizes between $36,000 and $500,000. We
also included the corresponding data value for each of the stylized facts.

The changes in the magnitudes are intuitive. First, as we calibrate to a larger ball size,
there are fewer balls overall and the incidence of empty product bins increases. This applies
equally for zeros in trade or the fraction of single-product, single-destination exporters. The

30Note that a �xed cost model, with a simple cut-o� rule, has a very strong sorting of exporters by
size. Indeed, were it to match a 18% exporter fraction, exporters would be orders of magnitude larger than
non-exporters.
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Ball size
Moment Data $36k $100k $500k
HS10-level product×country U.S. export �ows

Share of zeros 82% 72% 80% 90%
OLS coe�cient of nonzero �ow on GDP 0.08 0.10 0.09 0.06

Firm×country U.S. export �ows
Share of zeros 98% 96% 98% 99%
Gravity for �rms, GDP OLS coe�cient 0.71 0.56 0.61 0.68

Single-product exporters
Fraction over total exporters 42% 43% 57% 76%
Share of total exports 0.4% 0.3% 1.1% 7.4%

Single-destination exporters
Fraction over total exporters 64% 44% 58% 77%
Share of total exports 3.3% 0.3% 1.1% 7.5%

Single-destination, single-product exporters
Fraction over total exporters 40% 43% 57% 76%
Share of total exports 0.2% 0.3% 1.1% 7.4%

Exporters in U.S. manufacturing
Fraction over total �rms 18% 74% 61% 41%
Size premium of exporters 4.4 34 25 16

Table 13: Ball-size calibrations: $36,000; $100,000; and $500,000

fraction of single-product and single-country exporters increases both in number and in their
export share. With fewer shipments overall, most �rms will end up with just one ball and
would necessarily be single-product, single-country exporters. A larger ball-size calibration
also reduces the fraction of exporting �rms, closer to the one we see in the data. This is
because if �rms are taken to have fewer balls, it is less likely that any one of them comes from
exports. However, even the $500,000 ball-size calibration would predict signi�cantly more
exporters (41%) than in the data (18%). This suggests that economies of scale in deciding
whether or not to export are rather strong.

For the prevalence of zeros in product-level trade �ows we note that a slightly higher ball-
size calibration would lead to an almost perfect �t of the data. Figure 6 replicates Figure 5
but instead of using the actual number of shipments we divide �ows into balls according to
ball-size calibrations $36,000, $100,000, and $500,000. A small increase in the ball size not
only increases the overall incidence of product-level zeros to match the one in the data, but
also achieves a perfect �t in terms of the relationship of zeros and total export.

Table 14 shows our quantitative results for smaller ball sizes, between $36,000 and $2,500.
The last column describes the limit as ball size shrinks to zero and the indivisibility becomes
negligible. This is to illustrate how the model would work without indivisibilities.

As expected, smaller ball sizes imply fewer empty bins, both for products and for �rms.
Note, however, that even with a $2,500 ball size the majority of product and �rm bins remain
empty. This means that even a very small degree of indivisibility leads to a large number of
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Figure 6: The incidence of zeros with di�erent ball sizes

Ball size
Moment Data $36k $18k $2,500 none
HS10-level product×country U.S. export �ows

Share of zeros 82% 72% 66% 45% 0
OLS coe�cient of nonzero �ow on GDP 0.08 0.10 0.10 0.09 0

Firm×country U.S. export �ows
Share of zeros 98% 96% 94% 86% 0
Gravity for �rms, GDP OLS coe�cient 0.71 0.56 0.53 0.42 0

Single-product exporters
Fraction over total exporters 42% 43% 35% 15% 0
Share of total exports 0.4% 0.3% 0.1% 0.0% 0

Single-destination exporters
Fraction over total exporters 64% 44% 35% 15% 0
Share of total exports 3.3% 0.3% 0.1% 0.0% 0

Single-destination, single-product exporters
Fraction over total exporters 40% 43% 35% 14% 0
Share of total exports 0.2% 0.3% 0.1% 0.0% 0

Exporters in U.S. manufacturing
Fraction over total �rms 18% 74% 81% 95% 100%
Size premium of exporters 4.4 34 67 337 n.a.

Table 14: Ball-size calibrations: $36,000; $18,000; and $2,500
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empty bins. (In the limit, of course, there will be no empty bins.) Smaller balls also imply
less action on the �extensive margin.� Because most bins are �lled, it is unlikely for new
balls to fall in empty bins � hence the coe�cient of country size on number of product or
�rm bins is smaller.

With smaller balls, single-product and single-country exporters become much less promi-
nent. This is because the more balls make it less likely that a �rm will only have balls in
one product bin or one country bin.

Finally, the fraction of �rms that export increases as the ball size decreases. In the limit,
without indivisibilities, all �rms are expected to export in the balls-and-bins model.

8.2 Heterogeneity in ball sizes

Another concern with the lack of shipment data is that we may be missing variation in
shipment size across destinations or products. However, if the shipment size does not vary
systematically with the category of interest, then the analysis is very robust. Suppose the
allocation of balls to bins is the same as described in Section 3, but now each ball has a
random size, z, drawn from a common distribution F (z) independently for each ball. We
assume the distribution has support (0, Z] (with Z being arbitrarily large), mean µz and a
�nite variance σ2

z . How do we convert dollars into balls and vice versa?
Given the number of balls in a particular bin, xi, the dollar value of the trade �ow in

that bin is

Yi =

xi∑
n=1

zn,

which is the sum of independent and identically distributed random variables, where the
limit of the summation is also random. This is a stopped-sum distribution that has support
[0, nZ], where n is the maximum number of balls.31 Below we derive some key moments of
this random variable.

Firstly, and perhaps most obviously, the probability of the �ow being zero equals the
probability of the bin containing no balls,

Pr(Yi = 0) = Pr(Xi = 0) = (1− si)n.

This because all balls have a positive size.
The mean trade �ow is just the mean number of balls times the mean ball size,

E(Yi) = E [E(Yi|xi)] = E [xiE(zn)] = nsiµz.

This is again independent of σ2
z , the heterogeneity in ball sizes.

The variance of the trade �ow can be similarly derived as

Var(Yi) = Var(xi)µ
2
z + E(xi)σ

2
z = nsi(1− si)µ2

z + nsiσ
2
z .

31See Chapter 9 of Johnson, Kemp and Kotz (2005) on stopped-sum distributions.
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The variance increases in the variance of the number of balls, nsi(1 − si), but also in the
variance of ball size, σ2

z . Intuitively, the heterogeneity in ball sizes is another source of
uncertainty about the total size of a trade �ow.

An important consequence of the heterogeneity in ball sizes is that, with positive prob-
ability, some of the non-zero trade �ows will be smaller than the average ball size. These
correspond to bins with one or a few balls that are smaller than the average. This suggests
that the lower tail of trade �ows is not necessarily informative about the average ball size.

9 Conclusion

Sparse datasets do contain a lot of information. Ignoring the sparsity, however, can easily
lead to mistake patterns arising mechanically for systematic stylized facts. Nowhere this
problem is more acute than in the analysis of the extensive margin. A zero in the data is no
more than an absence of observations for a particular category. A zero in the data must thus
be evaluated against the overall number of observations and the relevance of the category
of interest. While we would easily �nd many fundamental reasons why the U.S. did not
export enriched uranium to North Korea in 2005, there were no observed U.S. shipments of
enriched uranium to U.K. either�which is not really surprising given that there were only
59 shipments overall.

The balls-and-bins model provides a parsimonious and, more importantly, atheoretical
account of the sparsity in the data. The structure of the model parallels that of the data:
there is a given number of observed shipments, and each of them will be classi�ed into
a unique category; some trading partners are larger than others, and some products are
traded more often than others. This is indeed all the structure in the model. From there
the assignment of a shipments to a category is an independent and identically-distributed
random event. Independence also governs the construction of the bin sizes. For example,
the probability of a given country�product pair is just the product of the respective shares
in aggregate trade.

Thus whenever the balls-and-bins model matches a particular fact we will fail to identify
the relevant economic decisions driving trade. In other words, if the zeros in the data are
explained by the sparsity of the dataset, then they should not be the basis to favor any
fundamental reason for the lack of shipments.

Importantly, the balls-and-bins model also works in the opposite direction: whenever the
model fails to reproduce a fact we know that strong economic forces are at play. In the paper
we have discussed the incidence of exporters among domestic �rms in some detail. Moreover,
the balls-and-bins model provides a quantitative benchmark so we can better evaluate models
against the data. For example, the data shows excess zeros in U.S. exports, so there is a
demand for models that put some structure on the top of sparsity.

To summarize, we hope that our approach can be used in future empirical work using
massive micro-level trade datasets. Recent transaction-level datasets are very detailed, and
trade �ows are typically broken down by �rms, 8 or 10-digit product codes, and destination
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countries.32 By their very nature, these datasets are sparse in the sense that the number of
observations is low with respect to the number of categories of interest. The balls-and-bins
model provides a natural benchmark for working with sparse datasets, and can be easily
adapted to any empirical application.
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Appendix

A Aggregation

In this subsection we formally derive the aggregate statistics given a set of trade �ows. To
be precise, suppose there is a total of T trade �ows (countries, �rms) in the dataset, each
indexed by t and comprised of nt shipments. The distribution of shipments across trade �ows,
n1, n2, ..., nT , is taken as given. We �nd it useful to describe the distribution of shipments
across trade �ows as a probability distribution over N, denoted πn.33 As in Section 3, each
shipment can be classi�ed into one of K categories.

The expected number of non-empty bins across all trade �ows is given by

E(k|n1, n2, ..., nT ) =
N∑
n=1

πn

K∑
i=1

[1− (1− si)n] =
K∑
i=1

N∑
n=1

πn[1− (1− si)n]. (7)

Let G(z) denote the probability generating function (PGF) corresponding to the distribution
{πn}:

G(z) =
N∑
n=1

πnz
n.

Then the number of non-empty bins can be written as

E(k|n1, n2, ..., nT ) =
K∑
i=1

[1−G(1− si)].

Since G(z) is strictly convex, uneven bin-size distributions will have a smaller expected
number of non-empty bins. That is, aggregation preserves the properties discussed in Section
3.

What about the proportion of single-bin trade �ows? For each trade �ow of size n, the
probability is

∑K
i=1 s

n
i . The conditional probability is then

Pr(k = 1|n1, n2, ..., nT ) =
N∑
n=1

πn

K∑
i=1

sni =
K∑
i=1

N∑
n=1

πns
n
i .

We can also express it in terms of the PGF as

Pr(k = 1|n1, n2, ..., nT ) =
K∑
i=1

G(si).

It then becomes clear that the convexity of G(z) also preserves the properties of each
�ow with respect to the fraction of single bins. In particular, we can now assert that more
even bin-size distributions induce a lower fraction of single-bin �ows.

33To be precise, we assume that the support is bounded by some �nite N .
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Finally we can also calculate the fraction of balls that have fallen into a single bin. This
corresponds to, for example, the fraction of sales attributed to single-product �rms.

N∑
n=1

πnn

K∑
i=1

sni =
K∑
i=1

N∑
n=1

πnns
n
i .

With the use of the PGF notation,

N∑
n=1

πnns
n
i = G′(si)si.

And we can easily have the average size of trade �ows that all fall in bin i is∑N
n=1 πnns

n
i∑N

n=1 πns
n
i

=
G′(si)si
G(si)

.

It is important to note that, unless the number of trade �ows is in�nite, the actual
fractions will be a random variable. Since all distributions are known it is actually possible
to derive the actual distribution for each moment. It is, however, often unpractical to do so
and one can use Monte Carlo methods to derive the distribution as needed.

B Deriving the exporter's size premium

We now derive the size-exporting relationship formally. Let πn be the unconditional size
distribution of �rms. The �rm-size distribution conditional on not exporting is

Pr(n|no export) =
Pr(no export|n)πn

Pr(no export)
.

The average sales (number of balls) of non-exporters is

E(n|no export) =
∞∑
n=1

πnn(1− s)n

Pr(no export)
.

The average sales for the population of �rms is

E(n) =
∞∑
n=1

πnn.

We can express the expected sales of non-exporters in terms of the probability generation
function G(z) of the �rm size distribution.

E(sales|no export) =
(1− s)G′(1− s)

G(1− s)
,
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the elasticity of G evaluated at 1− s. Note that G is di�erentiable. The unconditional mean
is given by the same formula but evaluated at z = 1:

E(sales) =
1G′(1)

G(1)
.

A su�cient condition for non-exporters being smaller than the average if the elasticity of G
is increasing in z.

To see how the skewness in the �rm size distribution leads to a large exporter premia, we
parametrize the distribution as a zeta distribution. This is the discrete analogue to Pareto
distribution, and its probability mass function is

πn =
n−α

ζ(α)
.

Here α is the tail exponent, and is estimated to be about 2.06 by Axtell (2001). The
probability generating function of the zeta distribution is

G(z) =
Liα(z)

ζ(α)
,

where Liα is the (non-analytic) polylogarithm function. By properties of polylogarithm, the
elasticity of G(z) is given by

zG′(z)

G(z)
=

Liα−1(z)

Liα(z)
.

With α = 2.06, this implies that exporters are about 18 times as big as non-exporters.
If we lower α closer to 2, we are putting more mass of the distribution on its upper tail. For
α = 2.02, exporters are 27 times as big as non-exporters.

C Mapping models into sparse data

In the main text we claimed that a stylized fact fails to identify the relevant economic theory
if it cannot falsify the balls-and-bins model. In this appendix we elaborate further on this
claim and show how to use balls and bins to map trade models into sparse data.

A trade theory makes predictions about the trade �ow between �rm i and destination
country c in product s during a time interval of length ∆t:

Yics,∆t = g(θ,Xics,∆t),

where θ is a vector of model parameters, Xics is a vector of �rm, country and product
characteristics (such as GDP, capital abundance, trade costs, productivity, trade barriers
etc).34

34Some of these characteristics may be unobservable, for example, productivity.
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Most trade theories take the form of a set of continuous �ows, that is, as we reduce
the period length ∆t, the trade �ow scales down proportionally. In this sense, all trade is
similar to oil �owing through a pipeline. If we measured oil imports for 1 minute instead of
2 minutes, we would see half as much oil �owing through.

In practice, however, we observe discrete shipments. That is, over a time period, trade
data consist of a �nite list of transactions. In order to use the data to evaluate the model,
we need to map the continuous �ows into observables.

Suppose we observed just one shipment. Under the model, the probability that it is a
product s going from �rm i to country c is

Pr(i, c, s|θ,X) =
Yics∑

i′
∑

c′
∑

s′ Yi′c′s′
.

This probability is a function of parameters and observables,35

Pr(i, c, s|θ,X) = πics(θ,X).

It is possible that πics takes the value of zero. In that case there is zero probability that we
ever observe a shipment in this category. We call a trade �ow (i, c, s) for which πics = 0 a
fundamental zero.

Of course, if the observed shipment is bananas, it does not mean that all trade is in
bananas only: we cannot equate all unobserved �ows with fundamental zeros. As we collect
data on more shipments, we must evaluate the likelihood that a particular trade �ow remains
unobserved.

Suppose then that we collect data on n shipments. We can calculate the probability that
none of the n observations contains trade �ow (i, c, s) as

Pr [¬(i, c, s)|θ,X]n = [1− πics(θ,X)]n . (8)

Here we take the n shipments to represent an iid random sample from the system described
by the model {πics}.

What if we had an in�nite amount of data, n → ∞? Then the observed share of trade
�ow (i, c, s) would converge in probability to the �true� share, πics. Only fundamental zeros
would remain unobserved:

lim
n→∞

[1− πics(θ,X)]n > 0 i� πics(θ,X) = 0.

In a sparse dataset, though, this asymptotic result is of little use. Instead, we should use
the likelihood function (8) with n equal to the number of observations.

Notice the similarity to balls and bins. Say we equate the number of balls to the number of
observations, and use the theory to construct the bin sizes, {πics}.36 The resulting likelihood
is exactly the one given by equation (8).

35Because the function g is homogeneous of degree one in ∆t, the ratio does not depend on ∆t.
36In the main text, our objective was to provide an atheoretical account of data sparsity. To this end, we

assumed that there is no systematic association between �rms, products and countries, so that πics(θ,X) =
αiβcγs. Under this independence hypothesis all �rms export all products to all countries in the same
proportion.

35



As long as we account for the sparsity, all models will share the same likelihood function
(8). Di�erent models can still have di�erent predictions for missing trade �ows, as bin sizes,
{πics}, vary across models.

However, sparsity is the key to matching the zeros in the data. The precise bin size
distribution does not substantially a�ect the prevalence of zeros. To see this, consider an
alternative to the exercise in Section 4. For each destination country, we take the number of
shipments observed and �ll up as many product categories as possible. That is, each ball is
forced to fall into an empty bin. This allocation clearly results in the lowest possible number
of empty bins, irrespective of the bin sizes. We �nd that more than half of the bins remain
empty. For example, the number of shipments to the median country is less than one third
of the total number of products, so more than two thirds of the product bins remain empty.

Therefore zeros will be prevalent across all models that match aggregate trade �ows
across countries. For example, the Helpman�Krugman and the Eaton�Kortum models are
both succesful in matching aggregate trade �ows as they both predict the gravity equation.
Hence both models are consistent with the large number of zeros we see in the data.

The prevalence of zeros hence fails to identify the true model. Having said that, we believe
there is scope for quantitative analysis. For example, the balls-and-bins model underpredict
zeros by 10 percentage points (72% vs 82%). It would be very interesting to know which
structural models can outperform balls and bins.

D Data reference

Description of U.S. export data

Export data in the U.S. are based on Shipper's Export Declaration (SED) forms �led by
exporters with the Customs and Border Protection and the Census Bureau. Filing a separate
SED is mandatory for each shipment valued over $2,500. A shipment is de�ned as �all
merchandise sent from one USPPI [�rm] to one foreign consignee, to a single foreign country
of ultimate destination, on a single carrier, on the same day.�37

Each shipment is assigned a unique product code out of 8,988 potential �Schedule B�
codes (of which 8,880 had positive exports in 2005). The Schedule B classi�cation is based
on the Harmonized System; the �rst six digits are HS codes. The remaining 4 digits are
speci�c to U.S. exports. For convenience, we refer to these product codes in the paper as
10-digit HS codes.

We drop all 15 product codes in Chapter 98 (Special Classi�cation Provisions). These
categories are for products that are not identi�ed by kind, either because of their low value,
or some other reason.

There are 231 potential destination countries. Some of these entities are not countries
but territories within countries (for example, Greenland has its own country code). We drop
the country code 8220 (Unidenti�ed Countries) and 8500 (International Organizations).

37�Correct Way to Complete the Shipper's Export Declaration,� February 14, 2001 version.
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The Census Bureau publishes product�country aggregates based on this shipment-level
dataset in �U.S. Exports of Merchandise.� For each statistic, it also reports the number of
SEDs (hence the number of shipments) that statistic is based on.

We calculate the average shipment size for a product�country pair as the total value of
exports divided by the total number of shipments in 2005. For each product, we then take
the median shipment size across destination countries.

Baldwin and Harrigan (2007)

Baldwin and Harrigan (2007) use data on U.S. imports and exports with all trading partners
in 2005 in their analysis. This data comes from the U.S. Census, which reports value,
quantity, and shipping mode for imports and exports and shipping costs and tari� charges
for imports by trading partner and 10-digit HS commodity code. The Census does not report
import trade values less than $250 for imports and $2,500 for exports, so small trade values
are treated as zeroes. For imports, their dataset contains 228 trading partners (countries for
which at least one good had a nonzero import value) for goods in 16,843 di�erent 10-digit HS
categories. For exports, there are 230 trading partners for goods in 8,880 di�erent 10-digit
HS categories (see Table 2).

Baldwin and Harrigan also use data on trading partner distance from the United States
from Jon Haveman's website:

http://www.macalester.edu/research/economics/PAGE/HAVEMAN

/Trade.Resources/Data/Gravity/dist.txt.
Macro variables (GDP, GDP per worker) are from the Penn World Tables.

Helpman, Melitz, and Rubinstein (2007)

Helpman, Melitz and Rubinstein (2007) use annual trade data on bilateral trade �ows for
158 countries (see Table A1 for a list) from Feenstra's �World Trade Flows, 1970-1992� and
�World Trade Flows, 1980-1997�.

They also use data on population and GDP per capita from the Penn World Tables
and the World Bank's World Development Indicators. They use data from the CIA World
Factbook on whether a country is landlocked or an island, along with each country's latitude,
longitude, legal origin, colonial origin, GATT/WTO membership status, primary language
and religion.

Data from Rose (2000) and Glick and Rose (2002) is used to identify whether a country
pair belonged to a currency union or the same FTA, and data from Rose (2004) to identify
whether a country is a member of the GATT/WTO.

The variable capturing regulation costs of �rm entry is derived from data reported in
Djankov et al. (2002).

Bernard, Jensen, and Schott (2007)

Bernard, Jensen, and Schott (2007) use a dataset that links individual trade transactions to
information on the U.S.-based �rms involved in the transactions. Data on trade transactions
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for exports in 1993 and 2000 is collected by the U.S. Census Bureau, and includes information
on export value, quantity, destination, date of transaction, port, and mode of transport at the
10-digit HS code level. Shipments data are collected for all export shipments above $2,500.
Transaction-level data on imports are collected by U.S. Customs and Border Protection for
all import shipments above $2,000. Detailed �rm data comes from the Longitudinal Business
Database of the Census Bureau. This dataset includes employment and survival information
for all U.S. establishments, though the linked dataset does not include establishments in
industries outside the scope of the Economic Census.

Hummels and Klenow (2005)

Hummels and Klenow (2005) use data from the United Nations Conference on Trade and
Analysis (UNCTAD) Trade Analysis and Information System (TRAINS) CD-ROM for 1995.
This dataset consists of bilateral import data for 5,017 goods, 76 importing countries and all
227 exporting countries. Goods are classi�ed by 6-digit HS code. They also use matching
employment and GDP data for a subset of 126 exporters and 59 importers from Alan Heston
et al. (2002). More detailed U.S. trade data comes from the �U.S. Imports of Merchandise�
CD-ROM for 1995 from the U.S. Bureau of the Census. This dataset reports value, quantity,
freight paid, and duties paid for 13,386 10-digit commodity classi�cations and 222 countries
of origin, 124 of which have matching data on employment and GDP.

Bernard and Jensen (1999)

This paper uses �rm-level data from the Longitudinal Research Database of the Bureau of
the Census from 1984-1992. Their dataset includes all plants that appear in the Census
of Manufactures for 1987 and 1992. For comparisons which involve more than one year,
the set of �rms is further restricted to those which also appear in the the Annual Survey
of Manufactures for the inter-census years. The result is an unbalanced panel of between
50,000 and 60,000 plants for each year.

Bernard, Eaton, Jensen and Kortum (2003)

Bernard, Eaton, Jensen and Kortum (2003) use data from the 1992 U.S. Census of Manu-
factures in the Longitudinal Research Database of the Bureau of the Census. This dataset
covers over 200,000 plants, and records the value of their shipments, production and non-
production employment, salaries and wages, value-added, capital stock, ownership structure,
and value of exports.

Bernard, Jensen, Redding and Schott (2007)

Bernard, Jensen, Redding and Schott (2007) use transaction-level U.S. data from the 2002
U.S. Census of Manufactures. This paper also looks at more detailed data from the Linked-
Longitudinal Firm Trade Transaction Database, which is based on data collected by the U.S.
Census Bureau and the U.S. Customs Bureau. The dataset reports the product classi�cation,
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value and quantity shipped, data of shipment, trading partner, mode of transport, and
participating U.S. �rm for all U.S. trade transactions between 1992 and 2000.

Eaton, Kortum, and Kramarz (2004)

Eaton, Kortum, and Kramarz (2004) use French �rm-level data on type and destination of
exported goods from 1986. This dataset is constructed by merging customs data with tax-
administration data sets from Béné�ces Réel Normal (BRN)-Système Uni�é de Statistiques
d' Entreprises (SUSE) data sources, and contains information on over 200 export destinations
and 16 SIC industries.

Eaton, Kortum, and Kramarz (2007)

Eaton, Kortum, and Kramarz (2007) use sales data of over 200,000 French manufacturing
�rms to 113 markets in 1986. As in Eaton, Kortum, and Kramarz (2004), this dataset is
constructed by merging customs data with tax-administration data sets from Béné�ces Réel
Normal (BRN)-Système Uni�é de Statistiques d' Entreprises (SUSE) data sources.
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