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The term structures of equity and interest rates

Abstract

This paper proposes a dynamic risk-based model capable of jointly explaining the term struc-
ture of interest rates, returns on the aggregate market and the risk and return characteristics
of value and growth stocks. Both the term structure of interest rates and returns on value and
growth stocks convey information about how the representative investor values cash flows of dif-
ferent maturities. We model how the representative investor perceives risks of these cash flows by
specifying a parsimonious stochastic discount factor for the economy. Shocks to dividend growth,
the real interest rate, and expected inflation are priced, but shocks to the price of risk are not.
Given reasonable assumptions for dividends and inflation, we show that the model can simul-
taneously account for the behavior of aggregate stock returns, an upward-sloping yield curve,
the failure of the expectations hypothesis and the poor performance of the capital asset pricing

model.



1 Introduction

This paper proposes a dynamic risk-based model capable of jointly explaining the term structure
of interest rates, returns on the aggregate market, and the risk and return characteristics of value
and growth stocks.

Both the term structure of interest rates and returns on value and growth stocks convey in-
formation about how the representative investor values cash flows of different maturities. Several
recent papers (Chen (2006), Croce, Lettau, and Ludvigson (2006), Lettau and Wachter (2007),
Santos and Veronesi (2006a)) present models in which stocks with high ratios of price to fun-
damentals (growth stocks) endogenously have dividends weighted more toward the future while
stocks with low ratios of price to fundamentals (value stocks) have dividends weighted more
toward the present. Growth stocks are therefore high-duration equity while value stocks are
low-duration equity.

We model how the representative investor perceives risks of these cash flows by specifying
a parsimonious stochastic discount factor for the economy. Following Brennan, Wang, and Xia
(2004), we assume first-order autoregressive (AR(1)) processes for the price of risk and for the
real interest rate. To model nominal bonds, we introduce an exogenous process for the price
level (Cox, Ingersoll, and Ross (1985), Boudoukh (1993)) such that expected inflation follows an
AR(1). Realized inflation can therefore be characterized as an ARMA(1,1). Following Bansal
and Yaron (2004) and Campbell (1999), we assume an AR(1) process for the expected growth
rate of aggregate cash flows.

We calibrate the dividend, inflation, and interest rate processes to their counterparts in U.S
data. The price of risk is then calibrated to match aggregate asset pricing properties. Several
properties of these processes key to the model’s ability to fit the data. First, a volatile price of
risk is necessary to capture the empirically demonstrated property that risk premia on stocks
and bonds are time-varying. This time-varying price of risk also allows the model to match the
volatility of stock and bond returns given low volatility of dividends, real interest rates, and
inflation. Second, the real riskfree rate is negatively correlated with fundamentals. This implies
a slightly upward-sloping real yield curve. Expected inflation is also negatively correlated with

fundamentals, implying a yield curve for nominal bonds that is more upward-sloping than the



real yield curve. Our model can also account for the fact that bond yield volatility decreases in
maturity.

Our model illustrates a tension between the upward slope of the yield curve and the value
premium. The value premium implies that value stocks, which are short-horizon equity, have
greater returns than growth stocks, which are long-horizon equity. Therefore the “term struc-
ture of equities” slopes downward, not upward. However, the very mechanism that implies an
upward-sloping term structure of interest rates, namely a negative correlation between shocks to
fundamentals and shocks to the real interest rate, also implies a growth premium. We show that
correlation properties of shocks to the price of risk are key to resolving this tension. Namely,
when the price of risk is independent of fundamentals, the model can simultaneously account
for the downward-sloping term structure of equities and the upward-sloping term structure of
interest rates.

Our paper builds on an active literature examining the implications of the term structure
of interest rates for the stochastic discount factor. Dai and Singleton (2002, 2003) and Duffee
(2002)), demonstrate the importance of a time-varying price of risk to explaining term struc-
ture anomalies. Ang and Piazzesi (2003) augment the latent term structure variables in the
stochastic discount factor with macroeconomic factors like productivity and inflation. A related
literature explicitly models the utility function of the representative agent and seeks to simulta-
neously explain predictability in bond and stock markets (see Bakshi and Chen (1996), Bansal
and Shaliastovich (2007), Bekaert, Engstrom, and Grenadier (2004), Buraschi and Jiltsov (2007),
Gabaix (2007), Wachter (2006)). We extend this work by exploring the consequences of our
pricing kernel for a cross-section of equities defined by cash flows. In particular, we focus on the
model’s ability to explain the high expected returns and low CAPM betas of value stocks. Our
paper shares some features with fundamentals-based models in that only cash flow risk is priced,
and some features with affine models in that the price of risk is allowed to vary independently of
aggregate cash flows.

Our paper also builds on work that seeks to simultaneously explain the aggregate market and
returns on value and growth stocks. Several studies relate observed returns on value and growth
stocks to new sources of risk (Campbell and Vuolteenaho (2004), Lustig and VanNieuwerburgh
(2005), Piazzesi, Schneider, and Tuzel (2005), Santos and Veronesi (2006b), Yogo (2006)). Others



relate to the present study in that they model value and growth stocks based on their underlying
cash flows (Berk, Green, and Naik (1999), Carlson, Fisher, and Giammarino (2004), Gomes,
Kogan, and Zhang (2003), Hansen, Heaton, and Li (2005), Kiku (2006), Lettau and Wachter
(2007), Santos and Veronesi (2006a), Zhang (2005)). Unlike these studies, our study also seeks
to explain the upward slope of the nominal yield curve and time-variation in bond risk premia
(the failure of the expectations hypothesis) noted by Campbell and Shiller (1991) and Fama and
Bliss (1987). As we show, jointly considering the term structure of interest rates and behavior of

value and growth portfolios has strong implications for the stochastic discount factor.

2 The Model

2.1 Dividend growth, inflation, and the stochastic discount factor

Following Duffie and Kan (1996) we assume an affine structure for the underlying state of the
economy. Let H; be an m x 1 vector of state variables at time ¢ and let €;,1 be an (m+2) x 1 vector
of independent standard normal shocks. In what follows, we will use bold font to denote matrices

and vectors. We assume that the state variables evolve according to the vector autoregression
H, ,=0,+0H,+oy€,1, (1)

where Qg is m x 1, ® is m X m, and oy is m x (m + 2). In Sections 2.3 and 2.4 we put more
structure on H,;. The fundamentals in the economy are represented by aggregate dividends. Let
D, denote the level of aggregate dividends at time ¢ and d; = log D;. We assume that the log of
aggregate dividends are conditionally normally distributed with a time-varying mean z; that is

an affine function of the state vector:

Adiy = 2+ g€ (2)

Zt = (50 + 5/Ht, (3)

where o4 is a 1 x (m + 2) vector of loadings on the shocks € and d is an m x 1 vector of loadings
on the variables H;. The conditional standard deviation of dividend growth is o4 = /0407,

In what follows we will use the notation ¢; (without bold) to refer to the conditional standard

deviation of 7 and 0;; = 0'10'; to refer to the conditional covariance between i and j.
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Because we are interested in pricing nominal bonds, we also specify a process for inflation.

Let II; denote the price level and m; = logIl;. Inflation follows the process

AT = ¢+ Or€141, (4)
@ = 1o+ n'Hy, (5)

where o, is 1 X (m + 2) and m is m x 1. The conditional standard deviation of inflation is
or = /oo .1 All quantities are in real terms unless otherwise stated.

Discount rates are determined by the real riskfree rate and by the price of risk. Let 7,11
denote the continuously-compounded riskfree return between times ¢ and ¢t 4+ 1. We assume that

rtf 41 is also an affine function of the state variables, and, because it is known at time ¢:
7{+1 = ag + o H,, (6)

where ¢ is m x 1. The variable that determines the price of risk, and therefore risk premia in

this homoscedastic model, is denoted x;. We assume
=&+ &' Hy, (7)

where £ is m x 1. To maintain a parsimonious model, we assume that only fundamental dividend
risk is priced directly implying that the price of risk is proportional to the vector 4. Other
risks are priced insofar as they covary with aggregate aggregate cash flows. Besides reducing the
degrees of freedom in the model, this specification allows for easier comparison to models based
on preferences, such as those of Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi

(2004).2 The stochastic discount factor (SDF) is given by

— f L 5 5
M1 = exp {_TtJrl ~ 50Tt T T10d€i1 ¢ -

Because the SDF is a quadratic function of x;, the model is in the essentially affine class (Dai

and Singleton (2002), Duffee (2002)). Asset prices are determined by the Euler equation

Et [Mt+1Rt+1] = 17 (8)

1One could also include Ad;; and Am;yq in the state variable vector H;. However, as will be shown, Ad
and Amy1 do not directly affect price-dividend ratios and nominal prices of nominal bonds. For this reason, it is

more parsimonious to treat them separately.
2The assumption that only dividends are priced does not affect the form of the solution. The formulas in the

Appendix allow for a general price of risk.



where R;.; denotes the real return on a traded asset. Given the lognormal specification the
maximal Sharpe ratio is given by (Campbell and Cochrane (1999), Lettau and Uhlig (2002),
Lettau and Wachter (2007))

E,R..1 — R/ Var,[M,;1])"/? s
max tLbt41 ;Jrl _ ( azrt[ t+1:|) — ea}to'd _ 1 ~ |xt|0-d
(Vary[Rerr — Riy )2 E[Mi]

Note that the maximal Sharpe ratio is proportional to x; and depends on the conditional standard

deviation of dividend growth.?

2.2 Prices and Returns on Bonds and Equities

Real bonds

Let P!, denote the real price of a zero-coupon bond with a fixed payoff of unity n periods from

now. Because this asset has no intermediate payoffs, its real return between ¢ and t 4+ 1 equals
r Py 11
R = P (9)
The prices of real bonds at any maturity are determined recursively from the Euler equation (8),
which implies that
E; [Mt+1P7:—1,t+1] =P,

nt’

(10)

while the fact that the bond pays a single unit at maturity implies that Fj, = 1. Appendix A

verifies that P!, takes the exponential affine form
Pl = exp{A] + BLH,), (11)

where A7 is a scalar and B] is a 1 x m vector. The sequences A; and B, satisfy difference
equations, given in Appendix A, with boundary conditions A] = 0 and B] = 0;4,,. We develop
economic intuition about the properties of the A,, and B,, coefficients in the context of a simplified

specification in section 2.3 below. Log yields are linear in the state variables:

1 1
Yps = ——log P, = —— (A}, + B, H;) .
n n

3The definition of M;; is consistent with the riskfree rate rtf 41 because, by conditional lognormality,

1
~log Ey[My1] = vl + 50355? - 5(73%? =rf

and therefore (8) is satisfied for the riskfree asset.



Equity

Let P% denote the price of the asset that pays the aggregate dividend n periods from now. It is
convenient to scale P% by the aggregate dividend at time ¢ to eliminate the need to consider D,

as a state variable. The return on this zero-coupon equity claim is equal to

pd Pg—l,t—&—l _ Pg—l,t+1/Dt+1 Dy iy (12)
i P, PL/Dy Dy

The Euler equation implies that P¢ also satisfies a recursion

Dy Pl | P4
E, | M — T = 13
t t+1 Dt Dt+1 Dt ) ( )

with boundary condition P&/D; = 1. The form of (13) is thus the same as that of (10). Ap-

pendix A verifies that
Pd
_I;t =exp{A’ + B'H,}, (14)
t

where A¢ is a scalar and B2 is 1 x m. The difference equations that define A? and B? are given

in Appendix A.

Nominal bonds

Let PT, denote the real price of a zero-coupon nominal bond maturing in n periods. The real

return on this bond equals

R™ _ Pﬁr—l,t+1 _ Pg—l,t-&-lHH-l 11, (15)
it P PRI, I 44

This asset is directly analogous to the dividend claim above: the “dividend” is the reciprocal of
the price level, and the “price-dividend ratio” on this asset is its nominal price P7,1I;. The same

argument can therefore be applied to show that
PrIL, = exp{ Al + B, H,}, (16)

where the difference equations for AT and B[ are reported in Appendix A. Following Campbell
and Viceira (2001), we use the superscript $ to denote nominal quantities for the nominal bond.

The nominal (continuously-compounded) yield to maturity on this bond is equal to
3 1 T 1 T T
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and, like the yield on the real bond, is linear in the state variables. Finally, we use the notation
Rgt 41 to denote the nominal return on the nominal n-period bond:

T

R$ . Pn—l,t+1Ht+l

n,t+1 — .
Pnth

Risk premia

Given the solutions for prices, it is straightforward to solve for risk premia. Since price are
exponential affine functions of normally distributed random variables, returns on zero-coupon
instruments are lognormally distributed. Let 7, = log R, be the continuously compounded
return on the real zero-coupon bond of maturity n. It follows from the Euler equation (8) that
risk premia on real zero-coupon bonds satisfy

L

Et[r;,tJrl - 7’{+1] + iar,(n) = a(n)aélxh (18)
U(n) = B:L—IUH7 (19)

where afn) equals the vector of loadings on the shocks for the return on the n-period bond.

In what follows, we let o, (, denote the standard deviation of the bond return. Note that
Orn) = 0(y(0(,). The second term on the left hand side of (18), %Ji(n), is therefore an
adjustment for Jensen’s inequality. Analogous notation is used for risk premia on equities and
nominal bonds, as described below. The right hand side of (18) equals the covariance of the
return on the bond with the stochastic discount factor, which is proportional to the covariance
of the return with the shock to dividends. Risk premia are time-varying and proportional to
xy. The average level of the risk premium for each bond is determined by B]_,opno), where
B] _, represents the effect of each state variable on the bond price, and oyo), is the vector of
covariances between fundamentals (dividends) and the state variables.

Let rfll’t = log Rfm denote the continuously compounded return on zero-coupon equity of
maturity n. Risk premia on zero-coupon equity claims are equal to

1

Et[rg,tﬂ - Tgﬂ] + 5‘73,(71) = o-gln)o-élxh (20)
ol =0oa+ Bl on, (21)

where afln) equals the vector of loadings on the shocks for the return on zero-coupon equity

maturing in n periods. As is the case for zero-coupon bond premia, risk premia on equities



depend on the loading on each state variable in H; and the covariances of the elements of H,
with fundamentals as captured by the vector oyo’,. These covariances capture innovations to
future risk premia (through x), innovations to the riskfree rate, and innovations to expected
dividend growth. There is also an additional term, o4, that represents cash flow risk due to
unexpected dividend growth in the next period.

Risk premia for nominal bonds also satisfy an equation analogous to (18):

T 1 iy
By[ry oy — i + 5‘77%,(71) = O[Ot (22)
O-Zrn) =—o,+ B;_on, (23)

where azrn) equals the vector of loadings on the shocks for the real return on the n-period nominal
bond. Real risk premia on nominal bonds are not only determined by the covariance of the state
variable H; with fundamentals, but also the covariance of unexpected inflation with fundamentals,
o,0). It is also of interest to compute risk premia on nominal bonds relative to the one-period
nominal bond (as opposed to the real bond, as in (22). It follows from the equation for nominal

prices (16) that

1
Ey [ri,t—l—l - ym + 505,(71) = U?n)‘fézﬂ?t (24)
U?n) = B:mr—la-hﬁ (25)

where O'?n) equals the vector of loadings on the shocks for the nominal return on the nominal

bond and a;(n) is the variance of the return.

This section shows that risk premia on all zero-coupon assets are proportional to x;. While
there is some conditional heteroscedasticity in the aggregate market that arises from time-varying
weights on zero-coupon equity, this effect is small. A natural way to drive a wedge between time-
variation in bond and stock premia is to allow for time-varying correlations as in Campbell,
Sunderam, and Viceira (2007). For simplicity and to maintain our focus on the slope of the term

structures of equity and interest rates, we do not pursue this route here.

2.3 A special case of four interpretable state variables

Consider a case where elements of H; can be identified as expected dividend growth, expected

inflation, the riskfree rate and the price-of-risk variable. This allows for interpretable closed-form



solutions for the recursions in the previous section. We implement this special case by setting

1 0 0 0
0 1 0 0
5 = ) n = Y a = Y £ = (26)
0 0 1 0
0 0 0 1

Further, we assume that each of these variables follows an AR(1) process, so that © is a diagonal

matrix:

-

O = % : (27)

Or
o

Setting ®y = 04,1 implies that dg is mean dividend growth, 7y is mean inflation, aq is the mean
of the riskfree rate and &, is the mean of z;. For notational simplicity, let ¢ = 0y, ¢ = 19, 7 =

and ¥ = §. Partition oy as

The calibration is described in more detail in section 3.1. All results in this section are for

parameter values given in Tables 1-3.

These assumptions imply that the vectors of coefficients B!, B? and BT can be written as

B':L - [B;m B;m B;nv Barm]

d __ d d d d
Bn - [Bzrqun’Brn?an] (29>
B:zr = [B;rmBgan:an;rn]'

The scalar terms with z subscripts are loading on expected dividend growth z;, the terms with

g subscripts are loadings on expected inflation ¢, the terms with r subscripts are loadings on

the real riskfree rate ’r,{c , and terms with x subscripts are loadings on the price-of-risk variable z;.



Appendix B shows that the coefficients for expected dividend growth are

B, =0

Bd — 11— ¢ZL
zZn 1 _ ¢Z

BT = 0.

Expected dividend growth does not directly influence the price of real or nominal bonds so that
B’, = BT = 0. For equities, the loadings on expected dividend growth B¢ are positive and
increase in maturity. An increase in expected dividend growth increases the price of the asset
that pays the aggregate dividend in the future. Because expected dividend growth is persistent,
and because Dy, cumulates shocks between ¢ and t+n, the greater is the maturity n, the greater
is the effect of changes in z; on the price.

Expected inflation behaves like negative dividend growth for the nominal bond. Appendix B

shows that the coefficients are therefore

B, =0

da _

BL =0

" L— ¢
B, =

1—¢,
Expected inflation does not directly influence real bonds and equity claims because equity is a

claim on the real quantity D;. The coefficients on the real riskfree rate are identical for all scaled

price ratios:
1—gp
I (br ‘

All B,, coefficients are negative because an increase in the interest rate increases discount rates

roo_ d __ T
Brn_Brn_Brn_

of all assets leading to lower current prices. Moreover, B, is decreasing in the maturity and
increasing in the persistence of the interest rate process. This is the duration effect: the further
out the cash flow, the larger the effect of a change in the one-period riskfree rate. This intuition

holds for real and nominal bonds as well as for equity.
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The coefficients on the price-of-risk variable x;, B,,, are more complicated and are given by

1 _ ol
B = (00 = ow) By~ (1= Fou) (50
_on 1—on
By, = (¢ — 0ax) By, q — (—wa - 1 — Zf Oar = 7 ? qu> (31)
r q
B;ln = ((bm - O'd:p)B;ln,1 - (03 — %O’dr + 1 :ZZO'C[Z) (32)

Figure 1 shows these coefficients, and, for comparison, the coefficients on the other state variables.
In our calibration, the covariance of unexpected dividend growth and interest rate shocks is
negative (4. < 0) implying from (30) that B, < 0. In other words an increase in the price of
risk lowers prices of real zero-coupon bonds. Since the o4, < 0 and o4, < 0, (31) implies that
nominal zero-coupon bond prices are more sensitive to changes in the price of risk than real zero-
coupon bonds of the same maturity. Moreover, the loading on B,, for real and nominal bonds
increases in magnitude with the maturity. This is again a duration effect, which also is apparent
in the coefficients B,,. Compared with B,, however, B,, initially declines slowly in maturity.
This is because short-horizon assets do not have large risk premia, and so their prices are not as
sensitive to changes in the price of risk. Moreover, B,, levels off more slowly in maturity than
B,.,. As the horizon lengthens, risk premia increase, and therefore the sensitivity to x; increases.
The same effects are present for nominal bonds.

Figure 1 reveals that, in this calibration, the loading on x; for equities follows a very different
pattern than that for nominal and real bonds. Over a range of zero to ten years, B¢ decreases
in maturity. This is again the duration effect: the longer the maturity the more sensitive the
price is to changes in the risk premium. After ten years B? increases, and then asymptotes to
a level that is lower than BY,. Given the duration effect, this decrease is surprising. It occurs
because the covariance of interest rate shocks and dividend growth o4 is more negative than
the covariance of expected dividend growth and dividend growth. Thus for short horizons, the
last term in brackets in (32) is positive and the sequence BZ, is decreasing. However, since the
persistence of expected dividend growth is higher than the persistence of interest rates, the term
including the expected dividend covariance dominates for longer horizons and the expression in
brackets on the right hand side of (32) becomes positive. Intuitively, a negative correlation of

expected dividend shocks and unexpected dividend growth lowers the premium on long-horizon
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equity. Because long-horizon equity has less of a premium, it is less sensitive to changes in x;
than medium-horizon equity.

Figure 2 displays ratios of zero-coupon equity prices to aggregate dividends as a function
of maturity under the calibration described in Section 3.1. In all three panels, the solid line
shows ratios when the state variables are at their long-run mean. This solid line is decreasing
in maturity, as is necessary for convergence. The top panel varies expected dividend growth by
plus and minus two unconditional standard deviations, the middle panel the riskfree rate, and
the lower panel the price of risk. Prices are increasing functions of expected dividend growth z,
decreasing functions of the real interest rate rf and decreasing functions of x;. This figure shows
that, under our calibration, most of the variation of prices at all maturities comes from variations
in risk premia as represented by x;. Variation in expected dividend growth becomes important
at the longest maturities, while variation in the real riskfree rate is relatively unimportant across
all maturities.

Figure 3 plots the real yield to maturity on real zero coupon bonds as a function of maturity,
assuming parameter values described in Section 3.1 and for various values of the state variables

as described in the preceding paragraph. Real yields

oo = oy Py = — (A7 4 B, (rfyy — 1) + B (a0~ 7)) (33)
are functions of the current values of the real riskfree rate and of the price of risk variable ;. An
increase in either type of discount rate increases yields at all maturities since both B coefficients
are negative. The two lower panels of Figure 3 show that the real riskfree rate has a greater effect
on short-term yields while x; has more of an effect for long-term yields.

Finally, it follows from (17) that the nominal (continuously-compounded) yield to maturity

on a nominal zero coupon bond, is equal to
$ 1 T 1 ™ m (. f —f ™ - T =
Ynt = _E IOg (Pnth) = _ﬁ (An + Brn(rt—i—l -r ) + Bqn(Qt - q) + B:cn(xt - .’E)) : (34)

Figure 4 plots nominal yields for the parameter values described in Section 3.1 and for various
values of the state variables as in the previous two figures. Nominal yields are functions of
expected inflation, the real riskfree rate, and risk premia. Yields are decreasing in expected

inflation, and, like real yields, increasing in the riskfree rate and in risk premia, with the riskfree

12



rate having the greater impact for shorter maturities and risk premia having the greater impact
for longer maturities. Note that since yields depend on the current value of the price of risk,
the expectations hypothesis does not hold in this model. We will investigate the quantitative
deviations from the expectations hypothesis in detail below in the context of Campbell-Shiller

type yield regressions.

2.4 Qualitative implications for the term structures of equity and

interest rates

Prior to describing the full calibration of the model and results from simulated data, we use the
results developed above to describe the model’s qualitative implications for risk premia on bonds
and stocks. We first illustrate the issues by comparing bonds and equity maturing in two periods
with those maturing in one period. It follows from (18) and (19) that the unconditional risk
premium of the real bond maturing in two-periods equals

r 1 -
Elry . — 7{+1] + 503,(2) = —0qrT.

The risk premium on the one-period real bond is, by definition, equal to zero. The term o4, equals
the conditional covariance between the real interest rate and dividend growth: a negative value of
this covariance leads to a positive risk premium on the two-period bond. If unexpected changes in
the riskfree interest rates are uncorrelated with unexpected dividend growth, the expected return
of the two-period bond is the same as the current riskfree rate. The same term is reflected in the

average yield spread between the one and the two-period bond:

. 1 1
Elys —yil = 5T 503, (35)

where the second term represents an adjustment for Jensen’s inequality and is relatively small.

The unconditional risk premia on one and two-period equity claims are equal to

1 _

E[Titﬂ - Tfﬂ] + 5‘73,(1) = 0315 (36)
1

E[rg,t—i—l - 7“{+1] + 502,(2) = (‘73 — Odr + 0dz — Ugadx) T. (37)

The one-period equity premium depends only on the volatility of dividend shocks and z while

the two-period equity claim is also exposed to unexpected changes in the interest rate, expected

13



dividend and the price of risk process. If these processes are correlated with the priced funda-
mental dividend factor, the risk premium of two-period equity claim will be different from the
one-period premium. These risk factors are represented by the covariance between shocks to
expected dividends and unexpected dividends o4, real interest rates and unexpected dividends
o4r, and risk premia on unexpected dividends oy, in (37). If 04, = 04, = 04, = 0, the two-period
equity claim has the same risk premium as the one-period claim; in other words the equity term
structure is flat.

However, the positive premium of value (short horizon) stocks over growth (long horizon)
stocks in the data suggests that the equity term structure is downward sloping. Thus the premium
on two-period equity should be less that on one-period equity. Comparing (35) to (36) and (37)
suggests that an upward sloping term structure of interest rates requires interest rate shocks to
be negatively correlated with dividend shocks (o4, < 0). Ceteris paribus, this effect leads also
to an upward sloping term structure of equity, which implies a growth premium rather than a
value premium. As shown in Lettau and Wachter (2007), a key parameter for the slope of the
equity term structure is the correlation of fundamental dividend risk and shocks to the price of
risk process z;. If 04, is negative, the equity term structure tends to be upward sloping, which is
again inconsistent with the large value premium in the data.

Note that if o4, = 1 and interest rate and expected dividend shocks are uncorrelated with
dividend shocks (o4 = 04, = 0), the two-period equity claim is riskless. Recall that returns of
zero-coupon equity depend on dividend growth and the change in the price-dividend ratio (see
(12)). If 04, = 1, positive dividend shocks are associated with positive price of risk shocks causing
price-dividend ratios to decrease. In this special case, these two effects exactly offset each other
creating a perfectly hedged one-period return. This example illustrates a general property of the
model. If dividend shocks are associated with positive price of risk shocks (o4, > 0), long-term
equity tends to be less risky than short-term equity.

Beyond two periods, the effect of changes in risk premia exacerbates this tension. The uncon-

ditional risk premium on the n-period real bond equals

r 1 1— ¢?_1 r =
Elry 1 — 7{+1] + 503,(71) - (_1_—@0@“ + Bm,n—ladI> x (38)
As Appendix B shows, By, ; has the same sign as —og, and is decreasing in maturity. A

negative correlation between interest rates and fundamentals implies that long-term bonds have
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positive risk premia. Because bond prices are determined by risk premia, it follows that changes
in risk premia are another source of risk for these bonds. If changes in risk premia are negatively
correlated with fundamentals, risk premia on bonds increase.
The risk premium on n-period equity is equal to
1 — pn-1 1 — g1
1 —¢<Tbr T —gb;z

As long as risk premia on zero-coupon equity are positive, Bg’nfl is negative (see A.17). Just as in

1
E[Tg,tﬂ - TZH] + 503,(71) = (U?l - Odz + Bg,nlad&?) z. (39)

the two-period case, the same features of the model that deliver positive risk premia on long-term
bonds causes risk premia of long-term equities to be higher than short-term equity premia. A
negative correlation between discount rates and fundamentals leads to higher expected returns
on long-term equities relative to short-term equities, the opposite of what cross-sectional asset
pricing data suggest. This is because duration operates for both bonds and equities; when shocks
to discount rates are priced risk premia on all long-term instruments are driven up relative to
short-term instruments.

In the calibration that follows, we show that it is indeed possible to match both the upward
slope of the term structure of interest rates and the downward slope of the term structure of
equities in a model where the riskfree rate and the risk premium vary. Part of the answer lies in
the role of expected dividend growth which appears in the equations for equities above and part

of the answer lies in the role of expected inflation which influences risk premia on nominal bonds.

3 Implications for Returns on Stocks and Bonds

To study our model’s implications for returns on the aggregate market, on real and nominal bonds,
and for portfolios sorted on scaled-price ratios, we simulate 50,000 quarters from the model. Given
simulated data on shocks €;, and on expected dividend growth z;, expected inflation ¢;, the real
riskfree rate 7"{ , and the price-of-risk variable x;, we compute real prices of real bonds given
(11), ratios of prices to the aggregate dividend for zero-coupon equity (14), and nominal prices
of nominal bonds (16). We also compute a series for realized dividend growth (2) and realized
inflation (4). Real returns on zero-coupon instruments are then described by (9) for real bonds,

(15) for nominal bonds, and (12) for zero-coupon equity. Computation of the price-dividend
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ratio for the market and for firms (which are then aggregated into portfolios) is described further

below.

3.1 Calibration

We calibrate the special case of the model in Sections 2.3 and 2.4. This preserves intuition for the
state variables. Means and autocorrelations are given in Table 1, conditional cross-correlations in
Table 2 and conditional standard deviations of shocks in Table 3. As far as is practical, parameters
for the dividend process and aggregate market are set as in Lettau and Wachter (2007). We
compare these to the century-long annual data set of Campbell (1999) (the instability of many
moments of the aggregate market in recent years makes a long data set especially desirable).
Lettau and Wachter (2007) describes these data in further detail. Parameters for inflation are
set as in Wachter (2006), and results for bond yields are compared to sample moments from the
Fama-Bliss data on CRSP. These data begin in 1952 and end in 2004.* So that all data are at a
comparable frequency, we use annual rather than quarterly observations on yields.

Table 1 shows the means and autocorrelation of expected inflation growth z;, expected inflation
q:, the real riskfree rate rtf and the price of risk o47,.> The model is simulated at a quarterly
frequency. Table 1 shows annualized parameter values, i.e. the means are multiplied by 4 and
the autocorrelations are raised to the fourth power.

The mean of expected dividend growth is set at 2.28%, the mean of annual dividends on
the S&P 500 over the 1881-2002 period. The mean of expected inflation is 3.68%, the sample
mean over the 1952-2004 period. Given the mean of inflation, the mean of the riskfree rate
implies reasonable values for the average yield on the short-term nominal bond. The mean
of z; determines Sharpe ratios in this economy. This variable is set to produce Sharpe ratios
that are close to those in the data. The autocorrelations for expected dividend growth z, and
for expected inflation ¢; are determined based on dividend and inflation data respectively (see

Lettau and Wachter (2007) and Wachter (2006)). The autocorrelation for 7/ is set to match

4As is customary in term structure and inflation studies, we calibrate inflation and yields to data after 1952

because of the Fed-Treasury accord (Campbell and Viceira (2001)).
5In Tables 1 and 3, we report statistics for o4z, rather than z;. Because of its relation to the maximal Sharpe

ratio, o4x; is the more intuitive quantity. Note that for Table 2, using o4z of x; would lead to the same answers.
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the autocorrelation of the short-term nominal yield. The autocorrelation of x; is determined to
produce a realistic autocorrelation of the price-dividend ratio while still implying only a small
amount of univariate mean reversion in returns as in the data.

Table 2 shows conditional cross-correlations of the shocks to the economy. The four state
variables account for four shocks; there is also a shock to realized dividend growth and to realized
inflation. To maintain a parsimonious model, we set many correlations to zero. Sharpe ratios
in this model are determined by the correlation of the state variables with realized dividend
growth. The correlation between expected and realized dividend growth is -0.83 is determined
from dividend data (see Lettau and Wachter (2007)). The correlation between expected inflation
¢; and realized dividend growth determines the premium for nominal over real bonds. A value
of -0.20 implies that nominal bonds will carry a premium over real bonds, and moreover, that
this premium increases in maturity. It is also consistent with the negative correlation of dividend
growth and inflation in the data. The correlation between the real riskfree rate and expected
dividend growth is -0.40. This implies an upward sloping real term structure. The correlations
between dividend growth, ¢; and r; are consistent with empirical evidence that yields on indexed
Treasury bonds are increasing in maturity, but that this slope is less than for nominal bonds (Roll
(2004)). The implications of these parameters are discussed further in Section 3.3.

As in Lettau and Wachter (2007), the correlation between = and dividend growth is set to be
zero. The implication of this parameter choice is discussed further in Section 3.4. The correlations
between x and shocks to Am;, between x and z and between x and ¢ are set to ensure that dividend
growth and interest rates have reasonable time-series properties as explained below. The precise
choice of the correlation between realized and expected inflation, set to be 0.50, has a very minor
impact on asset prices. However, values that are too high or too low result in variance-covariance
matrices for which the Cholesky decomposition does not exist.

Table 3 shows the conditional standard deviation of shocks. The shock to realized dividend
growth is 10% per annum. This value falls between estimates in the long data (~ 14%), and in
the post-war sample (~ 6%). The conditional standard deviation of expected dividend growth
and its first-order autocorrelation are set at the same value as Lettau and Wachter (2007). The
variance of expected inflation, as well as the first-order autocorrelation is determined by the

ARMA estimation in Wachter (2006). While Wachter assumes perfect correlation between the
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shocks to expected and realized growth, the estimates can be adjusted so that the correlation is
not perfect but that the likelihood function is the same as shown in the appendix to that paper.
The standard deviation of the real riskfree rate is 0.15% per annum. This is set so that, given
our process for inflation, our model implies nominal bond yield volatility close to that in the
data. The standard deviation of o4x is set to 40; this high value is necessary to reconcile our

fundamentals-based model with the high volatility of stock returns and price-dividend ratios.

3.2 The Aggregate Market

Table 4 shows statistics for the aggregate market in simulated and in historical data. In our
model, the aggregate market is the claim to all future dividends. Therefore its price-dividend

ratio is given by
[ee]

P" Py
D, 4~ D,

n=1

=> exp{Al + BiH,} (40)
n=1

Appendix C describes necessary and sufficient conditions on the parameters such that (40) con-
verges for all values of H;. The return on the aggregate market equals

mo_ Pl + Dy _ (P7y/Dis1) + 1Dy
t+1 Pm P/ D, D,

(41)

In simulated, data, we calculate quarterly returns and compound to an annual frequency. We
create an annual price-dividend ratio in simulated data by dividing price by dividends over the
previous year.

As Table 4 shows, the volatility and the autocorrelation of the price-dividend ratio are close
to those found in the data. This is not a surprise as model parameters were chosen in part to
produce reasonable values for these moments. The model produces a mean price-dividend ratio
of 18.6, while the mean in the data is 25.6. Matching this statistic is a common difficulty for
models of this type: Campbell and Cochrane (1999), for example, find an average price-dividend
ratio of 18.2. As they explain, this statistic is poorly measured due to the persistence of the
price-dividend ratio. The present model fits the volatility of equity returns (19.1% in the model
versus 19.4% in the data), though it produces an equity premium that is slightly higher than that
in the data (8.45% in the model versus 6.33% in the data). Like the mean of the price-dividend
ratio, this number is estimated with substantial noise. The annual autocorrelation of returns is

near zero for both model and data.
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Motivated by the substantial literature on return predictability, we report results of regressing
excess aggregate market returns on the log of the price-dividend ratio and on the yield spread.
Panel A of Table 5 reports results of long-horizon regressions of continuously compounded excess
returns on the log price-dividend ratio. The model accounts for economically significant stock
return predictability on the basis of the price-dividend ratio. The R? is equal to 11% at an annual
horizon and rises to 39% at a ten-year horizon. These values are well within the range of empirical
estimates (e.g. Campbell and Shiller (1988), Cochrane (1992), Fama and French (1989), Keim and
Stambaugh (1986)). Panel B reports results from regressing long-horizon excess returns on the
difference between the five-year and the three-month nominal yields. R? values on this regression
range from 7% for 1-year returns to 27% for ten-year returns. These values are again well within
the range of estimates for stock return predictability by the yield spread (see Campbell (1999)).

Table 6 reports the results of long-horizon regressions of dividend growth on the price-dividend
ratio and on yield spreads. Evidence has shown that there is little predictability in dividend
growth by either variable (Ang and Bekaert (2006), Cochrane (2006), Lettau and Ludvigson
(2005), Lettau and VanNieuwerburgh (2006)). Despite the fact that the mean of dividend growth
is time-varying in our model, neither the price-dividend ratio, nor the yield spread, predicts
dividend growth with R? values that exceed 2%, even at long horizons. This is both because the
variation in expected dividend growth is relatively low, and because expected dividend growth is
positively correlated with the price of risk x;. Thus risk premia and expected dividend growth are
negatively correlated, leading to less dividend growth predictability than what one would expect
given the present-value nature of this model.

Our model does imply that dividend growth may be predictable by variables other than scaled
price ratios or yields. The bottom panel of Table 6 highlights this effect by regressing long horizon
dividend growth on its expectation z,. R? values range from 7% for a 1-year horizon to 35% for a
ten-year horizon. Thus our model is consistent with findings of Lettau and Ludvigson (2005) that
show that the cointegrating relation between consumption, dividends, and labor income predicts

dividend growth.
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3.3 The Term Structure of Interest Rates

Table 7 shows the implications of the model for means, standard deviations, and annual au-
tocorrelations of nominal and real bond yields. Data moments for bond yields using the CRSP
Fama-Bliss data set are provided for comparison. The mean of the 3-month nominal yield matches
its value in the data. The mean for the 3-month real yield is lower, reflecting both a term for ex-
pected inflation, and a small, positive inflation premium. Both the real and nominal yield curves
are upward sloping. This occurs because of the negative correlation between the real riskfree rate
and fundamentals. Because bond prices fall when the real riskfree rate rises, bond prices fall when
growth in fundamentals are low. This leads both real and nominal bonds to command a positive
risk premium and implies an upward-sloping yield curve. In the case of nominal bonds, there
is an additional effect arising from the negative correlation between fundamentals and expected
inflation. This negative correlation, which is present in the data (Piazzesi and Schneider (2006),
Wachter (2006)) implies that nominal bond prices fall when fundamentals are low, leading to a
positive inflation risk premium.

The model implies volatilities for nominal bonds that are close to those in the data (the
volatility on the short-term nominal bond is 2.9% in both data and model). Moreover, volatilities
decrease in maturity, as in the data. This decrease follows from the stationary autoregressive
nature of the underlying processes. Finally, the first-order autocorrelation of the three-month
nominal yield is 0.82 per annum. This compares with 0.83 in the data.

Table 8 shows the outcome of regressions

‘s T 1 ‘s ‘s
Yn—1441 — Ynt = On + ﬂnm (Yne — Y1e) + €4,

for real bonds and

1

$ $ $ $ T
Yn—1441 — Ynt = Qn + ﬁnm (ynt - ylt) te

for nominal bonds in simulated and historical data. These “long-rate” regressions are performed
by Campbell and Shiller (1991) to test the hypothesis of constant risk premia on bonds.
The relation between risk premia and these regressions can be uncovered using the definition

of yields and returns. For real bonds:

r;,t—&-l =Y — (n—1) (y:z—l,t—i-l - y?:,t)

20



Rearranging and taking expectations implies:

T T 1 T T 1 T T
Ly [yn—l,t-i—l - ynt] T h_1 (Yt — Y1) — n— 1Et [Tn,t—l—l - ?/u} (42)
For nominal bonds, the analogous equation is
1 1
E; [yi—uﬂ - yit] a1 (?J;s{t - yi) T 1Et [ri,t—i—l - ym (43)

Thus the coefficient of a regression of changes in yields on the scaled yield spread produces a
coefficient of one only if risk premia on bonds are constant. As found by Campbell and Shiller,
the data coefficients are not only less than one, they are negative, indicating risk premia on bonds
that strongly vary over time.

As Table 8 shows, the model captures the failure of the expectations hypothesis seen in the
data. Coeflicients /3, are negative for all maturities. Risk premia on bonds are time-varying in the
model because of the time-varying price of risk x;. Thus the model can parsimoniously explain
both predictability in stock returns, and time-variation in risk premia on long-term bonds.°

Using the model, it is possible to write the coefficients (3, in terms of more fundamental
quantities. This sheds light on the aspects of the model that lead to the failure of the expectations
hypothesis, as well as tensions inherent in the model. For real bonds, by definition

3, = COV(y:z—l,tH — Y Ynt — Yir)
" Var(y2_17t+1 - y{t)

(n—1)

Substituting in for changes in yields from (42), and noting that time-(¢ + 1) shocks have zero

correlation with time-t yields, we have

Cov(yn: — yis — Eu [T:L,t—l—l - ym s Ynt = Yie)
Var(y;;—l,t—i-l — Uit
R \Z?;ft,yﬁt - yi;) ’
n—1,t+1 ?Jlt)

Bn

(44)

6The failure of the expectations hypothesis is not as extreme as that seen in the data. This reflects the
difficulty that models with a single homoscedastic factor have in matching these data. Indeed, Dai and Singleton
(2002) find, within the affine class, only a model with three factors driving the price of risk is capable of fully
matching the failure of the expectations hypothesis. In contrast, a single-factor model that allows for significant
heteroscedasticity in the state variable can successfully match these data (Wachter (2006)). It is also possible that
part of the deviation in the data is reflective of a peso problem (Bekaert, Hodrick, and Marshall (2001)).
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where the second line follows from (18). If x; were constant, then the covariance term in this
expression would be zero and (3, = 1, its value implied by the expectations hypothesis. The
deviation from the expectations hypothesis depends on two quantities. The first is U(n)ag. This is
the covariance between bond returns and fundamentals, and directly determines the risk premium
on the bond as indicated by (18). The greater are risk premia on bonds, the greater the deviation
from the expectations hypothesis. The second term is the coefficient from a regression of x; on
the yield spread. The more risk premia covary with yield spreads, then, the greater the deviation
from the expectations hypothesis. Similar reasoning leads to the formula for nominal bonds:

COV(I‘t, ny - y$ )
Bn = 1- U?n)a-élv $ : — 1; : (45)
ar(yn—l,t—H Yir)

Figure 5 displays o070, Cov(2s, Ynt — Y1t)/Var(yn—1,441 — y1¢), and f, for real and nominal
bonds.” As Panel A shows, the terms O ()0 are increasing in maturity, reflecting the fact that
risk premia increase in maturity and that the term spread is upward-sloping. Risk premia are
greater for nominal bonds then for real bonds, and increase faster in the maturity. Despite this,
as shown in Panel C, the model implies a greater deviation from the expectations hypothesis for
real bonds than for nominal bonds. Moreover, the model predicts coefficients that are roughly
constant in maturity over the range of zero to 5 years, while risk premia are upward sloping.
The reason is that the upward slope for risk premia is canceled out by a downward slope in
Cov(zs, Ynt—y1t)/Var(Yn—1.++1—y1t), which results from the mean-reverting nature of x;. Moreover,
nominal bonds, whose yields are driven by expected inflation as well as by discount rates, have
lower values of Cov(x¢, Ynt — v1t)/Var(yn—1.++1 — y1¢). This explains why the model produces a
less dramatic failure of the expectations hypothesis for nominal bonds, despite their higher risk
premia.

Finally, we ask whether the model can explain the findings of Cochrane and Piazzesi (2005).
Cochrane and Piazzesi regress annual excess bond returns on a linear combination of forward

rates, where the forward rate for loans between periods t +n and t + n + 1 is defined as

e = 10g Pg—l,t —log PJ;.

"While (42) and (43) can be interpreted at any frequency and are run at an annual frequency in the data and
the model for Table 8, (44) and (45) require that the frequency be the same as the frequency at which the model

is simulated, namely, quarterly. The implied differences for the coefficients 3,, are very slight.
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(in what follows, we refer to n as the forward rate maturity). Cochrane and Piazzesi show that
the regression coefficients on the forward rates form a tent-shape pattern as a function of maturity
(see also Stambaugh (1988)). Moreover, they show that a single linear combination of forward
rates has substantial predictive power for bond returns across maturities.

These results offer support for our model’s assumptions in that they imply that a single
predictive factor drives much of the predictability in bond returns. In our model, that factor is
represented by the latent variable x;. Forward rates, like bond prices, are linear combinations of
factors; therefore some linear combination of forward rates will uncover x;. The model therefore
predicts that some linear combination of forward rates will be the best predictor of bond returns,
and that the regression coefficients for bonds of various maturities should be the same up to a
constant of proportionality (as the true premia are all proportional to z;). Given the 3-factor
affine structure of the model, it is straightforward to solve for the linear combination of any three

forward yields that is proportional to x;. For example, the linear combination

—0ar S+ (85 + 67) far — fou (46)

of 1, 3 and 5 period forwards is perfectly proportional to x; and is therefore the most powerful
variable to predict excess bond holding returns. Consistent with Cochrane and Piazzesi (2005),
the coefficients in (46) have a “tent” (— + —) pattern. Moreover, the coefficients depend only on
the persistence parameters of the state variables T{ and ¢;. Intuitively, forward rates depend on all
state variables but forwards of different maturities are affected differently by the state variables
because of their different degrees of persistence. Thus the linear combination of forwards that is
independent of rf and ¢ is a function of ¢, and ¢,.

Equation (46) holds on the same data frequency that is used for calibration but does not
hold exactly in time-aggregated data. Since the model is simulated on a quarterly frequency
and aggregated to annual data, we replicate the Cochrane and Piazzesi (2005) analysis in our
simulated data. We report results for forward rates with n = 1,3 and 5 years but the results
are robust to alternative choices. Figure 6 shows the regression coefficients as a function of the
forward rate maturity. As this figure shows, the model reproduces the tent shape in regression

coefficients. 8

8The regression coefficients are larger in magnitude than those shown in Cochrane and Piazzesi (2005); this

occurs because the correlation between bond returns in our model is greater than that in the data.
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3.4 The Cross-section of Equities

This section shows the implications of the model for portfolios formed by sorting on price ratios.
As in Menzly, Santos, and Veronesi (2004) and we exogenously specify a share process for cash
flows on long-lived assets. For each year of simulated data, we sort these assets into deciles formed
on the ratio of price to fundamentals and form portfolios of the assets within each decile. We then
calculate returns over the following year. This follows the procedure used in empirical studies
of the cross section (e.g. Fama and French (1992)). We then perform statistical analysis on the
portfolio returns.

We specify our share process so that assets pay a nonzero dividend at each time, so that
the total dividends sum up to the aggregate dividend of the market, and so that the cross-
sectional distribution of dividends, returns, and price ratios is stationary. The continuous-time
framework of Menzly, Santos, and Veronesi (2004) allows the authors to specify the share process
as stochastic, and yet keep shares between zero and one. This is more difficult in discrete time,
and for this reason we adopt the simplifying assumption that the share process is deterministic.
We assume the same process as in Lettau and Wachter (2007): shares grow at a constant rate
of 5% per quarter for 100 quarters, and then shrink at the same rate for the next 100 quarters.
Lettau and Wachter show that these parameters imply a cross-sectional distribution of dividend
and earnings growth similar to that in the data.

At the start of each year in the simulation, we sort firms into deciles based on their price-
dividend ratio. We then form equal-weighted portfolios of firms within each decile. As firms
move through the life-cycle, they slowly shift (on average) from the growth category to the value
category, and then revert back to the growth category. Having sorted firms into portfolios, we
compute statistics on portfolio returns over the subsequent year.

Panel A of Table 9 shows moments implied by the model. We compute the expected excess
return, the volatility of the excess return and the Sharpe ratio. We also compute the abnormal
return relative to the CAPM («;), and the coefficient on the market portfolio (5;) from a time
series regression of expected excess portfolio returns on expected excess market returns. Panel B
shows counterparts from the data when portfolios are formed on the book-to-market ratio. Lettau
and Wachter (2007) show that very similar results occur when portfolios are formed on earnings-

to-price or cash-flow-to-price ratios.
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Comparing the first line of Panel A with that of Panel B shows that the model is capable of
matching the spread between expected returns on value and growth stocks. In both the model
and the data, the expected excess return increases from about 6% per annum for the extreme
growth portfolio to about 11% per annum for the extreme value portfolio. Comparing the second
line of Panel A with that of Panel B shows that, in the model, the risk of value stocks is lower
than that of growth stocks, just as in the data. Sharpe ratios increase from about 0.3 for the
extreme growth portfolio to about 0.6 for the extreme value portfolio.

More importantly, the model is able to match the value puzzle. Even though the model predicts
that value stocks have high expected returns, value stocks in the model have lower CAPM (s than
growth stocks. The CAPM « in the model is -2.3% per annum for the extreme growth portfolio
and rises to 3.33% per annum for the extreme value portfolio. The corresponding numbers in the
data are -1.66% per annum and 3.97% per annum.

These results for value and growth stocks may at first seem counter-intuitive, especially given
the implications of the model for the term structure of interest rates. The term structure results
in the previous section show that long-run assets require higher expected returns than short-run
assets. The results in this section show that the opposite is true for equities. For equities, it is
the short-run assets that require high expected returns.

The model resolves this tension between the downward sloping term structure of equities and
the upward-sloping term structure of interest rates by the dividend process, the inflation process,
and the price-of-risk process x. As implied by the data, expected dividend growth is negatively
correlated with realized dividend growth. This makes growth stocks a hedge and reduces their risk
premium relative to what would be the case if, say, expected inflation were constant. Moreover,
expected inflation is negatively correlated with realized dividend growth. This makes long-term
nominal bonds riskier than short-term nominal bonds and riskier than real bonds.

The prices of inflation and dividend risks are important for accounting for the combined
behavior of equities and bonds. However, they are not sufficient. As the discussion in Section 2.4
indicates, characteristics of the price-of-risk process = are also crucial. Because equities carry a
higher risk premium than bonds, they are more sensitive to changes in = in the sense that a greater
proportion of their variance comes from z than from rf as compared to both real and nominal

bonds. In our specification, variation in the price of risk is itself unpriced. This implies variability
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in returns on growth stocks (on account of duration), but, at the same time, low expected returns
because this variability comes in the form of risk that the representative investor does not mind

bearing.

4 Conclusion

This paper has shown that properties of the cross-section of returns, the aggregate market and the
term structure of interest rates can all be understood within a single framework. We introduced
a parsimonious model for the pricing kernel capable of accounting for the behavior of value and
growth stocks, nominal bonds, and the aggregate market. At the root of the model are dividend,
inflation, and interest rate processes calibrated to match their counterparts in the data. Time-
varying preferences for risk, modeled using a first-order autoregressive process for the price of
risk, capture the observed volatility in equity returns and bond yields, as well as time-varying
risk premia in the equity and the bond market.

Our model highlights a challenge for any model that attempts to explain both bonds and the
cross-section of equities. The upward-sloping yield curve for bonds indicates that investors require
compensation in the form of a positive risk premium for holding high-duration assets. However,
data on value and growth stocks imply the opposite: investors require compensation for holding
value stocks, which are short-horizon equity. Our model addresses this tension by specifying a
real riskfree rate that is negatively correlated with fundamentals and a price of risk shock that
has zero correlation with fundamentals. We hope that future work will suggest microeconomic

foundations for these specifications.
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Appendix

A General Solution

In this section, we assume that the vector of state variables H; follows the process (1), that the riskfree
rate equals (6), that inflation follows the process (4) and that dividend growth follows (2). The variable
x¢ is given by (7). We assume a slightly more general form for the intertemporal marginal rate of

substitution: .
M1 = exp {_7{+1 - §H>‘H2$? - xtXEtH} . (A1)

The price of risk is therefore z;A. In the main text, we impose the restriction A = o7;. The more general
formulas that follow are convenient in that they allow for a separation between the role of o4 as the
loadings on shocks for dividend growth and as the price of risk.

We describe the solution method for the case of zero-coupon equity. We conjecture a solution (14)

to the recursion (13). Expanding out the exponential in the recursion implies

1
E; {exp {—040 —o'H; — 5(50 + & Hy)?|N)? — (éo + & H)Ner1 + 00 + 6 Hy + o g€r41 +
Al L+ BY [ (©g+OH; +opesr) H = exp {Ag + B;th} .
It follows from properties of the lognormal distribution that

1
exp {—ao — o' H; - 5(50 + & H)2 N> + 60+ 6 H; + A2 | + BY | (©9+OH,) +

5 (00— (€ + €HON + Bl yon) (ou— (6 + €HIN + Bg_laH)'} -

exp {Ag + B;th} .

Matching coefficients implies:?

B! = o/ +8+B? 00— (0q4+ B o5\ (A.2)
Al = —ag+ 0+ AL+ Bl 10y (04 + Bl jou)A& +

1 1

50};0’& + B |onol + iBg_lo'Ha}{Bﬁf’_l, (A.3)

with Bg = 01, and Ag = 0. Note that the terms that are quadratic in H; cancel.
For real bonds, we note that (10) takes the same form as (13), except that there is no dividend

growth term. We can therefore apply (A.2) and (A.3) directly, replacing g with 0, §; with 0,,x; and

9Because ¢’ Hy and N (04 + B2_ o) are each scalars,

EHN(oqg+BY on5) = N(og+B? ,oy)¢H,
= (o4+ B! oy)\&H,.



oq with 01y (p,12) to obtain

B’ = —o/+B, ,0—B. o5\ (A.4)
1

n—1»

with By = O1xm and Ay = 0.

For nominal bonds, the Euler equation (8) implies that

II
Ei Mt+1H7tP7?71,t+1Ht+l = Pyl
t+1

This recursion has a form that is similar to (13), with —ng taking the place of dp, —n taking the places

of & and —o,; taking the place of o4y. We apply the same equation again to obtain

B, = —o -n'+Bj 10— (-0 +Bj_jon)\¢ (A.6)
AL = —ag—mo+ AL+ B 100 — (—0x+ By _jo5)A +

1 1

iawa'; — B _opo. + 5B,’{,1UH0'}{BZ{L1, (A.7)

and BJ = 01x,, and Af = 0.

B Special Case

We now specialize the above formulas under the assumptions of Section 2.3. We continue to assume
that the intertemporal marginal rate of substitution is defined by (A.1). Setting A = o/, generates the
results in Section 2.3.

For real bonds, (A.4) and (A.5) imply that

B;n = B;,nfld)z (AS)
Bl, = B!, ¢, (A.9)
B, = —14B, 6, (A.10)
By = Bin19e — o)A (A.11)
1
r _  _=f r T = L AT 2
An - r +An—1 U(n))‘x—i_z"a(n)”? (A12)

where a(n) is defined in Section 2.2 as the vector of loadings on the shocks for the return on the n-period

real bond. Under the assumptions in Section 2.3,

r _ pr r r r
U(n) - Br,n—laT + Bq,n—laq + Bz,n—laz + Bx,n—lo-f'

The boundary conditions are B, = By, = By,, = By, = A}, = 0. Equations (A.8) and (A.9) together
with the boundary conditions imply that B}, = By, = 0. The solution to (A.10) is given in the main
text. The solution to (A.11) is

B oA 1—¢§\‘7 oA O — Py
o 1_¢r1_¢>\ 1_¢r¢r_¢>\’

(A.13)



where

P = o — O
In the case of equities, (A.2) and (A.3) imply that
BY, = 1+B¢, 0. (A.14)
BY, = B, 1¢q (A.15)
Bl, = —-1+B¢, ¢, (A.16)
Bgn = acn 192 — O'(n (A.17)
Ag = =g+ AL — ol AT+ fHa' W7, (A.18)

where

d __ d d d d
U(n) = 0q + BT’,n—lo-T + qu/_lo'q + Bz7n_10'z + BCI?,TL—10-$

is the vector of loadings on the shocks for the return on m-period zero-coupon equity as defined in
Section 2.2. The boundary conditions are BY, = Bd =B = Bl = A = 0. Equation (A.15) together
with the boundary condition implies that Bqn = 0. The solutions to (A.14) and (A.16) are given in the
main text. The solution to (A.17) is

T z 1— oY r 11} — ¢y z ;L — Py
Bgn:<—ad)\+ T U)\> A ar 0 gb)‘—l— 7:X ¢ ¢)‘. (A.19)

1—¢r 1—9¢ 1—9a 1—¢r &r — P 1—0¢. ¢, — o

In the case of nominal bonds, (A.6) and (A.7) imply that
B;rn - B;r,n—1¢2 (AQO)
By, = —1+Bj, 144 (A.21)
B, = —1+B, 19 (A.22)
Bin = Bin1¢c—0yA (A.23)
1
AL = = -G+ A — ol AT+ Sty 12, (A.24)
where
Uzrn) =—0x+ B77"T,n—10-7‘ + Bg,n—lo-q + B;r,n—lo-m

is the vector of loadings on the shocks for the return on the m-period nominal bond as defined in
Section 2.2. The boundary conditions are BI, = Bf, = B, = B, = A} = 0. Equation (A.20) together
with the boundary condition implies that BZ,, = 0. The solutions to (A.21) and (A.22) are given in the
main text. The solution to (A.23) is

(A.25)

B = (ona 70 s A I A G ek 00

1*¢r 1*¢/\ 1*¢r¢r*¢)\ 1*¢q¢q*¢>\.



C Convergence

This Appendix derives conditions on the convergence of the price-dividend ratio. Let K; = © — ogA¢’
and Ko = —a/ + 8 — g4A&’. Then (A.2) can be rewritten as

B! =B¢ K| + K>.

n

The limit of BZ as n goes to infinity is the fixed point of this equation. A necessary and sufficient
condition for a fixed point to exist is that the eigenvalues of K7 have absolute value less than 1. In this

case I, — K is invertible, and the fixed point is
B=K,I,, - K"
It follows that for IV sufficiently large,
A% ~ An + constant,
for n > N, where
1 n n 1 A =) / 1= I
A=—ag+ 0+ BOy— (o4+ Bog)A\ + iadad + Bopo,;+ iBUHO'HB .

Moreover,
o0 o0
Z exp {AZ + BgHt} /2 exp {constant + BHt} Z exp {An} .
n=N n=N
Therefore necessary and sufficient conditions for convergence are that K7 has eigenvalues inside the unit

circle, and that A is negative.

D Cochrane-Piazzesi Regressions

Up to an additive constant, the n-period forward rate can be written as f,; = —qb?_l(r{ —th )— qﬁg_l(qt —
J) — (Bg_l,x — BT )(z; — ). Hence

fit —¢it —¢itl —(Br,,— BL) rf
—1 —1

fie |=| ot —ei' —(BT,, - BL) a |

fkt - 7]?_1 _¢I(§_1 _(B;cr—l,w_B]Z;rx) Tt

or fy = © (r,{ ,qt,x¢)', where fi is a vector of any three forwards rates with maturities i, j and k, and
® is a 3x3 matrix of known coefficients. Thus x; = eg@)*1 f: where e = (0 0 1)’. Since the first two
columns of ® only depend on ¢, and ¢, it follows that x; is proportional to a linear combination of
the three forward rates in f; with coefficients that depend only on ¢, and ¢4. In other words, any 3x1
vector @ with the property
(o
o —¢r —¢y =(00)

k—1 k—1
— ¢y __¢q



implies that @’ f; is independent of rf and ¢; and thus proportional to x;. Note that 8 is not identified
up to a proportionality factor. (46) shows @ for fi = (fit, f3t, fst) where the third element of 6 is
normalized to -1. Hence e}®~1 = GO where G is a scalar. Since the expected excess bond return is
linear in x; (see (24-25)), we can solve for the Cochrane-Piazzesi expression that links risk premia to

forward rates in closed form:
1
Byfrd o —rla]+ Ea;(n) =0, 0,G(0' fr). (A.26)

0’ f+ corresponds to the common “tent” shaped factor of forwards (given a normalization) while O'Eln)O'&G
is the loading of the n-period bond. As noted above @ depends only the persistence parameters ¢, and
¢q. The term o-?n) 0. G is function of the other model parameters.

Let J, = U?H)U&G and write (A.26) as

1
Ly [Ti,tﬂ - 7"tf+1] + 5082;,(71) = Jnb' ft (A.27)

and normalize 6 setting the third element to -1 as in (46). J,, can be compared to the corresponding OLS
coefficients .J,, in Cochrane-Piazzesi where the tent coefficients  are normalized in the same way (i.e.
by setting the third element of the tent to -1). The 0 coefficients in the model are quite close to 0 in the
data, however the elements in .J, are much larger that the elements in .J,, (in absolute value) as shown
in Figure 6. Yet, it turns out that the volatility of fitted values of the Cochrane-Piazzesi regressions are
close to the volatility of expected returns in the model, i.e. J,,0'f; and J,0 f; have similar volatilities.
This implies that our model generates variations in expected returns that are reasonable, however, ' f;
is “too smooth” compared to o' f+ in the data. The reason is that forward rates in the model are more
highly correlated than in the data causing the the linear combination 8’ f; to be too smooth compared
to 0'f, in the data.
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Table 1: State Variable Means and Autocorrelations

State variable Unconditional Mean Autocorrelation
Expected dividend growth z; 2.28% 0.89
Expected inflation ¢ 3.68% 0.81
Real riskfree rate rf 1.76% 0.89
Price of risk o4z 0.85 0.85

Notes: The second row reports means of state variables; means of expected dividend growth,
expected inflation, and the real riskfree rate are in annual terms (i.e. multiplied by 4). Autocor-
relations for all state variables are in annual terms (i.e. raised to the 4th power). The model is

simulated at a quarterly frequency.

Table 2: Conditional Cross-correlations of Shocks

Variable Ad; Am 2 s 'r{ Ty

Ad, 1 0 -0.83 -020 -040 0
A, 1 0 050 0 040
% 1 0 0 0.0
@ 1 0 020
r! 1 0
Tt 1

Notes: Conditional cross-correlations of shocks to dividend growth Ad;, inflation A, expected
dividend growth z;, expected inflation ¢;, the real continuously compounded riskfree rate 7{ , and

the price-of-risk variable x;. The model is simulated at a quarterly frequency.



Table 3: Conditional Standard Deviations of Shocks

Variable Ady, Am oz q: r{ 04Ty
Conditional standard deviation 10.00 1.11 0.32 0.41 0.15 40.00

Notes: Conditional standard deviations of shocks in annual percentage terms (i.e. multiplied by

200.) The model is simulated at a quarterly frequency.

Table 4: Simulated Moments for the Aggregate Market

Data  Model
E(P/D) 25.55  18.60
o(p —d) 0.38 0.32
ACof p—d 0.87 0.84
E[R™ — R7] 6.33%  8.45%
o(R™ — RY) 19.41% 19.09%
AC of R™ — R/ 0.03 -0.07

Sharpe ratio of market  0.33 0.44

Notes: Data are annual from 1890 to 2002. The model is simulated at a quarterly frequency and
returns, dividends, and price ratios are aggregated up to an annual frequency. AC refers to the
annual autocorrelation, P refers to the value of the aggregate market, D the aggregate dividend,

R™ the annual return on the aggregate market and R/ the annual return on the riskfree rate.



Table 5: Long-Horizon Regressions: Excess Stock Returns

Horizon in Years

1 2 4 6 8 10
Z?ﬂ Tivi Tgﬂ' = fo+ Bi(pe — di) + &

51 -0.18  -0.32 -0.54 -0.71 -0.84 -0.92
R? 0.11 0.19 0.29 0.36 0.38 0.39
Z?:I T — Tg:ui = 0o+ 5l(y§,t - yg.%,t) + &

051 3.40 6.12 10.40 13.60 15.85 18.00
R? 0.07 0.13 0.21 0.26 0.27 0.27

Notes: Continuously compounded excess returns on the market portfolio are regressed on the
lagged price-dividend ratio on the market (top panel) and on the lagged spread between the yield
on the 5-year nominal bond and the 1-quarter nominal bond (bottom panel) in simulated data.
Returns are calculated over horizons ranging from 1 to 10 years. The price-dividend ratio and

yields are expressed in annual terms.



Table 6: Long-Horizon Regressions: Aggregate Dividend Growth

Horizon in Years

1 2 4 § 8 10
Z?:1 Adpyi = Bo + Bi(pe — di) + &

51 0.02 0.04 0.07 0.09 0.09 0.10
R? 0.00 0.01 0.01 0.02 0.01 0.01
Z?:l Adiyi = Bo + 5 (yg,t - yg.%,t) + &

01 0.47  0.89 1.64 1.64 2.75 2.50
R? 0.00 0.01 0.01 0.01 0.02 0.02
Z?zl Adyi = Po+ iz + &

1 3.74 7.20 12.82 16.77 20.58 24.26
R* 0.07 0.12 0.21 0.26 0.31 0.35

Notes: Aggregate dividend growth on the market portfolio is regressed on the lagged price-
dividend ratio (top panel), on the lagged spread between the yield on the 5-year nominal bond
and the 1-quarter nominal bond (middle panel), and on expected dividend growth (bottom panel)
in simulated data. Dividend growth is calculated over horizons ranging from 1 to 10 years and is

in real terms.



Table 7: Simulated Moments for Zero-Coupon Bond Yields

Maturity (yrs) 0.25 1 2 3 4 5

Real bonds
E(ynt) 1.74 1.89 2.07 223 238 2.52
0 (Ynt) 1.22 1.18 1.13 1.10 1.09 1.07

Cort(Ynt, Ynss1) 0.88 0.88 0.88 0.88 0.88 0.87

Nominal bonds

Eys, 2.32 5.66 6.06 6.41 6.73 7.00

a(yd) 2.85 273 261 253 247 241

Corr(y?,, yi}tﬂ) 0.82 0.82 083 0.83 0.83 0.83
Data

EByd, 5.30 5.48 5.70 587 5.99 6.07

o(y?,) 2.89 282 276 2.69 267 2.64

Corr(ys, 48 ,.1) 0.83 0.84 0.86 0.87 0.88 0.89

Notes: Each panel displays means, standard deviations, and annual autocorrelations of bond
yields. The top two panels describe yields on zero-coupon bonds in simulated data. Yields on
real bonds (expressed in real annual percentage terms) are denoted y,;, where n denotes the
maturity and ¢ denotes time. Yields on nominal bonds (expressed in nominal annual percentage
terms) are denoted %?,. Data on nominal zero-coupon bond yields, expressed in annual percentage

terms, are annual and from 1952-2004.



Table 8: Long-Rate Regressions on Bond Yields

Maturity (yrs) 2 3 4 5
Real bonds
Bn -0.76  -0.78 -0.80 -0.82
Nominal bonds
B -0.44 -0.43 -0.41 -0.39
Data
B -091 -1.49 -1.65 -1.74

Notes: Coeflicients (3, from the regression

1

Yn—1441 — Ynt = On + ﬁnm (yr, — Y1) + error,

for real bonds and

1
yi—l,t—s—l - yit = o, + ﬁnm (yf.it - yi) -+ error

for nominal bonds in simulated and historical data, where y;, denotes the annual real yield on
the n-year real bond and y®, denotes in the annual nominal yield on the n-year nominal bond.
Historical data are annual and from 1952-2004. The model is simulated at a quarterly frequency

and aggregated to an annual frequency. The expectations hypothesis implies 3, = 1 for all n.



Table 9: Simulated Moments for Equity Portfolios

G Growth to Value \Y% V-G
Portfolio 1 2 3 4 5 6 7 8 9 10 10-1
Model

ER'— R’ 6.05 623 651 692 744 805 870 931 985 10.74 4.69
o(R'— R') 19.17 19.44 19.67 19.79 19.69 19.27 18.50 17.60 17.00 17.23  7.42
Sharpe Ratio 0.32 0.32 0.33 0.35 0.38 042 047 053 0.58 0.62 0.63

Qo -2.32 -2.27 -2.11 -1.79 -1.25 -048 0.51 1.57 245 3.33 5.65
Bi 099 101 1.02 1.03 1.03 1.01 097 092 088 0.88 -0.11
B/M sorted portfolios
ER'— R/ 567 655 698 6.51 800 833 827 10.08 9.98 10.55  4.88
o(R'— R7) 17.77 15.89 15.82 15.42 14.65 14.73 14.74 15.11 15.71 18.46 15.15
Sharpe Ratio 0.32 0.41 0.44 042 0.55 0.57 056 0.67 0.64 0.57 0.32

o -1.66 -0.17 0.33 0.22 212 237 259 430 4.05 3.97 5.63
B 1.11 1.02 101 095 089 090 0.86 0.87 090 1.00 -0.11

Notes: For the top panel, firms in simulated data are sorted into deciles on their price-dividend
ratios in each simulation year. Returns are calculated over the subsequent year. Intercepts and
slope coefficients are from OLS time-series regressions of excess portfolio returns on the excess
market return. Data are on monthly returns on book-to-market portfolios from 1952-2002. Data
moments are annualized (multiplied by 12 in the case of means and intercepts and V12 in the case
of standard deviations). Means, intercepts, and standard deviations are reported in percentage

terms.



Figure 1: Model Solution
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Notes: Solutions to B,,, the sensitivity of prices to the real riskfree rate (top left); to B,,, the
sensitivity of prices to expected inflation (top right); to B,,, the sensitivity of prices to expected
dividend growth (bottom left); and to B,,, the sensitivity of prices to the price of risk variable,
where n is the maturity in years. Dotted lines denote the solutions for zero-coupon equity prices
expressed in real terms, dashed-dotted lines denote the solutions for real bond prices expressed in
real terms, dashed lines denote the solutions for nominal bond prices expressed in nominal terms.
The solutions are scaled by the persistence ¢ of the variables. The solution for B, is identical for
all three asset classes. The solution for B, is identical equities and real bonds and equal to zero.

The solution for B, is identical for real and nominal bonds equal to zero.



Figure 2: Ratios of Prices to Aggregate Dividends for Zero-Coupon Equity
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Notes: Panel A shows the log of ratios of zero-coupon equity prices to the aggregate dividend
as a function of maturity when the state variables are equal to their long-run mean (solid line),
and when expected dividend growth z; is equal to the long-run mean plus (dashed-dotted line)
or minus (dotted line) two unconditional quarterly standard deviations. All other state variables
are kept at their long-run mean. Panel B shows analogous results when the real riskfree rate
rtf is varied by plus or minus two unconditional quarterly standard deviations. Panel C shows

analogous results when the price-of-risk variable x; is varied by plus or minus two unconditional

quarterly standard deviations.



Figure 3: Yields on Zero-Coupon Real Bonds
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Notes: Panel A shows quarterly yields on real bonds as a function of maturity when the state
variables are equal to their long-run mean (solid line), and when expected inflation ¢; is equal to
the long-run mean plus (dashed-dotted line) or minus (dotted line) two unconditional quarterly
standard deviations. All other state variables are kept at their long-run mean. Panel B shows
analogous results when the real riskfree rate r{ is varied by plus or minus two unconditional
quarterly standard deviations. Panel C shows analogous results when the price-of-risk variable

x; is varied by plus or minus two unconditional quarterly standard deviations.



Figure 4: Yields on Zero-Coupon Nominal Bonds
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Notes: Panel A shows quarterly nominal yields on nominal bonds as a function of maturity when
the state variables are equal to their long-run mean (solid line), and when expected inflation ¢,
is equal to the long-run mean plus (dashed-dotted line) or minus (dotted line) two unconditional
quarterly standard deviations. All other state variables are kept at their long-run mean. Panel B
shows analogous results when the real riskfree rate 7“{ is varied by plus or minus two unconditional
quarterly standard deviations. Panel C shows analogous results when the price-of-risk variable

x; is varied by plus or minus two unconditional quarterly standard deviations.



Figure 5: Decomposition of Coefficients from Long-Rate Regressions
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Notes: Panel A shows the covariance between returns on n-period real and nominal bonds and
fundamentals, Panel B shows the coefficient from a regression of the price-of-risk variable x; on

the yield spread, and Panel C shows the coefficients (3, from the regression

Yn—1,441 — Ynt = .+ 3 (Ynt — Yy1¢) + error,

n—1

These quantities are related by the equation

) COV(%» Ynt — ylt)

,=1— (o o .
g ( () I V&F(yn—l,t+1 —yu)

Covariances, variances, and regressions are measured using data simulated at a quarterly fre-

quency, n is in quarters, and yy; refers to the 1-quarter yield.



Figure 6: Regressions of Excess Bond Returns on Forward Rates
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Notes: Annual returns on 2, 3, 4 and 5-year nominal bonds (in excess of the return on the 1-year
bond) are regressed on the 1, 3 and 5-year forward rates. The figure plots the resulting regression

coefficients.



