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Interest in behavioral economics has grown in recent years, stimulated largely by ac-

cumulating evidence that the standard model of consumer decision-making may provide

an inadequate positive description of human behavior. Behavioral models are increasingly

finding their way into policy evaluation, which inevitably involves welfare analysis. Yet be-

havioral economics fundamentally challenges our ability to formulate appropriate normative

criteria. If an individual’s choices do not reflect a single coherent preference relation, how

can an economist hope to justify a coherent non-paternalistic welfare standard?

One common strategy in behavioral economics is to add arguments to the utility function

(including all of the conditions upon which choice seems to depend) in order to rationalize

choices, and then treat the utility index as welfare-relevant. Unfortunately, such an approach

is often problemmatic as a guide for normative analysis, and in some instances simply un-

tenable. For example, if an individual’s decision depends on whether he has first viewed the

last two digits of his social security number (as the literature on anchoring suggests, e.g.,

Tversky and Kahneman [1974]), should a social planner attempt to determine whether the

individual has recently seen those digits before making a choice on his behalf?

Perhaps more importantly, in many cases the nature and significance of the condition

under which the choice is made changes when the choice is transferred to a social planner.

Consider the example of time inconsistency. Suppose an individual chooses alternative x

over alternative y at time t, and y over x at time t− 1. One could account for the pursuit

of different objectives at time t and t − 1 by inserting the time of the individual’s decision

into the utility function (quasihyperbolic discounting is an example, e.g., Laibson [1997]).

But that rationalization does not tell us how the decision’s timing should enter the utility

function once it has been delegated to a social planner. Thus, one could argue that the

planner should choose x at time t and y at time t−1, the same alternatives that the individual

would select. But one could also argue that, in either case, the planner should choose y at

time t− 1, on the grounds that the planner’s decision, like the individual’s decision at time

t− 1, is always at “arm-length” from the experience. Much of the literature on self-control



2

takes this second view. However, neither answer is plainly superior.

The obvious problems with the normative methodology described in the last two para-

graphs have led many behavioral economists to distinguish between “decision utility,” which

provides an as-if representation of choices, and “true” or “experienced” utility, the proper

measure of well-being. This approach forces one to take a stand on the nature of true

utility. But the objective basis for making any assumptions about true utility is, at best,

obscure.1 Many economists are deeply troubled by this wholesale abandonment of the

revealed preference paradigm.

In seeking appropriate principles for behavioral welfare analysis, it is important to recall

that standard welfare analysis is based on choice, not on utility, preferences, or other ethical

criteria. In its simplest form, it instructs the social planner to respect the choices an

individual would make for himself. The guiding normative principle is an extension of the

libertarian deference to freedom of choice, which takes the view that it is better to give a

person the thing he would choose for himself rather than something that someone else would

choose for him.

The central premise of this paper is that the same normative principle remains applicable

even when individuals make “anomalous” choices of the various types commonly identified in

behavioral research. We submit that confusion about normative criteria arises in the context

of behavioral models only when we ignore this guiding principle, and proceed as if welfare

analysis must respect a rationalization of choice (that is, utility or preferences) rather than

choice itself. As we argue, welfare analysis requires no rationalization of behavior. When

choice data lacks a consistent rationalization, the normative guidance it provides may be

ambiguous in some circumstances, but is typically unambiguous in others. As we show, this

partially ambiguous guidance always provides a foundation for rigorous welfare analysis.

This paper represents our effort to develop a universal choice-theoretic framework for
1Evidence of incoherent choice patterns, coupled with the absence of a scientific foundation for assessing

true utility, has led some to conclude that behavioral economics should embrace fundamentally different
normative principles than standard economics (see, e.g., Sugden [2004]).
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evaluating economic welfare. As we explain, our framework has the following attractive

features. (1) In principle, it encompasses all behavioral models; it is applicable irrespective

of the processes generating behavior, or of the positive model used to describe behavior.

(2) It subsumes standard welfare economics both as a special case (when standard choice

axioms are satisfied) and as a limiting case (when behavioral anomalies are small). (3)

Like standard welfare economics, it requires only data on choices. (4) It is easily applied in

the context of specific behavioral theories. It leads to novel normative implications for the

familiar β, δ model of time inconsistency. For a model of coherent arbitariness, it provides

a choice-theoretic (non-pscyhological) justifications for multi-self Pareto optimality. (5) It

generates natural counterparts for the standard tools of applied welfare analysis, including

compensating and equivalent variation, consumer surplus, Pareto optimality, and the con-

tract curve, and permits a broad generalization of the of the first welfare theorem. (6)

Though not universally discerning, it lends itself to principled refinements.

The paper is organized as follows. Section 1 reviews the foundations of standard welfare

economics. Section 2 presents a general framework for describing choices and behavioral

anomalies. Section 3 sets forth choice-theoretic principles for evaluating individual welfare

in the presence of choice anomalies. It also explores the implications of those principles in

the context of quasihyperbolic discounting and coherent arbitrariness. Section 4 describes

the generalizations of compensating variation and consumer surplus in this setting. Section

5 generalizes the notion of Pareto optimality and examines competitive market efficiency as

an application. Section 6 sets forth an agenda for refining our welfare criterion and identifies

a potential (narrowly limited) role for non-choice evidence. Section 7 offers some concluding

remarks. Simple proofs appears in the text, but we defer longer and more technical proofs

to the Appendix.
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1 Standard welfare economics: a brief review

Standard welfare economics consists of two separate tasks. The first task involves an assess-

ment of each individual’s welfare; the second involves aggregation across individuals. Our

object here is to develop a general framework for executing the first task, one that encom-

passes the various types of anomolous choices identified in the behavioral literature. As we

discuss later, aggregation can then proceed much as it does in standard welfare economics,

at least with respect to common concepts such as Pareto efficiency. Consequently, our

objective here is to review the standard perspective on individual welfare.

We will use X to denote the set of all possible choice objects. The standard frame-

work allows for the possibility that choice objects are lotteries, and/or that they describe

state-contingent outcomes with welfare-relevant states.2 A standard choice situation (SCS)

consists of a constraint set X ⊆ X. When we say that the standard choice situation is X,

we mean that, according to the objective information available to the individual, the alter-

natives are the elements of X. The choice situation thus depends implicitly both on the

objects among which the individual is actually choosing, and on the information available

to him concerning those objects.

The objective of standard welfare economics is to provide coherent criteria for making

welfare judgments concerning possible selections from standard choice situtations. We will

use X to denote the domain of standard choice situations with which welfare economics is

concerned. Usually, the standard framework restricts X to include only compact sets (but

we will not impose that restriction in subsequent sections). Throughout this paper we will

make the following weak assumption:

Assumption 1: X includes all non-empty finite subsets of X (and possibly other subsets).
2In the latter case, the states may not be observable to the planner. Instead, they may reflect the

individual’s private information. With respect to privately observed states, it makes little difference whether
the state reflects an event that is external to the individual, or internal (e.g., a randomly occurring mood).
Thus, the standard framework subsumes cases where states are internal; see, e.g., Gul and Pesendorder
[2006].
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An individual’s choices are described by a correspondence C : X ⇒ X, with the property

that C(X) ⊆ X for all X ∈ X . We interpret x ∈ C(X) as an action that the individual

is willing to choose when his choice set is X. Though we often speak as if choices are

derived from preferences, the opposite is actually the case. Standard economics makes no

assumption about how choices are made; preferences are merely constructs that summarize

choices. Accordingly, meaningful assumptions pertain to choices, not to preferences.

The standard framework assumes that the choice correspondence satisfies a strong consis-

tency property. One version of this property, weak congruence, generalizes the weak axiom

of revealed preference (see Sen [1971]). According to the weak congruence axiom, if there

exists some X containing x and y for which x ∈ C(X), then y ∈ C(X 0) implies x ∈ C(X 0)

for all X 0 containing x and y. In other words, if there is some set for which the individual

is willing to choose x when y is present, then the individual is never willing to choose y but

not x when both are present.

In the standard framework, welfare judgments are based on binary relationships R (weak

preference), P (strict preference), and I (indifference) defined over the choice objects in X,

which are derived from the choice correspondence in the following way:

xRy iff x ∈ C({x, y}) (1)

xPy iff xRy and ∼ yRx (2)

xIy iff xRy and yRx (3)

Under the weak congruence axiom, the relation R is an ordering, commonly interpreted as

revealed preference.3 Though this terminology suggests a model of decision making in which

preferences drive choices, it is important to remember that the standard framework does not

necessarily embrace that suggestion; instead, R is simply a summary of what the individual

chooses in a wide range of situations.
3According to the definition proposed by Arrow [1959], x is revealed preferred to y if there is some X

∈ X for which x ∈ C(X) and y /∈ C(X). Under the weak congruence axiom, that definition is equivalent to
the statement that xPy, where P is defined as in the text (Sen [1971]).
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When we use the orderings R, P , and I to conduct welfare analysis, we are simply asking

what an individual would choose. For example, for any set X, we can define an individual

welfare optimum as the set of maximal elements in X according to the relation R; that is,

{x ∈ X | xRy for all y ∈ X}. Under the weak congruence axiom, this set coincides exactly

with C(X), the set of objects the individual is willing to select from X.

All of the tools of applied welfare economics are built from this choice-theoretic foun-

dation. Though we often define them using language that invokes notions of well-being,

we can dispense with such language entirely. For example, the compensating variation as-

sociated with some change in the economic environment equals the smallest payment that

would induce the individual to choose the change. Likewise, in settings with many individ-

uals, an alternative x is Pareto efficient if there is no other alternative that everyone would

voluntarily choose over x.

2 A general framework for describing choices

In behavioral economics as in standard economics, we are concerned with choices among

sets of objects drawn from some broader set X. To accommodate certain types of behavioral

anomalies, we introduce the notion of an ancillary condition, denoted d. An ancillary

condition is an observable feature of the choice environment that may affect behavior, but

that is not taken as relevant to a social planner’s choice once the decision has been delegated.

Typical examples of ancillary conditions include the manner in which information is presented

at the time of choice or the presentation of a particular option as the “status-quo.” With

respect to intertemporal choice, the ancillary condition could be the particular decision tree

used to choose from a fixed opportunity set, which includes the points in time at which the

component choices are made, and the set of alternatives available at each decision node.

We define a generalized choice situation (GCS), G, as a standard choice situation, X,

paired with an ancillary condition, d. Thus, G = (X, d). We will use G to denote the set

of generalized choice situations of potential interest. When X is the set of SCSs, for each
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X ∈ X there is at least one ancillary condition d such that (X, d) ∈ G. Rubinstein and

Salant [2007] have independently formulated a similar framework for describing the impact

of choice procedures on decisions; they refer to ancillary conditions as “frames.”

An individual’s choices are described by a correspondence C : G ⇒ X, with the property

that C(X, d) ⊆ X for all (X, d) ∈ G. We interpret x ∈ C(G) as an action that the individual

is willing to choose when the generalized choice situation is G. We will assume throughout

that, faced with any set of alterantives, the individual is always willing to make some choice:

Assumption 2: C(G) is non-empty for all G ∈ G.

2.1 What are ancillary conditions?

As a general matter, it is difficult to draw a bright line between the characteristics of the

objects in X and the ancillary conditions d. The difficulty, as described below, is that one

could view virtually any ancillary condition as a characteristic of objects in the choice set.

How then do we decide whether a feature of the choice environment is an ancillary condition?

In some cases, the nature and significance of a condition under which a choice is made

changes when the choice is delegated to a planner. It is then inappropriate to treat the

condition as a characteristic of the objects among which the planner is choosing. Instead,

it necessarily becomes an ancillary condition.

Consider the example of time inconsistency. As we explained in the introduction, the time

at which a choice is made does not necessarily hold the same significance for the individual’s

welfare when the decision is delegated to a planner, as when the individual makes the decision

himself. We can, of course, include the time of choice as a characteristic of the chosen object:

when chosing between x and y at time t, the individual actually chooses between “x chosen

by the individual at time t” and “y chosen by the individual at time t;” likewise, when

chosing between x and y at time t − 1, the individual actually chooses between “x chosen

by the individual at time t− 1” and “y chosen by the individual at time t− 1.” With that

formulation, we can then attribute the individual’s apparently different choices at t and t−1
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to the fact that he is actually choosing from different sets of objects. But in that case, when

the decision is delegated, we must describe the objects available to the planner at time t as

follows: “x chosen by the planner at time t” and “y chosen by the planner at time t.” Since

this third set of options is entirely new, a strict interpretation of libertarianism implies that

neither the individual’s choices at time t, nor his choice at time t− 1, provides us with any

useful guidance. If we wish to construct a theory of welfare based on choice data alone, our

only viable alternative is to treat x and y as the choice objects, and to acknowledge that the

individual’s conflicting choices at t and t− 1 provide the planner with conflicting guidance.

That is precisely what we accomplish by treating the time of the individual’s choice as an

ancillary condition.

The same reasoning applies to a wide range of conditions that affect choice. Although

we can in principle describe any condition that pertains to the individual as a characteristic

of the available objects, we would typically have to describe that characterstic differently

once the decision is delegated to the planner. So, for example, “x chosen by the individual

after the individual sees the number 47” is different from “x chosen by the planner after

the individual sees the number 47,” as well as from “x chosen by the planner after the

planner sees the number 47.” Thus, we would necessarily treat “seeing the number 47” as

an ancillary condition.

In some cases, the analyst may also wish to exercise judgment in distinguishing between

ancillary conditions and objects’ characteristics. Such judgments may be controversial in

some situations, but relatively uncontroversial in others. For example, there is arguably

no plausible connection between certain types of conditions, such as seeing the number 47

immediately prior to choosing, and well-being. According to that judgment, seeing the

number 47 is properly classified as an ancillary condition. Conceivably, in some cases the

analyst’s judgment could be informed by evidence from psychology or neuroscience, but the

foundations for drawing pertinent inferences from such evidence remain unclear.

Within our framework, the exercise of judgment in drawing the line between ancillary
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conditions and objects’ characteristics is analogous to the problem of identifying the ar-

guments of an “experienced utility” function in the more standard approach to behavioral

welfare analysis. Despite that similarity, there are some important differences between

our framework and the experienced utility approach. First, within our framework, choice

remains the preeminent guide to welfare; one is not free to invent an experienced utility

function that is at odds with behavior. Second, our framework allows for ambiguous welfare

comparisons where choice data conflict; in contrast, an experienced utility function admits

no ambiguity.

When judgment is involved, different analysts may wish to draw different lines between

the characteristics of choice objects and ancillary conditions. It is therefore important to

emphasize that the tools we develop here provide a coherent method for conducting choice-

based welfare analysis no matter how one draws that line. For example, it allows economists

to perform welfare analysis without abandoning the standard notion of a consumption good.

2.2 Scope of the framework

Our framework can incorporate non-standard behavioral patterns in four separate ways.

First, as discussed above, it allows for the influence of ancillary conditions on choice. Stan-

dard economics proceeds from the assumption that choice is invariant with respect to ancil-

lary conditions. Positive behavioral economics challenges this basic premise. Documentation

of a behavioral anomaly often involves identifying some SCS, X, along with two ancillary

conditions, d0 and d00, for which there is evidence that C(X, d0) 6= C(X, d00). This is some-

times called a preference reversal, but in the interests of greater precision we will call it a

choice reversal.

Second, our framework does not impose any choice axiom analogous to weak congruence.

Indeed, throughout most of this paper, we allow for all non-empty choice correspondences

(Assumption 2). Hence the framework accomodates choice reversals based on “irrelevant

alternatives,” as well as intransitivities. For example, even when ancillary conditions are

irrelevant, we might still have C({x, y}) = {x}, C({y, z}) = {y}, and C({x, z}) = {z}.
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Third, our framework subsumes the possibility that people can make choices from op-

portunity sets that are not compact. For example, suppose an individual must choose a

dollar prize from the interval [0, 100). That set does not lie in the domain of a standard

choice correspondence. And yet, one can easily imagine someone making a choice from it;

they might be willing to choose any element of [99.99, 100), on the grounds that any such

payoff is good enough. In that case, we would have C ([0, 100)) = [99.99, 100).

Fourth, we can interpret a choice object x ∈ X more broadly than in the standard

framework. For example, if x is a lottery, we might want to allow for the possibility that

anticipation is welfare-relevant. In that case, the description of x would include information

concerning the point in time at which uncertainty is resolved, as in Caplin and Leahy [2001].

2.3 Positive versus normative analysis

Before proceeding, it is important to draw a clear distinction between positive and normative

analysis. That distinction will allow us to clarify our tasks, which are confined to normative

analysis.

In standard economics, we generally assume that such data are available for elements of

some restricted set of SCSs, XD ⊂ X . The objective of standard positive economic analysis

is to extend the choice correspondence C from observations on XD to the entire set X . This

task is usually accomplished by defining a parametrized set of utility functions (preferences)

defined over X, estimating the utility parameters with choice data for the opportunity sets

in XD, and using these estimated utility function to infer choices for opportunity sets in

X\XD (by maximizing that function for each X ∈ X\XD).

Likewise, in behavioral economics, we assume that choice data are available for some

subset of the environments of interest, GD ⊂ G. The objective of positive behavioral

analysis is to extend the choice correspondence C from observations on GD to the entire

set G. As in standard economics, this may be accomplished by defining preferences over

some appropriately defined set of objects, estimating preference parameters using choice

data drawn from sets in GD, and then using those estimated preferences to infer choices for
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GCSs in G\GD. However, a behavioral economist might also use other positive tools, such

as models of choice algorithms, neural processes, or rules of thumb.

The objective of normative economic analysis is to identify desirable outcomes. In con-

ducting standard choice-based welfare analysis, we take the product of positive analysis —

the individual’s extended choice correspondence, C, defined on X rather than XD — as an

input, and then proceed as described in Section 2. Likewise, in conducting choice-based be-

havioral welfare analysis, we take as given the individual’s choice correspondence, C, defined

on G rather than GD. The particular model used to extend C — whether it involves utility

maximization or a decision algorithm — is irrelevant; for choice-based normative analysis,

only C matters.4

Thus, preferences and utility functions, which are constructs used to extend C from XD

to X in the standard framework, and which may (or may not) be used to extend C from GD

to G in our framework, are positive tools, not normative tools. They simply reiterate the

information contained in the extended choice function C (both the observed choices and the

inferred choices). Beyond that reiteration, they add no new information that might pertain

to welfare analysis. In a behavioral setting, these constructs cannot meaningfully reconcile

choice inconsistencies; they can only reiterate those inconsistencies. Thus, one cannot

resolve normative puzzles by identifying classes of preferences that rationalize apparently

inconsistent choices.5

4Thus, our concerns are largely orthogonal to issues examined in the literature that attempts to identify
representations of non-standard choice correspondences, either by imposing conditions on choice correspon-
dences and deriving properties of the associated representations, or by adopting particular representations
(e.g., preference relations that satisfy weak assumptions) and deriving properties of the associated choice
correspondences. Recent contributions in this area include Kalai, Rubinstein, and Spiegler [2002], Bossert,
Sprumont, and Suzumura [2005], and Ehlers and Sprumont [2006].

5For a related point, see Koszegi and Rabin [2007], who argue that, as a general matter, utility is
fundamentally unidentified in the absence of assumptions unsupported by choice data.
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3 Individual welfare

In this section, we propose a general approach for extending standard choice-theoretic welfare

analysis to situations in which individuals make anomolous choices of the various types

commonly identified in behavioral research. We begin by introducing two closely related

binary relations, which will provide the basis for evaluating an indivdual’s welfare.

3.1 Individual welfare relations

Sometimes, welfare analysis involves the identification of an individual’s “best” alternative

(for example, when solving an optimal tax problem with a representative consumer). More

often, however, it requires us to judge whether one alternative represents an improvement

over another, even when the new alternative is not necessarily the best one. Identifying

improvements is central both to the measurement of changes in individual welfare (discussed

in Section 4) and to welfare analysis in settings with many people (discussed in Section 5).

It is also equivalent to the construction of a binary relation, call it Q, where xQy means

that x improves upon y. Accordingly, behavioral welfare analysis requires a binary relation

analogous to revealed preference.

What is the appropriate generalization of the standard welfare relation, R? While there

is a tendency in standard economics to define R according to expression (1), that definition

implictly invokes the axiom of weak congruence, which assures that choices are consistent

across different sets. To make the implications of that axiom explicit, it is useful to restate

the standard definition of R as follows:

xRy iff, for all X ∈ X with x, y ∈ X, y ∈ C(X) implies x ∈ C(X) (4)

Similarly, we can define P , the asymmetric component of R, as follows:6

xPy iff, for all X ∈ X with x, y ∈ X, we have y 6∈ C(X) (5)
6Note, however, that this does not correspond to the definition proposed by Arrow [1959], which requires

only that there is some X ∈ X for which x ∈ C(X) and y /∈ C(X).
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These alternative definitions of weak and strict revealed preference immediately suggest

two natural generalizations. The first involves a straightforward generalization of weak

revealed preference, as defined in (4):

xR0y iff, for all (X, d) ∈ G such that x, y ∈ X, y ∈ C(X, d) implies x ∈ C(X, d)

In other words, for any x, y ∈ X, we have that xR0y if, whenever x and y are available, y is

never chosen unless x is as well. When xR0y, we will say that x is weakly unambiguously

chosen over y.

As usual, we can define the symmetric and asymmetric components of R0. We say that

xP 0y if xR0y and∼ yR0x. The statement “xP 0y” means that, whenever x and y are available,

sometimes x is chosen but not y, and otherwise either both or neither are chosen. Likewise,

we can define xI 0y as xR0y and yR0x. The statement “xI 0y” means that, whenever x is

chosen, so is y, and vice versa.

The relation P 0 generalizes the usual notion of strict revealed preference. However, within

our framework, there is a more immediate (and ultimately more useful) generalization of (5):

xP ∗y iff, for all (X, d) ∈ G such that x, y ∈ X, we have y /∈ C(X, d)

In other words, for any x, y ∈ X, we have xP ∗y iff, whenever x and y are available, y is never

chosen. When xP ∗y, we will say that x is strictly unambiguously chosen over y. For the

sake of brevity, we will sometimes drop the modifier “strictly.”

Corresponding to P ∗, there is an alternative generalization of weak revealed preference:

xR∗y iff, for some (X, d) ∈ G such that x, y ∈ X, we have x ∈ C(X, d)

The statement “xR∗y” means that, for any x, y ∈ X, there is some GCS for which x and

y are available, and x is chosen. It is easy to check that P ∗ is the asymmetric component

of R∗; that is, xR∗y and ∼ yR∗x implies xP ∗y. Similarly, we can define the symmetric

component of R∗ as follows: xI∗y iff xR∗y and yR∗x. The statement “xI∗y” means that

there is at least one GCS for which x and y are available for which x is chosen, and at
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least one such GCS for which y is chosen. We note that Rubinstein and Salant [2007] have

separately proposed a binary relation that is related to P 0 and P ∗.7

How are R0, P 0, and I 0 related to R∗, P ∗, and I∗? We say that a binary relation A is

weakly coarser than another relation B if xAy implies xBy. When A is weakly coarser than

B, we say that B is weakly finer than A. It is easy to check that P ∗ is weakly coarser than

P 0, that R0 is weakly coarser than R∗, and that I 0 is weakly coarser than I∗.

As we’ve seen, R
0
is more faithful to the standard notion of weak revealed preference,

while P ∗ is more faithful to the standard notion of strict revealed preference. Which of

these two generalizations is most useful? Intuitively, since we are ultimately interested in

identifying improvements, faithfulness to strict revealed preference may prove more impor-

tant. However, the choice between these orderings should ultimately rest on their formal

properties.

We begin with completeness of the weak relations, R∗ and R0.8 The relation R∗ is

obviously complete: for any x, y ∈ X, the individual must choose either x or y from any

G = ({x, y}, d). In contrast, R0 need not be complete, as illustrated by Example 1.

Example 1: If C({x, y}, d0) = {x} and C({x, y}, d00) = {y}, then we have neither xR0y

nor yR0x, so R0 is incomplete.

Wihout further structure, there is no guarantee that any of the relations defined here will

be transitive. Example 2 makes this point with respect to P ∗; it is also easy to construct

counterexamples for the other relations. ¤

Example 2: Suppose that G = {X1, X2,X3,X4} with X1 = {a, b}, X2 = {b, c}, X3 =
7The following is a description Rubinstein and Salant’s [2007] binary relation, using our notation. Assume

that C is always single-valued. Then x Â y iff C({x, y}, d) = x for all d such that ({x, y}, d) ∈ G. The
relation Â is defined for choice functions satsifying a condition related to weak congruence, and thus — in
contrast to P 0 or P ∗ — depends only on binary comparisons. Rubinstein and Salant [2006] considered a
special case of the relation Â for decision problems involving choices from lists, without reference to welfare.
Mandler [2006] proposed a welfare relation that is essentially equivalent to Salant and Rubinstein’s Â for
the limited context of status quo bias.

8As in the standard framework, one would never expect either the symmetric or asymmetric components
of these relations to be complete.
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{a, c}, and X4 = {a, b, c} (there are no ancillary conditions). Imagine that the individual

chooses a from X1, b from X2, c from X3, and a from X4. In that case, we have aP ∗b and

bP ∗c; in contrast, we can only say that aI∗c. ¤

Fortunately, to conduct useful welfare analysis, one does not necessarily require transi-

tivity. Our first main result establishes that there cannot be a cycle involving R0, the most

natural generalization of weak revealed preferences, if even one of the comparisons involves

P ∗, the most natural generalization of strict revealed preference.

Theorem 1: Consider any x1,...,xN such that xiR0xi+1 for i = 1, ..., N − 1, with xkP ∗xk+1
for some k. Then ∼ xNR0x1.

Proof: Suppose on the contrary that xNR0x1. Without loss of generality, we can

renumber the alternatives so that k = 1. Let X0 = {x1, ..., xN}. Since x1P ∗x2 and

x1 ∈ X0, we know that x2 /∈ C(X0, d) for all d such that (X0, d) ∈ G. Now suppose that,

for some i ∈ {2, ..., N}, we have xi /∈ C(X0, d) for all d such that (X0, d) ∈ G. We argue

that xi+1(modN) /∈ C(X0, d) for all d such that (X0, d) ∈ G. This follows from the following

facts: xiR0xi+1, xi ∈ X0, and xi /∈ C(X0, d) for all d such that (X0, d) ∈ G. By induction,

this means C(X0, d) is empty, contradicting Assumption 2. Q.E.D.

Theorem 1 assures us that a planner who evaluates alternatives based on R0 (to express

“no worse than”) and P ∗ (to express “better than”) cannot be turned into a “money pump.”

In the context of standard consumer theory, Suzumura’s [1976] analogous consistency prop-

erty plays a similar role.9 The theorem has an immediate and important corollary:

Corollary 1: P ∗ is acyclic. That is, for any x1,...,xN such that xiP ∗xi+1 for i = 1, ..., N−

1, we have ∼ xNP ∗x1.
9A preference relation R is consistent in Suzumura’s sense if x1Rx2...RxN with xiPxi+1 for some i implies

∼ xNRx1.
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Acyclicity is weaker than transitivity, but in most contexts it suffices to guarantee the

existence of maximal elements, and it allows us to identify and measure unambiguous im-

provements. The power of Corollary 1 is that it delivers an acyclic welfare criterion without

imposing any assumption on the choice correspondence, other than non-emptiness. Re-

gardless of how poorly behaved the choice correspondence C may be, P ∗ is nevertheless

acyclic.

As our next example demonstrates, the relation P 0 does not share this desirable property.

On the contrary, P 0 may be cyclic.

Example 3: Suppose that G = {X1, X2,X3,X4} with X1 = {a, b}, X2 = {b, c}, X3 =

{a, c}, and X4 = {a, b, c} (there are no ancillary conditions). Suppose also that C({a, b}) =

{a}, C({b, c}) = {b}, C({a, c}) = {c}, and C({a, b, c}) = {a, b, c}. Then aP 0bP 0cP 0a. ¤

3.2 Individual welfare optima

Both P 0 and P ∗ capture the notion of a welfare improvement, but P ∗ leads to a more

demanding notion than P 0. Accordingly, we will say that is possible to strictly improve upon

a choice x ∈ X if there exists y ∈ X such that yP ∗x; in other words, if there is an alternative

that is unambiguously chosen over x. We will say that it is possible to weakly improve upon

a choice x ∈ X if there exists y ∈ X such that yP 0x; in other words, if there is an alternative

that is sometimes chosen over x, and that x is never chosen over (except in the sense that

both could be chosen).

Our two different notions of welfare improvements lead to two separate concepts of in-

dividual welfare optima. When a strict improvement is impossible, we say that x is a weak

individual welfare optimum. In contrast, when a weak improvement is impossible, we say

that x is a strict individual welfare optimum.

When is x ∈ X an individual welfare optimum? The following simple observations (which

follow immediately from definitions) address this question.

Observation 1: If x ∈ C (X, d) for some (X, d) ∈ G, then x is a weak individual welfare
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optimum in X. If x is the unique element of C(X, d), then x is a strict welfare optimum in

X.

This first observation assures us that our notions of individual welfare optima respect the

most obvious implication of libertarian deference to voluntary choice: any action voluntarily

chosen from a set X under some ancillary condition is a weak individual welfare optimum

within X. Moreover, any action that the individual uniquely chooses from X under some

condition is a strict individual welfare optimum within X.

As a general matter, alternatives chosen from X need not be the only individual welfare

optima within X. Our next observation characterizes the set of individual welfare optima

more precisely.

Observation 2: x is a weak individual welfare optimum in X if and only if for each

y ∈ X (other than x), there is some GCS for which x is chosen with y available (y may be

chosen as well). Moreover, x is a strict individual welfare optimum in X if and only if for

each y ∈ X (other than x), either x is chosen and y is not for some GCS with y available,

or there is no GCS for which y is chosen and x is not with x available.

For an illustration of Observation 2, let’s revisit Example 2. Despite the intransitivity of

choice between the sets X1, X2, andX3, the option a is nevertheless a strict welfare optimum

in X4, and neither b nor c is a weak welfare optimum. Note that a is also a strict welfare

optimum in X1 (b is not a weak optimum), b is a strict welfare optimum in X2 (c is not a

weak optimum), and both a and c are strict welfare optima in X3 (a survives because it is

chosen over c in X4, which makes a and c not comparable under P ∗).

Notice that Observation 1 guarantees the existence of weak welfare optima (but not

of strict welfare optima). The fact that we have established existence without making

any additional assumptions, e.g., related to continuity and compactness, may at first seem

surprising, but this is simply a matter of how we have posed the question. Here, we have

assumed that the choice function is well-defined over the set G; this is treated as data.
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Standard existence issues arise when the choice function is built up from other components.

The following example clarifies these issues.

Example 4: Consider the same choice data as in Example 2, but suppose we limit atten-

tion to G0 = {X1, X2,X3}. In this case we have that aP ∗bP ∗cP ∗a. Here, the intransitivity is

apparent; P ∗ is cyclic because Assumption 1 is violated (G0 does not contain all finite sets).10

Naturally, if we are interested in creating a preference or utility representation based on the

data contained in G0 in order to project what the individual would choose from the setX4, the

intransitivity would pose a difficulty. And if we try to make a welfare judgement concerning

X4 without knowing (either directly or through a positive model) what the individual would

choose in X4, we encounter the same problem: a, b, and c are all strictly improvable, so there

is no welfare optimum. But once we know what the individual would select from X4 (either

directly or by extrapolating from a reliable positive model), the existence problem for X4

vanishes. It is therefore important to emphasize again that our interest here is in forming

welfare judgements from individual choices, not in the problem of representing or extending

those choices to unobserved domains. We are in effect assuming that an adequate positive

model of behavior already exists, and we are asking how normative analysis should proceed.

¤

According to Observation 2, some alternative x may be an individual welfare optimum

for the set X even though there is no ancillary condition d under which x ∈ C(X, d). (The

fact that a is an individual welfare optimum in X3 in Example 2 illustrates this possibil-

ity.) However, that property is still consistent with the spirit of the libertarian principle:

the individual welfare optimum x is chosen despite the availability of each y ∈ X in some

circumstances, though not necessarily ones involving choices from X. In contrast, an al-

ternative x that is never chosen when some alternative y ∈ X is available cannot be an

individual welfare optimum in X.
10Even so, individual welfare optima exist within every set that falls within the restricted domain: a is a

strict welfare optimum in X1, b is a strict welfare optimum in X2, and c is a strict welfare optimum in X3.
This is no accident: Observation 1 does not depend on Assumption 1.
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The following example, based on an experiment reported by Iyengar and Lepper [2000],

illustrates why it may be unreasonable to exclude the type of individual welfare optima

described in the preceding paragraph. (For another more formal argument, see Section 3.3,

below.) Suppose a subject chooses a free sample of strawberry jam when only two other

flavors are available, but feels overwhelmed and elects not to receive a free sample when

thirty flavors (including strawberry) are available. Since the individual might not want

the planner to act overwhelmed when choosing on his behalf, it is important to allow for

the possibility that the planner should pick strawberry jam on his behalf even when thirty

alternatives are available. Similar concerns would arise whenever the act of thinking about

X causes the individual to experience feelings (e.g., temptation) that affect his choice from

X, and that vanish when the decision is delegated to a planner. Since we are confining

ourselves at this juncture to choice evidence, we do not take a position as to whether these

considerations are present; rather, we remain neutral by adopting a notion of individual

welfare optima that can accommodate such possibilities.

3.3 Why this approach?

It is natural to wonder whether there is some other, potentially more attractive approach to

formulating a choice-theoretic foundation for behavioral welfare analysis. In this section,

we provide further formal justifications for our approach.

Consider the following natural alternative to our approach: classify x as an individual

welfare optimum for X iff there is some ancillary condition for which the individual is willing

to choose x from X. This alternative approach would appear to adhere more closely to the

libertarian principle than does our approach. However, it does not allow us to determine

whether a change from one element of X to another is an improvement, except in cases where

either the initial or final element in the comparison is one that the individual would choose

from X. As explained at the outset of this section, for that purpose we require a binary

relation that identifies improvements. Accordingly, our object in this section is determine

whether there exists a general method of constructing an asymmetric binary welfare relation,
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Q, that is more faithful than P ∗ to the libertarian principle.

Consider a choice correspondence C defined on X and an asymmetric binary relation Q

defined on X. For any X ∈ X , let mQ(X) be the maximal elements in X for the relation Q,

i.e.,

mQ(X) = {x ∈ X | @y ∈ X with yQx}

We will also define, for X ∈ X , the set

D(X) = {d | (X, d) ∈ G}

We will say that Q is an inclusive libertarian relation for a choice correspondence C if,

for all X, the maximal elements under Q include all of the elements the individual would

choose from X for some ancillary condition:

Definition: Q is an inclusive libertarian relation forC if, for allX ∈ X , we have ∪d∈D(X)C(X) ⊆

mQ(X).

We will say that Q is an exclusive libertarian relation for a choice correspondence C if,

for all X, the maximal elements under Q are contained in the set of elements the individual

would choose from X for some ancillary condition:

Definition: Q is an exclusive libertarian relation for C if, for all X ∈ X , we have mQ(X)

non-empty, and mQ(X) ⊆ ∪d∈D(X)C(X).

Finally, we will say that Q is a libertarian relation for C if it is both inclusive and

exclusive; that is, if the maximal elements under Q always coincide exactly with the set of

elements the individual would choose from X for some ancillary condition.11

Definition: Q is a libertarian relation for C if, for all X ∈ X , Q is both inclusive and

exclusive.
11When there are no ancillary conditions and the revealed preference relation is a libertarian relation for

C, then C is called a normal choice correspondence (Sen [1971]).
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We have already demonstrated that P ∗ is always an inclusive libertarian relation (Ob-

servation 1). We have also argued, by way of example, that there are good reasons to treat

the “extra” maximal elements under P ∗ — the ones not chosen from the set of interest for

any ancillary condition — as individual welfare optima. However, the following example

shows that there is an even more compelling reason not to search for a general procedure

that generates either a libertarian relation, or an exclusive libertarian relation, for all choice

correspondences: none exists.12

Example 5: Consider a choice correspondence C with the following properties:

(i) x /∈ C({x, y, z}, d) for all ancillary conditions d ∈ D({x, y, z}),

(ii) C({x, y}, d) = {x} for all ancillary conditions d ∈ D({x, y}), and

(iii) C({x, z}, d) = {x} for all ancillary conditions d ∈ D({x, z}).

(Note that this example resembles the strawberry jam experiment described above. Here,

the individual chooses x in all pairwise comparisons, but does not choose xwhen overwhelmed

with alternatives.)

We claim that there is no exclusive libertarian relation (and hence no libertarian relation)

for C. Assume, contrary to the claim, thatQ is an exclusive libertarian relation forC. Then,

from (i), we know that x /∈ mQ({x, y, z}), from which it follows that either yQx or zQx.

From (ii), we know that mQ({x, y}) = {x}, from which it follows that xQy. From (iii),

we know that mQ({x, z}) = {x}, from which it follows that xQz. But these conclusions

contradict the requirement that Q is asymmetric. ¤

The preceding observation implies that there exists no general procedure for finding either

libertarian welfare relations or exclusive libertarian welfare relations for all non-empty choice

correspondences. Consideration of inclusive libertarian relations is therefore unavoidable.

There are, of course, inclusive libertarian relations other than P ∗. For example, the null

relation,RNull (∼ xRNully for all x, y ∈ X), falls into this category; for any setX, the maximal
12One naturally wonders about the properties that a generalized choice correspondence must have to

guarantee the existence of a liberatarian relation. See Rubinstein and Salant [2007] for an analysis of that
issue.
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elements under RNull consist of X, which of course includes all of the chosen elements. Yet

RNull is far less discerning, and further from the libertarian principle, than P ∗. In fact, we

have the following result:

Theorem 2: Consider any choice correspondence C, and any inclusive libertarian relation

Q 6= P ∗. Then P ∗ is finer than Q. Furthermore, for all X ∈ X , the set of maximal

elements in X for the relation P ∗ is contained in the set of maximal elements in X

for the relation Q (that is, mP∗(X) ⊆ mQ(X)).

Proof: Suppose on the contrary that P ∗ is not finer than Q. Then for some x and y, we

have xQy but ∼ xP ∗y. Because ∼ xP ∗y, we know that there exists some X containing x

and y, as well as some ancillary condition d, for which y ∈ C(X, d). Since Q is an inclusive

libertarian relation, we must then have y ∈ mQ(X). But since x ∈ X, that can only be the

case if ∼ xQy, a contradiction. The statement that mP∗(X) ⊆ mQ(X) for all X ∈ X follows

trivially. Q.E.D.

Thus, for all choice correspondences C and all choice sets X, P ∗ is always the most

discriminating inclusive libertarian relation. Theorem 2 also implies that no libertarian

relation exists unless P ∗ is libertarian.

3.4 Relation to multi-self Pareto optima

Under certain restrictive conditions, our notion of an individual welfare optimum coincides

with the idea of a multi-self Pareto optimum, which is sometimes used as a behavioral

welfare criterion (see, e.g., Laibson et. al. [1998], or Bhattacharya and Lakdawalla [2004]).

Suppose in particular that the set of GCSs is the Cartesian product of the set of SCSs and

a set of ancillary conditions (that is, G = X ×D, where d ∈ D); in that case, we say that

G is rectangular. Imagine also that, for each d ∈ D, choices obey standard axioms; they

correspond to the maximal elements of a preference ranking Rd, and hence to the alternatives
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that maximize a utility function ud.13

If one imagines that each ancillary condition activates a different “self,” then one can ap-

ply the Pareto criterion across selves. We will say that y weakly multi-self Pareto dominates

x, abbreviated yMx, iff ud(y) ≥ ud(x) for all d ∈ D, with strict inequality for some d. We

will say that y strictly multi-self Pareto dominates x, abbreviated yM∗x, iff ud(y) > ud(x)

for all d ∈ D. Moreover, x ∈ X ⊂ X is a weak multi-self Pareto optimum in X if there is

no y ∈ X such that yM∗x, and x is a strict multi-self Pareto optimum in X if there is no

y ∈ X such that yMx.

Theorem 3: Suppose that G is rectangular, and that choices for each d ∈ D maximize a

utility function ud. Then M∗ = P ∗ and M = P 0. Therefore, x ∈ X is a weak (strict)

multi-self Pareto optimum in X iff it is a weak (strict) individual welfare optimum.

Proof: First we verify that M∗ = P ∗. Assume yM∗x. By definition, ud(y) > ud(x) for

all d ∈ D. It follows that for any G = (X, d) with x, y ∈ X, the individual will not select

x. Therefore, yP ∗x. Now assume yP ∗x. By definition, the individual will not be willing

to select x given any generalized choice situation of the form G = ({x, y}, d). That implies

ud(y) > ud(x) for all d ∈ D. Therefore, yM∗x.

Next we verify that M = P 0. Assume yMx. By definition, ud(y) ≥ ud(x) for all

d ∈ D, with strict inequality for some d0. It follows that for any G = (X, d) with x, y ∈ X,

the individual will never be willing to choose x but not y. Moreover, for d0 he is only

willing to choose y from ({x, y}, d). Therefore, yP 0x. Now assume yP 0x. By definition,

if the individual is willing to select x given any generalized choice situation of the form

G = ({x, y}, d) , then he is also willing to choose y, and there is some GCS, G0 = (X 0, d0)

with {x, y} ⊆ X 0 for which he is willing to choose y but not x. That implies ud(y) ≥ ud(x)

for all d ∈ D, and ud0(y) > ud0(x). Therefore, yMx.
13To guarantee that best choices are well-defined, we would ordinarily restrict X to compact sets and

assume that ud is at least upper-semicontinuous, but these assumptions play no role in what follows.
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The final statement concerning optima follows immediately from the equivalence of the

binary relations. Q.E.D

Themulti-self Pareto criterion has been used primarily in the literature on quasi-hyperbolic

discounting, where it is applied to an individual’s many time-dated “selves” (as in the studies

identified above). However, our framework does not justify the multi-self Pareto criterion

for quasi-hyperbolic consumers because G is not rectangular; see Section 3.5.2, below. It

does justify the use of the multi-self Pareto criterion for cases of “coherent arbitrariness,”

such as those studied by Ariely, Loewenstein, and Prelec [2003]; see Section 3.5.1. Ironically,

the multi-self Pareto criterion has not to our knowledge been proposed as a welfare standard

in such settings.

For the narrow settings that are consistent with the assumptions stated in Theorem 3,

one can view our approach as a justification for the multi-self Pareto criterion that does not

rely on untested and questionable psychological assumptions. Critically, the justification

is choice-theoretic, not psychological. Our approach is also more general in that it does

not require the GCS to be rectangular, or the choice correspondence to be well-behaved

conditional on each ancillary condition.

3.5 Some applications

In this section, we examine the implications of our framework for some particular behavioral

anomalies.

3.5.1 Coherent arbitrariness

Behavior is coherently arbitrary when some psychological anchor (for example, calling at-

tention to one’s social security number) affects behavior, but the individual nevertheless

conforms to standard choice theory for any fixed anchor. This phenomenon was docu-

mented by Ariely, Loewenstein, and Prelec [2003], and led them to question the legitimacy

of welfare judgments based on revealed preference.
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To illustrate, let’s consider a case in which an individual consumes two goods, y and z.

Suppose that positive analysis delivers the following decision-utility representation:

U(y, z | d) = u(y) + dv(z)

with u and v strictly increasing, differentiable, and strictly concave. Notice that the ancillary

condition, d ∈ [dL, dH ], which we interpret here as an irrelevant anchor, simply shifts the

weight on decision utility from z to y. Given any particular anchor, the individual behaves

coherently, but his behavior is arbitrary in the sense that it depends on the signal.

Our normative framework easily accommodates this positive model. In fact, since G

is rectangular, and since choices maximize U(y, z | d) for each d, Theorem 3 implies that

our welfare criterion is equivalent to the multi-self Pareto criterion, where each d indexes a

different self.

For this positive model, it is easy to check that

(y0, z0)R0(y00, z00) iff u(y0) + dv(z0) ≥ u(y00) + dv(z00) for d = dL, dH (6)

Replacing the weak inequality with a strict inequality, we obtain a similar equivalence for

P ∗.

For a graphical illustration, see Figure 1(a). We have drawn two decision-indifference

curves (that is, indifference curves derived from decision utility) through the bundle (y0, z0),

one for dL (labelled IL) and one for dH (labelled IH). For all bundles (y00, z00) lying below both

decision-indifference curves, we have (y0, z0)P ∗(y00, z00); this is the analog of a lower contour

set. Conversely, for all bundles (y00, z00) lying above both decision-indifference curves, we

have (y00, z00)P ∗(y0, z0); this is the analog of an upper contour set. For all bundles (y00, z00)

lying between the two decision-indifference curves, we have neither (y0, z0)R0(y00, z00) nor

(y00, z00)R0(y0, z0); however, (y0, z0)I∗(y00, z00).

Now consider a standard budget constraint, X = {(y, z) | y + pz ≤ M}, where y is the

numeraire, p is the price of z, andM is income. The individual’s choice from this set clearly

depends on the ancillary condition d. As shown in Figure 1(b), he chooses bundle a when



26

the ancillary condition is dH , and bundle b when the ancillary condition is dL. Each of

the points on the darkened segment of the budget line between bundles a and b is uniquely

chosen for some d ∈ [dL, dH ], so all of these bundles are strict individual welfare optima.

In this case, there are no other welfare optima, weak or strict. Consider any other bundle

(y0, z0) on or below the budget line; if it lies to the northwest of a, then aP ∗(y0, z0); if it lies

to the southeast of b, then bP ∗(y0, z0); and if it lies anywhere else below the budget line, then

xP ∗(y0, z0) for some x containing more of both goods than (y0, z0).

Notice that, as the gap between dL and dH shrinks, the set (y00, z00)P ∗(y0, z0) converges to

a standard upper contour set, and the set of individual welfare optima converges to a single

utility maximizing choice. Thus, our welfare criterion converges to a standard criterion as

the behavioral anomaly becomes small. We will return to this theme in Section 3.6.

3.5.2 Dynamic inconsistency

In this section, we examine the well-known β, δ model of hyperbolic discounting popularized

by Laibson [1997] and O’Donoghue and Rabin [1999]. Economists who use this positive

model for policy analysis tend to employ one of two welfare criteria: either the multi-self

Pareto criterion, which associates each moment in time with a different self, or the “long-run

criterion,” which treats high short-term discounting as unrepresentative of true preferences.

As we’ll see in the section, our framework leads to an entirely different criterion. We will

have more to say concerning possible justifications for the multi-self Pareto criterion and the

long-run criterion in Section 6.3.

In the finite-horizon version of the β, δ model, the consumer’s task is to choose a con-

sumption vector, C1 = (c1, ..., cT ), where ct denotes the level of consumption at time t. For

t = 1, ..., T , we will use Ct to denote the continuation consumption vector (ct, ..., cT ). At

time t, all discretion is resolved to maximize the function

Ut(Ct) = u(ct) + β
TX

k=t+1

δk−tu(ck) , (7)

where β, δ ∈ (0, 1). We assume that the individual has perfect foresight concerning future
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decisions, so that behavior is governed by subgame perfect equilibria. We also assume that

u(0) is finite; for convenience, we normalize u(0) = 0.14

To conduct normative analysis, we must recognize the fact that there is actually only one

decision maker, and recast this positive model as a correspondence from GCSs into lifetime

consumption vectors. Here, X is a set of lifetime consumption bundles. An SCS consists of

some X ⊂ X, for example the set implied by a standard intertemporal budget constraint.

A GCS involves a choice set, X, and a decision tree, R, for selecting an element of X;

thus, G = (X,R). The description of the tree includes the point in time at which each

choice is made. For any given X, there can be multiple trees that select from X. Because

decisions may depend on the points in time at which they are made, R serves as the ancillary

condition. Note that G is not rectangular. For example, a decision tree that involves no

choice in period 1 cannot be used to select from a choice set that could produce different

consumption levels in period 1. Hence, Theorem 3, which identifies conditions that justify

the multi-self Pareto criterion, does not apply.

To state our main result concerning the β, δ model, we require the following definition:

Wt(Ct) =
TX
k=t

(βδ)k−tu(ck)

In other words, Wt(Ct) discounts future values of the index u at the rate βδ.

Our next result completelycharacterizes the welfare relations implied by the β,δ model.

Theorem 4: (i) C 01R
0C 001 iff W1(C

0
1) ≥ U1(C 001 )

(ii) C 01P
∗C 001 iff W1(C

0
1) > U1(C

00
1 )

(iii) P 0 = R0

(iv) C 01R
∗C 001 iff U1(C

0
1) ≥W1(C

00
1 )

14The role of this assumption is to rule out the possibility that a voluntary decision taken in the future
can cause unbounded harm to the individual in the present. Such possibilities can arise when u(0) = −∞,
but seem more an artifact of the formal model than a plausible aspect of time-inconsistent behavior.
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(v) R0, P 0, and P ∗ are transitive.

Proof: See the appendix.

Parts (i) and (ii) of the theorem tell us that, to determine whether one lifetime consump-

tion vector, C 01, is (weakly or strictly) unambiguously chosen over another, C
00
1 , we compare

the first period decision utility obtained from C 001 (that is, U1(C
00
1 )) with the first period utility

obtained from C 01 discounting at the rate βδ. Given our normalization (u(0) = 0), we nec-

essarily have U1(C 01) ≥ W1(C
0
1). Thus, U1(C

0
1) > U1(C

00
1 ) is a necessary (but not sufficient)

condition for C 01 to be unambiguously chosen over C
00
1 .
15 That observation explains the

transitivity of the preference relation (part (v)).16 It also implies that the welfare relation

never contradicts decision utility at t = 1, the first moment in time. For completeness, parts

(iii) and (iv) of the Theorem characterize P
0
and R∗.17

Using this result, we can easily characterize the set of individual welfare optima within

any choice set X.

Corollary: For any consumption set X, C1 is a weak welfare optimum in X iff

U1(C1) ≥ max
C01∈X

W1(C
0
1)

Moreover, if

U1(C1) > max
C01∈X

W1(C
0
1)

then C1 is a strict welfare optimum in X.18

In other words, C1 is a weak welfare optimum if and only if the decision utility that

C1 provides at t = 1 is at least as large as the highest available discounted utility, using
15Also, U1(C01) ≥ U1(C 001 ) is a necessary (but not sufficient) condition for C01 to be weakly unambiguously

chosen over C001 .
16For similar reasons, it is also trivial to show that C11R

0C21P
∗C31 implies C

1
1P
∗C31 .

17It follows from part (iii) that ∼ C 01I 0C 001 for all C01 and C001 . It follows from part (iv) that C 01I
∗C001 iff

U1(C
0
1) ≥W1(C

00
1 ) and U1(C

00
1 ) ≥W1(C

0
1).

18C1 may also be a strict welfare optimum in X even though U1(C1) = maxC0
1∈XW1(C

0
1) provided that

C1 is also the unique maximizer of W1 (which can only be the case if C1 involves no consumption after the
first period).
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βδ as a time-consistent discount factor. Given that W1(c) ≤ U1(c) for all c, we know that

maxC01∈XW1(C
0
1) ≤ maxc∈X U1(c), which confirms that the set of weak individual welfare

optima is non-empty.

Notice that, for all C1, we have limβ→1[W1(C1)−U1(C1)] = 0. Accordingly, as the degree

of dynamic inconsistency shrinks, our welfare criterion converges to the standard criterion.

In contrast, the same statement does not hold for the multi-self Pareto criterion, as that

criterion is usually formulated. The reason is that, regardless of β, each self is assumed to

care only about current and future consumption. Thus, consuming everything in the final

period is always a multi-self Pareto optimum, even when β = 1.

3.6 The standard framework as a limiting case

Clearly, our framework for welfare analysis subsumes the standard framework; when the

choice correspondence satisfies standard axioms, the generalized individual welfare relations

coincide with revealed preference. Our framework is a natural generalization of the stan-

dard welfare framework in another important sense: when behavioral departures from the

standard model are small, our welfare criterion is close to the standard criterion. This

conclusion plainly holds in the applications considered above; here, we establish the point

with generality.

For the purpose of this analysis, we add the following mild technical assumption con-

cerning the choice domain (the role of which is primarily to simplify the statement of our

results):

Assumption 3: X (the set of potential choice objects) is bounded, and for all X ∈ X , we

have clos(X) ∈ X c (the compact elements of X ).

Now consider a sequence of choice functions Cn, n = 1, 2, ..., defined on G. Also consider

a choice function bC defined on X c that reflects maximization of a continuous utility function,

u. We will say thatCn weakly converges to bC if and only if the following condition is satisfied:
for all ε > 0, there exists N such that for all n > N and (X, d) ∈ G, each point in Cn(X, d)
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is within ε of some point in bC(clos(X)).19 In other words, any sequence of alternatives the

individual chooses from (X, d) with Cn converges to an alternative the individual chooses

from the closure of X with bC, and convergence is uniform across G.

Note that we allow for the possibility that the set X is not compact. In that case,

our definition of convergence implies that choices must approach the choice made from the

closure of X. So, for example, if the opportunity set is X = [0, 1), where the chosen action x

entails a dollar payoff of x, we might have Cn(X) = [1− 1
n
, 1), whereas bC(X) = {1}. Notice

that Cn(X) weakly converges to bC(X) in this example. This convergence is intuitive: the
individual is satisficing, but as n increases, he demands something that leaves less and less

room for improvement.

To state our next result, we require some additional definitions. For the limiting (con-

ventional) choice correspondence bC and any X ∈ XC, we define bU∗(u) ≡ {y ∈ X | u(y) ≥ u}

and bL∗(u) ≡ {y ∈ X | u(y) ≤ u}. In words, bU∗(u) and bL∗(u) are, respectively, the standard
weak upper and lower contour sets relative to a particular level of utility u for the utility

representation of bC. Similarly, for each choice correspondence Cn and X ∈ X , we define
Un(x) ≡ {y ∈ X | yP n∗x} and Ln(x) ≡ {y ∈ X | xPn∗y}. In words, Un(x) and Ln(x) are,

respectively, the strict upper and lower contour sets relative to the alternative x, defined

according to the welfare relation P n∗ derived from Cn.

We now establish that the strict upper and lower contour sets for Cn, defined according

to the relations P n∗, converge to the conventional weak upper and lower contour sets for bC.
Theorem 5: Suppose that the sequence of choice correspondences Cn weakly converges tobC, where bC is defined on X c, and reflects maximization of a continuous utility function,

u. Consider any x0. For all ε > 0, there exists N such that for all n > N , we havebU∗(u(x0) + ε) ⊆ Un(x0) and bL∗(u(x0)− ε) ⊆ Ln(x0).

Proof: See the Appendix.
19Technically, this involves convergence in the upper Hausdorff hemimetric; see the Appendix for details.
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Because Un(x0) and Ln(x0) cannot overlap, and because the boundaries of bU∗(u(x0)+ ε)

and bL∗(u(x0)−ε) converge to each other as ε shrinks to zero, it follows immediately (given the
boundedness of X) that Un(x0) converges to bU∗(u(x0)) and Ln(x0) converges to bL∗(u(x0)).
Using Theorem 5, one can also establish the following corollary:

Corollary: Suppose that the sequence of choice correspondences Cn weakly converges to bC,
where bC is defined on X c, and reflects maximization of a continuous utility function, u.

For any X ∈ X and any sequence of alternatives xn such that xn is a weak individual

welfare optimum for Cn, all limit points of the sequence maximize u in clos(X).

Because this corollary is actually a special case of Theorem 9 below, we omit a separate

proof.

Theorem 5 is important for three reasons. First, it offers a formal justification for using

the standard welfare framework (as an approximation) when choice anomalies are known to

be small. Many economists currently adopt the premise that anomolies are small when using

the standard framework; they view this as a justification for both standard positive analysis

and for standard normative analysis. In the case of positive analysis, their justification is

clear: if we compare the actual choices to predictions generated from a standard positive

model and discover that they are close to each other, we can conclude that the model involves

little error. However, in the case of normative analysis, their justification for the standard

approach is problematic. To conclude that the standard normative criterion is roughly

correct in a setting with choice anomalies, we would need to compare it to the correct

criterion. But unless we have established the correct criteria for such settings, we have no

benchmark against which to gauge the performance of the standard criterion. As a result,

we cannot measure the distance between the standard normative criterion and the correct

criterion, even when choice anomolies are tiny. Our framework overcomes this problem by

providing welfare criteria for all situations, including those with choice anomalies. One can

then ask whether the criterion changes much if one ignores the anomalies. In this way, our
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analysis formalizes the intuition that a little bit of positive falsification is unimportant from

a normative perspective.

Second, our convergence result implies that the debate over the significance of choice

anomolies need not be resolved prior to adopting a framework for welfare analysis. If

our framework is adopted and the anomalies ultimately prove to be small, one will obtain

virtually the same answer as with the standard framework. (For the reasons described above,

the same statement does not hold for the multi-self Pareto criterion in the context of the

β, δ model.)

Third, our convergence result suggests that our welfare criterion will always be reasonably

discerning provided behavioral anomalies are not too large. This is reassuring, in that

the welfare relations may be extremely coarse, and the sets of individual welfare optima

extremely large, when choice conflicts are sufficiently severe. The following example provides

an illustration.

Example 6: Suppose that X = {X1,X2, X3, X4} (defined in Example 2), and that

G = X × {d, d0}. Suppose also that, with ancillary condition d, b is never chosen when a is

available, and c is never chosen. However, with ancillary condition d0, b is never chosen with

c available, and a is never chosen. Then no alternatives are comparable with P 0 or P ∗, and

the set of individual welfare optima (weak and strict) in Xi is simply Xi, for i = 1, 2, 3, 4.¤

In Example 6, two ancillary conditions produce diametrically opposed choice patterns.

In most practical situations the amount of choice conflict, and hence the sets of individual

welfare optima, will be smaller. Theorem 5 assures us that, with less choice conflict, it

becomes easier to identify alternatives that constitute unambiguous welfare improvements,

so the set of individual welfare optima shrinks.
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4 Tools for applied welfare analysis

The concepts of compensating variation and equivalent variation are central to applied wel-

fare economics. In this section we show that they have natural counterparts within our

framework. Here, we will focus on compensating variation; the treatment of equivalent

variation is analogous. We will also illustrate how, under more restrictive assumptions, the

generalized compensating variation of a price change corresponds to an analog of consumer

surplus.

4.1 Compensating variation

Let’s assume that the individual’s SCS, X(α,m), depends on a vector of environmental

parameters, α, and a monetary transfer, m. Let α0 be the initial parameter vector, d0 the

initial ancillary conditions, and (X(α0, 0), d0) the initial GCS. We will consider a change in

parameters to α1, coupled with a change in ancillary conditions to d1, as well as a monetary

transfer m. We write the new GCS as (X(α1,m), d1). This setting will allow us to evaluate

compensating variations for fixed changes in prices, ancillary conditions, or both.20

Within the standard economic framework, the compensating variation is the smallest

value of m such that for any x ∈ C(X(α0, 0)) and y ∈ C(X(α1,m)), the individual would

be willing to choose y in a binary comparison with x (that is, y ∈ C({x, y}), or equivalently,

yRx). In extending this definition to our framework, we encounter three ambiguities. The

first arises when the individual is willing to choose more than one alternative in either the

initial GCS (X(α0, 0), d0), or in the final GCS, (X(α1,m), d1). In the standard framework,

this causes no difficulty as the individual must be indifferent between all alternatives chosen

from the same set. However, within our framework, these alternatives my fare differently

in comparison to other alternatives. Here, we handle this ambiguity by insisting that

compensation is adequate for all pairs of outcomes that might be chosen voluntarily from
20This formulation of compensating variation assumes that G is rectangular. If G is not rectangular, then

as a general matter we would need to write the final GCS as (X(α1,m), d1(m)), and specify the manner in
which d1 varies with m.
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the initial and final sets.

The second dimension of ambiguity arises from a potential form of non-monotonicity. In

the standard framework, if the payment m is adequate to compensate an individual for some

change, then any m0 > m is also adequate. Without further assumptions, that property

need not hold in our framework. Here, we handle the resulting ambiguity by finding a level

of compensation beyond which such reversals do no occur. We discuss an alternative in the

Appendix.

The third dimension of ambiguity concerns the standard of compensation: do we consider

compensation sufficient when the new situation (with the compensation) is unambiguously

chosen over the old one, or when the old situation is not unambiguously chosen over the new

one? This ambiguity is an essential feature of welfare evaluations with inconsistent choice

(see Example 7, below). Accordingly, we define two notions of compensating variation:

Definition: CV-A is the level of compensation mA that solves

inf {m | yP ∗x for all m0 ≥ m, x ∈ C(X(α0, 0), d0) and y ∈ C(X(α1,m0), d1(m
0))}

Definition: CV-B is the level of compensation mB that solves

sup{m | xP ∗y for all m ≤ m0, x ∈ C(X(α0, 0), d0) and y ∈ C(X(α1,m0), d1(m
0))}

In other words, all levels of compensation greater than the CV-A guarantee that every-

thing selected in the new set is unambiguously chosen over everything selected from the initial

set. Similarly, all levels of compensation smaller than the CV-B guarantee that everything

selected from the initial set is unambiguously chosen over everything selected from the new

set.21

It is easy to verify that mA ≥ mB. Thus, the CV-A and the CV-B provide bounds on

the required level of compensation. Also, when α1 = α0 and d1 6= d0 (so that only the
21Additional continuity assumptions are required to guarantee that the individual is adequately compen-

sated when the level of compensation equals CV-A (or CV-B).
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ancillary condition changes), mA ≥ 0 ≥ mB. In other words, the welfare effect of a change

in the ancillary condition, by itself, is always ambiguous.

Example 7: Let’s revisit the application discussed in Section 3.5.1 (coherent arbi-

trariness). Suppose the individual is offered the following degenerate opportunity sets:

X(0, 0) = {(y0, z0)}, and X(1,m) = {(y1 +m, z1)}. In other words, changing the environ-

mental parameter α from 0 to 1 shifts the individual from (y0, z0) to (y1, z1), and compensa-

tion is paid in the form of the good y. Figure 2 depicts the bundles (y0, z0) and (y1, z1), as

well as the the CV-A and the CV-B for this change. The CV-A is given by the horizontal

distance (y1, z1) and point a, because (y1+mA+ε, z1) is chosen over (x0,m0) for all ancillary

conditions and ε > 0. The CV-B is given by the vertical distance betwene (y1, z1) and point

b, because (y0, z0) is chosen over (y1 + mB − ε, z1) for all ancillary conditions and ε > 0.

Note, however, that for intermediate levels of compensation, (y1 + m, z1) is chosen under

some ancillary conditions, and (y0, z0) is chosen under others. ¤

For the reasons discussed in Section 3.6, it is important to establish that our generalized

framework for welfare analysis converges to the standard framework as behavioral anomalies

become small. Notably, in Example 7, both the CV-A and the CV-B converge to the

standard notion of compensating variation as dH approaches dL . Our next result (for

which we again invoke Assumption 3) establishes this convergence property under innocuous

assumptions concerning X(α,m) and u.

Theorem 6: Suppose that the sequence of choice correspondences Cn weakly converges tobC, where bC is defined on X c, and reflects maximization of a continuous utility function,

u. Assume that X(α,m) is compact for all α and m, and continuous in m.22 Also

assume that maxx∈X(α,m) u(x) is strictly increasing in m for all α. Consider a change

from (α0, d0) to (α1, d1). Let bm be the standard comnpensating variation derived frombC. Let mn
A be the CV-A, and m

n
B be the CV-B derived from Cn. Then limn→∞mn

A =

limn→∞m
n
B = bm.

22X(α,m) is continuous in m if it is both upper and lower hemicontinuous in m.



36

Proof: See the Appendix.

The CV-A and CV-B are well-behaved measures of compensating variation in the follow-

ing sense: If the individual experiences a sequence of changes, and is adequately compensated

for each of these changes in the sense of the CV-A, no alternative that he would select from

the initial set is unambiguously chosen over any alternative that he would select from the

final set.23 Similarly, if he experiences a sequence of changes and is not adequately compen-

sated for any of them in the sense of the CV-B, no alternative that he would select from the

final set is unambiguously chosen over any alternative that he would select from the initial

set. Both of these conclusions are corollaries of Theorem 1.

In contrast to the standard framework, the compensating variations (either CV-As or

CV-Bs) associated with each step in a sequence of changes needn’t be additive.24 However,

we are not particularly troubled by non-additivity. If one wishes to determine the size of

the payment that compensates for a collection of changes, it is appropriate to consider these

changes together, rather than sequentially. The fact that the individual could be induced

to pay (or accept) a different amount, in total, provided he is “surprised” by the sequence

of changes (and treats each as if it leads to the final outcome) does not strike us as a serious

conceptual difficulty.

4.2 Consumer surplus

Next we illustrate how, under more restrictive assumptions, the compensating variation of

a price change corresponds to an analog of consumer surplus. We will continue to study

the environment introduced in Section 3.5.1 and revisited in Example 7. However, we will

assume here that positive analysis delivers the following more restrictive utility representation
23For example, if mA

1 is the CV-A for a change from (X(α0, 0), d0) to (X(α1,m), d1), and if m
A
2 is the CV-

A for a change from (X(α1,m
A
1 ), d1) to (X(α2,m

A
1 +m), d2), then nothing that the individual would choose

from (X(α0, 0), d0) is unambiguously chosen over anything that he would choose from (X(α2,mA
1 +m

A
2 ), d2).

24In the standard framework, if m1 is the CV for a change from X(α0, 0) to X(α1,m), and if m2 is the
CV for a change from X(α1,m1) to X(α2,m1 +m), then m1 +m2 is the CV for a change from X(α0, 0) to
X(α2,m). The same statement does not necessarily hold within our framework.
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(which involves no income effects, so that Marshallian consumer surplus would be valid in

the standard framework):

U(y, z | d) = y + dv(z) (8)

Thus, for any given d, the inverse demand curve for z is given by p = dv0(z) ≡ P (z, d), where

p is the relative price of z.

LetM denote the consumer’s initial income. Consider a change in the price of z from p0

to p1, along with a change in ancillary conditions from d0 to d1 (potentially, either p0 = p1

or d0 = d1). Let z0 denote the amount of z purchased with (p0, d0), and let z1 denote the

amount purchased with (p1, d1); assume that z0 > z1. Since there are no income effects,

z1 will not change as the individual is compensated (holding the ancillary condition fixed).

The following result provides a simple formula for the CV-A and CV-B associated with the

change from (p0, d0) to (p1, d1):

Theorem 7: Suppose that decision utility is given by equation (8). The CV-A and CV-B

associated with a change from (p0, d0) to (p1, d1) are:

mA = [p1 − p0]z1 +
Z z0

z1

[P (z, dH)− p0]dz (9)

mB = [p1 − p0]z1 +
Z z0

z1

[P (z, dL)− p0]dz (10)

Proof: To calculate the CV-A, we must find the infinum of the values of m that satisfy

U(M − p1z1 +m0, z1 | d) > U(M − p0z0, z0 | d) for all m0 ≥ m and d ∈ [dL, dH ]

Notice that this requires

m ≥ [p1z1 − p0z0] + d[v(z0)− v(z1)] for all d ∈ [dL, dH ]

Since v(z0) > v (z1), the solution is

mA = [p1z1 − p0z0] + dH [v (z0)− v(z1)]
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= [p1z1 − p0z0] +
Z z0

z1

dHv
0 (z) dz

= [p1 − p0]z1 + p0z1 − p0[z0 − z1]− p0z1 +
Z z0

z1

dHv
0 (z) dz

= [p1 − p0]z1 +
Z z0

z1

[dHv
0 (z)− p0]dz

The derivation of (10) is analogous. Q.E.D.

The first term in (9) is the extra amount the consumer ends up paying for the first y1

units. The second term is the area under the demand curve and above a horizontal line at

p0 between y1 and y0, when dH is the ancillary condition. Figure 3(a) provides a graphical

representation of CV-A, analogous to the one found in most microeconomics textbooks: it

is the sum of the areas labelled A and B.

Notice that (10), the formula for CV-B, is the same as (9), except that we use the area

under the demand curve associated with dL, rather than the one associated with dH . Figure

3(b) provides a graphical representation of CV-B: it is the sum of the areas labelled A and

C, minus the area labeled E.

As the figure illustrates, CV-A and CV-B bracket the conventional measure of consumer

surplus that one would obtain using the demand curve associated with the ancillary condition

d0. In addition, as the range of possible ancillary conditions narrows, CV-A and CV-B both

converge to standard consumer surplus, in accordance with Theorem 6.

5 Welfare analysis involving more than one individual

In settings with more than one individual, welfare analysis often focuses on the concept of

Pareto optimality. In the standard framework we say that a social alternative x ∈ X is

a Pareto optimum in X if there is no other alternative that all individuals would choose

over x. In this section we describe a natural generalization of this concept to settings with

behavioral anomalies, and we illustrate its use in establishing the efficiency of competitive

market equilibria.
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5.1 Generalized Pareto optima

Suppose there are N individuals indexed i = 1, ..., N . Let X denote the set of all conceivable

social choice objects, and let X denote the set of feasible objects. Let Ci be the choice

function for individual i, defined over Gi (where the subscript reflects the possibility that the

set of ancillary conditions may differ from individual to individual). These choice functions

induce the relations R0i and P
∗
i over X.

We say that x is a weak generalized Pareto optimum in X if there exists no y ∈ X with

yP ∗i x for all i. We say that x is a strict generalized Pareto optimum in X if there exists no

y ∈ X with yR0ix for all i, and yP
∗
i x for some i.

25,26

Since strict individual welfare optima do not always exist, we cannot guarantee the ex-

istence of strict generalized Pareto optima with a high degree of generality. However, we

can trivially guarantee the existence of a weak generalized Pareto optimum for any set X:

simply choose x ∈ Ci(X, d) for some i and (X, d) ∈ G (in which case we have ∼[yP ∗i x for all

y ∈ X]).

In the standard framework, there is typically a continuum of Pareto optima that spans the

gap between the extreme cases in which the chosen alternative is optimal for some individual.

We often represent this continuum by drawing a utility possibility frontier or, in the case

of a two-person exchange economy, a contract curve. Is there also usually a continuum

of generalized Pareto optima spanning the gap between the extreme cases described in the
25Between these extremes, there are two intermediate notions of Pareto optimality. One could replace P ∗i

with P 0i in the definition of a weak generalized Pareto optimum, or replace R
0
i with P

0
i and P

0
i with P

∗
i in

the definition of a strict generalized Pareto optimum. One could also replace P ∗i with P
0
i in the definition of

a strict generalized Pareto optimum.
26If one thinks of P ∗ as a preference relation, then our notion of a weak generalized Pareto optimum

coincides with existing notions of social efficiency when consumers have incomplete and/or intransitive
preferences (see, e.g., Fon and Otani [1979], Rigotti and Shannon [2005], or Mandler [2006]). It is important
to keep in mind that, in that literature, an individual is always willing to select any element of a choice
set X that is maximal under under the preference relation. In contrast, in our framework, an individual is
not necessarily willing to select any element of X that is maximal under the individual welfare relation P ∗.
However, for the limited purpose of characterizing socially efficient outcomes, choice is not involved, so that
distinction is immaterial. Thus, existing results concerning the structure or characteristics of the Pareto
efficient set with incomplete and/or intransitive preferences apply in our setting; we mention an example
below.
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previous paragraph? The following example answers this question in the context of a two-

person exchange economy.

Example 8: Consider a two-person exchange economy involving two goods, a and

b. Suppose the choices of consumer 1 are described by the positive model set forth in

Section 3.5.1 (concerning coherent arbitrariness), while consumer 2’s choices respect standard

axioms. In Figure 4, the area between the curves labeled TH (formed by the tangencies

between the consumers’ indifference curves when consumer 1 faces ancillary condition dH)

and TL (formed by the tangencies when consumer 1 faces ancillary condition dL) is the

analog of the standard contract curve; it contains all of the weak generalized Pareto optimal

allocations. The ambiguities in consumer 1’s choices expand the set of Pareto optima,

which is why the generalized contract curve is thick.27 Like a standard contract curve,

the generalized contract curve runs between the southwest and northeast corners of the

Edgeworth box, so there are many intermediate Pareto optima. If the behavioral effects of

the ancillary conditions were smaller, the generalized contract curve would be thinner; in the

limit, it would converge to a standard contract cuve. Thus, the standard framework once

again emerges as a limiting case of our framework, in which behavioral anomolies become

vanishingly small. ¤

More generally, in standard settings (with continuous preferences and a compact set

of social alternatives X), one can start with any alternative x ∈ X, and find a Pareto

optimum in {y | yRix for all i}, for example, by identifying some individual’s most preferred

alternative within that set. Indeed, by doing so for all x ∈ X, one generates the contract

curve. Our next theorem establishes an analogous result for weak generalized Pareto optima.

Theorem 8: For every x ∈ X, the non-empty set {y ∈ X | ∀i, ∼ xP ∗i y} includes at least

one weak generalized Pareto optimum in X.
27Notably, in another setting with incomplete preferences, Mandler [2006] demonstrates with generality

that the Pareto efficient set has full dimensionality.
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Proof: Consider the following set:

U∗(x,X) = {y ∈ X | ∀i, ∼ xP ∗i y and@a1, ..., aN s.t. xP ∗i a1P ∗i a2...aNP ∗i y}

Plainly, U∗(x,X) ⊆ {y ∈ X | ∀i, ∼ xP ∗i y}. We will establish the theorem by showing that

U∗(x,X) contains a weak generalized Pareto optimum.

First we claim that, if z ∈ U∗(x,X) and there is some w ∈ X such that wP ∗i z for

all i, then w ∈ U∗(x,X). Suppose not. Then for some k, there exists a1, ..., aN s.t.

xP ∗k a1P
∗
k a2...aNP

∗
kwP

∗
k z. But that implies z /∈ U∗(x,X), a contradiction.

Now we prove the theorem. Take any individual i. Choose any z ∈ Ci (U∗(x,X), d)

for some d with (U∗(x,X), d) ∈ G. We claim that z is a weak generalized Pareto optimum.

Suppose not. Then there exists w ∈ X such that wP ∗j z for all j. From the lemma, we know

that w ∈ U∗(x,X). But then since w, z ∈ U∗(x,X) and wP ∗i z, we have z /∈ Ci(U∗(x,X), d),

a contradiction. Q.E.D.

Notice that Theorem 8 does not require additional assumptions concerning compactness

or continuity. Rather, existence follows from the fundamental assumption that the choice

correspondence is non-empty over its domain.28

For the reasons discussed in Section 3.6, it is once again important to establish that

our generalized framework for welfare analysis converges to the standard framework as be-

havioral anomalies become small. Our next result (for which we again invoke Assumption

3) establishes the generalized Pareto optima have this convergence property.29 The state-

ment of the theorem requires the following notation: for any set X, choice domain G, and

collection of choice correspondences (one for each individual) C1, ..., CJ defined on G, let

W (X;C1, ..., CJ ,G) denote the set of weak generalized Pareto optima within X. (When
28The proof of Theorem 9 is more subtle than one might expect; in particular, there is no guarantee that

any individual’s welfare optimum within the set {y ∈ X | ∀i, ∼ xP ∗i y} is a Pareto optimum within X.
29It follows from Theorem 9 that, for settings in which the Pareto efficient set is “thin” (that is, of low

dimensionality) under standard assumptions, the set of generalized Pareto optima is “almost thin” as long
as behavioral anomalies are not too large. Thus, unlike Mandler [2006], we are not troubled by the fact
that the Pareto efficient set with incomplete preferences may have high (even full) dimensionality.
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the choice set is compact and the choice correspondences reflect utility maximization, we

will engage in a slight abuse of notation by writing the set of weak Pareto optima as

W (X;C1, ..., CJ ,X c)).

Theorem 9: Consider any sequence of choice correspondence profiles, (Cn1 , ..., C
n
J ), such that

Cni weakly converges to bCi, where bCi is defined on X c and reflects maximization of a

continuous utility function, ui. For any X ∈ X and any sequence of alternatives xn ∈

W (X;Cn1 , ..., C
n
J ,G), all limit points of the sequence lie in W (clos(X), bC1, ..., bCJ ,X c).

Proof: See the Appendix.

5.2 The efficiency of competitive equilibria

The notion of a generalized Pareto optimum easily lends itself to formal analysis. To

illustrate, we provide a generalization of the first welfare theorem.

Consider an economy withN consumers, F firms, andK goods. We will use xn to denote

the consumption vector of consumer n, zn to denote the endowment vector of consumer n,

Xn to denote consumer n’s consumption set, and yf to denote the input-output vector of

firm f . Feasibility of production for firm f requires yf ∈ Y f , where the production sets Y f

are characterized by free disposal. We will use Y to denote the aggregate production set.

We will say that an allocation x = (x1, ..., xN) is feasible if
PN

n=1(x
n− zn) ∈ Y and xn ∈ Xn

for all n.

The conditions of trading involve a price vector π and a vector of ancillary condi-

tions, d = (d1, ..., dN), where dn indicates the ancillary conditions applicable to consumer

n. The price vector π implies a budget constraint Bn(π) for consumer n — that is,

Bn(π) = {xn ∈ Xn | πxn ≤ πzn}.

We assume that profit maximization governs the choices of firms. Consumer behavior

is described by a choice correspondence Cn(Xn, dn) for consumer n, where Xn is a set of

available consumption vectors, and dn represents the applicable ancillary condition. Let Rn

be the welfare relation on Xn obtained from (Gn, Cn) (similarly for Pn and P ∗n).
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A behavioral competitive equilibrium involves a price vector, bπ, a consumption allocation,bx = (bx1, ..., bxN), a production allocation, by = (by1, ..., byF ), and a set of ancillary conditionsbd = (bd1, ..., bdN), such that (i) for each n, we have bxn ∈ Cn(Bn(bπ), bdn), (ii)PN
n=1(bxn − zn) =PF

f=1 byf , and (iii) byf maximizes bπyf for yf ∈ Y f .
Fon and Otani [1979] have shown that a competitive equilibrium of an exchange economy

is Pareto efficient even when consumers have incomplete and/or intransitive preferences (see

also Rigotti and Shannon [2005] and Mandler [2006]). One can establish the efficiency of a

behavioral competitive equilibrium for an exchange economy as a corollary of their theorem.30

We offer a direct proof below to incorporate production, underscore the simplicity of the

argument, and highlight its similarility to the standard demonstration of the first welfare

theorem.31

Theorem 10: The allocation associated with any behavioral competitive equilibrium is a

weak generalized Pareto optimum.32

Proof: Suppose on the contrary that x is not a weak generalized welfare optimum.

Then, by definition, there is some feasible allocation bw such that bwnP ∗nbxn for all n.
The first step is to show that if wnP ∗nbxn, then bπwn > bπbxn. Take any wn with bπwn ≤bπbxn. Then wn ∈ Bn(bπ). Because bxn ∈ Cn(Bn(bπ), bdn), we conclude that ∼ wnP ∗nbxn.
Combining this first observation with the market clearing condition, we see that

bπ NX
n=1

(bwn − zn) > bπ NX
n=1

(bxn − zn) = bπ FX
f=1

byf
30Let mP∗i

(X) denote the maximal elements of X under P ∗i . Consider an alternative exchange economy
in which mP∗i

(X) is the choice correspondence for consumer i. According to Theorem 1 of Fan and Otani
[1979], the competitive equilibria of that economy are Pareto efficient, when judged according to P ∗1 ,...,P

∗
N .

For any behavioral competitive equilibrium, there is necessarily an equivalent equilibrium for the alternative
economy. (Note that the converse is not necessarily true.) Thus, the behavioral competitive equilibrium
must be a generalized Pareto optimum.
31Presumably, one could also address the existence of behavioral competitive equilibria by adapting the

approach developed in Mas-Colell [1974], Gale and Mas-Colell [1975], and Shafer and Sonnenschein [1975].
32One can also show that a behavioral competitive equilibrium is a strict generalized Pareto optimum under

the following additional assumption (which is akin to non-satiation): if xn, wn ∈ Xn and xn > wn (where
> indicates a strict inequality for every component), then wn /∈ Cn(Xn, dn) for any dn with (Xn, dn) ∈ Gn.
In that case, wnRnbxn implies bπwn ≥ bπbxn; otherwise, the proof is unchanged.
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Moreover, since bw is feasible, we know that PN
n=1(bwn − zn) ∈ Y , or equivalently that

there exists v = (v1, ..., vF ) with vf ∈ Y f for each f such that
PN

n=1(bwn − zn) = PF
f=1 v

f ,

from which it follows that bπ NX
n=1

( bwn − zn) = bπ FX
f=1

vf

Combining the previous two equations yields

bπ FX
f=1

vf > bπ FX
f=1

byf
But this can only hold if bπvf > bπbyf for some f . Since vf ∈ Y f , this contradicts the

assumption that byf maximizes firm f ’s profits given bπ. Q.E.D.
The generality of Theorem 10 is worth emphasizing: it establishes the efficiency of com-

petitive equilibria within a framework that imposes almost no restrictions on consumer

behavior, thereby allowing (as argued in Section 2.2) for virtually any conceivable choice

pattern, including all anomalies documented in the behavioral literature. Note, however,

that we have not relaxed the assumption of profit maximization by firms; moreover, the

theorem plainly need not hold if firms pursue other objectives. Thus, we see that the first

welfare theorem is driven by assumptions concerning the behavior of firms, not consumers.

Example 9: Figure 5 illustrates this result for the simple two-person two-good exchange

economy considered in example 8. Initial endowments correspond to point z. In equilibrium,

ancillary condition d0 prevails, and prices permit the consumers to trade along the straight

line through z. Both consumers trade to point w. In consumer 1’s case, this point

corresponds to the tangency between the budget line and an “indifference curve” for ancillary

condition d0, labeled I1d0. The area labeled A, which lies above the indifference curves labeled

I1L (corresponding to ancillary condition dL) and I1H (corresponding to ancillary condition

dH) contains all allocations v for which vR1w. The area labeled B, which lies below the

indifference curve labeled I2, contains all allocations v for which vR2w. Since these area do

not overlap (except at w), w is a strict generalized Pareto optimum. ¤
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5.3 Market failures

Just as it is possible to establish the efficiency of behavioral competitive equilibrium with

perfectly competitive markets, it is also possible to demonstrate the inefficiency of equilibria

in the presence of sufficiently severe but otherwise standard market failures. Here, we show

by way of example that a sufficiently large externality leads to inefficiency.

Example 10: Consider the same two-person two-good exchange economy as in examples

8 and 9. Suppose that positive analysis delivers the following utility representation of

consumer 1’s behavior (where the relevant choice experiments would necessarily include

allocations for consumer 2):

U(a1, b1 | λ, d) = a1 + dv(b1)− ae(a2)

where λ is a positive constant and e(a2) is a strictly increasing convex function. Otherwise,

all of our assumptions are unchanged. In this setting, consumer 1’s enjoyment of good a

inflicts a negative externality on consumer 1, the size of which depends on the parameter λ.

Since the effect of a2 on consumer 1’s utility representation is separable, the presence of

the term −λe(a2) does not affect consumer 1’s choices. Accordingly, changing λ does not

alter the set of competitive equilibrium. Figure 6 reproduces the competitive equilibrum

from Figure 5. Here, the “indifference curves” for consumer 1, now labeled I11H and I
1
1L,

correspond to the portion of the positive model that governs choices over a1 and b1, holding

a2 fixed. In other words, they ignore the term −λe(a2). To this figure, we’ve added the

indifference curves labeled I21L and I
2
1H . These are based on the positive model that governs

choices over a1 and b1, imposing the constraint that a1+a2 equals the total endowment of a.

Notice that these curves are steeper than the versions that hold a2 fixed. This is because

incremental consumption of a1 creates an additional benefit when it forces a reduction in a2;

consequently, less a is required to compensate for a given loss of b. Now the area labeled

A0, which lies above the indifference curves labeled I21L (corresponding to ancillary condition

dL) and I21H (corresponding to ancillary condition dH) contains all allocations v for which
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vP ∗1w. For small values of λ, this area still does not overlap with area B, so the equilibrium

remains a strict generalized Pareto optimum. However, for sufficiently large values of λ, the

areas A0 and B will overlap, as shown (since I21H will be steeper than I2 at w), which means

that the behavioral competitive equilibrium will not be a generalized Pareto optimum. ¤

It is worth emphasizing that a perfectly competitive equilibrium may be inefficient when

judged by a refined welfare relation, after officiating choice conflicts, as described in the next

section. This observation alerts us to the fact that, in behavioral economies, there is a new

class of potential market failures involving choices made in the presence of problemmatic

ancillary conditions. Our analysis of addiction (Bernheim and Rangel [2004]) exemplifies

this possibility.

6 Refining the welfare relations

We have seen that the individual welfare orderings R0, P 0, R∗, and P ∗ may not be very dis-

cerning in the sense that many alternatives may not be comparable, and the set of individual

welfare optima may be large. This problem tends to arise when there are significant conflicts

between the choices made under different ancillary conditions.

In this section we consider the possibility that one might refine these relations by altering

the data used to construct them, either by adding new choice data, or by deleting data. We

also discuss the types of evidence that could be useful for these types of refinements.

6.1 Refinement strategies

The following simple observation (the proof of which is trivial) indicates how the addition or

deletion of data affects the coarseness of the welfare relation and the sets of weak and strict

individual welfare optima.

Observation 3: Fix X. Consider two generalized choice domains G1 and G2 with

G1 ⊂ G2. Also consider two associated choice functions C1 defined on G1, and C2 defined on

G2, with C1(G) = C2(G) for all G ∈ G1.
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(a) The welfare relations R02 and P
∗
2 obtained from (G2, C2) are weakly coarser than the

welfare relations R01 and P
∗
1 obtained from (G1, C1).

(b) If x ∈ X is a weak welfare optimum for X based on (G1, C1), it is also a weak welfare

optimum for X based on (G2, C2).

(c) Suppose that x ∈ X is a strict welfare optimum for X based on (G1, C1), and that

there is no y ∈ X such that xI 01y. Then x is also a strict welfare optimum for X based on

(G2, C2).

It follows that the addition of data (that is, the expansion of G) makes R0 and P ∗ weakly

coarser, while the elimination of data (that is, the reduction of G) makes R0 and P ∗ weakly

finer. Intuitively, if choices between two alternatives, x and y, are unambiguous over some

domain, they are also unambiguous over a smaller domain.33 Also, the addition of data

cannot shrink the set of weak individual welfare optima, and can only shrink the set of strict

individual welfare optima in very special cases.

Observation 3 motivates an agenda involving refinements of the welfare relations con-

sidered in this paper. The goal of this agenda is to make the proposed welfare relations

more discerning while maintaining libertarian deference to individual choice by officiating

between apparent choice conflicts. In other words, if there are some GCSs in which x is

chosen over y, and some other GCSs in which y is chosen over x, we can look for objective

criteria that might allow us to disregard some of these GCSs, and thereby refine the initial

welfare relations. We can then construct new welfare relations based on the pruned data,

which will be weakly finer than the initial ones, and which may contain fewer welfare optima.

Notably, Observations 3 rules out the possibility of self-officiating; that is, discriminating

between apparently conflicting behaviors through “meta-choices.” As an illustration, assume

there are two GCSs, G1, G2 ∈ G withG1 = (X, d1) andG2 = (X, d2), such that the individual
33Notice, however, the same principle does not hold for P 0 or R∗. Suppose, for example, that xI 01y given

(G1, C1), so that ∼ xP 01y. Then, with the addition of a GCS for which x is chosen but y is not with both
available, we would have xP 02y; in other words, the relation P

0 would become finer. Similarly, suppose that
xP ∗1 y given (G1, C1), so that ∼ yR∗1x. Then, with the addition of GCS for which y is chosen when x is
available, we would have yR∗2x; in other words, the relation R

∗ would become finer.



48

chooses x from G1 and y from G2. Our object is to determine which behavior the planner

should mimic when choosing from X. Instead of letting the planner resolve this based on

external criteria, why not let the individual himself resolve it? Suppose we know that the

individual, if given a choice between the two choice situations G1 and G2, would choose

G1. Doesn’t this mean that G1 provides a better guide for the planner (in which case

the planner should select x)? Not necessarily. The choice between G1 and G2 is simply

another GSC, call it G3 = (X, d3), where d3 indicates that component choices are made in

a particular sequence, and under particular conditions. If the individual selects x in G3, all

we have learned is that there is one more ancillary condition, d3, in which he would choose

x. Since choices between generalized choice situations simply create new generalized choice

situations, and since the addition of data on decisions in new generalized choice situations

does not usefully refine the primary welfare relation, P ∗, or the sets of welfare optima, it

does not help us resolve the normative ambiguity associated with choice conflicts.

6.2 Refinements based on imperfect information processing

When we say that an individual’s standard choice situation is X, we mean that, based

on all of the objective information that is available to him, he is actually choosing among

elements of X. In standard economics, we use this objective information to reconstruct X,

and then infer that he prefers his chosen element to all the unchosen elements of X. But

what if he fails to use all of the information available to him, or uses it incorrectly? What if

the objective information available to him implies that he is actually choosing from the set

X, while in fact he believes he is choosing from some other set, Y ? In that case, should a

planner nevertheless mimic his choice when evaluating objects from X? Not in our view.

Why would the individual believe himself to be choosing from some set, Y , when in

fact, according to the available objective information, he is choosing from the set X? There

are many possible reasons. His attention may focus on some small subset of X. His

memory may fail to call up facts that relate choices to consequences. He may forecast the

consequences of his choices incorrectly. He may have learned from his past experiences more
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slowly than the objective information would permit.

In principle, if we understand the individual’s cognitive processes sufficiently well, we may

be able identify his perceived choice set Y , and reinterpret the choice as pertaining to the set

Y rather than to the set X. We refer to this process as “deconstructing choices.” While it

may be possible to accomplish this in some instances (see, e.g., Koszegi and Rabin [2007]),

we suspect that, in most cases, this task is beyond the current capabilities of economics,

neuroscience, and psychology.

We nevertheless submit that there are circumstances in which non-choice evidence can

reliably establish the existence of a significant discrepancy between the actual choice set,

X, and the perceived choice set, Y . This occurs, for example, in circumstances where

it is known that attention wanders, memory fails, forecasting is naive, and/or learning is

inexplicably slow. In these instances, we say that the GCS is suspect.

We propose using non-choice evidence to officiate between conflicting choice data by

deleting suspect GCSs. Thus, for example, if someone chooses x from X under condition

d0 where he is likely to be distracted, and chooses y from X under condition d00 where he

is likely to be focused, we would delete the data associated with (X, d0) before constructing

the welfare relations. In effect, we take the position that (X, d00) is a better guide for the

planner than (X, d0). Even with the deletion of choice data, these welfare relations may

remain ambiguous in many cases due to other unresolved choice conflicts, but R0 and P ∗

nevertheless become (weakly) finer, and the sets of weak individual welfare optima become

(weakly) smaller.

Note that this refinement agenda entails only a mild modification of the core libertar-

ian principles that underlie the standard choice-theoretic approach to welfare economics.

Significantly, we do not propose the use of non-choice data, or any external judgment, as

either a substitute for or supplement to choice data. Within this framework, all evalua-

tions are ultimately based on the individual’s actual choices, and must be consistent with

all unambiguous choice patterns.
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6.2.1 Forms of non-choice evidence

What forms of non-choice evidence might one use to determine the circumstances in which

internal information processing systems work well, and the circumstances in which they

work poorly? Evidence from psychology, neuroscience, and neuroeconomics concerning

the functioning of various cognitive processes can potentially shed light on the operation

of processes governing attention, memory, forecasting, and learning. This evidence can

provide an objective basis for determining whether a particular choice situation is suspect.

For example, if memory is shown to function poorly under certain environmental conditions,

GSCs that are associated with those conditions, and that require factual recall, are suspect.

Our work on addiction (Bernheim and Rangel [2004]) provides an illustration involving

forecasting malfunctions. Citing evidence from neuroscience, we argue that the repeated use

of addictive substances causes specific a neural system that measures empirical correlations

between cues and potential rewards to malfunction in the presence of identifiable ancillary

conditions. Whether or not that system also plays a role in hedonic experience, the choices

made in the preence of those conditions are therefore suspect, and welfare evaluations should

be guided by choices made under other conditions.

For those who question the use of evidence from neuroscience, we offer the following

motivating example. An individual is offered a choice between alternative x and alternative

y. When the alternatives are described verbally, the individual chooses x. When the

alternatives are described partly verbally and partly in writing, the individual chooses y.

Which choice is the best guide for public policy? Based on the information provided, the

answer is unclear. But suppose we learn in addition that the information was provided in

a dark room. In that case, we would be inclined to respect the choice of x, rather than

the choice of y. We would reach the same conclusion if an opthalmologist certified that the

individual was blind. More interestingly, we submit that the same conclusion would follow

if a brain scan revealed that the individual’s visual processing was neurologically impaired.

In all of these cases, non-choice evidence sheds light on the likelihood that the individual
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successfully processed information that was in principle available to him, thereby properly

characterizing the choice set X.

The relevance of evidence from neuroscience and neuroeconomics may not be confined

to problems with information processing. Pertinent considerations would also include im-

pairments that prevent people from implementing desired courses of action. Furthermore,

in many situations, simpler forms of evidence may suffice. If an individual characterizes

a choice as a mistake on the grounds that he neglected or misunderstood information, this

may provide a compelling basis for declaring the choice suspect. Other considerations, such

as the complexity of a GCS, could also come into play.

6.2.2 What is a mistake?

The concept of a mistake does not exist within the context of standard choice-theoretic

welfare economics. Within our framework, however, one can define mistake as a choice

made in a suspect GCS that is contradicted by choices in non-suspect GCSs. In other

words, if the individual chooses x ∈ X in one GCS where he properly understands that the

choice set is X, and chooses y ∈ X in another GCS where he misconstrues the choice set as

Y , we say that the choice of y ∈ X is a mistake. We recognize, of course, that the choice

he believes he makes is, by definition, not a mistake given the set from which he believes he

is choosing.

In Bernheim and Rangel [2004], we provide the following example of a mistake:

“American visitors to the UK suffer numerous injuries and fatalities because they

often look only to the left before stepping into streets, even though they know

traffic approaches from the right. One cannot reasonably attribute this to the

pleasure of looking left or to masochistic preferences. The pedestrian’s objectives

— to cross the street safely — are clear, and the decision is plainly a mistake.”

We know that the pedestrian in London is not attending to pertinent information and/or

options, and that this leads to consequences that he would otherwise wish to avoid. Accord-
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ingly, we simply disregard this GCS on the grounds that behavior is mistaken (in the sense

defined above), and instead examine choice situations for which there is non-choice evidence

that the pedestrian attends to traffic patterns.

6.3 Refinements based on coherence

In some instances, it may be possible to partition behavior into coherent patterns and iso-

lated anomalies. One might then argue that, for the purpose of welfare analysis, it is

apporpriate to respect the coherent aspects of choice and ignore the anomalies. This argu-

ment suggests another potential approach to refining the welfare relations:identify subsets

of GCSs, corresponding to particular ancillary conditions, within which choice is coherent,

in the classic sense that it reflects the maximal elements a preference relation on X. Then

construct welfare relations based on those GCSs, and ignore other choice data.

Unfortunately, the coherence criterion raises difficulties. Every choice is coherent taken

by itself. Accordingly, some form of minimum domain requirement is needed, and there is

no obvious way to set this requirement objectively.

In some circumstances, however, the coherence criterion seems reasonably natural (based

once again on non-choice considerations). Take, for example, the problem of intertemporal

consumption allocation for a β, δ consumer (discussed in Section 3.5.2). For many GCSs, the

allocation is determined by a sequence of choices at many different points in time. However,

for each point in time t, there is a class of GCSs, call it Gt, for which all discretion is exercised

at time t, through a broad precommitment. Within each Gt, all choices reflect maximization

of the same time t utility function. Therefore, each Gt identifies a set of GCSs for which

choices are coherent. Based on the coherence criterion, one might therefore construct our

welfare relations restricting attention to Gc = G1∪ G2∪ ...∪ GT . We will call these relations

R0c and P
∗
c . For all G ∈ Gc, the ancillary condition is completely described by the point in

time at which all discretion is resolved. Thus, we can write any such G as (X, t).

Based on Theorem 3, it is natural to conjecture that R0c and P
∗
c corresponds to the weak

and strict multi-self Pareto criterion. However, that theorem does not apply because Gc is
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not rectangular. Consider in particular any consumption set X ∈ X such that (X, t) ∈ Gt.

For any two consumption vectors, x0 and x00 in X, it must be the case that x0k = x
00
k for all

k < t. This is because one can never make a choice in period t affecting past consumption.

Our next result characterizes individual welfare optima under R0c and P
∗
c for conventional

intertemporal budget constraints. We will assume that initial wealth, w1, is strictly positive.

Let λ ≡ 1
1+r
, where r is the rate of interest. We will useX1 denote the standard intertemporal

budget set:

X1 =

(
(c1, ..., cT ) ∈ RT

+ | w1 ≥
TX
k=1

λk−1ct

)
We will also use Xt(c01, .., c

0
t−1) denote the continuation budget set, given theat the individual

has consumed c01,...,c
0
t−1:

Xt(c
0
1, ..., c

0
t−1) =

(
(c01, ..., c

0
t−1, ct, ..., cT ) ∈ RT

+ | w1 −
t−1X
k=t

λk−1c0t ≥
TX
k=t

λk−1ct

)

At time t, all discretion is resolved to maximize the function given in (7). We define

Vt(Ct) =
TX
k=t

δk−tu(ck)

In other words, Vt(Ct) is conventional discounted utility. We will also assume that u(c) is

continuous and strictly concave.

Theorem 11: For welfare evaluations based on R0c and P ∗c :

(i) the consumption vector C∗1 is an individual welfare optimum in X1 (both weak and strict)

iff C∗1 maximizes U1(C1).

(ii) for any feasible (c01, ..., c
0
t−1), the consumption vector C

∗
1 is an individual welfare opti-

mum (both weak and strict) in Xt(c01, ..., c
0
t−1) iff C∗1 maximizes αUt(Ct)+(1−α)Vt(Ct)

for some α ∈ [0, 1].

Proof: See the Appendix.
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According to Theorem 11, individual welfare optimality withinX1 under Rc is completely

governed by the perspective of the individual at the first moment in time. Thus, the special

status of t = 1, which we noted in the context of Theorem 4, is amplified when attention

is restricted to Gc. In any period t > 1, there is some ambiguity concerning the tradeoff

between current and future consumption, with standard discounting and β,δ discounting

bracketing the range of possibilities. However, a sequence of individual welfare optima for

periods t = 1, ..., T is time consistent if and only if it coincides with the maximization of U1.

Assuming that the first period is short, Theorem 11 therefore provides a potential formal

justification for the long-run criterion.

What accounts for the dominance of the t = 1 perspective, and are the implications of

Theorem 11 reasonable? To anwer these questions, it is helpful to understand the relation-

ship between P 0c, P
∗
c , and the multi-self Pareto criteria. If the domain of generalized choice

situations were rectangular, the relations P 0 and P ∗ would coincide with the weak and strict

multi-self Pareto relations (Theorem 3). Note that we can make the domain rectangular

by hypothetically extending the choice correspondence C to include choices involving past

consumption. If we then delete the hypothetical choice data, the welfare relations become

more discerning, and the set of individual welfare optima shrinks (Observation 3). Thus, the

set of individual welfare optima under P 0c and P
∗
c must be contained in the set of multi-self

Pareto optima for every conceivable set of hypothetical data on backward-looking choices. In

other words, P 0c and P
∗
c identify multi-self Pareto improvements that are robust with respect

to all conceivable assumptions concerning such counterfactual choices.

This discussion identifies a conceptual deficiency in conventional notions of mult-self

Pareto efficiency, which assumes that the time t self does not care about the past (see,

e.g., Laibson et. al. [1998], or Bhattacharya and Lakdawalla [2004]).34 Since there can be

no choice experiments involving backward-looking decision, this assumption (as well as any

alternative assumption) is untestable and unwarranted. In light of our inherent ignorance
34Other assumptions concerning backward-looking preferences appear in the literature; see, e.g., Imro-

horoglu, Imrohoroglu, and Joines [2003].
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concerning the nature of backward looking preferences, it would seem more appropriate to

adopt a notion of multi-self Pareto efficiency that is robust with respect to a wider range of

possibilities.

Imagine then that the period t self can make decisions for past consumption as well as

for future consumption; moreover, decisions of the period t self correspond to maximization

of the utility function

bUt(Ct) = Γt(c1, ..., ct−1) + u(ct) + β
TX

k=t+1

δk−tu(ck)

This is the same objective function as in the β,δ setting (equation (7)), except that prefer-

ences are both backward looking and forward looking. We note that no conceivable choice

experiment could possibly identify Γ. Accordingly, we will say that C1 is a (weak or strict)

robust multi-self Pareto optimum if it is a (weak or strict) multi-self Pareto optimum for

all possible (Γ2, ...,ΓT ).35 Arguably, we should place some minimal restrictions on the Γt,

for example that they are continuous and increasing, but such restrictions do not affect the

following result:

Theorem 12: A consumption vector C1 is a both a weak and a strict robust multi-self Pareto

optimum in X1 iff it maximizes U1(C1).

Proof: See the Appendix.

Together, Theorems 11 and 12 imply that the set of individual welfare optima under

P 0c and P
∗
c coincides exactly with the set of robust multi-self Pareto optima. Intuitively,

the time t perspective dominates robust multi-self Pareto comparisons, and thus P 0c and

P ∗c , because we lack critical information (backward-looking preferences) concerning all other

perpspectives.
35 We omit Γ1 because there is no consumption prior to period 1.
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6.4 Refinements based on preponderance

Another natural criterion for officiating between conflicting choices is preponderance. In

other words, if someone ordinarily chooses x over y (that is, in almost all choice situations

where both are available and one is chosen), and rarely chooses y over x, it might be appro-

priate to disregard the exceptions and follow the rule. It appears that this criterion is often

invoked (at least implicitly) in the literature on quasi-hyperbolic (β,δ) discounting to justify

welfare analysis based on long-run preferences.

Conceptually, we see two serious problems with the preponderance criterion. First, the

use of this criterion presupposes that there is some natural measure on G. The nature of

this measure is far from obvious. Since it is presumably easy to proliferate variations of

ancillary conditions, one cannot simply count GCSs. There may also be competing notions

of preponderance. For example, in the QHD environment, there is an argument for basing

preponderance on commonly encountered, and hence familiar, GCSs. If the individual

makes most of his decisions “in the moment,” this notion of preponderance would favor the

short-run perspective.

Second, a rare ancillary condition may be highly conducive to good decision-making.

That would be the case, for example, if an individual typically misunderstands available

information concerning his alternatives unless it is presented in a particular way. Likewise,

in the QHD setting, one could argue that people may appreciate their needs most accurately

when those needs are immediate and concrete, rather than distant and abstract.

We suspect that the economics profession’s “revealed preference” for the long-run welfare

perspective emerges from the widespread belief that short-run decisions sometimes reflect

lapses of self-control, rather than an inclination to credit preponderance. Implicitly or

explicitly, we recognize a choice as a lapse of control based on non-choice considerations,

such as introspection.
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7 Discussion

In this paper, we have proposed a choice-theoretic framework for behavioral welfare eco-

nomics — one that can be viewed as a natural extension of standard welfare economics. We

have shown that the application of libertarian welfare principles does not require all choices

to be consistent in the classic sense. Though the guidance provided by choice data may

be ambiguous in some circumstances, it may nevertheless be unambiguous in others. This

partially ambiguous guidance provides sufficient information for rigorous welfare analysis.

Our framework is a natural generalization of standard welfare economics in two separate

respects. First, it nests the standard framework as a special case. Second, when behavioral

departures from the standard model are small, our welfare criterion is close to the standard

criterion.

In principle, our framework encompasses all behavioral models; it is applicable irrespec-

tive of the processes generating behavior, or of the positive model used to describe behavior.

The analyst is free to use a wide range of positive models, including those that do not entail

the maximization of an underlying utility function, without sacrificing the ability to evaluate

welfare. Thus, the framework potentially opens the door to greater integration of economics,

psychology, and cognitive neuroscience.

Like standard welfare economics, our framework requires only data on choices. It allows

economists to conduct welfare analysis in environments where individuals make conflicting

choices, without having to take a stand on whether individuals have “true utility functions,”

or on how well-being might be measured.

We have also demonstrated that our framework is easily applied. It leads to novel norma-

tive implications for the familiar β, δ model of time inconsistency. For a model of coherent

arbitariness, it provides a choice-theoretic (non-pscyhological) justifications for multi-self

Pareto optimality. It generates natural counterparts for the standard tools of applied welfare

analysis, including compensating and equivalent variation, consumer surplus, Pareto opti-

mality, and the contract curve, and permits a broad generalization of the of the first welfare
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theorem.

Finally, we have also suggested (perhaps more controversially) that our framework lends

itself to principled refinements, some of which may rely circumscribed but systematic use of

non-choice data. Significantly, we do not propose the use of non-choice data, or any external

judgment, as either a substitute for or supplement to choice data. Within this framework, all

evaluations are ultimately based on the individual’s actual choices, and must be consistent

with all unambiguous choice patterns. Non-choice data are potentially valuable because

they may provide important information concerning which choice circumstances are most

relevant for welfare and policy analysis.

The approach that we have proposed also has some limitations. First, in some appli-

cations, our welfare criteria may not be particularly discriminating. In such cases, the

refinement agenda discussed in Section 6 is particularly critical. Second, it is likely that, in

some extreme cases, there will be an objective basis for classifying all or most of an individ-

ual’s potential GCSs as suspect, leaving an insufficent basis for welfare analysis. Individuals

suffering from Alzheimer’s disease, other forms of dementia, or severe injuries to the brain’s

decision-making circuitry might fall into this category. Decisions by children might also be

regarded as inherently suspect. Thus, our framework also carves out a role for paternalism.
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Appendix
1. Proofs of results for the β, δ model

Proof of Theorem 4: Let

Vt(Ct) =
TX
k=t

δk−tu(ck)

Given our assumptions, we have, for all Ct, Vt(Ct) ≥ Ut(Ct) ≥ W (Ct), where the first

inequality is strict if ck > 0 for any k > t, and the second inequality is strict if ck > 0 for

any k > t+ 1.

Suppose the individual faces the GCS (X,R). Because the individual is dynamically

consistent within each period, we can without loss of generality collapse multiple decision

within any single period into a single decision. So a lifetime decision involves a sequence of

choices, r1, ..., rT (some of which may be degenerate), that generate a sequence of consump-

tion levels, c1, ..., cT . The choice rt must at a minimum resolve any residual discretion with

respect to ct. That choice may also impose constraints on the set of feasible future actions

and consumption levels (e.g., it may involve precommitments). For any G, a sequence of

feasible choices r1, ..., rt leads to a continuation problem GC(r1, ..., rt), which resolves any

residual discretion in rt+1, .., rT .

With these observation in mind, we establish three lemmas.

Lemma 1: Suppose that, as of some period t, the individual has chosen r1, ..., rt−1 and

consumed cA1 ,...,c
A
t−1, and that C

A
t remains feasible for G

C(r1, ..., rt−1). Suppose there

is an equilibrium in which the choice from this continuation problem is CBt . Then

Vt(C
B
t ) ≥ Ut(CBt ) ≥Wt(C

A
t ).

Proof: We prove the lemma by induction. Consider first the case of t = T . Then

VT (C
B
T ) = Ut(C

B
t ) = u(cBT ) and WT (C

A
T ) = u(cAT ). Plainly, if the individual is willing to

choose cBT even though c
A
T is available, then u(c

B
T ) ≥ u(cAT ).
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Now suppose the claim is true for t + 1; we will prove it for t. By assumption, the

individual has the option of making a choice rt in period t that locks in cAt in period t, and

that leaves CAt+1 available.

Let bCt+1 be a continuation trajectory that the individual would choose from that point

forward after choosing rt. Notice that

Ut(c
A
t , bCt+1) = u(cAt ) + βδVt+1( bCt+1)

≥ u(cAt ) + βδWt+1(C
A
t+1)

= Wt(C
A
t )

Since the individual is willing to make a decision at time t that leads to the continuation

consumption trajectory CBt , and since another period t decision will lead to the continuation

consumption trajectory (cAt , bCt+1), we must have
Ut(C

B
t ) ≥ Ut(cAt , bCt+1)

Thus, Ut(CBt ) ≥Wt(C
A
t ), and we already know that Vt(C

B
t ) ≥ Ut(CBt ). Q.E.D.

Lemma 2: Suppose U1(CB1 ) ≥ W1(C
A
1 ). Then there exists some G for which CB1 is an

equilibrium outcome even though CAt is available. If the inequality is strict, there exists

some G for which CB1 is the only equilibrium outcome even though CAt is available.

Proof: We prove this lemma by induction. Consider first the case of T = 1. Note

that U1(CA1 ) = u(c
A
1 ) = W1(C

A
1 ). Thus, U1(C

B
1 ) ≥ W1(C

A
1 ) implies U1(C

B
1 ) ≥ U1(CA1 ). Let

G consist of a single choice between CA1 and C
B
1 made at time 1. With U1(C

B
1 ) ≥ U1(CA1 ),

the individual is necessarily willing to choose CB1 ; with strict inequality, he is unwilling to

choose CA1 .

Now suppose the claim is true for T − 1; we will prove it for T . For ε ≥ 0, define

cε2 ≡ u−1
£
W2(C

A
2 ) + ε

¤
,
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and Cε
2 = (c

ε
2, 0, ..., 0). Notice that U2(C

ε
2) =W2(C

A
2 )+ε. Therefore, by the induction step,

there exists a choice problem G0 for period 2 forward (a T − 1 period problem) for which

Cε
2 is an equilibrium outcome (the only one for ε > 0) even though CA2 is available. We

construct G as follows. At time 1, the individual has two alternatives: (i) lock in CB1 , or

(ii) choose cA1 , and then face G
0. Provided we resolve any indifference at t = 2 in favor of

choosing Cε
2 , the decision at time t = 1 will be governed by a comparison of U1(CB1 ) and

U1(c
A
1 , C

ε
2). But

U1(c
A
1 , C

ε
2) = u(cA1 ) + βδu(cεt+1)

= u(cA1 ) + βδ
£
W2(C

A
2 ) + ε

¤
= W1(C

A
1 ) + βδε

If U1(CB1 ) =W1(C
A
1 ), we set ε = 0. The individual is indifferent with respect to his period

t choice, and we can resolve indifference in favor of choosing CB1 . If U1(C
B
1 ) > W1(C

A
1 ), we

set ε <
£
U1(C

B
1 )−W1(C

A
1 )
¤
/βδ. In that case, the individual is only willing to pick CB1 in

period 1. Q.E.D.

Lemma 3: Suppose W1(C
A
1 ) = U1(C

B
1 ). If there is some G for which C

B
1 is an equilibrium

outcome even though CA1 is available, then C
A
1 is also an equilibrium outcome.

Proof: Consider any sequence of actions rA1 , ..., rAT that leads to the outcome c
A
1 , ..., c

A
T .

As in the proof of Lemma 1, let bCt+1 be the equilibrium continuation consumption trajectory
that the individual would choose from t+1 forward after choosing rA1 , ..., r

A
t and consuming

cA1 , ..., c
t
1. (Note that bC1 = CB1 .) According to expression (??), Ut(cAt , bCt+1) ≥ Wt(C

A
t ).

Here we will show that if W1(C
A
1 ) = U1(C

B
1 ) and C

B
1 is an equilibrium outcome, then

Ut(c
A
t , bCt+1) =Wt(C

A
t ). The proof is by induction.

Let’s start with t = 1. Suppose U1(cA1 , bC2) > W1(C
A
1 ). By assumption, W1(C

A
1 ) =

U1(C
B
1 ). But then, U1(c

A
1 , bC2) > U1(CB1 ), which implies that the individual will not choose

the action in period 1 that leads to CB1 , a contradiction.
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Now let’s assume that the claim is correct for some t−1, and consider period t. Suppose

Ut(c
A
t , bCt+1) > Wt(C

A
t ). Because Ut( bCt) ≥ Ut(c

A
t , bCt+1) (otherwise the individual would

not choose the action that leads to bCt after choosing rA1 , ..., rAt−1), we must therefore have
Ut( bCt) > Wt(C

A
t ), which in turn implies Vt( bCt) > Wt(C

A
t ). But then

Ut−1(c
A
t−1, bCt) = u(cAt−1) + βδVt( bCt)

> u(cAt−1) + βδWt(C
A
t )

= Wt−1(C
A
t−1)

By the induction step, Ut−1(cAt−1, bCt) = Wt−1(C
A
t−1), so we have a contradiction. There-

fore, Ut(cAt , bCt+1) =Wt(C
A
t ).

Now we construct a new equilibrium for G for which CA1 is the equilibrium outcome. We

accomplish this by modifying the equilibrium that generates CB1 . Specifically, for each every

history of choices of the form rA1 , ..., r
A
t−1, we change the individual’s next choice to r

A
t ; all

other choices in the decision tree remain unchanged.

When changing a decision in the tree, we must verify that the new decision is optimal

(accounting for changes at successor nodes), and that the decisions at all predecessor nodes

remain optimal. When we change the choice following a history of the form rA1 , ..., r
A
t−1, all

of the predecessor nodes correspond to histories of the form rA1 , ..., r
A
k , with k < t−1. Thus,

to verify that the individual’s choices are optimal after the changes, we simply check the

decisions for all histories of the form rA1 , ..., r
A
t−1, in each case accounting for changes made

at successor nodes (those corresponding to larger t).

After any history rA1 , ..., r
A
t−1, choosing r

A
t in period t leads (in light of the changes at

successor nodes) to CA1 , producing period t decision utility of Ut(C
A
t ). Since we have only

changed decisions along a single path, no other choice at time t leads to period t decision

utility greater than Ut( bCt). For t ≥ 2, we have established that Ut−1(cAt−1, bCt) =Wt−1(C
A
t−1),

from which it follows that Vt( bCt) =W (CAt ). But then we have Ut( bCt) ≤ Vt( bCt) =W (CAt ) ≤
Ut(C

A
t ). Thus, the choice of rAt is optimal. For t = 1, we have bC1 = CB1 , and we have
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assumed that W1(C
A
1 ) = U1(C

B
1 ), so we have U1(C

A
1 ) ≥ W1(C

A
1 ) = U1(C

B
1 ), which means

that the choice rA1 is also optimal. Q.E.D.

Using Lemmas 1 through 3, we now prove the theorem.

Proof of part (i): C 01R0C 001 iff W1(C
0
1) ≥ U1(C 001 )

First let’s suppose that C 01R
0C 001 . Imagine that, contrary to the theorem, W1(C

0
1) <

U1(C
00
1 ). Then, according to Lemma 2, there is some G for which C

00
1 is the only equilibrium

outcome even though C 0 is available. That implies ∼ C 01R0C 001 , a contradiction.

Next suppose thatW1(C
0
1) ≥ U1(C 001 ). If the inequality is strict, then according to Lemma

1, C 001 is never an equilibrium outcome when C
0
1 is available, so C

0
1RC

00
1 . IfW1(C

0
1) = U1(C

00
1 ),

then according to Lemma 3, C 01 is always an equilibrium outcome when C
00
1 is an equilibrium

outcome and both are available, so again C 01RC
00
1 .

Proof of part (ii): C 01P ∗C 001 iff W1(C
0
1) > U1(C

00
1 )

First let’s suppose that C 01P
∗C 001 . Imagine that, contrary to the theorem, W1(C

0
1) ≤

U1(C
00
1 ). Then, according to Lemma 2, there is some G for which C 001 is an equilibrium

outcome even though C 01 is available. That implies ∼ C 01P ∗C 001 , a contradiction.

Next suppose that W1(C
0
1) > U1(C

00
1 ). Then according to Lemma 1, C 001 is never an

equilibrium outcome when C 01 is available, so C
0
1P

∗C 001 .

Proof of part (iii): P 0 = R0. We demonstrate this part of the theorem by showing

that C 01R
0C 001 implies C

0
1P

0C 001 (the opposite implication is immediate). From part (i), we

know that W1(C
0
1) ≥ U1(C 001 ). It follows that

U1(C
0
1) ≥W1(C

0
1) ≥ U1(C 001 ) ≥W1(C

00
1 ) (11)

If the second inequality in (11) is strict, we have U1(C 01) > W1(C
00
1 ), which implies ∼ C 001R0C 01

by part (i). If the second inequality in (11) is not strict, then (with C 01 6= C 001 ), there must

be some k > 1 for which either c0k > 0 or c
00
k > 0, which means either U1(C

0
1) > W1(C

0
1) or
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U1(C
00
1 ) > W1(C

00
1 ). In either case, expression (11) implies U1(C

0
1) > W1(C

00
1 ), which in turn

implies ∼ C 001R0C 01 by part (i). Therefore, C 01R0C 001 implies ∼ C 001R0C 01, and thus C 01P 0C 001 .

Proof of part (iv): C 01R
∗C 001 iff U1(C

0
1) ≥W1(C

00
1 ).

First suppose that C 01R
∗C 001 . Then by definition, there exists some G for which C 01 is

an equilibrium outcome even though C 001 is available. But then Lemma 1 implies U1(C
0
1) ≥

W1(C
00
1 ).

Next suppose that U1(C 01) ≥W1(C
00
1 ). By Lemma 2, there exists some G for which C

0
1 is

an equilibrium outcome even though C 001 is available. But then, by definition, C
0
1R

∗C 001 .

Proof of part (v): R0, P 0, and P ∗ are transitive.

First consider R0 (and hence P 0). Suppose that C11R
0C21R

0C31 . From part (i), we know

that W1(C
1
1) ≥ U1(C21) and W1(C

2
1) ≥ U1(C31). Using the fact that U1(C21) ≥ W1(C

2
1), we

therefore have W1(C
1
1) ≥ U1(C31), which implies C11R0C31 .

Next consider P ∗. Suppose that C11P
∗C21P

∗C31 . From part (ii), we know thatW1(C
1
1) >

U1(C
2
1) and W1(C

2
1) > U1(C

3
1). Using the fact that U1(C21) ≥ W1(C

2
1), we therefore have

W1(C
1
1) > U1(C

3
1), which implies C

1
1P

∗C31 . Q.E.D.

Proof of Theorem 11: First suppose that C∗1 solvesmaxC1∈X1 U1(C1). ConsiderG ∈ G1
such that the individual chooses the entire consumption trajectory from X1 at t = 1. For

that G, we have C(G) = {C∗} (uniqueness of the choice follows from strict concavity of u).

It follows that ∼ C1P 0C∗1 for all C1 ∈ X1. Accordingly, C∗1 is a strict individual welfare

optimum (and hence a weak individual welfare optimum) in X1.

Now consider any bC1 ∈ X1 that does not solve maxC1∈X1 U1(C1). There must be some

C 01 ∈ X1 with U1(C 01) > U1( bC1). But then there must also be some C 001 ∈ X1 with U1(C 001 ) >
U1( bC1) and c001 6= c∗1. (We can construct C 001 as follows. If c01 > 0, simply reduce c01 slightly.
If c01 = 0, simply increase c01 by some small ε > 0 and reduce c0t in some future period t

by λt−1ε.) Now consider any G that contains the options bC1 and C 001 . Notice G ∈ G1; we

cannot have G ∈ Gt for any t > 1, because a choice from G resolves some discretion at time
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t = 1. But since U1(C 001 ) > U1( bC1) and G ∈ G1, the individual will not select bC1 from G.

Thus, C 001P
∗ bC1. It follows that bC1 is not a weak individual welfare optimum (and hence not

a strict individual welfare optimum).

Now fix (c01, ..., c
0
t−1) and suppose that C

∗
1 (with c

∗
k = c

0
k for k < t) maximizes αUt(Ct) +

(1−α)Vt(Ct) in Xt(c01, ..., c
0
t−1) for some α ∈ [0, 1]. For any other C1 ∈ Xt(c01, ..., c0t−1), either

(i) Ut(C∗t ) > U(Ct), or (ii) Vt(C∗t ) > V (Ct). In case (i), consider G ∈ Gt such that the

individual chooses between C∗1 and C1 (and nothing else) at time t. Since he will select C
∗
1

and not C1, we have ∼ C1P 0C∗1 . In case (ii), consider G ∈ Gk for any k < t such that the

individual chooses between C∗1 and C1 (and nothing else) at time k. Since he will select C
∗
1

and not C1, we have ∼ C1P 0C∗1 . Accordingly, C∗1 is a strict individual welfare optimum (and

hence a weak individual welfare optimum) in Xt(c01, ..., c
0
t−1).

Now consider any bC1 ∈ X1 that does not maximize αUt(Ct)+(1−α)Vt(Ct) inXt(c01, ..., c0t−1)
for any α ∈ [0, 1]. Because u is strictly concave, the efficient frontier of the set (Ut(Ct), Vt(Ct))

for C1 ∈ Xt(c01, ..., c0t−1) is strictly concave. All points on the frontier of that set maximize

αUt(Ct) + (1 − α)Vt(Ct) for some α ∈ [0, 1]. It follows that
³
Ut( bCt), Vt( bCt)´ cannot lie

on the frontier of that set. Accordingly, there must be some C 01 ∈ Xt(c01, ..., c0t−1) with

Ut(C
0
t) > Ut( bCt) and Vt(C 0t) > Vt( bCt). Given the existence of C 01, there must also be some

C 001 ∈ Xt(c01, ..., c0t−1) with Ut(C 00t ) > Ut( bCt), Vt(C 00t ) > Vt( bCt), and c00t 6= c∗t . (We can construct
C 001 as follows. If c0t > 0, simply reduce c

0
t slightly. If c0t = 0, simply increase c

0
t by some

small ε > 0 and reduce c0k in some future period k > t by λ
k−tε.) Note that Vt(C 00t ) > Vt( bCt)

implies Un(C 00n) > Un( bCn) for all n < t.
Now consider any G that contains the options bC1 and C 001 . Notice G ∈ Gn for n ≤ t; we

cannot have G ∈ Gn for any n > t, because a choice from G resolves some discretion at time

t. But since Un(C 00n) > Un( bCn) for all n ≤ t, the individual will not select bC1 when C∗1 is
available from any G ∈ Gn. Thus, C 001P ∗ bC1. It follows that bC is not a weak individual welfare
optimum (and hence not a strict individual welfare optimum) in Xt(c01, ..., c

0
t−1). Q.E.D.

Proof of Theorem 12: First note that if C∗1 maximizes U1(C1), then it is a strict (and
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hence a weak) robust multi-self Pareto optimum. This conclusion follows from the fact that

U1(C1) < U1(C
∗
1) for any feasible C1 6= C∗1 ; regardless of how other selves are affected by a

switch from C∗1 to C1, the time t = 1 self is strictly worse off.

Next we argue that bC1 6= C∗1 is not a weak robust multi-self Pareto optimum (and

therefore not a strict robust multi-self Pareto optimum either). We divide the possibilities

into the following three cases.

(i) bc1 < c∗1. In that case, if each Γt is sufficiently sensitive to c1, we have bUt(C∗1) > bUt( bC1)
for t = 2, .., T . Since we also know that U1(C∗1) > U1( bC1), bC1 is not a weak robust multi-self
Pareto optimum.

(ii) bc1 = c∗1. Note that there must be some t > 0 such that c∗t > 0 (or we would not

have U1(C∗1) > U1( bC1)). Define C 01 as follows: c01 = c∗1 + ε, c0t = c
∗
t − ελt−1, and c0k = c

∗
k for

k 6= 1, t. For ε > 0 sufficiently small, we have U1(C 01) > U1( bC1). If each Γt is sufficiently

sensitive to c1, we will also have bUt(C 01) > bUt( bC1) for t = 2, .., T , which implies bC1 is not a
weak robust multi-self Pareto optimum.

(iii) bc1 > c∗1. In that case, there exists t > 1 for which bct < c∗t . Let
∆c1 = min

©bc1 − c∗1,λt−1 (c∗t − bct)ª > 0,
and let

∆ct = λt−1∆c1 > 0.

Note that bc1 −∆c1 ≥ c∗1 (12)

and bct ≤ c∗t −∆ct (13)

Define C 01 as follows: c
0
1 = c

∗
1 +∆c1 > c

∗
1, c

0
t = c

∗
t −∆ct < c

∗
t , and c

0
k = c

∗
k for k 6= 1, T .

Define C 001 as follows: c
00
1 = bc1 −∆c1 < bc1, c00t = bct +∆ct > bct, and c00k = c∗k for k 6= 1, T . (It

is easy to check that C 01, C
00
1 ∈ X1.)
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We now show that U1(C
00
1 ) > U1( bC1). We know that U1(C∗1) > U1(C 01); therefore,

u(c∗1 +∆c1)− u(c∗1) < βδt−1 [u (c∗t )− u(c∗t −∆ct)] (14)

From (12) and the concavity of u, we know that

u(bc1)− u(bc1 −∆c1) < u(c
∗
1 +∆c1)− u(c∗1) (15)

Similarly, from (13) and the concavity of u, we know that

u (c∗t )− u(c∗t −∆ct) < u (bct +∆ct)− u(bct) (16)

Combining inequalities (14), (15), and (16), we obtain:

u(bc1)− u(bc1 −∆c1) < βδt−1 [u (bct +∆ct)− u(bct)] .
But that implies U1(C

00
1 ) > U1( bC1), as desired.

Now define C01 as follows: c
0
1 = c

00
1 − ε, c0T = c

00
T + ελT−1, and c0k = c

00
k for k 6= 1, T . For

ε > 0 sufficiently small, we have U1(C01) > U1( bC1). For Γt(c1, ..., ct−1) ≡ 0, we also havebUt(C 01) > bUt( bC1) for t = 2, .., T , which implies bC1 is not a weak robust multi-self Pareto
optimum. Q.E.D.

2. Proofs of convergence results

Our analysis will require us to say when one set is close to another. For any compact set

A, let Nr(A) denote the neighborhood of A or radius r (defined as the set ∪x∈ABr(x), where

Br(x) is the open ball of radius r centered at x). For any two compact sets A and B, let

δU(A,B) = inf {r > 0 | B ⊂ Nr(A)}

δU is the upper Hausdorff hemimetric. This metric can also be applied to sets that are not

compact (by substituting the closure of the sets).

Consider a sequence of choice functions Cn defined on G. Also consider a choice functionbC defined on X c, the compact elements of X , that reflects maximization of a continuous
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utility function, u. We will say that Cn weakly converges to bC if, for all ε > 0, there exists
N such that for all n > N and (X, d) ∈ G, we have δU

³ bC(clos(X)), Cn(X, d)´ < ε.

In addition to Un(x), Ln(x), bU∗(u), and bL∗(u) (defined in the text), we also definebU(x) ≡ {y ∈ X | u(y) > u(x)} and bL(x) ≡ {y ∈ X | u(y) < u(x)} .

We begin our proofs of the convergence results with a lemma.

Lemma 4: Suppose that Cn weakly converges to bC, where bC is defined on Xc and reflects
maximization of a continuous utility function, u. Consider any values u1 and u2 with

u1 > u2. Then there exists N 0 such that for n > N 0, we have yP n∗x for all y ∈ bU∗(u1)
and x ∈ bL∗(u2).

Proof: Since u is continuous, there exists r0 > 0 such that Nr0
³bU∗(u1)´ does not contain

any point in bL∗(u2). Moreover, since Cn weakly converges to bC, there exists some N 0 such

that for n > N 0 and (X, d) ∈ G, we have δU
³ bC(clos(X)), Cn(X, d)´ < r0.

Now we show that if n > N 0, then for all generalized choice sets that include at least one

element of bU∗(u1), no element of bL∗(u2) is chosen. Consider any setX1 containing containing
at least one element of bU∗(u1). We know that bC(clos(X1)) ⊆ bU∗(u1), from which it follows

that Nr0
³ bC(clos(X1))´ does not contain any element of bL∗(u2). But then, for n > N 0, there

is no d with (X1, d) ∈ G for which Cn(X1, d) contains any element of bL∗(u2).
Since we have assumed that {a, b} ∈ X for all a, b ∈ X, it follows immediately that yP n∗x

for all y ∈ bU∗(u1) and x ∈ bL∗(u2). Q.E.D.
Proof of Theorem 5: The proof proceeds in three steps. For each, we fix a value of

ε > 0.

Step 1: Suppose that Cn weakly converges to bC. Then for n sufficiently large, bL∗(u(x0)−
ε) ⊆ Ln(x0).

Let u1 = u(x0) and u2 = u(x0)− ε. By Lemma 4, there exists N 0 such that for n > N 0,

we have yP n∗x for all y ∈ bU∗(u1) and x ∈ bL∗(u2). Taking y = x0, for n > N 0 we have

x0P n∗x (and therefore x ∈ Ln(x0)) for all x ∈ bL∗(u2)
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Step 2: Suppose that Cn weakly converges to bC. Then for n sufficiently large, bU(u(x0)+
ε) ⊆ Un(x0).

Let u1 = u(x0) + ε and u2 = u(x0). By Lemma 4, there exists N 00 such that for n > N 00,

we have yP n∗x for all y ∈ bU∗(u1) and x ∈ bL∗(u2). Taking x = x0, for n > N 00 we have

yP n∗x0 (and therefore y ∈ Un(x0)) for all x ∈ bU∗(u1). Q.E.D.
In the statement of Theorem 6, we interpret d1 is a function of the compensation level,

m, rather than a scalar. With that interpretation, the theorem subsumes cases in which G

is not rectangular.

Proof of Theorem 6: It is easy to verify that our notions of CV-A and CV-B for bC
coincide with the standard notion of compensating variation. That is, bmA = bmB = bm; the
infinum (supremum) of the payment that leads the individual to choose something better

than (worse than) the object chosen from the initial opportunity set equals the payment that

exactly compensates for the change. Therefore, our task is to show that limn→∞mn
A = bmA,

and limn→∞mn
B = bmB. We will provide the proof for limn→∞mn

A = bmA; the proof for

limn→∞m
n
B = bmB is completely analogous.

Step 1: Consider any m such that y bP ∗x for all x ∈ bC(X(α0, 0)) and y ∈ bC(X(α1,m)).
We claim that there existsN1 such that for n > N1, we have yP n∗x for all x ∈ Cn(X(α0, 0), d0)

and y ∈ Cn(X(α1,m), d1(m)).

Define u1 = 1
3
u(w) + 2

3
u(z) and u2 = 2

3
u(w) + 1

3
u(z) for w ∈ bC(X(α0, 0)) and z ∈bC(X(α1,m)). Since u1 > u2, Lemma 1 implies there exists N 0

1 such that for n > N
0
1, we

have yP n∗x for all y ∈ bU∗(u1) and x ∈ bL∗(u2).
Next, notice that since u is continuous, there exists r1 > 0 such thatNr1

³ bC(X(α0, 0))´ ⊂bL∗(u2), and Nr1 ³ bC(X(α1,m))´ ⊂ bU∗(u1). Moroever, there exists N 00
1 such that for n > N

00
1 ,

we haveCn(X(α0, 0), d0) ⊂ Nr1
³ bC(X(α0, 0))´ andCn(X(α1,m), d1(m)) ⊂ Nr1 ³ bC(X(α1,m))´.

Consequently, for n > N 00
1 , we have C

n(X(α0, 0), d0) ⊂ bL∗(u2) and Cn(X(α1,m), d1(m)) ⊂bU∗(u1). It follows that, for n > N1 = max{N 0
1, N

00
1 }, we have yP n∗x for all x ∈ Cn(X(α0, 0), d0)

and y ∈ Cn(X(α1,m), d1(m)).



73

Step 2: Consider any m such that y bP ∗x for all y ∈ bC(X(α0, 0)) and x ∈ bC(X(α1,m)).
We claim that there existsN2 such that for n > N2, we have yP n∗x for all y ∈ Cn(X(α0, 0), d0)

and x ∈ Cn(X(α1,m), d1(m)).

Define u1 = 1
3
u(w) + 2

3
u(z) and u2 = 2

3
u(w) + 1

3
u(z) for z ∈ bC(X(α0, 0)) and w ∈bC(X(α1,m)). Since u1 > u2, Lemma 1 implies there exists N 0

2 such that for n > N
0
2, we

have yP n∗x for all y ∈ bU∗(u1) and x ∈ bL∗(u2).
Next, notice that since u is continuous, there exists r2 > 0 such thatNr2

³ bC(X(α0, 0))´ ⊂bU∗(u1), and Nr2 ³ bC(X(α1,m))´ ⊂ bL∗(u2). Moroever, there exists N 00
2 such that for n > N

00
2 ,

we haveCn(X(α0, 0), d0) ⊂ Nr2
³ bC(X(α0, 0))´ andCn(X(α1,m), d1(m)) ⊂ Nr2 ³ bC(X(α1,m))´.

Consequently, Cn(X(α0, 0), d0) ⊂ bU∗(u1) and Cn(X(α1,m), d1(m)) ⊂ bL∗(u2). It follows

that, for n > N2 = max{N 0
2, N

00
2 }, we have yP n∗x for all x ∈ Cn(X(α1,m), d1(m)) and

y ∈ Cn(X(α0, 0), d0).

Step 3: limn→∞mn
A = bmA.

Suppose not. Then the sequence mn
A has a limit point m

∗
A 6= bmA. Suppose first that

m∗A > bmA. Consider m0 = (m∗A − bmA)/2. Since u satisfies non-satiation and m0 > bmA,

we know by step 1 that there exists N1 such that for n > N1, we have yP n∗x for all x ∈

Cn(X(α0, 0), d0) and y ∈ Cn(X(α1,m0), d1(m
0)). This in turn implies that mn

A ≤ m0 < m∗A

for all n > N1, which contradicts the supposition that m∗A is a limit point of m
n
A. The case

of m∗A < bmA is similar except that we rely on step 2 instead of step 1. Q.E.D.

Proof of Theorem 9: Suppose not. Without loss of generality, assume that xn con-

verges to a point x∗ /∈W (clos(X), bC1, ..., bCJ ,X c) (if necesary, take a convergent subsequence

of the original sequence). Then there must be some x0 ∈ X, some ε > 0, and some N 0 such

that, for all n > N 0, we have xn ∈ bL∗i (u(x0)−ε) for all i. By Theorem 4, there exists N 00 such

that for n > N 00, we have bL∗i (u(x0)− ε) ⊆ Lni (x0) for all i. Hence, for all n > max{N 0, N 00},

we have xn ∈ Lni (x0) for all i. But in that case, xn 6∈ W (X;Cn1 , ..., CnJ ,G), a contradiction.

Q.E.D.

3. An alternative definition of compensating variation
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Without futher structure, we cannot rule out the existence of compensation levels smaller

than the CV-A for which everything selected in the new set is unambiguously chosen over

everything selected from the initial set. Nor can we rule out compensation levels larger than

the CV-B for which everything selected form the initial set is unambiguously chosen over

everything selected from the new set. This observation suggests the following alternative

definitions of compensating variation:.

Definition: CV-A0 is the level of compensation mA0 that solves

inf {m | yP ∗x for all x ∈ C(X(α0, 0), d0) and y ∈ C(X(α1,m), d1(m))}

Definition: CV-B0 is the level of compensation mB0 that solves

sup{m | xP ∗y for all x ∈ C(X(α0, 0), d0) and y ∈ C(X(α1,m), d1(m))}

In principle, the CV-A0 could be smaller than the CV-A (but not larger), and the CV-B0

could be larger than the CV-B (but not smaller). It is straightforward to demonstrate the

equivalence of CV-A and CV-A0 under the following monotonicity assumption: If, for some

y ∈ X, α, d, andm, we have y /∈ C(X, d0) for all (X, d0) ∈ G containing at least one alternative

in C(X(α,m), d), then for allm0 > m we also have y /∈ C(X, d0) for all (X, d0) ∈ G containing

at least one alternative in C(X(α,m0), d). A complementary assumption guarantees the

equivalence of CV-B and CV-B0.

When the monotonicity assumption does not hold, the CV-A0 can be either larger or

smaller than the CV-B0. Thus, unlike the CV-A and the CV-B, the CV-A0 and the CV-B0

cannot always be interpreted, respectively, as upper and lower bounds on required compen-

sation.
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