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Abstract

A search-theoretic model of the retail market for illegal drugs is developed. Trade
occurs in bilateral, potentially long-lived matches between sellers and buyers. Buyers
incur search costs when experimenting with a new seller. Moral hazard is present due
to our assumption that buyers learn purity only after a trade is made. The model
produces testable implications regarding the effect of interdiction and enforcement
on: (a) the distribution of purity offered in equilibrium; and (b) the duration of the
relationships between buyers and sellers. The model’s predictions for price dispersion
and agent’s dynamic behavior are consistent with available data from the ADAM and
STRIDE data sets. The effectiveness of different enforcement strategies is evaluated,
including some novel ones which leverage the moral hazard present in the market.

∗We thank, without implicating, Peter Reuter who gave the impulse for the writing of this paper. We
thank Jon Caulkins, Ric Curtis, Boyan Jovanovic, Jeffrey Miron, Jose Scheinkman, Travis Wendel, and
Randy Wright for useful discussions, as well as participants of the 2007 NBER Economics & Crime Meetings,
the University of Maryland’s “Economics and Crime” Conference.
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1 Introduction

The market for illicit drugs is seen as the cause of many social ills in the United States,1 and
massive amounts of resources are devoted to interfering with the drugs market–the so-called
“war on drugs”. This massive intervention takes place without serious consideration of the
retail market structure. The prevailing conception of the retail drugs market is, by default, a
Walrasian one: a centralized market with demand and supply curves, and a market-clearing
price. In this paper we show that the Walrasian paradigm fails to capture a number of
empirical stylized facts, and propose a relatively sophisticated model which does. The aim
of this exercise is not merely descriptive: the model suggests reasons why some current policy
interventions may not be effective, and it also suggests new channels for effectively interfering
with the market.2

Our model is based on two key building blocks. The first is the notion that retail transactions
for illegal drugs are subject to significant moral hazard. What we mean is that the seller can
covertly dilute (“cut”) the product, and this dilution is largely unobservable to buyers until
after they consume. The following table, which is based on data from undercover DEA
purchases, shows that moral hazard is indeed present in this market. The table documents
an extreme instance of the moral hazard–the rip-off, a transaction in which the buyer is sold
essentially zero-purity drugs. A significant fraction of “street-level” transactions are seen to
be total rip-offs. Most important, the price paid in a rip-off is not appreciably different from
that of non-rip-off transaction, suggesting that buyers cannot observe dilution.3

1The trade in illicit drugs gives rise an underground economy that generates addiction, crime, and violence.
In less affluent and minority communities, the drugs economy crowds out the incentives to join the formal
sector and it raises incarceration rates. In the period 1981-2003 the prison population convicted of drug-
related crimes has shot up 9-fold (see Caulkins and Chandler 2006).

2Some readers might favor legalization. Such readers might want to take a positive, i.e., descriptive view
of this paper’s contributions. Also, they might want to regard the policy advocated in Section 6 as an
incremental step towards legalization.

3The qualitative results are unchanged if we define a rip-off in terms of quantity*purity rather than in
terms of purity only. There is still a significant amount of rip-offs. See Section 5.1.
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average percentage of all trades average price average price

Drug purity that are rip-offs of rip-offs of non rip-offs

(i.e., ≤ 2% purity) (std. dev. of price) (std. dev. of price)

Heroin 31% 10.3%
$53
(22.8)

$57
(20.6)

Crack Cocaine 68% 7.8%
$32
(21.3)

$38
(24.6)

Powder Cocaine 54% 5.1%
$35
(21.8)

$53
(25.8)

Table 1: Purity of trades with value ≤ $100 in 1983 dollars.4

If this opportunistic behavior is possible, why is it not more prevalent? And, indeed, why
doesn’t the moral hazard foreclose the possibility of trade? The answer lies in the long-term
relationships between buyers and sellers. A seller who wants to keep a customer will not rip
him off. Long term-relationships are thus the second building block of our model.5

The model is one of repeated trade with unobservable quality. Formally, we build on the
standard search model of Burdett and Mortensen (1998). Searching for sellers is costly. A
seller always offers the same quality to a given buyer. Over time, a buyer who starts off
unmatched searches until he finds a suitably high-quality seller, at which point he matches
with that seller. The match persists until either (a) it is permanently broken up (for example,
the seller goes to jail); or (b) during an occasional temporary disruption of the match (maybe
the regular seller cannot be located that day) the buyer samples a different seller who happens
to sell better quality, in which case he switches. We modify the standard Burdett-Mortensen
setup by assuming that buyers can only determine the quality of drugs after the trade is
consummated. Due to this severe moral hazard problem, in our model the market can only
be sustained through long-term relationships between buyers and sellers. This modification
takes us a long way towards accounting for a number of key stylized facts of interest, such
as: a mass of sellers cheat their customers by providing zero-purity drugs; and there is wide
dispersion in the price/quality ratio, which moreover exhibits a declining density.6

The point of this exercise is three-fold. First, descriptive: the model incorporates a number
of frictions–moral hazard, search costs–which are very salient in the sale and purchase of

4Prices computed in 1983 dollars. The number of observations is 12,716 for heroin, 16,202 for crack
cocaine, and 5,362 for powder cocaine. These figures are computed from STRIDE, a data collection of
undercover purchases by the Drug Enforcement Adminstration.

5Long-term relationships also serve a different purpose–reducing the risk of being caught by the police.
More on this point below. There is strong empirical and anecdotal evidence of the importance of long-term
relationships in the illegal drugs market (see Section 5.3).

6Our modification is crucial because the Burdett-Mortensen model exhibits an increasing density and no
mass points.

3



drugs. These frictions generate a number of testable predictions which match the stylized
facts of the retail drugs market and are not accounted for by existing Walrasian models.

Second, the model can help us evaluate policy in a more nuanced way. The conventional view
is rather generic: tougher penalties and more law enforcement, at any level of the supply
chain, should help. Our model presents a more nuanced view: different enforcement instru-
ments can impact the retail availability of drugs in complex and sometimes counterintuitive
ways. For example, to the extent that police enforcement makes it more risky to search for
new sellers, the long-term relationship between buyers and sellers is strengthened, which in
turn alleviates moral hazard and expands the possibility of trade. These findings highlight
the need for an accurate model of market structure in order to evaluate policy.

Third, at a somewhat more speculative level, the analysis suggests alternative channels
suppress the market. If it’s true that the market is undermined by moral hazard, then eco-
nomic theory suggests leveraging the moral hazard, i.e., inducing sellers to dilute more. This
might be implemented by giving a lighter sentence to sellers caught selling low-purity drugs.7

Within our model, such a policy would decrease the amounts of pure drugs traded and, also,
decrease the prison population. Thus two seemingly conflicting objectives–interfering with
the drugs markets and reducing drug-related incarcerations–can, at least in theory, be
achieved simultaneously.

The rest of the paper is organized as follows. In the next section we provide a brief literature
review. In Section 2 we introduce the model; its assumptions are briefly discussed in Section
2.1. Section 3 defines the equilibrium notion we employ. The equilibrium is characterized in
Section 4. Section 5 obtains some testable implications and compares them with available
data. Section 6 presents our results concerning the effect of existing enforcement policies,
and analyzes the effect of alternative policies. Section 7 concludes.

1.1 Related Literature

Theoretical modeling of drug markets has largely focused on modeling the demand for illicit
drugs, discussing the role of harmful addiction, rationality, and discounting (Grossman and
Chaloupka, 1998; Becker andMurphy,1988; Schelling 1984; Stigler and Becker, 1977). Formal
theoretical models of the market structure are very sparse and tied to traditional economic
assumptions of perfect information and/or a centralized market–see Bushway and Reuter
for a review article.8 Within this framework, all types of enforcement at all levels of the

7Current sentencing policy does not condition at all on the purity of drugs, though it conditions on the
quantity.

8Bushway, Shawn and Peter Reuter (forthcoming) “Economists’ Contribution to the Study of Crime and
the Criminal Justice System”. Crime and Justice: A Review of Research.
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supply chain are generally lumped together and modeled as a “cost of doing business” for
the dealer.9 Our model is considerably more nuanced both in terms of the market structure
and in the modeling of enforcement.

Our paper bears an intellectual debt to Reuter and Caulkins (2004). In this pioneering
paper they document the large price and quality dispersion in the drugs market, and they
informally conjecture that it may be due to search frictions and/or moral hazard. While
their paper does not develop a model, it presents some of the stylized facts that motivated
us to write this paper.

Becker, Murphy and Grossman (2006) supports the notion that the market should be regu-
lated by taxing rather than interdicting. Their basic argument is that taxes could be levied
at low administrative cost, while interdiction is costly to enact and to evade.10 Of course,
this argument works to the extent that the government has the power to tax “legalized”
drug sellers without driving them underground. Realistically, even in a world with legalized
drugs there would have to be considerable enforcement of “illegal” (i.e., tax-evading) drug
sellers, and so our analysis would still apply to that segment of the market.

A number of papers in the monetary search literature have dealt with the issue of decentral-
ized trade under asymmetric information, e.g. Williamson and Wright (1994), Trejos (1999)
and Berentsen and Rocheteau (2004). In all three papers, the buyers are (potentially) un-
able to assay the quality of the transacted good which is chosen strategically by the sellers.
While similar to our model in many respects, these papers only consider one-off transactions
between two agents; in contrast, we focus on the interplay between asymmetric information
and repeated interactions. Crime has been introduced in search models to examine the in-
teraction between the potential for crime opportunities that individuals face and their labor
market outcomes, as in Burdett, Lagos and Wright (2003), Huang, Liang and Wang (2004)
and Engelhardt, Rocheteau and Rupert (2008).

2 The Model

The model highlights two key characteristic of the retail market for illegal drugs: its vulner-
ability to moral hazard, and the fact that many transactions involve a trusted, or regular
dealer, who is presumably much less likely to sell diluted drugs. In this section we develop a
dynamic model that captures these salient features. A number of the modeling assumptions

9Reuter and Kleiman (1986) first demonstrated that the risk of being caught is a large component of the
cost to the seller. The implication is that enforcement plays a large role in the market price of drugs.
10This effect is particularly striking when the demand for drugs is very inelastic, and so from the social

welfare viewpoint taxes are purely a transfer while interdiction is a pure social loss.
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made below will be discussed in Section 2.1.

Time runs continuously, the horizon is infinite, and the future is discounted at rate r. There
is a continuum of buyers (or customers) of measure 1 and a continuum of sellers (or suppliers)
of measure σ. Buyers want to trade with sellers.

Each buyer gets the urge/ability to consume at random times which arrive at Poisson rate
α. When a consumer gets the urge/ability to consume, he takes a sum of money m and
purchases whatever drugs he can. One way to think about this process is that addicts will,
with Poisson rate α, be able to obtain m dollars, which they immediately use to purchase
drugs. For simplicity, m is exogenously given and is the same for all consumers.

In return form, the buyer receives q. We will refer to q as quality. q represents an aggregator
of quantity and purity, and it captures the utility that the buyer receives from consuming.11

While m is observed by both buyer and seller, the quality q fetched by m cannot be deter-
mined by the buyer at the time of the transaction. Quality q is chosen by the seller, through
“cutting.” After the buyer consumes the good, the quality of the purchase is perfectly re-
vealed. This ex-post knowledge affects the buyer’s decision of whether to match with the
seller (see below).

The seller pays c per unit of quality that he supplies to the buyers that visit him. The main
assumption on sellers’ behavior is that, once they decide on the quality level that they offer
a particular buyer, they commit to their decision forever. That is, a seller supplies the same
quality to a particular buyer at all times and, as a result, the buyer knows the quality that
he will receive from a particular seller once he has sampled from him.12

The market is characterized by search frictions in the sense that there is no central market-
place where all agents can meet to trade. Rather, buyers and sellers have to trade bilaterally.
A buyer can be in either of two states: matched, which means that he has a regular supplier,
or unmatched. An unmatched buyer has to search in the market at random, incurring utility
cost of search, s. A matched buyer has the option of visiting his regular supplier, which does
not entail any cost. However, there is a probability γ that the regular supplier is unavailable,
in which case the buyer has to search at random and incur cost s. The transition between
these two states takes place after the trading is done.

We now detail the transitions between the two states. An unmatched buyer decides whether
to match with a seller after consuming his good. If this occurs, the seller becomes his

11Following the criminology literature, we restrict attention to pure quantity =quantity*purity as a measure
of quality. This assumption is discussed in Section 2.1.
12Our equilibrium is consistent with a seller supplying different quality levels to different customers, or

with a seller supplying the same quality level to every customer. The substantive assumption is that, once
a quality has been chosen, it remains fixed for the remainder of the buyer-seller relationship. We continue
our discussion as if a seller sells the same quality to all his customers.
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regular supplier. A matched buyer decides whether to switch sellers if his regular supplier
was unavailable and he sampled a new seller at random. A match between a buyer and a
seller is exogenously destroyed at rate δ. In this event, the buyer becomes unmatched . The
substantive implication of this discussion is that a buyer can only be matched with one seller
at a time and there is no recall: once a match has been broken, the buyer cannot find that
seller again.

The focus of the equilibrium analysis will be to determine what q will be offered by sellers.
We interpret q as a measure of the availability of drugs (the ratiom/q represents the effective
price paid by the seller). Knowing q pins down both the buyer’s surplus from the transaction
(q −m) and the seller’s profits (m− cq).

2.1 Brief discussion of modeling assumptions

We view our model as most accurately describing the retail, street-level size transactions.
It is in those transactions that the moral hazard problem, which is central to the model, is
most likely to be important. For large transactions involving many thousands of dollars, it
is likely that methods to assay the drugs would be available to the buyer, and so the moral
hazard problem would be absent.

What does quality q correspond to empirically? We will focus on quality defined as pure
quantity per hundred dollars, where we define pure quantity as the product of (raw) quantity
times purity. So, for example, if a transaction involved 0.5 grams of 30% pure heroin, then
the pure quantity in that transaction would be 0.5*0.3 = 0.15.

Who is a seller? In our model the seller is a rather abstract agent, who buys wholesale and
sells retail. There is nothing in the model that identifies our sellers with single pushers as
opposed to criminal gangs. Our model is also silent on the location of purchase–it could
be in the street, or in an apartment. What is important for us is that the sellers choose the
quality of what they sell in order to maximize profits.

We model the seller as having the ability to personally cut the drugs. An alternative intepre-
tation of our formal model would be that sellers do not cut themselves, but rather purchase
drugs of different purities from a wholesale “menu” (at wholesale prices that reflect purity,
of course).

We assume that the ratio of buyers to sellers is fixed. This assumption is less restrictive
that it looks. In Proposition 9 Part 1 we show that “market performance” (i.e., quality
traded and consumer behavior) would be unaffected if we varied the mass of sellers. The
intuition for this result is straightforward: if, say, a number of sellers exits the market, then
the remaining sellers pick up the slack and simply expand their business. In the steady-state
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equilibrium, buyers are unaffected.13 This observation allows us, for example, to re-interpret
our results as applying to a model in which the mass of sellers is determined by a free-entry
condition–say, a fixed cost to be paid by each seller. Under this interpretation, Proposition
9 Part 1 shows that market performance is independent of the magnitude of the fixed cost.

Our model has inelastic demand: when the urge/money arrives, all consumers find a seller
and purchase. No consumer sits out, not even those who expect to receive a very low
purity. This assumption is made purely for expositional convenience: our analysis of market
performance (quality traded and consumer behavior) is unaffected if some consumers drop
out due to low purity or for other reasons.14 ,15

Consumers periodically get the urge to consume in our model. The available evidence from
the ADAM data-set suggests that these urges are pretty frequent for many consumers.16

For instance, out of all ADAM respondents admitting to heroin use in the previous thirty
days, almost 60% report buying heroin at least 28 times during the past month, and over a
third report buying it multiple times in a single day. The sheer frequency of these purchases
suggest that buyers don’t store drugs very much. This impression is corroborated by the
very high correlation in the ADAM data between the number of purchases and the number
of times users report consuming the drugs in a month.

Search frictions are introduced for good reason. In this decentralized market, sellers produce
and distribute their goods underground, and buyers have to expend resources trying to
locate each other without attracting police attention. Sellers cannot broadcast advertising
signals that promote their location or the quality of their products. In fact, many of these
search frictions are created by law enforcement at a great societal cost. Among the search
frictions in our model are exogenous permanent and temporary break-ups of dealer-buyer
matches. Permanent break-ups may be due to death or incarceration of either the buyer or
the seller. Reuter, MacCoun and Murphy (1990) estimate that in 1988 in Washington DC
the probability that a drug dealer became incarcerated was 22%. In addition, drug dealers
faced a 1 in 70 annual risk of getting killed and 1 in 14 risk of serious injury. Temporary
break-ups are also common. Among the ADAM respondents who responded to detailed
questions about heroin purchases, about a quarter report not being able to purchase heroin
in the past 30 days. In many cases, the causes they mention appear temporary in nature
(e.g., “police activity,” and “no dealer available”).17 If these obstacles can prevent buyers
13A related effect was identified in a theoretical paper by Reuter (???). In that paper, it was assumed

that jailing the drug dealers would result in more availability of drugs because the jailed dealers would be
replaced by even more efficient dealers.
14Again, this is because supply fully adjusts to shifts in demand; see Proposition 9 Part 1.
15Of course reducing q might drive buyers out of the market, and that is a very important result. We shall

turn to this isse in Section 6.
16Appendix A has a description of the ADAM data-set.
17For example, among the 276 respondents who report being unable to buy heroin in the past 30 days,
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from buying heroin, presumably they also drive buyers to temporarily experiment with new
sellers.

3 Defining the Equilibrium

We look for steady state equilibria, that is, equilibria in which the search strategy of buyers
and the quality distribution sold by sellers are time-invariant. Of course, even in a steady
state equilibrium a generic buyer searches while matched, and thus consumes progressively
better-quality drugs. Random break-ups in the matches will set back this process.

3.1 The Buyers’ Decision Problem

We first consider the buyers’ search problem, taking the sellers’ actions as exogenous. We
will show that the optimal search strategy is to stop searching (and thus match) if and only
if the quality offered by the current seller is above a threshold R. We also characterize R.

Let F denote an arbitrary distribution of qualities in the market with support in [0, q]. The
state variables for a buyer is whether he is matched and, if so, what is the quality that he
receives from his regular supplier. Let V (q) denote the value of being matched with a seller
who offers quality q. Let V̄ denote the value function of a buyer who does not have a regular
seller.

The value functions in flow terms are given by the following asset pricing equations:

r V̄ = α [−s+
Z q

0

(q̃ +max{V (q̃)− V̄ , 0}) dF (q̃)−m] (1)

r V (q) = α [(1− γ) q + γ

Z q

0

(−s+ q̃ +max{V (q̃)− V (q), 0}) dF (q̃)−m]

+ δ (V̄ − V (q)). (2)

The interpretation is as follows. Consider equation (1) first. At rate α the buyer gets the
urge to consume. When this happens, he samples a seller at random and incurs the cost
of search s. The instantaneous utility that he receives from consuming is a random draw
from the distribution of qualities, F . After consuming, the buyer decides whether to keep
this seller as his regular supplier, which yields a “capital gain” of V (q̃) − V̄ , or to remain

the reasons given are "no dealer available" (33%), "police activity" (28%), "dealer did not have any" (19%),
"dealer did not have quality" (14%), "other" (14%). Many of these reasons appear to suggest temporary
break-ups.
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unmatched, in which case there is no change in his value. In either case, he pays m to
the seller. Equation (2) is similar. Again, at rate α the buyer wants to consume. With
probability 1− γ his supplier is available and the buyer receives quality q. With probability
γ the regular seller is unavailable and the buyer has to search in the market. As a result, he
incurs cost s and he makes a random draw from F . The only difference from the previous case
is that he compares the new seller with his regular supplier when deciding whether to stay
with the new draw. Therefore the capital gain of switching to the new seller is V (q̃)−V (q).
Regardless of which seller he transacts with, the buyer pays m. Last, at rate δ the match is
destroyed and the buyer becomes unmatched leading to a capital loss of V̄ − V (q).

Note that V (q) is strictly increasing in its argument. Thus there is a unique reservation
value R. An unmatched buyer who samples a seller offering quality q ≥ R will choose to
match with the current seller, while if q < R he will remain unmatched.18 A matched buyer
will switch suppliers if and only if the new seller offers a higher quality. We now characterize
R as a function of the (still) exogenous distribution F .

Lemma 1 We have

R = −s+
Z q

0

q̃ dF (q̃) + α (1− γ)

Z q

R

1− F (q̃)

r + δ + α γ (1− F (q̃))
dq̃, (3)

or R = 0 if the right-hand side is negative.

Proof. We derive equation (3) by using V (R) = V̄ . However, the fact that the flow utility
of being unmatched is negative (−s) may lead to V̄ = V (R) for R < 0. Of course, quality is
non-negative so in that case R = 0 and V̄ < V (0).

Using the reservation properties that we derived, the two equations above can be simplified
in the following way:

r V̄ = α [−s+
Z q

0

q̃ dF (q̃) +

Z q

R

(V (q̃)− V̄ ) dF (q̃)] (4)

r V (q) = α [(1− γ)q + γ[−s+
Z q

0

q̃ dF (q̃) +

Z q

q

(V (q̃)− V (q))dF (q̃)] + δ (V̄ − V (q)).

(5)

Recalling that V (R) = V̄ , equate the two expression above to get (after a bit of algebra)

R+ s =

Z q

0

q̃ dF (q̃) +

Z q

R

(V (q̃)− V̄ ) dF (q̃) (6)

18By assumption, he matches when indifferent.
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The next step is to integrate by parts the second integral on the right hand side. To do that
we begin by calculating V 0(q). Differentiating equation (5) with respect to q yields

rV 0(q) = α [1− γ + γ[−V (q) F 0(q)− V 0(q) (1− F (q)) + V (q) F 0(q)]]− δ V 0(q)

V 0(q) =
α (1− γ)

r + δ + α γ (1− F (q))

Now, integrating by partsZ q

R

(V (q̃)− V̄ ) dF (q̃) =

Z q

R

V (q̃) dF (q̃)− (1− F (R))V̄

= V (q)− V (R) F (R)−
Z q

R

F (q̃) V 0(q̃) dq̃ − (1− F (R))V (R)

=

Z q

R

(1− F (q̃)) V 0(q̃) dq̃

since V (q)− V (R) =
R q
R

V 0(q̃) dq̃. Substituting the results of this integration into equation
(6) yields equation (3).

3.2 The Sellers’ Decision Problem

The seller’s problem is to choose a level of quality that maximizes his steady-state level of
profits. The steady state profits of a seller who chooses to offer quality level q are given by

π(q) = (m− c q) t(q) (7)

The first terms is the seller’s margin per sale (with a linear cost c of quality) and t(q) is his
expected (steady state) number of transactions, to be determined in detail in section 4.

The assumption that sellers maximize their steady state level of profits allows us to side-
step the possible complexities of short-term fluctuations in the number of customers. This
complexity is due to the randomness involved in the matching technology, which means
that two sellers offering the same quality might have different number of buyers. In the
long-run, or if there are very many buyers per seller, this randomness cancels out giving
rise to an expected number of buyers t (q) . In this case there is no complexity to worry
about. But if sellers are impatient and the number of buyers per seller is low, then the
short-run randomness would matter for the sellers’ profits. In that case, we would have to
keep track the number of buyers per each seller as a state variable. Expression (7) side-steps
this complexity by focusing on the steady state.
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3.3 Definition of Steady-State Equilibrium

Definition 2 A steady-state equilibrium is a buyer reservation value R, a distribution F of
sellers quality, and a profit level π̄ such that the following conditions hold:

1. Buyer optimization: R = R(F ) where R(F ) is defined in lemma 1.

2. Seller optimization: seller’s profits π(q) equal π̄ whenever q is offered in equilibrium,
and otherwise π(q) ≤ π̄.

Our equilibrium results extend straightforwardly to the case where the buyer-seller ratio is
endogenously determined, say by a free-entry process. This is because increasing the buyer-
seller ratio does not change the equilibrium R and F (Proposition 9 part 1). Instead, it
increases π̄, the profit level earned by each seller in equilibrium.

4 Characterization of Equilibrium

4.1 Existence and Uniqueness

Equilibria in our model exist and are unique. Depending on parameter values, the distribu-
tion of quality traded q may exhibit a mass point at zero. The following proposition states
the result formally.

Theorem 3 The equilibrium exists and is unique. In equilibrium, a mass point of sellers
offers zero quality if and only if c · s < k, where k > 0 is a function of parameters.

Proof. See Appendix B.

Theorem 3 says that the equilibrium is more likely to exhibit a mass of sellers offering zero
quality, if search costs s are low. Intuitively, this is because when s is small, buyers are
more likely to abandon a seller in search for one with better quality, which in turn makes it
less rewarding for sellers to offer high quality. Rather than offer high quality in order to get
repeat business, more sellers will opt for the quick one-time profit and offer zero quality.

In the remaining of the paper we focus on equilibria with a (possibly very small) mass point
of sellers offering zero quality. Such equilibria are the empirically relevant ones because in
our data we find a fair amount of zero-purity transactions. For completeness, we characterize
the equilibria when there is no mass point at zero in Appendix B.
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4.2 Steady-State Flow of Trades

In this section we characterize the equilibrium level of sales t(q) of a seller who offers quality
q as a function of the distribution of qualities, F , and the buyers’ reservation quality, R.
The only assumption that is used in this section is that the equilibrium is a steady state,
and so the aggregate population statistics (number of matched and unmatched sellers, etc.)
are constant over time.

Sales come from two sources: the steady state number of “loyal” customers and the random
customers who sample once and may or may not become regular after consuming (if they
do become regulars, they are counted as ‘loyal’ from then on). Denote the flow of loyal and
occasional buyers by tL(q) and tO, respectively. The flow of total sales is given by

t(q) = tO + tL(q). (8)

We now solve for t(q).

Lemma 4 The steady state level of transactions of a seller offering quality q is given by

t(q) =
α

σ

δ + α γ (1− F (R))

δ + α (1− F (R))
[1 +

α δ (1− γ)

[δ + α γ (1− F (q))]2
], when q ≥ R, (9)

t(q) =
α

σ

δ + α γ (1− F (R))

δ + α (1− F (R))
, when q < R. (10)

Proof. Let β = 1/σ denote the total number of buyers per seller. When deriving the
transaction flow it will prove more convenient to work with the number of buyers rather
than sellers. Let the steady state number of unmatched and matched buyers be given by n

and β − n, respectively. In steady state, the flows of buyers from the matched state to the
unmatched state and vice versa equal each other. An unmatched buyer becomes matched
after sampling a seller who offers above-reservation quality which occurs at rate α (1−F (R)).
A matched buyer becomes unmatched when his match is exogenously destroyed which occurs
at rate δ. As a result, in steady state the following holds:

n α (1− F (R)) = (β − n) δ.

Isolating n yields

n =
β δ

δ + α (1− F (R))
.
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The flow of occasional customers consists of unmatched buyers and of matched buyers whose
regular supplier is unavailable. Therefore

tO = α γ (β − n) + α n = α β
δ + α γ (1− F (R))

δ + α (1− F (R))
.

We now solve for tL(q), the flow of sales from loyal customers. Let l(q) denote the number
of loyal customers of a seller offering q. The flow of trades that these buyers generate for a
seller offering quality q ≥ R is given by

tL(q) = α (1− γ) l(q) (11)

We need to solve for l(q). It is immediate that l(q) = 0 when q < R. To describe l(q)

for q ≥ R, let G denote the distribution of qualities that matched buyers receive. G first
order stochastically dominates the distribution of offered qualities because a matched buyer
moves to higher qualities over time. The number of matched buyers receiving quality up to
q is given by (β − n) G(q). The flow into this group comes from the n unmatched buyers
who drew a quality level that they chose to keep (i.e. above R) but which is no greater
than q. Note that there are also movements within this group (i.e. from some q1 to q2 with
R ≤ q1 < q2 ≤ q) but these do not affect G(q). Buyers flow out of this group either because
their match is exogenously destroyed or because their regular seller was unavailable when
they wanted to consume and they sampled a quality level higher than q which made them
switch.

Equating the flows and solving for G(q) yields

n α [F (q)− F (R)] = (β − n) G(q) [δ + α γ (1− F (q))]

⇒ G(q) =
δ [F (q)− F (R)]

(1− F (R)) (δ + α γ (1− F (q)))

for q ≥ R, and G(q) = 0 otherwise.

The average number of buyers matched to a seller offering quality level q is given by

l(q) = lim
�→0

(β − n)
G(q)−G(q − �)

F (q)− F (q − �)
= (β − n)

G0(q)
F 0(q)

(we assume here, and later verify, that F is differentiable for q > R). It is a matter of algebra
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to arrive at

l(q) =
α β δ

[δ + α γ (1− F (q))]2
δ + α γ (1− F (R))

δ + α (1− F (R))

Substituting into (11) yields the result.

4.3 Characterizing the Quality Distribution

To characterize the quality distribution F , we use the fact that in equilibrium all qualities
that are offered yield the same steady state profits. Increasing the quality offered affects
profits in two ways: it reduces the margin per transaction and it increases the number
of transactions by raising the steady state number of regular customers. The number of
customers increases in q because a higher-quality seller has more competitors from whom to
poach customers (higher inflow) and because there are fewer sellers that can poach his own
customers (lower outflow). We now characterize F .

Proposition 5 The following properties hold in equilibrium:
(i) If q is offered by a seller then either q = 0 or q ≥ R.
(ii) F has no mass point on the positive part of its support.
(iii) F exhibits quality dispersion.
(iv) The positive part of the support of F is connected and is given by [R, q].
(v) q = m

c
· α δ (1−γ)
δ+α (1−γ) .

(vi) On the positive part of its support, F is given by

F (q) = 1 +
δ

α γ
− 1

α γ

p
α δ (1− γ)

s
(m/c)− q

q
.

Proof. (i) A seller who offers q ∈ [0, R) has no regular customers. As result t(q) = tO for
all q ∈ [0, R) and any positive quality is dominated by q = 0.
(ii) Suppose that a discrete mass of sellers offers quality q∗ ≥ R. As a result, there is a mass
of buyers whose regular supplier offers q∗. A seller who offers q∗ + � can poach customers
from the whole mass of suppliers who offer exactly q∗, leading to a discrete increase in the
inflow of buyers. Such a seller would thus get discretely more sales in steady state than any
seller offering q∗, with only negligible additional cost and hence π(q∗ + �) > π(q∗). This
cannot hold in equilibrium.

(iii) The argument above proves that there will be quality dispersion unless every seller
offers 0. Suppose that F (0) = 1. Then it is easy to see that lemma 1 implies R = 0 and the
no-mass point argument yields a contradiction.
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(iv) Suppose there is a gap in the support of F between q1 and q2, where R ≤ q1 < q2 ≤ q.
The sellers offering q1 and q2 have exactly the same number of regular customers since they
poach from the same set of competitors and hence t(q1) = t(q2). Since it is cheaper to offer q1
we have π(q1) > π(q2), which cannot be part of an equilibrium. Let q be the lowest positive
quality on offer. Then t(R) = t(q) which means that in equilibrium q = R for the same
reason.

(vi) The analytic expression for the distribution F can be recovered as follows. The profits
of sellers offering 0 and q are given by

π(0) = t (0) m

π(q) = t(q) (m− c q), for q ≥ R.

To solve for the distribution of qualities offered in equilibrium, substitute for t(·) and equate
π(0) and π(q). After some algebra, we get the following function (which, for convenience, is
defined on the entire R+):

F(q) = 1 + δ

α γ
− 1

α γ

p
α δ (1− γ)

s
(m/c)− q

q
. (12)

On the interval [R, q], the c.d.f. of qualities offered in equilibrium coincides with the function
F(q). Outside of that interval, only zero quality is offered. Formally,

F (q) =

½
F(q) for q ∈ [R, q].
F(R) for q ∈ [0, R].

(v) The value of the maximal quality q can be recovered by setting F (q) = 1 and solving.
We get

q =
m

c
· α (1− γ)

δ + α (1− γ)
.

Why does quality dispersion arise in equilibrium? Suppose, by contradiction, that all sellers
offered the same quality q∗. Then a seller who offered a slightly higher quality q∗ + ε,
would be able to retain all his current customers as well as poach every buyer that ever was
ever temporarily matched with him. This would lead to a discrete increase in profits at a
negligible cost (ε can be very small).

16



5 Testable Implications

Themodel has a number of implications for the cross sectional distribution of qualities traded,
and for the time-series of individual consumption. Not all of those can be compared to data,
due to the paucity of existing data. In this section we work out three sets of implications for
which there is empirical evidence to compare to. The first set of implications has to do with
the cross-sectional quality distribution. As the empirical counterpart to quality q we take
pure quantity (the product of quantity times purity). Our model can match the qualitative
features of the cross-sectional distribution of pure quantity, as observed in the STRIDE data
set.

The second set of implications has to do with consumer loyalty. First, in our model consumers
are expected to be somewhat loyal to their seller. Moreover, we show that consumers who
trade more frequently are also more picky: they will not settle for a low-quality seller, but
rather they will keep searching until they find a high quality one. When these consumers
do settle down with a regular seller, that seller will really be high-quality and thus these
consumers are less likely to abandon him in favor of another seller. This means that frequent
consumers, once they settle down, are more loyal to their seller. The ADAMdata set provides
evidence both of long term relationships and of greater loyalty by frequent consumers.

The third set of implications has to do with the correlation between wholesale price and
retail availability.

5.1 Quality Rip-Offs

Our analysis has focussed on parameter constellations such that the equilibrium exists with
a positive mass of rip-offs. We define rip-offs as those trades that yield a pure quantity which
is less than 10% of the average pure quantity traded. The next table indicates that rip-offs
are present in all three types of drugs.
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average percentage of all trades average price average price

Drug pure quantity that are rip-offs of rip-offs of non rip-offs

in grams
≤ 0.01g for crack and cocaine

≤ 0.016g for heroin
(std. dev. of price) (std. dev. of price)

Heroin 0.16 15.4%
$47.1
(22.8)

$58
(20.1)

Crack Cocaine 0.46 7.9%
$31.5
(21.3)

$37.7
(24.6)

Powder Cocaine 0.64 5.2%
$34.3
(21.6)

$53.2
(25.8)

Table 2: Pure quantity of trades with value ≤ $100 in 1983 dollars.19

Even the relatively high incidence of rip-offs found in Table 2 may be an underestimate of
the mass point in the distribution F offered by sellers. This would be the case if the STRIDE
data included purchases from trusted, or regular sellers, because these sellers are presumably
less likely to cheat their customers.20

5.2 Quality Dispersion

We next discuss the shape of the quality distribution offered in equilibrium.

Proposition 6 The density distribution of sellers offering quality q is decreasing in q if
α (1−γ)

δ+α (1−γ) ≤ 3
4
; if the opposite inequality holds, then the density is U-shaped in q.

Proof. Differentiating expression (12) yields the density of the qualities offered in equilib-
rium,

f (q) =
1

2

s
(1− γ) δ

αγ2
·

vuut ¡
m
c

¢2¡
m
c
− q
¢
q3
for q ∈ [R, q]. (13)

The function f (q) defined in expression (13) is U-shaped with a minimum at q = 3
4

m
c
. The

support of f , of course, has upper bound q. So if q > 3
4

m
c
, that is, if α (1−γ)

δ+α (1−γ) >
3
4
, then

f is U-shaped or monotonically increasing; otherwise, f is monotonically decreasing on its
support.

19Prices computed in 1983 dollars. The number of observations is 12,716 for heroin, 16,202 for crack
cocaine, and 5,362 for powder cocaine.
20Unfortunately, the nature of the relationship between buyer and seller is not disclosed in the STRIDE

extract of the data made available to us.
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Figure 3 shows the density distribution of the quality offered by sellers in equilibrium, under
the assumption that α (1−γ)

δ+α (1−γ) ≤ 3
4
.

Figure 1: Quality offered in equilibrium

We would like to compare this theoretical distribution with the empirical distribution of pure
quantity. As an example, Figure 2 depicts the distribution of pure quantity of crack cocaine
traded for $20 in Washington DC in the period 1989-1991. This empirical distribution
displays similarity with the theoretical distribution displayed in Figure 4.

Figure 2: Pure quantity of crack traded for $20 in Washington DC, 1989-1991.

Figure 4 provides a limited perspective because it only refers to $20 transactions, it only
portrays DC, and it needs to limit the number of years in order to limit the confounding
effect of inflation. Most importantly, a picture like Figure 2 would be very difficult to draw
for most cities due to the numerosity problem–we just do not have sufficient observation to
draw the equivalent picture for most cities. To deal with these problems, it is necessary to

19



devise a strategy for aggregating many pictures like Figure 2. The first limitation is addressed
by presenting the pure grams per hundred dollars, so for example the pure grams bought
with $20 would be multiplied by 5. The second and third limitations require more subtlety.
A key problem is that not all years and cities have the same mean quality, due to inflation
effects, time trends in purity, and differences in conditions across cities. Such shifts in the
distribution represent a confounding factor for our purpose, because we are interested in the
shape of the distribution in a city/year, and not on where it is centered. The (admittedly
crude) procedure we use to neutralize the effect of these shifts is to normalize observations
by dividing each observation by a city/year average pure quantity. If we take Figure 1 to
represent the quality distribution in a city/year, then the normalization is a rescaling of the
horizontal axis, and thus it does not change the shape of the distribution. The normalization
ensures that each of these city/year distributions is centered around 1. We then aggregate
the normalized observations by drugs type, and display the results in Figure 5.21

As might be expected, the empirical distributions in Figure 3 are less sharp, more smooth,
than the theoretical prediction in Figure 1. We ascribe this lack of sharpness to aggregation
issues. Aside from this difference, several points of similarity are worth noting between the
empirical and theoretical distributions:

1. Presence of a mass point at zero quality (sharp in both theory and data).

2. A gap above zero quality (sharp in the theory, somewhat more fuzzy in the data).

3. A decreasing density in the quality distribution (sharp in the theory and in the data,
provided we identify the mode of the empirical distribution with the mode of the theoretical
distribution)

4. A huge degree of quality dispersion.

The fourth point, the degree of quality dispersion, is a very robust feature of the data. In
Appendix C, we demonstrate that this dispersion is not an artefact of aggregation across
time and space. Therefore, the presence of this dispersion can be interpreted as a violation
of the “law of one price.” Clearly, the Walrasian model is not a good metaphor for the retail
drugs market. In our view, this massive quality dispersion represents strong evidence in
favor of a model with search frictions, such as the one we employ.

On the whole, we think that the qualitative features of the cross-sectional distribution of
quality in our model are consistent with the available empirical evidence.

21Figure 5 excludes transactions with value greater than $100 in 1983 dollars, in order to focus on the
retail market. Also, whenever there is only observation for a city/year, that is dropped. The pictures do not
substantially change if all observations are included.
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Figure 3: Normalized pure grams per $100.

5.3 Long-term Relationships and Loyalty

Repeated transactions are an integral part of the way our model operates. The next table,
compiled from the ADAM data set, provides (buyer-reported) evidence of a large amount of
repeat business. The presence of repeat business is, of course, consistent with the equilib-
rium of our model. The table also provides further detail. It indicates that more frequent
consumers appear to be more loyal to their regular suppliers. The table below shows that,
for heroin e.g., while fully 76% of frequent users conducted their last purchase from their
regular supplier, the equivalent proportion for casual users is only 58%.
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Heroin Crack Cocaine Powder Cocaine
Last supplier Frequent Casual Frequent Casual Frequent Casual

Regular 76% 58% 62% 43% 79% 57%
Occasional 18% 26% 27% 35% 15% 28%
New 6% 16% 10% 22% 6% 15%

Table 3: Repeated transactions.22

Our model would yield a similar prediction if we introduced buyer heterogeneity in the
frequency of consumption. The following lemma proves a key partial equilibrium result which
speaks to this issue. Given any distribution of quality F (not necessarily an equilibrium one),
a buyer who consumes more often (has a higher α) has a higher reservation quality.

Lemma 7 Given any distribution of quality, a buyer who consumes more often has a higher
reservation quality: formally, ∂R/∂α > 0.

Proof. Examining equation (3) it is easy to check that the right-hand side monotonically
increases in α which requires an increase in R̂ to preserve the equality.

Thus, a matched buyer who samples a new seller is more likely to “remain loyal” the higher
the quality level that he receives from his regular seller. Conditional on having a regular
seller, a buyer with a higher reservation receives higher quality which makes him more likely
to return after a temporary disruption of the match. This result has direct implications
for the equilibrium of a more complicated version of our model, one in which buyers are
heterogeneous in their α’s. While we do not explicitly set up and solve such a model, we
note the property stated in Lemma 7 holds for any F. Thus, whatever the F that might
arise in the equilibrium of a model with heterogeneous α’s, the reservation level of the
more frequent consumers will be higher. This argument proves, albeit informally, that in
any equilibrium of a model with heterogeneity in the frequency of consumption, the more
frequent buyers are “more loyal,” consistent with the data.

5.4 Effects of Wholesale Price Changes

What happens to the distribution of qualities offered F when the wholesale cost c changes?
It is possible to give sharp comparative statics results concerning the median of F .

22For each drug, these are the male respondents who reported consuming that drug at least once in the
previous 30 days.
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Proposition 8 Suppose less than half the sellers rip off their customers. Then a small
increase in the wholesale price reduces the median quality offered. Formally, if F (0) < 1/2
then ∂F−1 (1/2) /∂c < 0.

Proof. Let φ denote any quantile in the positive part of the support of the quality distri-
bution (the median, for example). Now increase c (or, equivalently, decrease m), and let φ̃
denote the same quantile in the new equilibrium distribution. Fix y > F (0) and denote the
corresponding quantiles before and after the increase in c by φ = F−1 (y) and φ̃ = F̃−1 (y) .
We can write

φ̃ = F̃−1 (y) ≤ F̃−1(y) < F−1(y) = F−1 (y) = φ,

where the weak inequality reflects the definition of F̃ (q) = max
h
F̃(q), F̃(R̃)

i
; the strict

inequality comes from ∂F(q)/∂c > 0 (cf. equation 12); and the second-to-last equality
follows from y > F (0) .

Figure 4 plots the relationship between the (average) wholesale price in a given year and the
pure quantity that can be purchased with $100 at the retail level.23 The figure shows two
patterns. First, wholesale (mean) price and retail median quality are negatively correlated,
consistent with the theoretical prediction of Proposition 8. Second, Figure 4 also shows a
very similar correlation between the wholesale price and retail average quality. This em-
pirical correlation, although not implied by Proposition 8, is consistent with our numerical
simulations.

The model’s prediction of a negative correlation between wholesale price and retail quality
(median or average) is not especially remarkable: many other models would presumably
yield the same correlation. Nevertheless, it is a useful “sanity check” for our model.

6 Interfering With the Retail Market

In this section we use the model to gain insight into the effect of various policies aimed at
interfering with the retail market. We shall focus on two main types of policies: enforcement
(Section 6.1) and sentencing (Section 6.2).24

In Section 6.3 we bring it all together and draw the lessons for policy. In that section, we
will need to reckon for the first time with the effect of policy on buyer participation. We

23“Retail” transactions are those worth less than $100, and “wholesale” transactions are those worth more
than $1000, in 1983 dollars.
24The effect of interdiction at the source was studied in Section 5.4. Other policy instruments, such as

“just say no” media campaigns, are beyond the scope of our analysis.
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have deferred discussing this important channel until now because in our model the extent
of buyer participation makes no difference to the analysis of market performance. When
discussing policy, however, that effect is fundamental.

6.1 Enforcement

This section studies the comparative statics of our model with respect to a number of pa-
rameters. These comparative statics can be thought of as representing the several effects of
increased enforcement.25

We find that simply deterring some sellers need not per se affect the supply of drugs. The
reason is that the remaining sellers may pick up some of the slack. In our model, in fact, this
effect completely offsets deterrence and so the direct effect of fewer dealers is nil (Proposition
9 Part 1).

We also find, counterintuitively, that increasing the search cost s results in improved quality
of drugs (Proposition 9 Part 2). This is because increasing the search costs makes the buyer
less likely to search, and so sellers become more willing to “invest” in a long-run relationship
with the buyer instead of settling for the quick rip-off.

A “collateral” effect of increased enforcement is that, as sellers become more likely to be
caught and jailed, buyer-seller relationships break up more frequently. In our model, this
effect is captured by an increased separation rates of matches (γ and δ in our model).
Proposition 9 Parts 3, 4 indicates that increasing the separation rates need not reduce drug
availability.INSERT INTUITIVE EXPLANATION OF EFFECTS

Proposition 9 (Impact of enforcement on quality offered)

1. (Through seller deterrence) Reducing the number of sellers (or the number of buy-
ers) affects neither the equilibrium quality distribution nor consumer behavior.

2. (Through reduced consumer search) As the consumer’s search cost s increases, the
average quality of drugs offered by sellers increases and the median does not decrease.

3. (Through increased temporary break-ups) As the temporary disruption rate γ

increases, the average and median quality of drugs offered by sellers can increase.

4. (Through increased permanent break-ups) As the permanent separation rate δ

increases, the average and median quality of drugs offered by sellers can increase.

25The comparative statics in points 1 and 2 also capture changes in sentencing.
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Proof. Part 1. Start with an equilibrium characterized by a quality distribution F . Suppose
the mass of sellers decreases, which means that the buyer-seller ratio β increases. Observe
from equations (10) and (9) that β enters profits multiplicatively, scaling the total number
of transactions, t(q). Furthermore, β does not enter the decision problem of the agents
anywhere else. If, as the mass of sellers decreases, the remaining sellers keep offering a
quality distribution according to F , then condition (7) is preserved. This means that it is an
equilibrium for the remaining sellers to offer quality distribution F and for buyers to leave
their strategy unchanged. After the change, each seller’s profits are scaled up by the same
amount.

Part 2. As characterized in expression (12), the function F does not depend on s. Thus in
equation (3) s enters the left-hand side only, and then only as an additive constant. So, as
s increases to s0 the equilibrium R decreases to R0. Moreover, since F (q) does not depend
on s or R, as s increases the shape of F (q) is unchanged for q > R. Thus, an increase in s

results in a stochastically dominant shift of the distribution F .

Parts 3. We show that average quality is zero when γ = 0 and when γ = 1 which means
that it moves non-monotonically for intermediate values of γ. When γ = 0, a buyer never
searches after he is matched with a seller which leads to the Diamond paradox: sellers offer
the lowest possible quality level. When γ = 1, a buyer never returns to a seller he has
sampled, which destroys all incentives for sellers to offer positive quality.

Part 4. The proof is provided by a numerical simulation. See Appendix XX.

Proposition 9 casts a complex light on the effects of current policy. Increasing enforcement
on sellers achieves deterrence, but deterrence has no effect on the availability of drugs.
Enforcement also affects availability indirectly through market frictions (separation rates),
but these effects are complex and potentially counterintuitive.

6.2 Sentencing of sellers

We now study the effect of sentencing policies for dealers. Sentencing of buyers is discussed
in Section 6.3.

Sentencing policy in the US takes into account the quantity of drugs that the dealer sells
(though not its quality). Accordingly, two polar cases can arise, based on the evidence
presented at trial. If a dealer is convicted based on evidence of one trade only (the undercover
bust, for example), then all dealers who are caught are put in jail for a period

J. (P1)
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Alternatively, if a dealer is convicted based on the size of his business (perhaps because the
police has obtained such evidence via a search), then dealers who trade more go to jail for
longer. Let us assume a multiplicative sentence structure where the time spent in jail by a
seller of quality q who is caught is given by

J · t (q, J) , (P2)

We denote by t (q, J) the mass of trades made by a seller with quality q in an equilibrium
with sentence parameter J. The expression t (q, J) is, of course, determined as part of the
equilibrium; the dependence on J arises because J affects the quality distribution offered in
equilibrium and therefore the size of a dealer’s business who sells quality q.

Finally, we consider an alternative penalty scheme which is not part of the current sentencing
guidelines. Under this scheme, the seller gets a mitigation on his sentence if he sells “sub-
par” quality relative to the best quality ever traded in equilibrium. Formally, we study the
following penalty scheme:

[J − j (q − q)] · t (q, J, j) , (P3)

The factor j is a parameter representing the intensity of the mitigation. The expression
t (q, J, j) represents the mass of trades made by a seller with quality q in an equilibrium with
sentence length J and discount j; it is determined as part of the equilibrium. The number
q is fixed, for convenience at the upper bound of the quality distribution prevailing when
j = 0.

The next proposition explores the effects of varying the parameters of this policy on quality
offered and also on the prison population. To this end, we need to introduce into the model
the possibility of going to jail. We do this in the simplest possible way, by assuming that
a seller is jailed when he meets a first-time customer who is in fact an undercover officer.26

Given a mass 1 of undercover officers who meet with sellers at a constant Poisson rate ζ,
the arrest rate for an individual seller is equal to ζ/σ. This outflow of jailed sellers needs to
be matched by a corresponding inflow in a stationary equilibrium. It could be new sellers
entering, or old sellers coming out of jail–it does not matter for our results.

Proposition 10 (Effect of sentencing policies on quality offered and prison pop-
ulation)

1. If, as in P1, penalties for dealing are independent of the size of the dealer’s business,
then increasing sentences J has no effect on market quality and consumer behavior,
but it increases the jail population.

26These undercover officer exist, of course: they are the ones who collect much of the data in STRIDE.
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2. If, as in P2, penalties for dealing are increasing in the size of the dealer’s business,
then increasing sentences J may help decrease market quality (it has the same effect
as increasing c, see Proposition 8), but it increases the jail population.

3. If, as in P3, penalties for dealing are increasing in the size of the dealer’s business,
then slightly reducing the sentence of those sellers who sell more diluted drugs (a) has
the same effect as increasing the wholesale price c (see Proposition 8); and (b) it also
decreases the jail population.

Proof. 1. Suppose the penalty is as in (P1). The number of people entering jail in each
instant is given by ζ and the amount of time they spend in jail is J , so the steady state
prison population is ζ J. Thus increasing J increases the jail population. To see that J has
no effect on market quality and consumer behavior, consider the payoff function that a seller
maximizes:

π(q) = (m− c q) t(q)− ζ

σ
J.

Note that, crucially, J does not affect the quality choice of the seller. Therefore, increasing
penalties effectively increases the entry cost to sellers which leads to fewer sellers in the
market, each of whom makes higher monetary profits. The quality distribution is unaffected.

2. Suppose now the penalty is calibrated on the number of trades, as in (P2). The aggregate
time spent in jail by a cohort arrested at a point in time isZ

J · t (q, J) dF (q, J) = Jβα

The mass of seller who goes to jail in each instant is ζ, so the steady state prison population
is now ζ J β α which increases in J .

To see the effect on the quality sold again consider the seller’s payoff:

π(q) = (m− c q) t(q, J)− ζ

σ
J t(q, J)

= (em− c q) t(q),

where we denote em = m− ζ
σ
J . We know from Proposition 5 part (vi) that the equilibrium

F depends solely on the ratio em/c. Increasing j decreases this ratio. Therefore, increasing
j shifts F in the same way as an increase in the wholesale cost of drugs c.

3. Suppose the penalty is as in (P3). The aggregate time a cohort sentenced at time-t spends
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in jail is

J =

Z
[J − j (q − q)] t (q, J, j) dF (q, J, j)

= (J − jq)βα+ j

Z
q t (q, J, j) dF (q, J, j)

The steady state prison population is therefore ζJ . Now suppose that we start from j = 0

and we contemplate a small increase in j. Its effect on the steady state prison population are
given by

ζ
∂J
∂j

¯̄̄̄
j=0

= ζ

·
−qβα+

Z
q t (q, J, 0) dF (q, J, 0)

¸
< ζ

·
−qβα+

Z
q t (q, J, 0) dF (q, J, 0)

¸
= ζq [−βα+ βα] = 0

So the prison population shrinks as we push j slightly above zero. As for the effect of
increasing j on the quality distribution, observe that with this penalty the seller’s payoff
takes the form

π(q) = (m− c q) t(q)− ζ

σ
[J − j (q̄ − q)] t(q)

= (bm− bc q) t(q),
where we denote bm = m− ζ

σ
(J− j q̄) and bc = c+ ζ

σ
j.We know from Proposition 5 part (vi)

that the equilibrium F depends solely on the ratio bm/bc. Increasing j decreases this ratio
provided that bm > q̄bc, which must hold because profits must be positive in equilibrium.
Therefore, increasing j shifts F in the same way as an increase in the wholesale cost of drugs
c.

Summing up, intervening through conventional policies such as stiffer sentencing may have
little effect on the quality offered in equilibrium,27 and it has the direct effect of increasing
the prison population. An unconventional policy intervention, reducing penalties for dealers
who sell diluted drugs, does well on both dimension. The intuition is straightforward: in a
market where the availability of high quality drugs is determined by the sellers’ incentives

27In our model, this effect comes about because the search and matching technology is unaffected by the
magnitude of the mass of sellers. Thus deterring some sellers through harsher sentences has no effect on the
quality of drugs traded.
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to dilute, introducing sentencing discounts for diluting will induce sellers to dilute more.
Moreover, introducing such discounts will have the beneficial direct effect of reducing the
prison population.

6.3 Wrap-up and Policy Discussion

The previous two sections show that many policies that have been tried in the war on drugs
may, within our model, have ambiguous or even counterintuitive effects on the quality of the
drugs traded. An interpretation of these findings is that some elements of the war on drugs
may not be as effective as one might think, or they may have unintended consequences. The
next step, admittedly a more speculative one, is to draw policy recommendations from our
analysis. We are interested in which policies best help achieve the policy objectives (a-b)
under the constraint (c):

(a1) deterring buyers from buying at all or, if not possible,

(a2) reducing the pure drugs that undeterred buyers can purchase for a given amount of
money;28 and

(b) reducing the prison population convicted of drug offenses; all the while

(c) minimizing the costs of policy implementation.

Note that effect (a1) is not possible within our model (remember, we modeled buyers as
inelastic). This simplifying assumption was harmless as long as we focussed on market
performance.29 But any discussion of policy must take into account buyer deterrence.

What policies do well along all criteria? Policies such as greater interdiction or more severe
penalties may help achieve (a1) and (a2), but they come at the cost in terms of (b) and/or
(c). Therefore, if we are looking to achieve all goals simultaneously, we should look at
decreasing penalties and enforcement. The results from Sections 6.1 and 6.2 above offer
several intriguing possibilities. We shall now discuss each in turn.

Reducing s, the buyer’s search cost, either through reduced enforcement or through lower
penalties, does well in terms of criteria (b) and (c). In addition, by Proposition 9 Part 2,
such a policy would reduce the quality traded (criterion a2). However, the effect on buyer
surplus is ambiguous because reducing s has a direct effect of increasing buyer surplus (buyers
who search incur cost s in equilibrium). Thus reducing s might induce consumer entry into
the market. For this reason, reducing the buyers’ search cost is not necessarily an obvious
candidate for policy intervention aimed at reducing consumption.

28Of course, (a2) may help achieve (a1): reducing purity may induce some consumers to quit entirely.
29This is because of (Proposition 9 Part 1).
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Similarly, reducing γ and δ, the temporary and permanent separation rates is also not nec-
essarily advisable. First, Proposition 9 does not give a monotonic prediction, so we may
decrease γ or δ in a region where doing so actually increases the quality traded. Second, to
the extent that reducing the temporary separation rate is achieved by reducing enforcement,
for example, the direct effect may well be to increase the buyer’s welfare, and thus consumer
entry into the market.

Adjusting sentences to reflect the purity of drugs sold, as explored in Proposition 10 part 3
does well on all dimensions: it reduces the quality that can be had for a given amount of
money (a2), which presumably also might drive some buyers to quit (a1). Also, there is no
cost of implementing this policy (c), and the prison population would decrease (b). What’s
most important, the channel through which this policy would act is intuitive: the policy
simply exploits and magnifies the moral hazard that is already present on the market. So
we think that this policy meets a certain initial level of scrutiny, at least at the theoretical
level at which this paper operates.

7 Conclusions

Over the last 25 years the “war on drugs” has drawn enormous amounts of resources into
interfering with the drugs market, yet the theoretical understanding of market structure has
not evolved beyond the most stark Walrasian models. In this paper we have provided a rela-
tively sophisticated theoretical model of the market structure of the retail drugs trade. The
model combines asymmetric information with search theory. A prominent role is played by
the ability of sellers to “cut” the drugs without being immediately caught by the customers.
This moral hazard puts the retail drugs market at risk of collapse for “overcutting.” The
countervailing force that supports trade in our model is the presence of repeated interac-
tions. Despite being stylized, our model matches a number of empirical facts about the drugs
market, such as the prevalence of “scam” transactions, the shape of the quality distribution,
and the patterns of consumer loyalty.

The model we offer is quite unlike a Walrasian model, and for good reason. The available
evidence strongly rejects the “law of one price.” Rather, the large “price dispersion” found in
the data speaks in favor of a model with search frictions, such as the one we have introduced.

In the model, a number of conventional enforcement policies can have counterintuitive effects
due to the general equilibrium properties of the market. If nothing else, these theoretical
results underline the importance of understanding the market structure before intervening
with policy. Perhaps these results can also explain the limited success of some components
of enforcement policies.
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The most intriguing (though speculative) contribution of the model is suggesting unconven-
tional policy interventions. Two key policy objectives are reducing the availability of drugs,
and reducing the incarceration rate. With conventional enforcement policies, the two prob-
lems cannot be simultaneously addressed: deterring the drugs trade must necessarily come
at the cost of increasing the prison population, and vice versa. Our analysis suggests, how-
ever, that a creative use of sentencing policy can help both sides of the equation. Reducing
the sentences for sellers who “cheat” and sell low-purity drugs could reduce the equilibrium
quality of drugs traded for a given amount of money, thus presumably reducing buyer par-
ticipation. In addition, the direct effect of this policy would be to reduce incarceration rates.
By leveraging the moral hazard problem inherent in the market, then, this sentencing policy
would achieve the two apparently incompatible goals.
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A The data

We concentrate our attention to the heroin, crack cocaine and powder cocaine markets. Our
information regarding drug markets and how buyers and sellers transact comes from two
primary data sources: the System to Retrieve Information from Drug Evidence (STRIDE)
database and the Arrestee Drug Abuse Monitoring (ADAM) Program.

We use information available in the 1981-2003 STRIDE which has a total of approximately
780,000 observations for a number of different drugs and acquisition methods. The STRIDE
data include the type of drug obtained (heroin, cocaine, marijuana, methamphetamines...),
method of acquisition (undercover purchase or seizure), price (in the case of a purchase),
city and date of acquisition, quantity, as well as the purity level of the drug.30 We have
approximately 115,000 observations for heroin and 330,000 for cocaine (crack and powder).
We keep the observations acquired through purchases and clean the data of missing values,
observations whose weight is lower than 0.1 gram and other unreliable observations, as
suggested in Arkes et al (2004). We are left with 29,181 observations for heroin, 47,743 for
crack cocaine and 46,050 for powder cocaine which we use.

The ADAM data set is collected quarterly from interviews with arrestees in 35 counties
across the country. Individuals involved in non-drug and drug-related crimes are interviewed
with the goal of obtaining information about the use, importance and role of drugs and
alcohol among those committing crimes. In addition to interviewing arrestees, urine samples
are requested and analyzed for validation of self-reported drug use. Since 2000, a drug
market procurement module has been included as part of the quarterly survey and collects
information on the arrestee’s most recent drugs purchase for all arrestees who report having
used drugs in the previous 30 days. Information collected includes number of times drugs was
purchased in past 30 days, number of drug dealers they transacted with, whether they last
purchased from their regular dealer, difficulties experienced in locating a dealer or buying
the drug, and the price paid for the specific quantity purchased.

B Proof of Theorem 3.

We now provide the full characterization of equilibrium for all possible parameter values.

Proposition 11 Equilibria exist and they are unique. All equilibria exhibit quality disper-
sion. The quality distribution has a continuous part above the buyers’ reservation, R.

30The latter is determined through chemical analysis in a DEA laboratory
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The buyers’ reservation, R, and the number of sellers offering zero quality, F0, are determined
as follows:

There are cutoffs s and s such that

If s < s, then F0 = F̂0 and R = R̂,

If s ∈ [s, s], then F0 = 0 and R = R̂

If s > s, then F0 = 0 and R = 0.

where R̂ and F̂0 are strictly positive and they are functions of the parameters.

We shall prove the proposition in a series of lemmata. Existence and uniqueness are proved
constructively.

First, we fix some arbitrary values for the buyers’ reservation and the number of sellers
offering zero quality where the only restrictions are R ≥ 0 and F0 ∈ [0, 1). Given some
arbitrary pair R, F0 we characterize the distribution of offered qualities such that all sellers
in the positive part of the distribution earn the same steady state profits.

Second, we solve for the buyers’ reservation as a function of the, still arbitrary, number
of sellers who offer zero quality and the, previously derived, positive part of the quality
distribution.

Third, we determine how many sellers, if any, offer zero quality by requiring that offering
zero yields the same steady state profits as offering R.

Lemma 12 Given some F0 ∈ [0, 1) and R > 0, the distribution of offered qualities is

F (q) =
1 + δ

α γ
(1−ph(q)) for q ∈ [R, q)

F0 for q ∈ [0, R], (14)

where

h(q) =
m/c− q

δ (q−R)
α (1−γ) +

m/c−R
[1+α γ (1−F0)/δ]2

(15)

q = [
m

c
+

δ R

α (1− γ)
− m/c−R

[1 + α γ (1− F0)/δ]2
]/(1 +

δ

α (1− γ)
) (16)

Proof. We construct F so that the profits from any positive quality level on offer are the
same.
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Recalling that π(q) = t(q) (m − c q) and using the derivation of t(q) from lemma 4 yields
that the profits of a seller offering R and some q ≥ R are:

π(R) = α
δ + α γ (1− F0)

δ + α (1− F0)
[1 +

α (1− γ)

[δ + α γ (1− F0)]2
] (p− c R)

π(q) = α
δ + α γ (1− F0)

δ + α (1− F0)
[1 +

α (1− γ)

[δ + α γ (1− F (q))]2
] (p− c q)

Equating the two expressions and solving for F gives (14). Setting F (q) = 1 and solving for
q yields (16).

Lemma 13 Given some F0 ∈ [0, 1), the buyers’ reservation is

R = R̂ if s < s

R = 0 if s ≥ s

where

s =
m α (1− γ)

c δ
[

α γ (1− F0)

δ + α γ (1− F0)
]2 (17)

R̂ =
m H(F0)/c− s

F0 +H(F0)
, (18)

H(F0) = α (1− γ)/δ [
α γ (1− F0)

δ + α γ (1− F0)
]2 (19)

Proof. We fix some F0 ∈ [0, 1). We combine equation (3), which gives R as a function of
F , with (14), which gives the positive part of F as a function of R and F0. The purpose is
to derive R as a function of F0 alone.

We first derive R̂ and then check whether it is greater than zero. Since F (q) = F0 ∀ q ≤ R,Z q

0

q̃ dF (q̃) = (1− F0) R+

Z q

R

(1− F (q̃)) dq̃

which is a direct result of integration by parts. Hence we can rewrite equation (3) as

R̂ F0 = −s+
Z q

R̂

(1− F (q̃)) [1 +
α (1− γ)

δ + α γ (1− F (q))
] dq.
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Using (14), this expression can be simplified to

R̂ F0 = −s+
Z q

R̂

δ

α γ
[
p
h(q)− 1] [1 + α (1− γ)

δ
p
h(q)

] dq

= −s+ δ

α γ
{[α (1− γ)

δ
− 1] (q − R̂) +

Z q

R̂

p
h(q)− α (1− γ)

δ
p
h(q)

} dq (20)

To integrate, let

a1 = m/c > q

a2 =
δ

α (1− γ)

a3 = −δ R̂
α γ

+
δ (m/c− R̂)

[δ + (1− F0)]2

Then equation (15) implies that h(q) = a1−q
q a2+a3

where a1, a2, a3 > 0 and the key is to evaluate
the following:

I =

Z q

R̂

[
p
h(q)− 1

a2
p
h(q)

] dq (21)

To evaluate this integral we perform a change of variables. Define w = h(q), i.e. w =
a1−q

a2 q+a3
. This implies that q = h−1(w) = a1−a3 w

a2 w+1
and dq = (h−1(q))0dw = − a1 a2+a3

(a2 w+1)2
dw.

Furthermore, the limits of integration become h(q) and h(R̂). As a result, we can rewrite
the integral as

I =

Z h(q)

h(R̂)

[
√
w − 1

a2
√
w
] (− a1 a2 + a3

(a2 w + 1)2
) dw

= (a1 a2 + a3)

Z h(R̂)

h(q)

[

√
w

(a2 w + 1)2
− 1

a2
√
w (a2 w + 1)2

] dw
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Next, let z =
√
w so that w = z2, dw = 2 z dz and q = R̂ ⇒ z =

q
h(R̂), q = q ⇒ z =p

h(q). The integral becomes

I = (a1 a2 + a3)

Z √h(R̂)

√
h(q)

[
z

(a2 z2 + 1)2
− 1

a2 z (a2 z2 + 1)2
] 2 z dz

= 2 (a1 a2 + a3)

Z √h(R̂)

√
h(q)

[
z2

(a2 z2 + 1)2
− 1

a2 (a2 z2 + 1)2
] dz

The last change of variables is to let θ = arctan(
√
a2 z), so that z = tan θ√

a2
, dz = 1√

a2 cos2 θ
dθ

and q = R̂ ⇒ θ = arctan(
q
a2 h(R̂)) ≡ θ(R̂), q = q ⇒ z = arctan(

p
a2 h(q)) ≡ θ(q). Note

that a2 z2+1 = tan2 θ+1 = 1
cos2 θ

since tan θ = sin θ/ cos θ and sin2 θ+cos2 θ = 1. Therefore,
we can rewrite I as

I = 2 (a1 a2 + a3)

Z θ(R̂)

θ(q)

[
tan2 θ/a2
1/ cos4 θ

− 1

a2/ cos4 θ
]

1√
a2 cos2 θ

dθ

=
2 (a1 a2 + a3)

(a2)3/2

Z θ(R̂)

θ(q)

[sin2 θ − cos2 θ]dθ

=
2 (a1 a2 + a3)

(a2)3/2

Z θ(R̂)

θ(q)

[2 sin2 θ − 1]dθ

=
2 (a1 a2 + a3)

(a2)3/2
[cos θ(q) sin θ(q)− cos θ(R̂) sin θ(R̂)]

=
2 (a1 a2 + a3)

(a2)3/2
[
tan θ(q)

1 + tan2 θ(q)
− tan θ(R̂)

1 + tan2 θ(R̂)
]

where we have used the trigonometric identities sin2 θ + cos2 θ = 1, cos2 θ = 1
1+tan2 θ

and

sin2 θ = tan2 θ
1+tan2 θ

.

To complete the evaluation of (21), observe that equation (14) implies that θ(q) =
p
h(q) = 1

and θ(R̂) =
q
h(R̂) = 1 + α γ/δ (1 − F0). Putting things together and going through the

algebra yields

I = 2 α (1− γ) (
m

c
− R̂) (

1

δ
+

α (1− γ)

[δ + α γ (1− F0)]2
) (

δ

α (1− γ) + δ

− δ + α γ (1− F0)

α (1− γ) + δ [1 + α γ/δ (1− F0)]2
)

39



While not particularly attractive, the above equation can be entered into (20) to arrive at
the expression for R̂ in equations (18) and (19). Recalling that R = max{R̂, 0} yields

R = R̂⇔
s ≤ m α (1− γ)

c δ
[

α γ (1− F0)

δ + α γ (1− F0)
]2

which yields (17).

Lemma 14 The number of sellers offering zero quality is given by

F0 = F̂0 if s ≤ s (22)

F0 = 0 if s > s (23)

where

F̂0 = 1 +
ξ2 +

p
ξ22 − 4 ξ1 ξ3
2 ξ1

(24)

ξ1 = [
δ

α (1− γ)
− m

c s
] (

α γ

δ
)2, ξ2 =

2 α γ

α (1− γ)
− m

c s
, ξ3 = 1 +

m

c s
+

δ

α (1− γ)
(25)

Proof. To determine F0 we use the condition that zero- and positive-quality sellers make
the same steady state profits in equilibrium.

We compare the profits of zero-quality sellers with those offering R. The steady state profits
to a seller who offers 0 and R are given by

π(0) = α
δ + α γ (1− F0)

δ + α (1− F0)
m (26)

π(R) = α
δ + α γ (1− F0)

δ + α (1− F0)
[1 +

α (1− γ)

[δ + α γ (1− F0)]2
] (m− c R) (27)

which leads to the following expression:

∆π(F0) ≡ π(R)− π(0) (28)

= α
δ + α γ (1− F0)

δ + α (1− F0)
[(m− c R)

α (1− γ)

δ [1 + α γ/δ (1− F0)]2
− c R] (29)

In equilibrium, ∆π(F0) = 0 if F0 > 0. Note that if R = 0 (i.e. if R̂(F0) ≤ 0) then∆π(F0) > 0

which means that non-opportunistic sellers enjoy higher profits than opportunistic ones. This
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can only be in equilibrium if no one actually offers 0, i.e. if F0 = 0. Therefore, from now on
we introduce R̂ in (28), knowing that if R̂ ≤ 0 then F0 = 0 which is the correct answer.

A bit of algebra leads to

∆π(F0) =
α2 δ c s (1− γ)

[δ + α γ (1− F0)] [δ + α (1− F0)] [F0 +H(F0)]
N(F0), (30)

where

N(F0) =
m F0
c s

+ 1− m [α γ/δ (1− F0)]
2

c s
+
[δ + α γ (1− F0)]

2

δ α (1− γ)
(31)

The first term of (30) is always positive. Therefore, ∆π(F0) = 0 for some F0 only if N(F0) =
0. Letting F̄0 ≡ 1− F0 we can rewrite (31) as

N(F̄0) = ξ1 F̄
2
0 + ξ2 F̄0 + ξ3 (32)

where the ξs are defined in (25).

The fact that ξ3 > 0 means that N(0) > 0 which confirms that in equilibrium positive
quality is offered by a strictly positive measure of sellers. If ξ1 ≥ 0, then R̂ ≤ 0 which leads
to F0 = 0. Concentrating on the case where ξ1 < 0, we can find the roots of (32). The
positive root gives F̄0 < 0. The negative root is in [0, 1] when N(1) < 0 which is equivalent
to s ≤ s.

This completes the characterization of equilibria.

C Quality Dispersion

Below we explore quality dispersion in our sample. For example, in our entire heroin sample,
$100 buys on average 0.39 pure grams of heroin with a very large standard deviation of 0.58,
which leads to a coefficient of variation (standard deviation over mean) of 1.48. This is a
very large coefficient, supporting our argument that dispersion is very sizable. Of course, one
might expect that any temporal or geographical difference in prices may inflate our measure
of dispersion. For this reason we conduct two fixed effects regressions, with the purpose of
controlling for such differences. In both regressions we have city fixed-effects, a time dummy,
and a city*time interaction term. In the first regression, the time variable is the year; in the
second, it is the quarter that the transaction took place. Before conducting the fixed effects
regression we restrict our sample to cities that have more than 400 observations in total in
the case of the year, and 950 observations in the case of the quarter regressions. Furthermore,
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we drop all transactions that belong to city-time cells with fewer than 5 observations. In the
first case we are left with 19,072 data points from 23 cities and in the second with 12,955
data points from 8 cities. We then compute the coefficient of variation, using the standard
deviation of the residuals divided by the sample mean without fixed effects.

Heroin
Sample N mean std dev coeff of variation
Full 29,187 0.39 0.58 1.48
Restricted 1 19,072 0.38 0.55 1.45
Restricted 1 - city/year/interaction fixed effects 19,072 0.00 0.47 1.24
Restricted 2 12,195 0.39 0.53 1.36
Restricted 2 - city/quarter/interaction fixed effects 12,195 0.00 0.46 1.18

Crack

Sample N mean std dev coeff of variation
Full 47,743 1.83 1.51 0.83
Restricted 1 20,262 1.73 1.49 0.86
Restricted 1 - city/year/interaction fixed effects 20,262 0.00 1.32 0.76
Restricted 2 12,743 1.45 1.38 0.95
Restricted 2 - city/quarter/interaction fixed effects 12,743 0.00 1.25 0.86

Cocaine
Sample N mean std dev coeff of variation
Full 46,050 2.12 1.98 0.93
Restricted 1 18,862 2.14 1.98 0.93
Restricted 1 - city/year/interaction fixed effects 18,862 0.00 1.59 0.74
Restricted 2 9,030 2.09 2.07 0.99
Restricted 2 - city/quarter/interaction fixed effects 9,030 0.00 1.68 0.80

Restricted 1 keep cities with more than 400 observations
drop if fewer than 5 observations in city-year cell

Restricted 2 keep cities with more than 950 observations
drop if fewer than 5 observations in city-quarter cell

Both restricted samples have very similar summary statistics to the full sample. One re-
markable feature of the summary statistics of the residuals is that the standard deviation
decreased by only 17% and 15% when adding city/time/interaction fixed effects, even though
one of the dominant stylized facts of the drugs markets in the last 25 years is the dramatic
decrease in price. Our results suggest that most of the price variation occurs within a point
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in space and time rather than across different points. Finally in both regressions the co-
efficient of variation (using the mean prior to the regression which, if anything, yields an
underestimate) is still more than 3 times larger than the one for wine.
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