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Abstract

Ride-hailing apps introduced a more efficient matching technology than traditional taxis
(Cramer and Krueger, 2016), with potentially large welfare gains under the appropriate
market design. However, we show that when price is too low they fall into a failure mode
first pointed out by Arnott (1996) that leads to market collapse. An over-burdened platform
is depleted of idle drivers on the streets and is forced to send cars on a wild goose chase to
pick up distant customers. These chases occupy cars, reducing the number of customers
served, earnings and thus effectively removing drivers from the road and exacerbating the
problem. We use data from Uber to show that wild goose chases are indeed a problem in
the Manhattan market. The effects of wild goose chases dominate more traditional price
theoretic considerations and imply that welfare and profits fall dramatically as price falls
below a certain threshold and only gradually move in price above this point. A platform
forced to charge uniform prices over time will therefore have to set very high prices to avoid
catastrophic chases. Dynamic “surge pricing” can avoid these high prices while maintaining
the system functioning when demand is high.
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1 Introduction

Ride-hailing applications (apps) like Uber and Lyft introduced a promising new technology to
compete with traditional taxis. Cramer and Krueger (2016) show that the fraction of working
time that a driver actually spends with a rider in the back seat is roughly 40% higher for
Uber than for traditional taxi markets. Ride-hailing, however, is not more efficient than taxis
under all circumstances. In this paper we show both theoretically and empirically using data
from Uber that, unlike traditional street-hail taxi systems, ride-hailing platforms are prone to
a matching failure first anticipated by Arnott (1996). When there are too few drivers relative
to demand, drivers are quickly occupied and thus free drivers are spread thinly throughout a
city, forcing matches between drivers and passengers that are far away from each other. Cars
are thus sent on a wild goose chase (WGC) to pick up distant customers, wasting drivers’ time
and reducing earnings. This reduces the number of available cars both directly by occupying
cars and indirectly as cars exit in the face of reduced earnings, exacerbating the problem. This
harmful feedback cycle can lead the system to collapse, but can be avoided by using prices
to ration demand when it is high. This may help explain why these platforms have relied so
heavily on “surge” pricing, in contrast to traditional taxi markets.

Because he was focused on optimal allocations, Arnott discounted WGCs as Pareto-dominated
and thus just a theoretical curiosity. However, we show that at times of high demand, if prices
do not appropriately adjust, all equilibria of the market are WGCs when using a first-dispatch
protocol, in which an idle driver is immediately dispatched every time a rider requests a trip (as
many ride-hailing services have committed to). This suggests two ways in which pricing can
avoid WGCs. First, one might set a single high price all the time, sufficiently high to avoid WGCs
even at peak-demand periods. This design has the drawback that prices will be unnecessarily
high, and thus demand inefficiently suppressed, at times of low demand. A more elaborate
mechanism is to use dynamic “surge pricing” that responds to market conditions. Such a system
was introduced by Uber early in its development. Prices are set high during peak-loads, but can
fall when demand is more normal. Thus, against the common perception, surge pricing allows
ride-hailing apps to reduce prices from the baseline of static pricing instead of increasing them.

Our analysis starts with a theoretical model in a homogeneous spatial region that highlights
the phenomenon of WGCs. The main components of our model are demand for trips, labor
supply, and a matching technology that defines how labor supply translates into supply of trips.
The characteristic feature of WGCs is that the supply of trips given a fixed number of drivers is
a non-monotonic function of pickup times due to two opposing effects. An increase in pickup
times requires fewer idle drivers, which frees up drivers that can serve more customers. But as
pickup times go up, drivers spend a larger fraction of their time picking up passengers instead
of driving them to their destination. WGCs occur at high pickup times, when the latter effect
dominates over the former. High demand puts the system under stress by reducing the number
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of idle drivers on the road and increasing pickup times. This inefficient use of driver time results
in a lower number of trips in equilibrium.

Despite this novelty, WGCs are similar to “hypercongestion", a related phenomenon in
transportation economics (Walters, 1961; Vickrey, 1987). When enough cars enter a road, speeds
of all cars on the road fall sufficiently that the total throughput of the road actually falls,
causing traffic jams.1 However, the effects of WGCs may be much more severe than those of
hypercongestion because the supply of drivers is endogenous, and may collapse in reaction to
the fall in earnings due to less trips being completed. We show that under WGCs a decrease
in prices leads to sharp decreases in welfare, number of trips, platform revenue, and drivers’
surplus. We also show that WGCs can always be avoided by increasing prices.

We back our theoretical findings with empirical evidence of WGCs using data of Uber trips in
Manhattan between December 2016 and February 2017. We find that the number of trips given a
fixed number of drivers indeed exhibits the nonmonotonicity in pickup times predicted by our
theory. Beyond this, our theory has a fairly sharp prediction that when a theoretically-derived
(intuitive but non-obvious) measure of system slack falls below a specified threshold for WGCs
that can be derived purely from data on traffic and matching flow, the system should experience
rapid and catastrophic failure. We verify this prediction by showing that a variety of market
performance measures degrade drastically when the market falls below this threshold: pickup
times, trip cancellation rates, and the fraction of unserved customers rises steeply, while the
fraction of people who request a trip plummets.

We then calibrate our theoretical model to the data in order to make a detailed quantitative
analysis of the welfare effects of surge pricing. WGCs dominate more traditional price theoretic
considerations. Consistent with the main results of our theory section, welfare and revenue
fall dramatically as price falls below a certain threshold and the market enters a WGC. On the
other hand, welfare and revenue only gradually move in price above this point. Thus, the main
concern for a ride-hailing platform when deciding how to price is to avoid WGCs.

We analyze the behavior of a welfare maximizing platform that serves more than one market,
as defined by different times of the day. We first compute the optimal prices with surge pricing,
where the platform sets different prices for each individual market. Then we analyze the
behavior if it is constrained to set a single price for all markets. The only way to avoid the drastic
loss in welfare from WGCs is to set prices close to the highest prices under surge pricing. In our
main calibration, where the platform faces one separate market for each hour of the week, the
constrained price is at the 92nd percentile of the price distribution if it is allowed to set different
prices for each market. Thus, surge pricing only leads to very modest increases in prices at

1While this possibility was largely dismissed in the early years of the transportation economics literature (Arnott
and Inci, 2010), empirical evidence from the engineering literature has clearly shown that hypercongestion occurs
in practice (Muñoz and Daganzo, 2002). Hall (2016) highlights that the existence of hypercongestion dramatically
strengthens the case for the pricing of roads, just as we argue that wild goose chases may be the reason that
dynamic pricing is widely used in ride-hailing but not elsewhere.
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times of high demand, whereas it allows drastic reductions in low demand times. This goes
against the perception among the public and regulators that surge pricing is a form of price
gouging. For example, the splash page on competitor Gett’s home page on June 27, 2017 stated
“The only time we surge is never o’clock” and many cities in the developing world have banned
or otherwise forced Uber to desist from surge pricing.

Pricing is not the only tool ride-hailing apps can use to avoid WGCs. We discuss two
alternative approaches. First, rationing rides when demand is high avoids over-burdening the
market and WGCs. However, this makes the service unreliable, eliminating one key advantage of
ride-hailing over traditional taxis. Second, setting a small maximum dispatch radius also avoids
WGCs, but it creates passenger queues. Passengers then have to wait without being matched to
a driver and without knowing how long they will have to wait to be picked up. A maximum
dispatch radius is thus in tension with a user interface feature of current ride-hailing apps—that
riders know immediately upon request the location and trajectory of a car driving towards
them. This feature is considered very appealing to riders and our internal interviews suggest
product leaders at Uber would be loath to compromise that element of the rider experience.
Hence, although surge pricing is not the only way to avoid WGCs, alternative approaches have
drawbacks that limit their appeal to ride-hailing platforms.

Our analysis begins in the next section with our theoretical model with elements that are
similar to Arnott. In Section 3 we describe how WGCs arise, we show the catastrophic effects
WGCs have on welfare and revenue, and we show how increasing prices avoid WGCs. In Section
4 we show empirical evidence of WGCs in the Uber market in Manhattan. Then in Section 5 we
calibrate our model to our data and analyze the effects of a ban on surge pricing. In section 6 we
discuss some alternative solutions to WGCs, and why we believe surge pricing is the best option
for platforms. We also discuss ride-sharing or “pooling” in Section 7, and show that WGC are
also present and might even be worse than without pooling. In the next draft of this paper we
will also include a more realistic welfare analysis that in which instead of facing a small number
of markets, Uber faces a large number of markets during every time of the week, each one of
them with different primitives.

2 Model

We consider a static, steady-state model of a ride-hailing service. Dynamics are critical to a
variety of aspects of the model and to the concept of surge pricing, but we reduce short-term
dynamics to a static steady-state analysis and model dynamics over longer periods of time as
allowing or prohibiting differential pricing based on market conditions.
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2.1 Demand for trips

Let λ be the density of arrival of users (measured, for instance, in users per minute per square
kilometer). These are the users that might potentially request a ride if the price and the pickup
time are good enough for them. We assume that users will request a ride when they are willing
to pay the associated price and are able to wait the associated pickup time. Demand is then
given by a function D(T ,p) 6 λ, where T is average pickup time and p is price.2 We now list the
main assumptions on this function:

Assumption 1. D(T ,p) satisfies the following:

1. It is bounded above

2. It is continuously differentiable in (T ,p) and decreasing both in pickup time and prices.

3. limT→∞D(T ,p) = 0 for all p > 0 and limp→∞D(T ,p) = 0 for all T > 0.

4. For all p, the distribution of the maximum willingness-to-pay has finite mean.

Part 1 is motivated by the fact that even with zero pickup time and with prize zero a bounded
number of people λ are in need of transportation. Part 2 is standard for demand functions. Part
3 just states the fact that nobody is willing to pay an infinite price nor wait infinite time to get a
ride. Part 4 assumes that the distribution of willingness-to-wait is not too fat tailed. Note that
for much of our analysis we consider equilibrium holding the price fixed. The clearing variable,
instead, will be pickup times, so D(T ,p) can be thought of as a decreasing demand function,
where T plays the role of prices, and p is an exogenous demand shifter.

2.2 Labor supply

Individual drivers decide whether to work based on expected hourly earnings e, and this results
in a supply of drivers l(e) (measured in drivers per square kilometer, for instance), where we
assume that l(·) is increasing and continuously differentiable. To find an expression for e, let
τ be the fraction of the price charged to passengers that the platform takes as revenue. If Q is
the equilibrium density of rides per unit of time, and the price is p, total earnings per unit of
time per unit area are (1 − τ)pQ. The average earnings per unit of time for an individual driver
are e = (1 − τ)pQL . Labor supply then satisfies L = l

(
(1 − τ)pQL

)
in equilibrium. We make the

following assumptions on the function l:

Assumption 2. l(e) is continuously differentiable and increasing, and l(0) = 0.

2Demand actually depends not on average pickup time but on the realizations of pickup time. So from a
primitive demand function D̃(T̃ ,p) that depends on realized pickup time T̃ , demand would be

´
D̃(T̃ ,p)dF(t),

where F is the distribution of T̃ . We will later show that the distribution depends on I, the density of idle
drivers, which has a one to one mapping with average pickup times. So, to be precise, what we describe here is
D(T ,p) =

´
D̃(T̃ ,p)dF(T̃ ; I(T))
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These are all standard properties for a supply function. A straightforward consequence
of this assumption is that L, as defined implicitly by L = l

(
(1 − τ)pQL

)
, is increasing in total

earnings (1 − τ)pQ.

2.3 Matching technology and supply of trips

Our demand function measures something quite different than the labor supply of the previous
subsection. Whereas demand is the number of trips requested, supply is the number of drivers
working. We thus need the third main component of our model, the matching technology, in
order to translate the number of drivers working into the number of trips supplied. The goal
of this section is then to obtain a supply function of the form S(T ,L) that gives the number of
trips that can be served by L drivers when pickup times are T . The reason why T is relevant for
supply is that it is also the time drivers have to spend picking up passengers.

At any given moment working drivers are in one of three states: idle (waiting to be matched to
a rider), en route (on their way to pick up a passenger), or driving a passenger to her destination.
The total number of drivers working thus has to be equal to the sum of drivers in each one
of these states. We defined I to be the number of idle drivers. In equilibrium, tQ drivers are
driving a rider, where t is the average trip duration. This is the product of the number of trips
per unit time and the average time it takes to pick up a rider. By a similar reasoning, TQ drivers
are on their way to pick up a rider (en route drivers) in equilibrium, since T is the time it takes
on average for a driver to pick up a passenger.

Based on the previous expressions for the number of drivers in each state, the following
identity accounts for the total density of drivers in equilibrium:

L = I︸︷︷︸
Idle

+ tQ︸︷︷︸
Driving

+ TQ︸︷︷︸
En route

. (1)

The expression TQ for en route drivers shows an essential feature of dispatch systems: high
pickup times are bad both because they make riders wait longer and because drivers have
to spend more time not taking passengers to their destination, which as we will see reduces
the number of trips the whole market is able to serve. And this is essentially different from
street-hail taxi markets, where drivers pick up riders while they are idle on the street. Therefore,
there is no pickup time and the total density of drivers is accounted for by L = I+ tQ.

The average pickup time is T(I), a decreasing function of the density of idle drivers: if there
are a lot of idle drivers, a new arriving rider will on average be matched to a driver that is closer
to him, so he will have to wait less time before being picked up. This pickup time function is the
only primitive of the supply function. We will assume a simple geometry with no inefficiencies
beyond pickup time and a uniform distribution of drivers, thus abstracting from the important
systematic differences in supply compared to demand at different points in space studied by
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Buchholz (2016) and treating these differences only through our analysis of separate markets
that are treated as entirely segmented. Given this segmentation assumption it may be easier
to interpret our markets as representing different times, as in the analysis of Frechette et al.
(2016), rather than different places within a city; in either case our static model that leaves out
substitution and complementarity across markets is an important modeling simplification.

In our calibration we will assume a specific functional for for T(I) that fits the data closely
(Appendix A). For now, we will simply make the following assumptions:

Assumption 3. T(I) is continuously differentiable, decreasing, and convex. It also satisfies limI→∞ T(I) =
0 and limI→0 T(I) = ∞.

The fact that T(I) is decreasing reflects the fact that more drivers decrease expected distance
to the closest driver and therefore pickup times. Convexity means diminishing marginal returns
of additional idle drivers. The first limit condition simply means that with an infinity of drivers
pickup times would go down to zero, and the second one means that riders would have to
wait infinitely long with zero idle drivers. All these conditions are satisfied by the empirically
motivated functional form we later assume in our calibration, as well as by simple functional
forms that can be theoretically motivated. For instance, if en route drivers drove in a straight line
at a constant speed in an n-dimensional space, T(I) ∝ I− 1

n ,3 which satisfies all these properties.
Since T(I) is a decreasing function, we can define its inverse, I(T), which will turn out to

be more convenient for our model. It can be interpreted as the density of idle drivers that is
needed to ensure an average pickup time T . As direct consequences of 3, I(T) is continuously
differentiable, decreasing, and convex, limT→∞ I(T) = 0, and limT→0 I(T) = ∞.

Isolating Q from 1 and substituting in I(T) gives us the expression we wanted for the supply
of trips:

S(T ,L) =
L− I(T)

t+ T
(2)

The functional form for this expression is intuitive. The numerator is the number of busy drivers
(those that are not idle). These are the drivers that could potentially be taking a passenger to
her destination. The denominator is the average busy time it takes to complete a trip, which
is the sum of the time it takes to pick up the passenger and then drive her to her destination.
Dividing the number of busy drivers by the time per trips gives the number of trips that can be
completed per unit time.

This functional form has increasing returns to scale since S(T ,bL) > bS(T ,L) for b > 1.
Thicker markets can thus achieve lower pickup times while holding the number of trips per
driver constant, or increase the number of trips per driver while holding pickup times constant.

3The choice of n = 2 is not entirely obvious, since some places like Manhattan are somewhere in between one
and two dimensional, and speed depends on the length of travel. This is why we use a functional form below that
is flexible enough to fit observed traffic flow data.
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3 Wild Goose Chases

We now use the model of the previous section to highlight the key forces driving our analysis.

3.1 Normal and wild goose chase matching equilibria

We analyze in detail the form of the trip supply function S(T ,L). Its main properties are
summarized in the following lemma:

Lemma 1. Supply S(T ,L) is continuously differentiable. Given some fixed number of drivers L, supply for
T = T(L) is S(T(L),L) = 0. There exists some positive pickup time T̂(L) such that S(T ,L) is increasing
in T for T(L) < T < T̂(L) and decreasing in T for T̂(L) < L. Finally, limT→∞ S(T ,L) = 0

Proof. See Appendix B.1.

�
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Figure 1: Supply of trips. This figure illustrates the backward-bending supply curve in a
ride-hailing market, with the WGC and the good regions in red and blue, respectively. For
comparison, the green line shows how supply looks for a street-hailing taxi market. Given the
results in Cramer and Krueger (2016), the taxi technology is less efficient for good outcomes,
which means higher pickup times.

The main features in this lemma are illustrated in Figure 1. For T < T(L) the value of the
functional form for S(T ,L) is negative; the current number of drivers cannot achieve such low
pickup times, even if all of them were idle. Supply is then increasing in T , like a traditional
functional form for supply, until T̂(L). After that point, supply decreases, converging to zero
as pickup time goes to infinity. This backwards bending supply curve is very different from a
traditional supply function, and it is the main driver of our results.
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The intuition for the nonmonotonicity of S(T ,L) = L−I(T)
d+T is as follows. The numerator is an

increasing function; to understand why, suppose that the platform wants to achieve a lower
pickup time. In order to do so, it needs more idle drivers on the streets, which decreases the
number of drivers that are busy and reduces the potential capacity of the market. This effect is
the main driving force in the blue region of the supply function in Figure 1.

As pickup times increase and supply approaches its maximum, a second effect starts to
kick in. With higher pickup times the denominator becomes larger and larger, since drivers
have to spend a significant portion of their time picking up passengers that are far away. So,
despite the fact that higher pickup times requires less idle drivers, thus freeing some of them to
drive passengers, the total time it takes to complete a trip becomes longer, and after some point
capacity starts to decrease. This second effect dominates in the red region.

Figure 1 illustrates that there are two ways to supply the same number of trips for a fixed
number of rides. The first one, which we call a good outcome, has a low pickup time (in the
blue region of the supply curve). The one above the maximum, plotted in red, has a longer
pickup time. It is evident that the latter situation is inefficient, as it achieves the same number
of trips with the same number of drivers, but with higher pickup times for passengers. We
call these situations wild goose chases (WGCs). In colloquial English, wild goose chases refer to
extended, wasteful and ultimately vain pursuits of an unattainable objective. By analogy, in this
bad situation, the ride-hailing system, by trying to serve beyond its capacity, must send drivers
to distant locations that ultimately reduce the number of rides it can effectively provide. And
clearly the system should never be in this situation.

Our supply curve bears some similarity to a Laffer curve in tax theory (or the revenue curve
in monopoly theory): governments face a tradeoff between high tax rates and high tax revenue.
But beyond a certain point taxes are so high that revenues also decrease, and the tax rate should
never be beyond this point. In our model, if the platform has to choose an equilibrium in some
point along the supply curve, it will face a tradeoff between quantity and quality (in terms of
pickup time) whenever it is in a good outcome. But if it is in a WGC, it no longer faces a tradeoff
since moving upwards along the curve decreases the number of trips served while at the same
time increasing pickup times. It thus becomes evident that the platform would like to move
down along the supply curve to get back to a good outcome.

WGCs can be easily diagnosed in the data. Note that when they happen the derivative of
S(T ,L) with respect to T is negative. If we rewrite it as S(T(I),L) = L−I

t+T(I) , this is equivalent to
the derivative of S(T(I),L) being positive. After some simple algebra steps this can be written
as I < −εTI T(I)Q, where εTI is the elasticity of pickup time with respect to the density of idle
drivers. If we define slack to be s = I

T(I)Q , the ratio of idle drivers to en route drivers, this simply
means that WGCs occur when slack is less than εTI .

This makes the the theory straightforward to test. The number of idle drivers and the number
of en route drivers are directly observable in the data, so slack can be easily computed. Although
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εTI is not directly observable, we will show in Section 5.1 that I(T) can be easily fit to the data
closely, from which we obtain an estimate of εTI that is somewhere between −0.25 and −0.5.

WGCs are unique to ride-hailing markets. For comparison’s sake, we will now analyze the
equivalent supply curve for a traditional street-hailing market. By this we mean a market in
which taxis can only be hailed by standing in the street and not by calling them.4 In this kind
of market there is no pickup time, since whenever a taxi is “matched" to a rider the trip starts
immediately. There is also a decreasing function T̃(I) that maps idle drivers to pickup times: the
more idle drivers in the street the less time a rider should expect to wait before a taxi shows
up. Because of the greater efficiency of ride-hailing, T̃ > T ; we do calibrate this efficiency gain
precisely in our numeric section, and in our illustration in Figure 1 we represent a magnitude
that roughly matches a gap between these similar to that found by Cramer and Krueger (2016).

Let Ĩ(T) be the corresponding inverse function. The driver identity is then L = Ĩ(T) + tQ. The
same exercise as before leads to a supply function S̃(T ,L) = L−Ĩ(T)

t . This is an increasing function,
as illustrated in Figure 1. The intuition is the same as in good outcomes for ride-hailing markets:
decreasing pickup times requires more idle taxis on the streets, which reduces the number of
drivers available to take passengers to their destination. But the second effect of drivers wasting
more time picking up drivers is no longer present, so supply is no longer backward bending.

3.2 Equilibrium

We will now proceed to put together the three elements in our model: demand for trips, labor
supply, and trip supply.

The first condition for equilibrium is that trip supply and demand must be equal:

Q = D(T ,p) = S(T ,L) (3)

Figure 2 illustrates this condition. In general the solution in the market for trips can be a good
outcome or a WGC, as illustrated in the figure. In Section 3.4 we will show that price is a key
determinant of the region in which it falls.

Another condition that must be satisfied in equilibrium is that the number of drivers working
has to be equal to labor supply:

L = l

(
(1 − τ)p

Q

L

)
(4)

An equilibrium is a joint solution in (T ,L,Q) of equations (3) and (4).
In order to simplify our analysis of equilibria, we define Q̂(L;p) to be the solution to

equations (3) for a given number of drivers and L̂(Q;p, τ) to be the solution to equation (4).
It is straightforward to see that (4) has a unique solution for every Q, so L̂ is well defined.
Furthermore, L̂ is increasing and continuous in Q and L̂(0;p, τ) = 0. For equation (3), we can

4If riders are also allowed to call taxis, the market would then share some features with a ride-hailing market.
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Figure 2: Trip supply and demand with a fixed number of drivers.

also see easily that for L = 0 the unique solution is Q = 0. On the other hand, we cannot
guarantee a unique solution. In fact, multiple solutions arise with fairly simple and reasonable
functional forms for supply and demand. In order to deal with this, we pick the highest solution
(i.e., the one with greatest Q) whenever there are multiple solutions. The following lemma
guarantees the existence of at least one solution, which means that Q̂(L;p) is well defined:

Lemma 2. D(T ,p) = S(T ,L) has at least one solution in T for all (p,L). For the highest solution, Q is
increasing in L.

Proof. See Sectionppendix B.2

�
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(a) Good outcome

�

�

�

(���)

�
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(b) Wild goose chase

Figure 3: Equilibrium. The red part of Q̂(L;p) represents situations with a WGC. These plots
show how the equilibrium can be in a good outcome or in a WGC.
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An equilibrium can then be characterized as a solution to the following two equations:

Q = Q̂(L;p) L = L̂(Q;p, τ) (5)

An example of how these equations look is shown in Figure 3. Since Q̂(0;p) = 0 and L̂(0;p, τ) = 0,
there always exists an equilibrium at the origin, although it is sometimes unstable.5 Whenever
the equilibrium at the origin is unstable, there is at least one stable interior equilibrium.6 We
cannot rule out multiple equilibria. Indeed, it is not difficult to construct functions that lead to
multiple equilibria. In the case of multiple solutions, we select the highest equilibrium. However,
we do not face any situation with multiple equilibria in our calibrations.

3.3 Revenue, welfare, and surplus

Platform revenue is straightforward to define. At an equilibrium with price p and Q trips, the
platform gets revenue τpQ.

We need some additional assumptions to define welfare, riders’ surplus, and drivers’ surplus.
First, let social cost of drivers C(L) be the integral of the inverse supply curve, so that C ′(L) =
l−1(L) for all L. To pin down the function exactly, let C(0) = 0. This is a standard cost function
which is increasing and convex. Drivers’ surplus is then what they get paid minus their cost:

DS(Q,L,p) = (1 − τ)pQ−C(L) (6)

In order to define welfare and consumer surplus, let U(Q,L, T) be gross utility. In our
calibration we make much more specific assumptions on its functional form, but for now we
will use a general functional form. In general Q and T are not enough to specify gross utility, as
it is unclear which passengers are being served. So with U we have in mind the gross utility
that would be achieved in an equilibrium with some unspecified price that resulted in Q trips
with pickup time T . This reasoning leads to the following assumptions:

Assumption 4. Gross utility U(Q, T) is continuously differentiable in (Q, T), and it is decreasing in T
and increasing in Q with UQ(Q, T) = p.

Gross utility is decreasing in T because if the same people are served with lower pickup
times their utility should be greater. Additionally, an equilibrium with lower waiting times
requires a higher price, so customers with higher willingness to pay would be served, which is
an additional effect in the same direction.

For the sign of UQ, note that if pickup time is fixed and the number of people served
increased, it might be the case that gross utility decreased if the new people getting a ride have

5Stability means that in the (L,Q) plane both functions cross from above. In terms of derivatives, Q̂ ′L̂ ′ < 1.
6Since D is bounded above, so is Q̂. This implies that if there exists some L such that L̂(Q̂(L)) > L (which is the

case when the solution at the origin is unstable), then there exists some L ′ > L such that L̂(Q̂(L ′) = L ′: L̂(Q̂(L)) is a
bounded increasing function, and the left hand side is an unbounded, continuous, and increasing function.
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lower willingness to wait than T . But this cannot happen in equilibrium, as every rider would
be willing to wait, justifying the assumption that U is increasing in Q. Furthermore, a change
in Q in equilibrium could only happen by a change in prices, through which every rider that
now decides not to take a trip was a marginal rider whose utility from a trip is p, and therefore
UQ = p.

With this definition of gross utility in mind, we define riders’ surplus as

RS(Q, T) = U(Q, T) − pQ (7)

Finally, welfare is gross utility minus social cost:

W(Q,L, T) = U(Q, T) −C(L) (8)

Alternatively, welfare is the sum of riders’ surplus, drivers’ surplus, and revenues, but since
payments are just transfers, they cancel out to obtain the same expression.

3.4 Pricing and Wild Goose Chases

We will now analyze how pricing affects the equilibrium in this market. Following the basic
intuition from standard microeconomics, we should expect there to be some price that maximizes
welfare and one that maximizes revenue, the latter higher than the former. We will see in our
calibration that this is indeed the case. In this section we prove some stronger results related to
WGCs. We end up with two main conclusions: First, WGCs can always be avoided by increasing
prices. Second, lowering prices during WGCs leads the market towards market collapse and
very sharp decreases in the number of trips, welfare, and revenue.

To simplify our notation, let εXY =
∣∣Y
X
∂X
∂Y

∣∣ denote the elasticity of X with respect to Y, and let
σ = sgn(εST ). The characteristic feature of WGCs is then σ < 0, whereas σ > 0 in good equilibria.
Also let εl be the elasticity of l(·). Note, from equation 4, that the labor supply elasticity to
a change in prices, given a fixed number of trips, is not given by εl. An increase in earnings
leads to an increase in labor, which spreads out earnings more thinly across drivers, and this
effectively means that supply is less elastic. Instead, the labor supply elasticity is given by
εL =

εl
1+εl

∈ [0, 1], which will be a key parameter in our model.
We start with the following proposition:

Proposition 1. The price elasticities of equilibrium number of trips and drivers and pickup time are

εQp =
1
∆

−σεSTε
D
p + εLε

D
T ε

S
L

εDT + σεST
εLp =

εL
∆

(
1 −

σεSTε
D
p

εDT + σεST

)
εTp = −

ε
Q
p + εDp

εDT
(9)

where ∆ = 1 + εL
εDT ε

S
L

εDT −σεST
> 0. In a good equilibrium the signs of all three elasticities are ambiguous. In

WGCs, on the other hand, εQp > 0, εLp > 0, and εTp < 0.
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Proof. See Appendix B.3.
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Figure 4: Response to a decrease in prices. These plots should be interpreted as a zoom in on
the equilibria in the plots in Figure 2.

To understand this proposition, we will analyze good outcomes and WGCs separately. We
start with good outcomes, where the intuitions resemble standard markets. Consider the market
response to a price decrease, which is illustrated in Figure 4a. Let (p,L) be the original price
and equilibrium number of drivers, and (p ′,L ′) be the final price and equilibrium number of
drivers. This shifts demand outwards from D(T ,p) to D(T ,p ′), and the effect before considering
the labor supply response is to move from point A to point B, with an increase in quantities and
pickup times. However, the response of the labor market is ambiguous: on the one hand, the
price decrease reduces earnings, but on the other hand more trips mean more earnings, so the
direction of movement of the supply curve is ambiguous. If L ′ is the equilibrium labor supply, it
is not clear whether S(T ,L ′) is to the right or to the left of S(T ,L).

For WGCs, on the other hand, it is clear in which direction the effect on all variables goes.
Consider again a price decrease (Figure 4b). The effect of prices before considering labor supply
changes is to move from A to B. This implies a decrease in quantities, despite demand shifting to
the right. This counterintuitive phenomenon is because of the backwards bending supply curve,
and follows the main intuition for what happens during a WGC: the market is overburdened
and is beyond its maximum capacity. Further attempts to get more trips from the market result
in less idle drivers and even longer pickup times, thus reducing the number of trips that drivers
are able to serve. This effect is further reinforced by the effect of labor supply. As both prices
and the number of trips decrease, drivers’ earnings go down and the supply curve shifts to the
left. The equilibrium thus moves further towards the upper left corner, with a decrease in the
number of trips and an increase in pickup times.

This analysis explains the signs of these elasticities. If we analyze the expressions in
Proposition 1 we can also say something about magnitudes. This leads to a result that will be
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present throughout this paper. In WGCs any decrease in prices leads to sharp decreases in
number of trips and drivers, revenue, and welfare. This comes from combining three separate
effects that make the magnitude of these elasticities greater in a WGC than in a good equilibrium.
First of all, with WGCs all terms in all three expressions are positive. This reflects the fact that
there are no countervailing effects, which makes the effect of prices stronger.

The second effect is a self-reinforcing feedback cycle between supply and demand for trips
when they are both decreasing. In the expressions in Proposition 1, this can be seen by noting
that many of the terms have εDT + σεST in the denominator, which is small when supply is
decreasing as in a WGC. In a traditional market with increasing supply, as in Figure 4a, there is
a balancing feedback cycle between supply and demand. Without taking into account the supply
of drivers, the effect on quantities of a horizontal shift in demand of magnitude dQ > 0 (moving

from A to B) has magnitude −
σεST

εDT +σεST
dQ, which is smaller than dQ because the increase in

supply is mitigated by an increase in pickup time. But with a decreasing supply curve, the
original effect is reversed and it might be magnified: as εDT gets close to εST , the demand shift
results in a decrease in quantities, which is then magnified by a further decrease in prices. In
Figure 4b, the decrease in demand from A to B might be greater than the original demand shift
when demand and supply cross at a small angle. The same feedback cycle affects horizontal
supply shifts, such as one moving the equilibrium from B to D. This shift gets magnified by

a factor of εDT
εDT +σεST

> 1. Again, the fact that both curves cross at a small angle leads to larger
changes in quantities and pickup times.

A third effect comes from positive feedback between supply and demand. Consider a
decrease in prices. In a WGC, this leads to a decrease in the equilibrium quantity and a decrease
in earnings, thus reducing labor supply. The decrease in labor shifts the supply curve to the left,
further reducing quantities. For a good equilibrium, on the other hand, it isn’t clear whether a
quantity increases or decreases, so this feedback cycle might not even exist. But for a WGC this
cycle unambiguously leads to positive feedback. The strength of this effect is represented by ∆
in the denominator. This term is the determinant of the Jacobian of the matrix in the implicit
function theorem, and is greater than one for good equilibria but less than one for WGCs.

Putting together all three effects, it is not surprising to see that the number of trips, welfare,
and revenues all decrease very quickly to zero as prices go down in WGCs. The fact that all
effects go in the same direction gets compounded by both feedback cycles, leading to a quick
market collapse. The mirror effect is that an increase in price increases all these quantities very
quickly. The next proposition states that an increase in prices eventually takes the market out of
the undesirable state of a WGC.

Proposition 2. Suppose that the highest equilibrium of the market at price p is in a WGC. Then there
exists some price p ′ > p at which the highest equilibrium of the market is no longer in a WGC.

Proof. See Appendix B.4.
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The key to this proposition is the fact that demand is bounded and it goes to zero for all
pickup times as price goes to infinity. As the whole demand curve shifts downwards, price will
eventually reach some point in which maximum supply is greater than maximum demand. In
this case there has to be at least one good outcome in equilibrium, which is evident from a plot
like Figure 2.

Although it is true that increasing prices takes the market out of a WGC, it is not necessarily
true that decreasing prices takes the market into a WGC.7 When supply is very high relative to
demand, for instance, it might be the case that the highest equilibrium for every price is in a
good equilibrium. Consider, for instance, a demand function such that D(T , 0) is always below
the curve that joins the loci of maxima of S(T ,L) for different values of L. Then for every (p,L)
there exists a crossing between supply and demand that takes place at a WGC. This might have
been the case, for instance, with taxi telephone dispatch markets. Given how slow it took to get
a taxi, demand was limited to a few niche users, such as people wanting to go the airport. This
might explain why these markets probably functioned smoothly without WGCs.

The following proposition analyzes the effect of prices on revenue, welfare, and drivers’
surplus:

Proposition 3. The effect of prices on welfare is given by

dW

dp
= UT

dT

dp
+
Q

∆

[
(1 − (1 − τ)εL)

−σεSTε
D
p

εDT + σεST
− εL(1 − τ) + εL

εDT ε
S
L

εDT + σεST

]
. (10)

This derivative is positive in a WGC.
An increase in prices increases revenue and drivers’ surplus in a WGC. The effect on riders’ surplus is

given by
dRS

dp
= εTpε

U
T

U

p
−Q (11)

which is positive if and only if εTpεUT
U
pQ > 1.

Proof. See Appendix B.5.

This proposition breaks down welfare effects during a WGC into an unambiguous benefit to
drivers and the platform (as the earnings of both rise) and a more ambiguous effect on riders.
Gross rider utility unambiguously increases, but greater payments might lead to a decrease
in their surplus. Marginal riders’ payments exactly offset their gross utility, so what matters
in the end is inframarginal riders’ utility: whether the decrease in pickup times is enough to
compensate the increase in prices. In order to pin down whether this is the case, we would have
to make additional assumptions on the way pickup times affect their utility (or more precisely,
on the way gross utility depends on pickup times). If riders’ utility is sensitive to waiting times

7It might even be the case that a price decrease takes the market out of a WGC. But this requires a very inelastic
demand, so it is a pathological case than a realistic possibility.
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with an elasticity on the order of pQU ,8 then what matters is whether εTp is greater or less than one.
And from our previous analysis this quantity is very likely to be high due to the reinforcement
effects between the supply and demand curves and between the market for trips and the market
for labor. So if inframarginal riders’ utility does depend on time, riders’ surplus is likely to
increase with prices.

Even though the effect of prices on riders’ surplus might be ambiguous, the total effect on
welfare is unambiguous in WGCs. All transfers offset each other, so what really matters is the
effect on gross utility and social cost. The direct effect of an additional trip increases gross utility,
but it also causes an increase in labor that increases social cost. The first effect has magnitude
p, whereas the latter effect has magnitude (1 − τ)εLp: the wedge introduced by the platform
ensures that not too many drivers enter the market, and the fact that drivers split revenues
among themselves further magnifies this effect. So the increase in gross utility is greater than
the increase in social cost. The direct effect of price on labor is also positive: a fixed percentage
increase in drivers shifts supply upwards by a larger percent due to increasing returns to scale,
and this is further magnified by the feedback between supply and demand, so the net effect is
also an increase in welfare. Both channels get magnified by feedback between the labor and trip
markets, which leads to a net increase in welfare.

3.5 Optimal pricing

So far we have worked under the assumption that τ is fixed. Uber has typically maintained
a fixed value as time goes by, although it has taken different fractions for different drivers.
Furthermore, they have not tried to change it across different times as they surge. Therefore we
believe this is a reasonable assumption. For completeness, in this section we analyze how prices
would look if a platform were willing to change τ. The rest of the paper will again treat τ as
fixed.

We now use the insulating tariff approach as in Weyl (2010). Instead of maximizing directly
in prices, we will maximize in the number of drivers working and the number of trips. First,
note that setting (p, τ) is equivalent to setting p and p ′ = (1 − τ)p, the effective price for drivers.
Furthermore, we can reparameterize the space (p,p ′) into the two dimensional space (Q,L),
which makes the whole analysis much less burdensome.

Our first result gives expressions for optimal prices under welfare and revenue maximization:

Proposition 4. Welfare maximizing prices are given by

p = ūTTε
T
Q p ′ = ūTTε

T
L , (12)

where ūT = UT
Q is the average change in utility of inframarginal users caused by a change in waiting time.

8A crude accounting leads to this kind of conclusion: suppose that Ũ measures rider’s utility in units of pickup
time. Then εŨT = TQ

Ũ
.
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Revenue maximizing prices are given by

p =
1

1 − 1
εDp

ũTTε
T
Q p ′ =

1
1 + 1

εl

ũTTε
T
L , (13)

where ūT = −QT
Qp

is the average change in utility of marginal users caused by a change in waiting time.

Proof. See Appendix B.6.

As usual in multi-sided markets, revenue maximizing prices have two distortions compared
with welfare maximizing prices (Weyl, 2010). First, there is a Spence (1975)-Sheshinski (1976)
distortion: first order conditions only take into account the utility of price-marginal riders and not
the surplus of the price-average riders.9 This distortion biases both prices downwards. Second,
there is a markup term that biases passengers’ price upwards and drivers’ price downwards,
since a profit maximizer wants to widen the gap between both prices. The net effect is that
drivers’ price unambiguously decreases, whereas there is an ambiguous effect on passengers’
price (the mark-up raises the price, but the Spence distortion lowers it).

Note that increasing returns to scale implies that −εTQ + εTL > 0: as the number of drivers
and trips increase by the same proportion, waiting times go down. An immediate consequence
of this and of the expressions for welfare maximization is the following:

Proposition 5. Welfare maximization requires a subsidy, i.e., τ < 0.

This is the main point in Arnott (1996). It can be understood as follows: increasing returns to
scale mean that increasing the market size yields greater welfare. Thus, there exists and implicit
externality from every additional driver and passenger, which means that the market requires a
subsidy for optimality.

4 Empirical Evidence of Wild Goose Chases

In this section we show descriptive empirical evidence that WGCs are indeed a problem in
actual markets. One could have thought that since Uber’s surge pricing algorithm is meant
to avoid bad market situations, then it should be able to detect the situations in which WGCs
would have occurred. If that was the case we would see no evidence of WGC. We will show that
Uber’s algorithm seems to be good at avoiding WGCs most times, but there are still a few times
(less than 10% of the time by our most conservative measure) during which WGCs still occur.

9See Bulow and Klemperer (2012) for a general analysis of the harms created by the tendency of random
rationing systems to neglect this surplus.

17



4.1 Data

We use Uber data from Manhattan between December 1st, 2016 and February 28, 2017. We
look at data both from UberX and from UberPool because the set of drivers working for both
products is the same. As we show in Section 7, WGC are also a problem with UberPool, so our
qualitative results for UberX also hold for UberPool. Furthermore, less than a third of the trips
in our sample are UberPool trips, which means that our quantitative analysis is mostly driven
by UberX.

We aggregate all of Manhattan, which means that our data has a time series format. We
do not disaggregate the data into smaller regions because the spatial nature of this market
causes complications that we don’t consider in our model.10 We also aggregate the data into
half-hour periods, despite the fact that we observe what happens at a higher resolution, because
this resembles more closely the steady state we analyze in our model. A high number of ride
requests during one minute, for instance, would cause a small number of idle drivers in the next
period, but this is all because of transient dynamics.

On the supply side, we observe the total number of driver-minutes spent in each one of the
three states we consider in our model (idle, en route, and driving a passenger). On the demand
side we observe how many riders open the app and look at the UberX or UberPool product
page. We also observe all the trips requested during the period we analyze, and the number of
trips that were eventually completed and those that were not. For those that were not completed,
we can observe the reason why it was not: the driver cancelled, the rider cancelled, or the rider
could not be matched because there were no nearby drivers or none of them accepted the trip.

We also have data on surge pricing. We observe the surge multiplier in each one of the
small geofences used by the surge algorithm, which updates prices every two minutes. For the
analysis in this section we average it as an unweighted mean over all geofences and all two
minute period during each hour.

4.2 Supply of trips

In this section we show an empirical analogue of Figure 1, showing the nonmonotonic relation
of supply as a function of mean pickup times. We first show this with some descriptive statistics,
and then move on to a more nuanced regression methodology.

The nonmonotonicity of the number of trips holds when the number of drivers is fixed, but
the actual number of drivers varies substantially in the data. Thus, we cannot simply plot pickup
times drivers and the number of trips in the data, as our data would also be affected by how the
supply curve shifts to the left and to the right. In order to deal with this, we split the sample

10For instance, we see that there are times in which a very high number of rides in a particular small area are
served with essentially zero idle drivers, which opposes our findings from figure 1 as this would imply infinite
time. The reason for this behavior is that a huge local demand spike (such as the end of a concert or sports event)
was served with the idle drivers from nearby locations.
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into five quintiles of the number of drivers working, and we show that the resulting fit exhibits
the characteristic backwards bending supply curve that leads to WGCs.
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Figure 5: Subfigure 5a plots the logarithm of expected pickup time when matched, measured as
the log of the expected time to arrival, against number of trips completed. Fit lines are locally
weighted quadratic regressions using the 25% of the data that is closest to every point, using
tricubic weights. The grey shaded regions represent 95% confidence intervals for the pointwise
mean. Subfigure 5b shows a kernel density estimate of the distrubution of ETAs.

We will show that one characteristic feature of WGCs are high cancellation rates. Thus, if we
used actual pickup times we would have a truncated distribution, as people with longer pickup
times would be more likely to cancel trips. Instead, we use the mean of the ETA shown in the
app immediately after the rider is matched to a driver as our measure of T . Figure 5 shows the
number of trips as a function of log(T). The function is decreasing for high pickup times, just as
our model would predict for supply.

In order to interpret this curve as a supply curve, the main source of variation that traces it
out must be demand instead of supply shifts. This is the case given that by splitting the sample
into quintiles we are essentially controlling for the number of drivers working. We thus believe
that this simple graphical analysis is a simple way to show that supply is indeed nonmonotonic
in pickup times. We complement it with a more detailed regression analysis at the end of this
section in order to face potential concerns about other sources of variation like traffic speed and
average trip length, as well as endogeneity.

The point at which WGCs start to happen in figure 5 is somewhere around 1.6. The histogram
of log(T) shows that this is relatively rare, which suggests that Uber’s surge pricing algorithm
indeed avoids getting into the very worst situations in which waiting times become very high.
However, there do exist times in which the decreasing trend is clear, which means that there is
still some room for improvement.
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Note that the WGC behavior is especially clear for quintiles 1-3, at times when the number
of drivers working is low. This is evidence that Uber is better able to avoid WGCs at the busiest
times, but less so during times of low demand and supply. Even during busy times the leftmost
end of the plot seems to be flat, which means that although WGCs are avoided, any change
in policy that would decrease prices by only a bit would lead the market to the WGC region.
Also note that although all observations in these plots are weighted equally, it is much more
important for welfare to avoid WGCs during busy times because the number of passengers and
drivers benefitting from the platform is larger. Thus, Uber seems to have calibrated their model
well during the most important times, but there seems to be some room for improvement at
some less important times. One likely reason for this to happen is the fact that at these times the
market is much thinner, meaning that Uber has been able to collect much less data to calibrate
their surge models.

Figure 5 takes our theoretical model too seriously. In reality the function S(T ,L) also depends
on parameters of the model like traffic speed and the average length of trips. To account for this,
we now use a regression framework to control for these variables and show further statistical
evidence of the nonmonotonicity of supply on pickup times.

Let t be the time period, Qt the number of trips completed, Tt the average ETA, Lt the
number of drivers working, vt the average trip speed, and lt the average trip length. In each
regression we run, we split the sample in two, according to whether Tt is greater or less than
some threshold T th. If our theory is a good description of the data, we would observe that, after
controlling flexibly for (Lt, vt, lt), Qt is increasing for low Tt and decreasing for high Tt. We thus
run regressions of the following form:

Qt = αTt × at +βTt × (1 − at) + atP(Lt, vt, lt;γ) + (1 − at)P(Lt, vt, lt; δ) + εt, (14)

where at is a dummy variable that is one if pickup time is above the threshold (Tt > T th) and
zero otherwise, and P(Lt, vt, lt;γ) is a second order polynomial in (Lt, vt, lt).

Panel A in Table 1 shows the estimates for α and β when running regression (14) by OLS.
Each column uses a different value of T th. Column (1), in particular, uses a threshold of infinity,
meaning that the coefficients below the threshold are the ones we would obtain by running a
single regression on the full dataset. In the other columns we see that the coefficient below the
threshold is always positive, and the coefficient above is negative for higher thresholds. This is
exactly the behavior we expect to observe according to our theory.

Pickup time Tt is an endogenous variable, since it arises from the equilibrium point at which
supply and demand meet. In order to solve for this issue, we instrument it with the number
of people who open the app λt: this is simply a demand shifter that helps us trace the supply
curve. It is exogenous since people only observe ETAs after they have opened the app, so there
is no reverse causality.

Panel B in Table 1 shows estimates of (14) by 2SLS. We observe a similar pattern to the one
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Table 1: Nonmonotonicity of supply in pickup time

Dependent variable:
Number of trips completed

T th = ∞ T th = 8 T th = 7 T th = 6 T th = 5 T th = 4 T th = 3 T th = 2
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: OLS
ETA × above −0.798∗ −0.525∗ −0.560∗∗∗ −0.650∗∗∗ −0.589∗∗∗ 0.344∗ 3.860∗∗∗

(0.423) (0.300) (0.199) (0.143) (0.120) (0.184) (0.410)

ETA × below 4.099 5.208∗∗∗ 5.876∗∗∗ 6.768∗∗∗ 8.526∗∗∗ 12.051∗∗∗ 17.563∗∗∗ 27.785∗∗

(0.425) (0.152) (0.148) (0.143) (0.146) (0.191) (0.458) (14.038)

Panel B: 2SLS
ETA × above −0.972∗∗∗ −0.235 −0.889 2.137 6.975∗∗∗ 12.744∗∗∗ 15.384∗∗∗

(0.072) (0.559) (0.677) (2.675) (1.695) (1.487) (0.560)

ETA × below 15.845∗∗∗ 15.764∗∗∗ 16.521∗∗∗ 18.282∗∗∗ 20.509∗∗∗ 27.061∗∗∗ 57.522∗∗∗ −1.929
(0.568) (0.554) (0.554) (0.510) (0.509) (0.630) (2.172) (150.503)

Obs. above threshold 0 29 98 199 504 1,481 3,749 7,680
Obs. below threshold 7,870 7,841 7,772 7,671 7,366 6,389 4,121 190
Observations 7,870 7,870 7,870 7,870 7,870 7,870 7,870 7,870

Note: Robust standard errors in parentheses: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

we observed in panel A. The main difference is that the coefficient of ETA above the threshold
changes sign at a higher value of ETA, and our coefficients are somewhat less precisely estimated.
Our main findings thus still support our theoretical model.

A similar exercise can be run by splitting the sample according to slack instead of ETA.
As we showed in our theory section, supply is increasing in ETA when slack is above εTI and
decreasing otherwise. So we split our data according to whether st, slack, is above or below
different thresholds sth. We run again the specification in equation (14), where at is now a
dummy variable that is one if strain is above the threshold (st > sth) and zero otherwise.

Our results, both using OLS and 2SLS, are shown in table 2. We also see the main patterns we
expected to see from our theory: the coefficient on ETA is always positive above the threshold,
and the coefficient below is negative for low values of the threshold. The only coefficient that
does not fit this pattern is the coefficient below the threshold for sth, which is based on a small
number of points and has a high standard error.

Based on our descriptive graphical analysis, as well as our more detailed regression analysis
using both OLS and 2SLS, we are confident that supply in the Uber market in Manhattan is
indeed backward bending. Thus, WGCs are indeed a reality. We now move on to explore
empirically the consequences they have on the performance of the market. Specifically we will
show that WGCs lead to a stark deterioration of various performance measures.
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Table 2: Behavior of supply with high and low slack

Dependent variable:
Number of trips completed

sth = 0 sth = 0.2 sth = 0.3 sth = 0.4 sth = 0.5 sth = 0.6 sth = 0.8 sth = 1
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: OLS
ETA × above 4.731∗∗∗ 4.793∗∗∗ 5.086∗∗∗ 5.592∗∗∗ 5.964∗∗∗ 6.074∗∗∗ 5.928∗∗∗ 5.678∗∗∗

(0.496) (0.516) (0.608) (0.818) (1.078) (1.296) (1.582) (1.867)

ETA × below 0.134 −0.554∗ −0.674∗∗∗ −0.474∗∗∗ −0.311∗∗ −0.092 0.025
(0.810) (0.325) (0.175) (0.133) (0.128) (0.107) (0.094)

Panel B: 2SLS
ETA × above 13.686∗∗∗ 14.479∗∗∗ 15.900∗∗∗ 18.053∗∗∗ 20.305∗∗∗ 22.160∗∗∗ 25.140∗∗∗ 28.750∗∗∗

(0.385) (0.357) (0.368) (0.387) (0.446) (0.528) (0.694) (0.888)

ETA × below −22.450 −1.465 1.148 2.599∗∗∗ 3.599∗∗∗ 4.895∗∗∗ 5.114∗∗∗

(80.867) (1.206) (0.751) (0.951) (1.033) (1.098) (0.936)

Obs. above threshold 7,822 7,801 7,632 7,297 6,911 6,593 6,110 5,723
Obs. below threshold 0 21 190 525 911 1,229 1,712 2,099
Observations 7,822 7,822 7,822 7,822 7,822 7,822 7,822 7,822

Note: Robust standard errors in parentheses: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3 Performance measures and slack

A separate way to see whether WGCs take place is to look at some performance measures’
behavior as a function of slack. We know that WGCs take place when slack is less than some
value between 1

4 and 1
2 , where the exact value depends on the current conditions like traffic

speed and the thickness of the market. This means that for the aggregate data we are looking
at we should see a sharp decline in these performance measures at these values. For reference,
slack is below 1

2 for 11.4% of observations, and below 1
4 for 1.36% of observations.

The first performance measure we use is the fraction of ride requests that are eventually
completed. Figure 7 shows how it behaves as a function of slack. The figure to the left shows
almost the full range of values of slack, except for a few outliers with s > 10. It is very stable for
s > 5, with values between 0.1 and 0.15. We focus on s < 2 in the figure to the right. The fact
that the plot is increasing is not surprising, since it is a mechanical relation that times with low
completion rates are times with few idle drivers. However, the fact that the slope has a sudden
change approaching 0.5 suggests that WGCs might be starting to take place there.

In Figure 7a we disaggregate the trips that were not completed to get an understanding of
what happens when completion rates are low. The main cause of non-completed trips are rider
cancellations, and it is the main subgroup that varies with slack. This suggests that during WGC
it is often the case that passengers decide not to wait for the driver they were matched to. It
might seem surprising that the number of driver cancellations only sees a slight uptick to the left.
The main reason for this is that Uber has a system of incentives to avoid drivers cancelling rides.
Finally, the number of unfulfilled trips is extremely small compared with cancellations. This is
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(a) s < 10, which includes 96% of the data
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(b) Focus on s < 2.

Figure 6: Fraction of trips that are not completed as a function of slack. Fit lines are locally
weighted quadratic regressions using tricubic weights. The figure to the left uses 5% of the data
that is closest to every point, whereas the one to the right uses 25%. The grey shaded regions
represent 95% confidence intervals for the pointwise mean.

0.0

0.1

0.2

0.3

0.5 1.0 1.5 2.0
Slack

F
ra

c
tio

n

Driver cancelled
Rider cancelled
Unfulfilled

(a) Disaggregation of trips that are not completed
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(b) New views without a driver nearby

Figure 7: Disaggregation of trips that are not completed and fraction of new views that have no
driver nearby as a function of slack. Fit lines are locally weighted quadratic regressions using
tricubic weights. Both figures use 25% of the data that is closest to every point. The grey shaded
regions represent 95% confidence intervals for the pointwise mean.

mostly due to the fact that whenever no driver is available within some radius, the app displays
a message telling riders that there are no available drivers in their vicinity.11 This suggests
another performance measure we can use: the number of views that are shown a message of no
nearby drivers. We analyze this in Figure 7b, and we also see a sudden deterioration in service
when slack goes beyond 0.5.

11Decreasing this radius can be used as a tool to manage WGCs. However, Uber uses it mostly as a tool to avoid
extreme events in which people are matched to someone very far away, and not as a tool to manage scarcity. In
future versions of this project we will compare this mechanism to the surge pricing solution used by Uber.
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(b) Surge multiplier

Figure 8: ETAs and surge multiplier as a function of slack. Fit lines are locally weighted
quadratic regressions using tricubic weights. Both figures use 25% of the data that is closest
to every point. The grey shaded regions represent 95% confidence intervals for the pointwise
mean.

The final performance measure that we analyze is ETAs, in Figure 8a. There is again a
mechanical relation between slack and ETA, but, once again, we observe a spike when the
market approaches the WGC region.

In Figure 8b we analyze how surge pricing changes with slack. We see that the surge
multiplier very rarely goes above 1 when slack is above 1. On the other hand, the surge
multiplier becomes larger as slack goes down, and we see a strong increase especially below 0.3.
This means that Uber reacts to slack, or at least reacts to measures that are closely connected to
slack. However, given that the sudden degradation in performance measures takes place at a
higher value of slack than the spike in surge multiplier, Uber might benefit from reacting more
strongly when slack is between 0.5 and 0.3.

5 Surge Pricing

In this section we calibrate our model and apply it to quantitatively analyze optimal pricing and
in particular the effects of allowing versus prohibiting surge pricing. We begin by discussing
our calibration.

5.1 Calibration

In order to calibrate our model we need to make additional functional form assumptions on our
model. We also need to fit a few parameters so that the model matches some moments of the
data.
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Demand

Let r(p) be the fraction of potential riders that are willing to pay a price p, and let g(T) be
the fraction that are willing to wait a time T . We assume that willingness to pay and wait are
independent, so that demand is D(T ,p) = λg(w)r(p)12. This assumption might be bad if both
decisions are positively or negatively correlated. However, we do not have strong reasons to
believe they go either way. An example of them being negatively correlated is a businessman
that is late for a meeting, and who is willing to pay a lot but is not willing to wait. On the
other hand, an example of them being positively correlated is an old man that needs to visit his
daughter but cannot drive: he is willing to pay a high price because of the lack of an outside
option, and he is in no rush and willing to wait.

In order to compute gross utility we would have to make assumptions on the way that utility
depends on time. Instead of making this kind of assumption, we simply assume that utility does
not depend directly on pickup time, although it does depend indirectly through the number
of trips requested. We showed in our theoretical section that taking into account the disutility
of waiting only makes the effects of WGCs even more striking. We therefore take the most
conservative approach, which makes our results less sharp than if we did take it into account.

Gross utility is thus the gross utility per rider willing to wait times the number of riders
willing to wait:

U(p, T) = λg(T)
[ˆ ∞
p
r(p ′)dp ′ + pr(p)

]
(15)

We assume that willingness to pay has a double Pareto lognormal (Reed, 2003; Reed and
Jorgensen, 2004) distribution with parameters α = 3, β = 1.43, µ = 1.1, and σ = 0.45. The
parameters α, β, and σ are chosen so that the distribution has the same shape as the US income
distribution, as in Fabinger and Weyl (2016). The parameter µ, which is simply a horizontal
rescaling of the distribution, is chosen to fit the elasticities in Cohen et al. (2016), who estimate
willingness to pay of riders on the platform Uber. The function r(p) arises from this distribution,
where p is the surge multiplier. We also assume that the ability to wait has a lognormal
distribution with mode 5 minutes and variance such that the elasticity of the corresponding
function g(T) agrees with the value from Cohen et al. (2016).

Labor supply

For labor supply we assume a constant elasticity functional form, l(e) = A

(
e

1+ 1
εl

)εl
. This

results in a cost function C(L) = A
(
L
A

)1+ 1
εl . We assume an elasticity of 1.2 based on Angrist and

Caldwell (2017), where they estimate a medium-term elasticity from experiments measuring

12This demand function assumes that pickup time is the same for every driver, or that riders only respond to
mean pickup times. A more realistic expression would be D =

´
λg(T)r(p)dF(T), where F is the distribution of T .

We stick to the simpler demand function to avoid computing distributions of waiting times.
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drivers’ supply under contracts with different payment schemes. Very short-term elasticities, for
unexpected demand shocks, are likely to be lower and very long-term elasticities, for secular
changes in earnings on the platform, are likely to be higher. Since we observe the number of
drivers and trips, as well as the average surge multiplier, we can compute the expected hourly
earnings and back out the value of A.

Supply of trips

The only primitive that determines the functional form of S(T ,L) is the functional form of T(I).
We fit it by using data on the average pickup time as a function of distance to the matched
driver, which we denote by Ť(x). In a simple, homogeneous space, Ť(x) is simply a linear
function, xv , where v is the speed. However, matters are considerably more subtle in practice.
The pattern of roads in some cities has one-way streets every other block, and in others follows
radial rather than axis-aligned coordinates. Furthermore, speeds are greater when traveling
longer distances since drivers are able to take larger streets or highways. This implies that the
appropriate formula for Ť(x) in practice will vary from city to city.

We take a function of the form Ť(x) = a(1 − e−bx) + cx. The first term captures the fact that
cities’ street patterns cause inefficiencies when traveling short distances. The second term means
that speed eventually reaches some terminal value c, which is the speed once drivers take a
main street. This functional form fits very well the data for trips in Manhattan obtained from
Uber, as shown in Appendix A.

Once we fit Ť(x), we obtain an expression for T(I) as follows. In two dimensional space,
the density of drivers at a distance x from an arbitrary point is 2πIx, (a measure to be inte-
grated with respect to x) which is the hazard function of the nearest driver. The CDF of the
distance to the nearest driver G(x; I) is then given by the differential equation dG

dx = 2πIx(1 −G),
whose solution, which corresponds to a Weibull distribution, is G(x; I) = 1 − e−πIx

2
. If the

average pickup time as a function of distance is t(x), then T(I) =
´∞

0 Ť(x)dG(x; I). Given
the functional form assumption for Ť , the resulting expression for expected pickup time is
T(I) = 1√

4I

(
c+ 2ab exp

(
b2

4πI

)
Φ
(

b√
2πI

))
where Φ is the CDF of a standard normal distribution.

Note that under this functional form assumption, limI→0 −ε
w
I = 1

2 , but for larger values of I
(about as large as could reasonably be expected in practice), −εwI reaches an interior minimum
at a value of about 0.26.13 That is, in cities with a very dense coverage of drivers, fewer idle
drivers relative to those picking up riders are needed to avoid WGCs. This is intuitive because
when drivers are very dense, additional idle drivers do not rapidly reduce pickup times. It is
therefore not problematic for drivers to spend a greater fraction of their time on “dead miles”.
Taken to an extreme, as I grows large it is natural that more time is spent picking up passengers

13Eventually, however, as I→∞, it again becomes 1
2 . This makes sense because the inefficiencies of going around

the block eventually level off once there are so many cars that pickup time is determined by driving straight down
the block.
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Market λ (sessions/h · km2) Q (trips/h · km2) L (drivers/km2) A (drivers/h · km2)
Mean 223.4 97.1 50.6 203.6
Strong 354.3 146.8 71.5 246.2
Weak 147.7 63.4 44.5 281.5

Table 3: Observables and parameters for the mean, weak, and strong market.

relative to being idle, as most drivers must drive around the block to get a nearby rider; only
if so many drivers can be made available that one is directly in front of every potential rider’s
house can this small friction be eliminated. When there are fewer available drivers, on the other
hand, increasing driver density is more beneficial and thus more idle drivers relative to those
picking up riders are needed to avoid WGCs as each additional driver “fills in” an important
part of the city grid.

Calibration to different markets

We calibrate the parameters of our model by using aggregate data from the same dataset for
Uber in Manhattan we used in our empirical section, between December 1, 2016 and February
28, 2017. We exclude December 15-January 7 since these are atypical days because of holidays.
We focus on weekdays between 7 am and midnight. The only parameters that remain to be
input in the model are λ, A, and a r(1) (since even with surge multiplier 1x and waiting time
zero not every person who opens the app requests a trip). We observe λ directly in the model.
We back out A and r(1) as the values that lead to an equilibrium with the observed number of
trips and drivers.

For the main calibration we use average values over the whole sample. This can be thought
of as the “average" behavior of the Manhattan market. This is the main specification we use.
In a separate specification, we model two different markets, the one between 11 am and noon,
which we call the weak market, and the one 6 and 7 pm, which we call the strong market. We
assume that for these two markets all the model primitives stay the same as for the average
market, except for λ and A. Table 3 compares the average number of drivers, sessions, and trips,
as well as the calibrated parameter A, for the weak, strong, and average market. The number of
sessions, trips, and drivers are greatest for the strong market and the least for the weak market.
The supply shifter A follows a different pattern:14 Supply is highest in the weak market, in the
middle of the workday. It is also higher than average in the strong market, probably because
many people work a few hours after their full time job. In a final specification, we calibrate the
parameters separately for every hour of the week. The details of the values for the parameters
we use are in appendix C.

14A has the same units of D. Its interpretation is that it is the number of drivers who would be willing to work if
their hourly earnings were equivalent to working with no time spent being idle or picking up passengers, with
surge multiplier 1 + 1

εD
.
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5.2 Quantitative analysis of pricing

��� ��� ��� ��� ���
�

�

�

�

�

�

�

�

��×������� (��/���) ������� (��/���)

(a) Cohen et al. (2016) elasticities.
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(b) Twice the Cohen et al. (2016) elasticites.

Figure 9: Revenue and welfare for the Manhattan market as a function of price for passengers.
Dashed lines represent WGCs. The vertical lines represent the optimal prices for the function
with the corresponding color.

Figure 9 shows how revenue, welfare, and rides behave as a function of passengers’ price for
fixed τ = 0.238, which corresponds to the average value used by Uber in Manhattan.15 The left
region with dashed lines represents prices at which WGC occur.

Subfigure 9a uses the very inelastic estimates for demand from Cohen et al. (2016). The main
thing to note is the asymmetry of the welfare function around its maximum. There is a drastic
drop in welfare to the left of the WGC threshold. This is evidence that WCG equilibria can lead
to dramatic welfare losses and are “Pareto dominated” in the sense that WGCs in aggregate hurt
all of drivers, riders and the platform (though they may slightly benefit some price marginal
riders who are willing to wait a long time). To the right of the threshold, any price increase
benefits some group (typically drivers and the platform) and hurts others (typically passengers),
and since there is a tradeoff, changes in welfare are not too large: a 30% increase in prices from
the optimum only decreases welfare by less than 4%. On the other hand, a 30% decrease in
prices from the optimum leads to a 41% decrease in welfare. This goes in line with our analysis
from Section 3: feedback between all parts of the model lead to a quick market collapse as prices
go down. Finally, note that optimal prices are just a bit above the price where WGCs start. Any
further increase in prices results in social welfare losses due to too many drivers working and a
waste of time.

The main implication is that in order to maximize welfare it is much worse to err by setting
prices too low than by setting them too high. Thus, in the face of uncertainty, platforms would
like to set prices with some margin above the threshold in order to avoid WGC from ever
happening.

15The exact value varies from driver to driver, depending on the time at which they entered the platform.
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For this calibration the threshold is in the inelastic part of r(p). By the usual intuition
from the analysis of a monopolist, the revenue maximizing price is in the elastic region, which
starts at around price 2.2. Even in this case, the revenue function has a kink at the threshold,
which means that there is a dramatic deterioration of revenue once WGC start to take place.
Furthermore, the effect on welfare of setting the very high revenue maximizing price is mild
compared with the potential effect of a WGC. This corresponds to a 130% price increase from
the welfare optimum that decreases welfare by 28%, which is the same decrease that would be
caused by a 22% price decrease from the optimum.

The elasticity estimates from Cohen et al. (2016) are based on studying the effects of price
increases that last only a few minutes typically on ride requests. They are thus unlikely to
reflect what would happen if the platform consistently set prices as high as 2.2. Subfigure 9b
shows the same calibration, assuming that elasticities are twice those in Cohen et al., i.e., around
0.8-1.2 for prices between 1 and 2. We believe this to be a much better illustration of the way
the actual market behaves when prices are predictable and medium-to-long-term adjustments
(e.g. switching to another ride-hailing platform or driving to work) are made to these prices by
riders. Note first that the general form of the welfare function does not change much. The elastic
region starts at 1.2, which is the revenue maximizing price. Revenue and welfare maximizing
prices are now close to each other, and more importantly, changes in welfare and revenue are
not substantial for prices between them. On the other hand, both revenue and welfare drop
dramatically after entering the WGC threshold. Thus, welfare and profit changes between both
optima are second order when compared to the changes when getting below the threshold.

This implies that revenue and welfare are relatively well-aligned. Unless elasticities are as
low as in Cohen et al. (2016), the main concern both of a revenue and a welfare maximizer
is to avoid WGC. Whereas a welfare maximizer might be tempted to set prices close to the
threshold, this would mean risking huge welfare losses given the uncertainty of the market,
and maximizing expected welfare would imply setting a higher price very close to the profit
maximizing one.

In order to emphasize that this whole analysis is unique to ride-hailing, we obtain similar
results for a similar market with a street hailing taxi technology. We assume that average waiting
time has the form Ť(I) = θ

I , where θ is a parameter we must calibrate to the data. This functional
form can be justified from the assumption that, for a rider waiting in the street, the arrival of
an idle taxi is a Poisson process with rate that is proportional to the number of idle drivers. To
calibrate θ we take the average number of active taxis in Manhattan from Frechette et al. (2016)
and assume that it results in an average waiting time of one minute. We use this parameter to
compute Š(T ,L), and solve the model without changing any other parameter.

Figure 13 compares welfare with ride-hailing and traditional street-hail taxis. The main
takeaway is that, although there is a sharper decrease in welfare to the left than to the right
of the maximum for taxis, the asymmetry is much less than for ride-haling. Note also that

29



ride-hailing leads to higher welfare if it is correctly calibrated, but there exists a region with
WGCs in which the taxi market performs better. This is the region that ride-hailing must avoid
at all costs through surge pricing in order to exploit the more efficient technology. Welfare is
maximized at higher prices with the taxi matching technology: as pointed out by Arnott (1996),
taxi markets perform well with a high density of idle drivers, whereas ride-hailing performs
better with a lower density.16 Higher prices are thus necessary with taxis to incentivize more
drivers to work. Finally, note that we analyze Manhattan, one of the most dense transportation
markets in the world. It is thus a region in which taxis should perform well relative to Uber, but
we still find that Uber performs better with optimal pricing. Most markets are less dense, so the
advantage of Uber becomes even larger.17
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Figure 10: Comparison of welfare with ride-hailing and traditional street-hail taxis. Vertical lines
represent welfare maximizing prices.

5.2.1 Two-market pricing

We now analyze the social benefits of surge pricing using the original elasticities measured by
Cohen et al. (2016). We also assume that the platform maximizes welfare. We believe this to be a
good approximation since these platforms’ main concern is long run profit instead of short run
revenue, and they are thus very concerned about consumer satisfaction. By adjusting incentives
directly (by assuming welfare maximization) we correct for the tendency of the platform to
lower prices to account for longer-term platform growth while maintaining realistic degrees of
responsiveness to price changes to determine the effects of pricing on system engineering.

By dynamic or surge pricing we mean the ability of the platform to change prices at different
times. We still assume that τ is fixed. We start in this section with a setup similar to the one

16In his paper, ride-hailing has T(I) ∝ 1√
T

, whereas T(I) ∝ 1
T .

17Since waiting times in Manhattan are much for taxis than for Uber, it might be surprising to see that welfare is
higher for the Uber market than for the taxi market. The reason for this is that the taxi market is much denser: the
average number of taxi drivers working at any given time according to Frechette et al. (2016) is almost four times
the number of Uber drivers we observe in our data.
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Aguirre et al. (2010) use to analyze the welfare effects of price discrimination. The platform
faces only two separate markets: the weak market, calibrated to the parameters between 11 am
and noon, and the strong market, calibrated to the parameters between 6 and 7 pm. These are,
on average, the one hour intervals in our database with the highest and lowest demand. For
simplicity, the only parameters that we calibrate are λ and A, horizontal supply and demand
shifters. In our first setup, which we call static pricing, we require the platform to have the same
price for both markets, which is similar to what happens, for instance, with Gett, which does
not have surge pricing. In the second setup, dynamic or surge pricing, we allow the platform to
set different prices for each market.

This setting is an extreme simplification of the much larger number of markets that Uber
faces. However, it allows an intuitive graphical analysis of welfare under different pricing
schemes, which helps explain our main conclusions. In section 5.2.2 we analyze a richer model,
in which the platform faces one separate market for each one of the 168 hours in the week, with
similar takeaways.
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(a) Ride-hailing
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(b) Traditional street-hail taxis

Figure 11: Price discrimination with fixed τ. The gray vertical line represents the optimal price
without surge pricing. Colored vertical lines represent optimal prices with surge pricing.

Figure 11 shows the results of this analysis. For ride-hailing (Subfigure 11a), the static price
is extremely close to the dynamic price for the strong market. Whereas the dynamic price for
the strong market is only 3% above the static price, the dynamic price for the weak market is
38% below. The reason for this extreme asymmetry is that welfare drops much more sharply
to the left of the optimum as the market enters a WGC than to the right. There still exists a
slight asymmetry for traditional street-hail taxi markets (Subfigure 11b), but it is of a different
order of magnitude. Furthermore, the optima are much closer together with street-hail taxis,
which implies that surge pricing is less important than with ride-hailing. To emphasize how
different both cases are, suppose that, instead of setting the optimal price in a static setting, the
platform naively sets the average price between both dynamic optima. With the street-hail taxi
technology, this results in a welfare loss of only 0.3%. But with the ride-hailing technology the
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strong market enters a WGC and total welfare drops by 17%.
Another way to put this is that if the platform is constrained to static pricing, it has little

freedom to set prices below the strong market dynamic optimum because it gets close to
the WGC threshold, under which welfare in the strong market declines very abruptly. This
means that allowing dynamic pricing leads to a significant reduction of prices in weak markets,
whereas it only leads to modest increases in prices for strong markets, as we highlighted in the
introduction.

This is very different from a common perception across the media and some regulators,
that surge pricing hurts consumers. The main idea is that without surge pricing platforms’
prices would always be at their base fare, whereas surge pricing allows them to engage in price
gouging and extract large rents from the market, especially hurting riders. Our results show a
very different story. Without surge pricing the platform would set prices at a high level to avoid
ever getting in WGCs, which are very bad both for welfare and for their revenues. And allowing
surge pricing would benefit consumers, potentially at the expense of drivers. Thus, drivers and
not riders are the ones that should be most concerned about surge pricing, which reduces their
welfare at times of low demand.

We find that the welfare maximizing price is around 1.1 in the strong market. One might
think that this is at odds with the fact that multipliers often go above 1.5. However, there is
substantial spatial variation, as well as between days of the week, and there is a high degree
of unpredictability which often leads to high demand and scarcity of drivers. None of these
sources of variation is captured in this simple exercise, so it is not surprising to find a multiplier
only slightly above one.

Our results also explain the fact that ride hailing platforms typically change prices upwards
but not downwards. The consequences are not too bad if the ideal price was 0.7 but the actual
price is constrained to be 1, whereas welfare decreases by a lot if the ideal price is 1.3 and the
platform is constrained to 1. Even despite this fact, one might wonder why platforms have
not decided to set prices below 1. The main reason is because of reputational pressures: they
constantly face criticism for drivers not being paid well, and for predatory pricing trying to
avoid new entrants.

5.2.2 Pricing by hour of the week

We now make a similar analysis to the one in the previous section, with the difference that the
platform now faces one separate market for each hour of the week. We not only calibrate λ
and A to the data; we also calibrate the average trip time t and the average speed v. In order
to incorporate average speed, we assume that the average waiting time function has the form
T(I, v) = vavg

v T(I, vavg), where vavg is the average speed for the average market, and T(I, vavg)
has the functional form we fit for the average market (see appendix A).

Figure 12 shows the behavior of λ and A, supply and demand shifters, for different times of
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Figure 12: Value of main parameters of the model for different times of the week. Labels for the
day of the week represent noon for any given day.

the week. For demand, which is directly observable, we see a small peak during the morning
rush hour and a higher and longer peak for the afternoon rush hour. Demand is at its lowest
late at night and early morning. Saturday has the highest demand, with no dip in between rush
hours, and Sunday has a relatively low demand. For the supply shifter, which we infer from
other observable values, we see the highest value during the week at the early morning and late
afternoon. This is most likely due to people with part time jobs or flexible schedules that are
able to work before or after their main job. The behavior of the rest of the quantities we use in
our calibration can be seen in appendix C.

Our main result is figure 13. We focus only on times between 7 am and 10 pm; at other times
traffic conditions are so different that we do not believe our main fit of T(I, vavg) is appropriate,
and we do not have enough data to fit the pickup time function separately for each hour of
the week. The optimal prices in the dynamic setting follow a similar pattern Monday through
Thursday, with the highest prices in the early morning and at night, which are times with low
demand. One might have expected the highest prices to be during morning and afternoon rush
hours; however, these are also times with high supply. Instead, the highest levels of surge take
place at times when supply is low but demand is not too low.

Separate patterns can be seen during Fridays, Saturdays, and Sundays. Surge must be high
during Friday afternoon: demand is very high, whereas supply is essentially the same as other
weekdays. Prices are low during Saturday. Despite demand being high throughout the whole
day, traffic speed is low in the morning, and supply is high during the afternoon. Sunday has
the highest prices, essentially because supply is low. All these patterns roughly follow the actual
observed prices (see appendix C), except for the fact that surge pricing is actually high during
Saturdays.

The optimal static price is higher than the optimal dynamic price at all but 7 hours of the
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Figure 13: Optimal prices with dynamic pricing (black) and static pricing (blue) for different
times of the week. Labels for the day of the week represent noon for any given day.

week. This follows the intuition from section 5.2.1: setting prices any lower would lead to WGCs
in those 7 hours of the week, at a substantial welfare loss, while not leading to large increases in
welfare at other times. The platform must then settle at a high price to avoid these WGCs. How
striking this effect is can be seen by noting that the optimal static price is at the 92nd percentile
of the distribution of optimal dynamic prices.

6 Alternative Solutions for Wild Goose Chases

We have focused on pricing as the main tool to avoid WGCs. However, there are many alternative
ways in which platforms can avoid them. We will now discuss them and argue that they are not
as desirable as surge pricing, either because they are less efficient or because they have practical
or public relations limitations that make them infeasible. This is an informal analysis, but we
will formalize these results in future versions of this paper.

A naive way to solve WGCs is to randomly deny trips to some riders. This is equivalent to
an inwards shift of the demand curve, which moves the equilibrium away from a WGCs by the
analysis from Figure 4. However, such random denial is inefficient compared to an increase in
prices that achieves the same number of trips in equilibrium: an increase in prices is equivalent
to denying trips to riders with the lowest willingness to pay, and therefore results in a more
efficient allocation of trips.

A more nuanced solution is to deny trips to people whose realized pickup time is large. This
still has the disadvantage that some people with high value will end up not receiving a trip, also
resulting in an inefficient allocation. However, it has an advantage over a pure price mechanism
because it avoids those trips with highest pickup times, in which a rider causes the greatest
externality on other riders by removing an idle driver from the streets for the longest time. As a
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matter of fact, Uber does set a maximum dispatch radius on the order of twenty minutes, which
means that it implements a similar kind of policy. However, it is only set in order to avoid the
most extreme cases, thus truncating the right tail of the distribution of pickup times, and the
policy is not modified dynamically to manage demand and supply imbalances.

Despite its apparent desirability, there is one important reason why expanding the use of
a dispatch radius and making it the main tool used to avoid WGCs is not feasible in practice.
One of the main reasons why ride hailing platforms have become successful is the guarantee
of a reliable service: sometimes the rider might have to pay a high price, but in times of need
a ride will always be available. Using smaller dispatch radiuses goes against this guarantee,
so although it might avoid the problem of WGCs, it essentially means that at times of high
demand there exists some probability of being denied a trip. Ride hailing platforms are therefore
unwilling to make it their main tool manage supply and demand.

There exists a variant of a maximum dispatch radius that somewhat diminishes the problem
of unreliability. Instead of simply denying a trip, the platform might make the passenger wait
until some driver drops off a passenger in the rider’s vicinity or some idle driver moves close to
the rider. Essentially, this implies creating passenger queues in equilibrium, increasing thickness
and improving match quality at the expense of waiting time, a common theme in the matching
literature (Akbarpour et al., 2016).

However, it is unlikely that a riders’ only option is to wait. Besides other modes of transporta-
tion, there are various competitors in the ride hailing market, so the user in many cases would
just leave the platform and open the competing app. Furthermore, passenger queues are in
tension with a user interface feature of current ride-hailing apps—that riders know immediately
upon request the location and trajectory of a car driving towards them. This feature is considered
very appealing to riders and our internal interviews suggest product leaders at Uber would be
loath to compromise that element of the rider experience. Thus, although this solution might
seem attractive from a social perspective, in practice it is unlikely that a private platform would
be willing to follow it given the fierce competition between ride-hailing companies.

Besides these alternatives to solve WGCs, there also exist tweaks to their mechanism design
that, although they may not completely avoid WGCs, they might be able to mitigate them, and
if coupled with surge pricing might allow price changes to be milder. Some of these have been
implemented to some extent by ride-hailing apps. The first one is to match passengers to drivers
who are about to finish a trip nearby. This effectively increases the density of idle drivers, thus
reducing pickup times and allowing drivers to spend more time driving passengers. But this
does not entirely avoid WGCs unless the number of trips ending in some area is very high.

Another mitigating solution is to rematch drivers and passengers. WGCs can be understood
as a dynamic inefficiency: sometimes drivers and passengers could have been matched better
if the platform had waited long enough, but the fact that matching takes place greedily leads
to suboptimal matching. In those cases two driver-rider pairs could be rematched to obtain a
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lower pickup time for both pairs. This is, again, a solution that effectively increases the density
of idle drivers. But it has some important limitations. First, it creates uncertainty on the part
of passengers about the arrival time of their driver, since rematching might drastically reduce
it. Second, once a rider sees an ETA for the driver, if after rematching the ETA is reduced, it
would not be possible to force the rider to meet the driver at an earlier time. Thus, this solution
would only be helpful if riders are available before the initial ETA shown and if they are paying
attention to see the new ETA.

One final mitigating solution that has nice theoretical properties is to charge for pickup time
and not only for the segment from the origin and the destination. This effectively means pricing
according to the externality caused on other riders by depleting streets of idle drivers. This
solution, however, has the problem that riders would like to know the ETA before requesting the
trip, which would require tentative matching with drivers before deciding to request. Besides
this complication, there is a public relations issue that might arise: unlucky passengers that are
matched to someone far from them would not only have to wait a long time; they would also
have to pay a high price. This would be problematic since people expect platforms to provide a
low pickup time and would feel that they would be charged for the platform’s inability to offer
low pickup times.

7 Ride-Sharing

Pooling services such as UberPool and Lyft Line, which allow trips to be shared by multiple
riders, have increasingly become a widespread alternative to standard ride hailing products.
In this section we extend our analysis to pooling. Given the much greater complexity of these
services, we make stronger simplifying assumptions. Our main finding is that WGCs are also a
problem, and most of our previous analysis still holds.

7.1 Model

We assume a simple model where demand and supply take the same form as in our previous
model, and in which passengers can only take pooling trips. The difference between ride sharing
and ride hailing is the matching technology. We will now show that it also results in a backwards
bending supply function, which the leads to all of the main results in our paper.

Drivers can now be in one of five states. They can be idle, I, with one rider, B1, with two
passengers, B2, picking up a rider while empty, K1, and picking up a rider while driving one
rider, K2. Thus, at any given time the total number of drivers satisfies the following equation:

L = I+B1 +B2 +K1 +K2 (16)

If a new rider requests a ride, he is matched to the nearest driver among those that are idle
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and those with one rider that go in a similar direction. Let q be the probability that some driver
is taking a rider in a similar direction. We assume that this is independent of the state of the
system. It is a quantity that depends crucially on how willing is the platform is to deviate a
driver that is taking a rider to his destination. The rider that requests a ride thus sees an effective
density of drivers I+ qB1, which is the density of drivers that could pick him up if he requested
a ride. The pick-up time is therefore T(I+ qB1). With this in mind, in equilibrium the total
number of passengers picking up passengers K1 +K2 is equal to the rate of ride requests times
the pickup time wR, which means that L = I+B1 +B2 + T(I+ qB1)Q.

We also assume that if a driver with a rider is deviated to pick up another rider, the trip
time of the rider in the car increases by the time it takes to pick up the new rider. This amounts
to assuming that on average the pick up location of the new rider is neither closer nor farther
away from the final destination of the first rider. With this in mind, the total time of trips
(without counting the pick up time) is equal to tQ, which must be equal to the time spent by
drivers with passengers. The time spent driving two passengers counts twice, so this means that
tQ = B1 + 2B2.

The number of drivers driving two passengers and one rider are related by the rate at which
those with one rider are dispatched to pick up a second rider and the rate at which those with
two passengers finish their trip. The rate at which they finish trips is twice the inverse average
length of a trip, 2

t . The rate at which drivers get a second ride can be written as qQ
I+qB1

: since
the effective density of available drivers is I+ qB1, the region for which the closest driver is any
given driver is the inverse of this density, 1

I+qB1
. Since the density of trip request rate is Q, the

arrival rate to this area is Q
I+qB1

, and the probability that the arriving rider goes in the same
direction as the old rider is q, which multiplies this rate. Therefore, B2 = t

2
qQ
I+qB1

B1.

7.2 Wild goose chases

From the previous analysis, supply is given by the solution in (Q,B1,B2) to the following system
of equations:

L = I+B1 +B2 + T(I+ qB1)Q (17)

tQ = B1 + 2B2 (18)

B2 =
tQ

2
qB1

I+ qB1
(19)

In order to make sense of these equations, fix the number of idle numbers. Solving equations
(18) and (19) for B1 and B2 tells the proportion of busy time that drivers spend with one or two
passengers. Equation (18) simply states that the total time spent with passengers by drivers has
to be such that all the requested rides are completed. Equation (19) says that if the number of
available drivers with one rider qB1 is large compared with the total number of available drivers
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I+ qB1, then the balance tilts towards more rides being served by ride shares.
Solving this system of equations, given values of q, L, and T , results in a solution with the

following properties:

Proposition 6. There is at most one solution to equations (17)-(19) with positive Q. Let the solution
with highest Q be S(T ,L). This solution satisfies the following properties

1. There exists some pickup time Ť(L) such that S(T ,L) < 0 for T < Ť(L) and S(T ,L) > 0 for
T > Ť(L).

2. limt→∞ S(T ,L) = 0 for all T .

Proof. See Appendix B.7.

We did not prove that supply has the simple form it has for a simple ride-hailing system,
where it is single peaked. However, we did show that it is initially increasing and at the end it is
decreasing. It might have more than one local maximum, but the main behavior from WGCs is
still present. Thus, most of our analysis still carries through. In particular, all our results about
WGCs still hold whenever supply and demand cross at a point where supply is decreasing.

The intuition for this result is very similar to a traditional ride hailing service. When demand
is high, the relevant density of drivers for pickup time I+ qB1 is very low. The reason is that a
higher demand leaves only a low number of idle drivers, and forces most busy drivers to serve
two customers. This low I+ qB1 leads to high pickup times. And just as before, this is wasteful
because drivers have to spend a lot of time picking up passengers, either while having no rider,
or while driving the first rider. And this ends up reducing the capacity of the market.

8 Conclusion

In this paper we analyze the motivations behind surge pricing in ride-hailing apps. We find
that it is an essential part of their success, since otherwise they would not be able to charge the
low prices at low demand times that have made them a more desirable alternative to traditional
taxis. The main reason is that, despite a better matching technology that can potentially increase
the efficiency of the market, they are prone to a catastrophic matching failure which we call
wild goose chases (WGC), in which high demand depletes the streets of idle drivers. This forces
matches between drivers and passengers that are very far from each other, and drivers end up
spending most of their time on a futile search for passengers far away from them instead of
taking passengers to their destination. This also reduces their earnings, reducing the number of
drivers working and amplifying the problem. Dynamically varying pricing allows platforms to
avoid WGCs at times of high demand by increasing prices, while lowering prices at times of low
demand. Without surge pricing, the only alternative would be to set high prices at all times to
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avoid the sharp decrease in welfare and revenue that would arise from WGCs at times of high
demand.

Our main model is that of a market that clears through pickup times instead of prices.
Whereas demand is a traditional decreasing curve, supply of trips is initially increasing but then
it bends backwards. This behavior arises because of two opposing effects: higher pickup times
require less idle drivers, thus freeing up more of them to take passengers to their destination,
but it also takes up more of their busy time, reducing their ability to serve riders. WGCs occur
when the market equilibrium is in the backward bending part of supply. We show that the
market is very sensitive to subtle price changes when that is the case, and price decreases lead
quickly to market collapse. On the other hand, an increase in prices decreases demand and
increases supply, moving the equilibrium out of a WGC.

We corroborate empirically the validity of our results using data for Uber in Manhattan.
First, we show descriptive evidence that supply does exhibit the backwards bending form that
our theory predicts. We also observe a drastic degradation in performance measures when the
market conditions are such that a WGC should take place according to our theoretical analysis,
which is evidence of the welfare drop predicted by our model. We then also use the data to
calibrate our model and quantify the effects of banning surge pricing. We find that in order to
avoid WGCs the platform would have to set consistently high prices, at the 92nd percentile of
the prices it would have set with surge pricing. These results oppose the notion that ride-hailing
platforms use surge as predatory pricing, and that without it they would always set low prices
around their current base prices to the benefit of passengers.

We discuss a variety of measures that ride hailing platforms can take to in order to avoid
WGCs or mitigate their effects. For a variety of practical and public relations reasons, we
conclude that surge pricing is the best option. We also analyze the behavior for pooling products
like UberPool and Lyft Line, and we also find a backwards bending supply curve, which means
that all of our main theoretical results are also valid.
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Appendix A Fit of pickup time function

See Figure 14.
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Figure 14: Average pickup time as a function of distance from matched driver, as well as a fit
of the form t(x) = a(1 − e−bx) + cx. There are very few trips with distance greater than 2.5 km,
which explains the high variability in the data.

Appendix B Proofs

B.1 Proof of lemma 1

Proof. Fix L. From the original function T(I), I(T(L)) = L. Since the denominator in equation
(2) is positive for positive T and I(T) is decreasing, it is clear that S(T(L),L) = 0, S(T ,L) < 0 for
0 < T < T(L) and S(T ,L) > 0 for T > T(L).

Note that ∂S
∂T = 1

d+T

[
−I ′(T) − L−I(T)

d+T

]
= 1

d+T [−I
′(T) − S(T ,L)]. Since S is continuously dif-

ferentiable, starting at T = T(L), it is increasing in T until it reaches −I ′ at some point T̂(L),
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at which its derivative is zero so it attains a local maximum and becomes greater than −I ′.
Thus, its derivative then becomes negative. And note that at no point greater than T̂(L) can
S(T ,L) = −I ′(T): that would imply ∂S

∂T = 0, which is a contradiction since −I ′ is decreasing so
for S to cross it from above its derivative would have to be negative. So S is decreasing in T for
all T > T̂(L).

The numerator in equation (2) is bounded by L, and the denominator goes to infinity as T
goes to infinity, so limT→∞ S(T ,L) = 0.

B.2 Proof of lemma 2

Proof. This is equivalent to saying that D(T ,p) and S(T ,L) intercept at least once for all L.
Fix L. We start by showing that for any ε > 0 there exists T̄ such that S(T ,L) > L−ε

T for all
T > T̄ . Fix ε. Then S(T ,L) − L−ε

T =
L−I(T)
d+T − L−ε

T = −
I(T)
d+T −

Ld
T(d+T) +

ε
d+T . The first two term decay

faster than the third, which is the only positive term, so for all T > T̄ the third term dominates
and S(T ,L) − L−ε

T > 0.
This implies that for fixed L S(T ,L) = O(T−1) as T →∞. This would be the same behavior of

demand if the upper tail of willingness to pay was as in a Pareto distribution with α = 1, so the
fact that the tail is thinner implies that D(T ,p) < S(T ,L) for sufficiently high T . Additionally,
note that demand is an increasing function, whereas supply is increasing for T < T̄(L) but
decreasing for T > T̄(L), and it is zero for T = T(L). By the mean value theorem, D(T ,p) and
S(T ,L) intercept at least once for all L.

Given that D(T ,p) is a decreasing function, the solution with the highest Q is also the one
with the lowest T . Since D > S for low enough T , at the highest solution ∂D

∂T <
∂S
∂T . From the

implicit function theorem and the chain rule, dQdL = DTSL
DT−ST

, which is positive and S(T ,L) is
increasing in L. It might also be the case that a change in L leads to a new solution with a higher
value of Q due to two new intersections of D and S at a lower value of T . This would lead to a
discontinuity in Q̂, which would be a positive jump. Note that an increase in L never leads to
supply and demand no longer crossing at the previous highest solution, as it would mean that
S > D for all T above the current solution, which contradicts D(T(L)) = 0.

B.3 Proof of proposition 1

Proof. We find the comparative statics of equilibria from the implicit function theorem. The total
differential of equations (3) and (4) looks as follows: 1 −

εDT ε
S
L

εDT +σεST

−εL 1

(d logQ
d logL

)
=

−
σεSTε

D
p

εDT +σεST

εL

d logp, (20)
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Some simple algebra shows that this is equivalent to the first two expression in the proposition.
To get the third expression, substitute in the total differential of D(T ,p), εDT d log T = d logQ−

εDp d logp.
In a WGC εST is negative. Furthermore, the highest solution of (3) (and any stable solution)

has εST > ε
D
T . This implies that all three numerators are positive, so the sign of the elasticities of

Q and L is the sign of the denominator, whereas the elasticity of T has the opposite sign.

For any stable solution Q̂ ′L̂ ′ < 1. From the total differential, Q̂ ′L̂ ′ = −εL
σεDT ε

S
L

εDT −σεST
, and ∆

is positive whenever this is less than one. So in the highest solution, which is stable, the
determinant is positive and both the number of drivers and trips increases with prices.

B.4 Proof of proposition 2

Proof. Starting from price p, an increase in prices also increases L as long as the equilibrium
is still in a WGC, which shifts the supply curve upwards. This also shifts the demand curve
downwards. This can continue until either (a) the equilibrium is no longer a WGC, or (b)
D(0,p) 6 maxT S(T ,L). But once D(0,p) 6 maxT S(T ,L) it has to be the case that supply and
demand cross in the good region, which proves that the equilibrium is eventually in the good
region.

B.5 Proof of proposition 3

Proof. The total differential of welfare is dW = UT +UQdQ−C ′dL. Note first that UQ = p+ ūQ,
where ū is the derivative of the utility of inframarginal passengers. Also C ′ = p(1 − τ)QL .
Plugging in these expressions and the expressions for the elasticities of Q and L yields equation
(10) after a few algebra steps.

In order to see that this is positive, note that in a WGC εST < 0. Also εL ∈ [0, 1], so
(1 − (1 − τ)εL) > 0. This means that the first term in parentheses is positive. For the second

term, εST > 1 since the matching technology has increasing returns to scale, so εDT ε
S
L

εDT +σεST
− (1− τ) >

εSL − (1 − τ) > 0. Thus, the sum of the second and third terms is also positive in a WGC. We also
showed that dTdp is negative, and UT is negative, which means that welfare always increases with
price increases in WGCs.

For revenue, note that dRdp = τ
(
Q+ p∂Q∂p

)
. This is positive whenever ∂Q∂p > 0, which is the case

in a WGC by Proposition 1. For drivers’ surplus, note that given drivers’ equilibrium equation
C ′(L) = (1 − τ)pQ, we can write RS = LC ′(L) −C(L). Differentiating this with respect to prices
yields dDS

dp = LC ′′(L)dLdp , which is positive in a WGC.
For riders’ surplus, dDSdp = UT

dT
dp − (UQ − p)dQdp −Q. The term in the middle cancels out,

which yields the expression in the proposition.
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B.6 Proof of Proposition 4

Proof. Welfare maximization can be written as maxU(Q, T(Q,L)) −C(L). The first order con-
ditions are UQ +UTTQ = 0 and UTTL −C ′(L) = 0. Noting that UQ = p and C ′(L) = p ′QL and
substituting elasticities for derivatives yields the desired expressions.

For revenue maximization, we want to solve maxQ(p(Q,L) − p ′(Q,L)). The first order
conditions are then p − p ′ +QpQ = 0 and pL = p ′L. Note from dQ = Qpdp +QTdT that
dp
dQ = 1

Qp
− ũTTQ and dp

dL = −ũTTL. Also note, from the total differential of LC ′(L) = p ′Q, that
dp ′

dQ = −p ′

Q and dp
dL =

(
1 + 1

εl

)
p ′

L . Substituting these expressions in the FOCs and some algebra
steps yield the desired expressions.

B.7 Proof of proposition 6

Proof. First, let f(x) = T−1(x) (which we can no longer call I because the effective density is
I+ qB1). Note that I = f(T) − qB1. Some algebra from (17)-(19) leads to the following solution
for Q from a quadratic equation:

Q =
qL− t+T

t f(T)±
√

(1 − 2q)f(T)2 + L2q2 +
2f(T)
t ((1 − 2q)f(T) + qL)T + T2

t2
f(T)2

q(t+ 2T)
(21)

The highest solution is evidently the one with the positive sign for the square root. Let this
solution be S(T ,L).

Note that, as T → 0, f(T)→∞ and Tf(T)→ 0. This implies that 1
S(T ,L)

−f(T)+
√

(1−2q)f(T)2

q(t+2T) → 1,
which means that S(T ,L) is negative for low enough T .

Not also that, as T → ∞, f(T) → 0 and Tf(T) → ∞. This implies that 1
S(T ,L)

2L
t+2T → 1,

which means that S(T ,L) is positive for high enough T , and this proves the second part of the
proposition.

Continuity of S(T ,L) implies that there is at least one T such that S(T ,L) = 0. By plugging
in the system of equations, it is evident that it takes place at I = L, B1 = B2 = 0, which implies
T = T(L). This means that there can only be one solution with zero Q, and this implies the first
part of the proposition. And since there is only one root, it cannot be that the lower solution
ever becomes positive, which proves that there is at most one positive solution.

Appendix C Details of calibration by hour of the week

Figure 15 shows the behavior of the observable market quantities used to fit the model in section
5.2.2.

44



20

40

60

80

M T W T F S S

Hour of week

D
ri

v
e

rs
 w

o
rk

in
g

 (
/k

m
^2

)

(a) Labor supply (L)

50

100

150

M T W T F S S

Hour of week

T
ri

p
s
 c

o
m

p
le

te
d

 (
/k

m
^2

 h
)

(b) Number of trips (Q)

10

15

20

25

M T W T F S S

Hour of week

A
v
g

. 
s
p

e
e

d
 (

k
m

/h
)

(c) Average speed (v)

4

6

8

10

M T W T F S S

Hour of week

A
v
g

. 
tr

ip
 le

n
g

th
 (

k
m

)

(d) Average trip length

15

18

21

24

27

M T W T F S S

Hour of week

A
v
g

. 
tr

ip
 d

u
ra

tio
n

 (
m

in
s
)

(e) Average trip duration (t)

1.0

1.2

1.4

1.6

M T W T F S S

Hour of week

A
v
g

. 
s
u

rg
e

 m
u

lti
p

lie
r

(f) Average surge multiplier (p)

Figure 15: Market characteristics across different times of the week. Labels for the day of the
week represent noon for any given day.
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