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We interpret recent developments in the field of artificial intelligence (AI) as 
improvements in prediction technology. In this paper, we explore the consequences of 
improved prediction in decision-making. To do so, we adapt existing models of 
decision-making under uncertainty to account for the process of determining payoffs. 
We label this process of determining the payoffs ‘judgment.’ There is a risky action, 
whose payoff depends on the state, and a safe action with the same payoff in every 
state. Judgment is costly; for each potential state, it requires thought on what the payoff 
might be. Prediction and judgment are complements as long as judgment is not too 
difficult. We next consider a tradeoff between prediction frequency and accuracy. We 
show that as judgment improves, accuracy becomes more important relative to 
frequency. We show that in complex environments with a large number of potential 
states, the effect of improvements in prediction on the importance of judgment depend 
a great deal on whether the improvements in prediction enable automated decision-
making. We discuss the implications of improved prediction in the face of complexity 
for automation, contracts, and firm boundaries. 
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1 Introduction 

There is widespread discussion regarding the impact of machines on employment (see Autor, 

2015). In some sense, the discussion mirrors a long-standing literature on the impact of the 

accumulation of capital equipment on employment; specifically, whether capital and labor are 

substitutes or complements (Acemoglu, 2003). But the recent discussion is motivated by the 

integration of software with hardware and whether the role of machines goes beyond physical tasks 

to mental ones as well (Brynjolfsson and McAfee, 2014). As mental tasks were seen as always 

being present and essential, human comparative advantage in these was seen as the main reason 

why, at least in the long term, capital accumulation would complement employment by enhancing 

labour productivity in those tasks.  

The computer revolution has blurred the line between physical and mental tasks. For 

instance, the invention of the spreadsheet in the late 1970s fundamentally changed the role of book-

keepers. Prior to that invention, there was a time intensive task involving the recomputation of 

outcomes in spreadsheets as data or assumptions changed. That human task was substituted by the 

spreadsheet software that could produce the calculations more quickly, cheaply, and frequently. 

However, at the same time, the spreadsheet made the jobs of accountants, analysts, and others far 

more productive. In the accounting books, capital was substituting for labour but the mental 

productivity of labour was being changed. Thus, the impact on employment critically depended 

on whether there were tasks the “computers cannot do.” 

These assumptions persist in models today. Acemoglu and Restrepo (2017) observe that 

capital substitutes for labour in certain tasks while at the same time technological progress creates 

new tasks. They make what they call a “natural assumption” that only labour can perform the new 

tasks as they are more complex than previous ones.1 Benzell, LaGarda, Kotlikoff, and Sachs (2015) 

consider the impact of software more explicitly. Their environment has two types of labour – high-

tech (who can, among other things, code) and low-tech (who are empathetic and can handle 

interpersonal tasks). In this environment, it is the low-tech workers who cannot be replaced by 

machines while the high-tech ones are employed initially to create the code that will eventually 

displace their kind. The results of the model depend, therefore, on a class of worker who cannot 

																																																								
1 To be sure, their model is designed to examine how automation of tasks causes a change in factor prices that biases 
innovation towards the creation of new tasks that labour is more suited to.  
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be substituted directly for capital but also on the inability of workers themselves to substitute 

between classes. 

In this paper, our approach is to delve into the weeds of what is happening currently in the 

field of artificial intelligence (AI). The recent wave of developments in artificial intelligence (AI) 

all involve advances in machine learning. Those advances allow for automated and cheap 

prediction; that is, providing a forecast (or nowcast) of a variable of interest from available data. 

In some cases, prediction has enabled full automation of tasks – for example, self-driving vehicles 

where the process of data collection, prediction of behavior and surroundings, and actions are all 

conducted without a human in the loop. In other cases, prediction is a standalone tool – such as 

image recognition or fraud detection – that may or may not lead to further substitution of human 

users of such tools by machines. Thusfar, substitution between humans and machines has focused 

mainly on cost considerations. Are machines cheaper, more reliable, and more scalable (in their 

software form) than humans? This paper, however, considers the role of prediction in decision-

making explicitly and from that examines the complementary skills that may be matched with 

prediction within a task. 

Our focus, in this regard, is on what we term judgment. While judgment is a term with broad 

meaning, here we use it to refer to a very specific skill. To see this, consider a decision. That 

decision involves choosing an action, x, from a set, X. The payoff (or reward) from that action is 

defined by a function, 𝑢(𝑥, 𝜃) where q is a realization of an uncertain state drawn from a 

distribution, F(q). Suppose that, prior to making a decision, a prediction (or signal), s, can be 

generated that results in a posterior, 𝐹(𝜃 𝑠). Thus, the decision-maker would solve: 

max,∈. 𝑢(𝑥, 𝜃)𝑑𝐹(𝜃 𝑠) 

In other words, a standard problem of choice under uncertainty. In this standard world, the role of 

prediction is to improve decision-making. The payoff, or utility function, is known. 

To create a role for judgment we depart from this standard set-up and ask how a decision-

maker comes to know the function, 𝑢(𝑥, 𝜃)? We assume that this is not simply given or a primitive 

of the decision-making model. Instead, it requires a human to undertake a costly process that 

allows the mapping from (𝑥, 𝜃) to a particular payoff value, u, to be discovered. This is a 

reasonable assumption given that beyond some rudimentary experimentation in closed 
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environments, there is no current way for an AI to impute a utility function that resides with 

humans. Additionally, this process separates the costs of providing the mapping for each pair, 

(𝑥, 𝜃). (Actually, we focus, without loss in generality, on situations where 𝑢(𝑥, 𝜃) ≠ 𝑢(𝑥) for all 

q and presume that if a payoff to an action is state independent that payoff is known). In other 

words, while prediction can obtain a signal of the underlying state, judgment is the process by 

which the payoffs from actions that arise based on that state can be determined. We assume that 

this process of determining payoffs requires human understanding of the situation: It is not a 

prediction problem.  

For intuition on the difference between prediction and judgment, consider the example of 

credit card fraud. A bank observes a credit card transaction. That transaction is either legitimate or 

fraudulent. The decision is whether to approve the transaction. If the bank knows for sure that the 

transaction is legitimate, the bank will approve it. If the bank knows for sure that it is fraudulent, 

the bank will refuse the transaction. Why? Because the bank knows the payoff of approving a 

legitimate transaction is higher than the payoff of refusing that transaction. Things get more 

interesting if the bank is uncertain about whether the transaction is legitimate. The uncertainty 

means that the bank also needs to know the payoff from refusing a legitimate transaction and from 

approving a fraudulent transaction. In our model, judgment is the process of determining these 

payoffs. It is a costly activity, in the sense that it requires time and effort.  

As the new developments regarding AI all involve making prediction more readily available, 

we ask, how does judgment and its endogenous application change the value of prediction? Are 

prediction and judgment substitutes or complements? How does the value of prediction change 

monotonically with the difficulty of applying judgment? In complex environments (as they relate 

to automation, contracting, and the boundaries of the firm), how do improvements in prediction 

affect the value of judgment?  

We proceed by first providing supportive evidence for our assumption that recent 

developments in AI overwhelmingly impact the costs of prediction. We then use the example of 

radiology to provide a context for understanding the different roles of prediction and judgment. 

Drawing inspiration from Bolton and Faure-Grimaud (2009), we then build the baseline model 

with two states of the world and uncertainty about payoffs to actions in each state. We explore the 

value of judgment in the absence of any prediction technology, and then the value of prediction 
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technology when there is no judgment. We finish the discussion of the baseline model with an 

exploration of the interaction between prediction and judgment, demonstrating that prediction and 

judgment are complements as long as judgment isn’t too difficult. We then separate prediction 

quality into prediction frequency and prediction accuracy. As judgment improves, accuracy 

becomes more important relative to frequency. Finally, we examine complex environments where 

the number of potential states is large. Such environments are common in economic models of 

automation, contracting, and boundaries of the firm. We show that the effect of improvements in 

prediction on the importance of judgment depend a great deal on whether the improvements in 

prediction enable automated decision-making. 

2 AI and Prediction Costs 

We argue that the recent advances in artificial intelligence are advances in the technology of 

prediction. Most broadly, we define prediction as the ability to take known information to generate 

new information. Our model emphasizes prediction about the state of the world.  

Most contemporary artificial intelligence research and applications come from a field now 

called “machine learning.” Many of the tools of machine learning have a long history in statistics 

and data analysis, and are likely familiar to economists and applied statisticians as tools for 

prediction and classification.2 For example, Alpaydin’s (2010) textbook Introduction to Machine 

Learning covers maximum likelihood estimation, Bayesian estimation, multivariate linear 

regression, principal components analysis, clustering, and nonparametric regression. In addition, 

it covers tools that may be less familiar, but also use independent variables to predict outcomes: 

Regression trees, neural networks, hidden Markov models, and reinforcement learning. Hastie, 

Tibshirani, and Friedman’s (2009) The Elements of Statistical Learning covers similar topics. The 

2014 Journal of Economic Perspectives symposium on big data covered several of these less 

familiar prediction techniques in articles by Varian (2014) and Belloni, Chernozhukov, and 

Hansen (2014).  

While many of these prediction techniques are not new, recent advances in computer speed, 

data collection, data storage, and the prediction methods themselves have led to substantial 

																																																								
2 We define prediction as known information to generate new information. Therefore, classification techniques such 
as clustering are prediction techniques in which the new information to be predicted is the appropriate category or 
class. 
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improvements. These improvements have transformed the computer science research field of 

artificial intelligence. The Oxford English Dictionary defines artificial intelligence as “[t]he theory 

and development of computer systems able to perform tasks normally requiring human 

intelligence.” In the 1960s and 1970s, artificial intelligence research was primarily rules-based, 

symbolic logic. It involved human experts generating rules that an algorithm could follow 

(Domingos 2015, p. 89). These are not prediction technologies. Such systems became very good 

chess players and they guided factory robots in highly controlled settings; however, by the 1980s, 

it became clear that rules-based systems could not deal with the complexity of many non-artificial 

settings. This led to an “AI winter” in which research funding artificial intelligence projects largely 

dried up (Markov 2015).  

Over the past 10 years, a different approach to artificial intelligence has taken off. The idea 

is to program computers to “learn” from example data or experience. In the absence of the ability 

to pre-determine the decision rules, a data-driven prediction approach can conduct many mental 

tasks. For example, humans are good at recognizing familiar faces, but we would struggle to 

explain and codify this skill. By connecting data on names to image data on faces, machine learning 

solves this problem by predicting which image data patterns are associated with which names. As 

a prominent artificial intelligence researcher put it, “Almost all of AI’s recent progress is through 

one type, in which some input data (A) is used to quickly generate some simple response (B)” (Ng 

2016). Thus, the progress is explicitly about improvements in prediction. In other words, the suite 

of technologies that have given rise to the recent resurgence of interest in artificial intelligence use 

data collected from sensors, images, videos, typed notes, or anything else that can be represented 

in bits to fill in missing information, recognize objects, or forecast what will happen next.  

To be clear, we do not take a position on whether these prediction technologies really do 

mimic the core aspects of human intelligence. While Palm Computing founder Jeff Hawkins 

argues that human intelligence is — in essence — prediction (Hawkins 2004), many 

neuroscientists, psychologists, and others disagree. Our point is that the technologies that have 

been given the label artificial intelligence are prediction technologies. Therefore, in order to 

understand the impact of these technologies, it is important to assess the impact of prediction on 

decisions. 



	 7	

3 Case: Radiology  

Before proceeding to the model, we provide some intuition of how prediction and judgment 

apply in a particular context where prediction machines are expected to have a large impact: 

radiology. In 2016, Geoff Hinton – one of the pioneers of deep learning neutral networks – stated 

that it was no longer worth training radiologists. His strong implication was that radiologists would 

not have a future. This is something that radiologists have been concerned about since 1960 

(Lusted, 1960). Today, machine learning techniques are being heavily applied in radiology by IBM 

using its Watson computer and by a start-up, Enlitic. Enlitic has been able to use deep learning to 

detect lung nodules (a fairly routine exercise3) but also fractures (which is more complex). Watson 

can now identify pulmonary embolism and some other heart issues. These advances are at the heart 

of Hinton’s forecast but have also been widely discussed amongst radiologists and pathologists 

(Jha and Topol, 2016). What does the model in this paper suggest about the future of radiologists? 

If we consider a simplified characterization of the job of a radiologist it would be that they 

examine an image in order to characterize and classify that image and return an assessment to a 

physician. While often that assessment is a diagnosis (i.e., “the patient has pneumonia”), in many 

cases, the assessment is in the negative (i.e., “pneumonia not excluded”). In that regard, this is 

stated as a predictive task to inform the physician of the likelihood of the state of the world. Using 

that, the physician can devise a treatment. 

These predictions are what machines are aiming to provide. In particular, it might provide a 

differential diagnosis of the following kind: 

Based on Mr Patel's demographics and imaging, the mass in the liver has a 66.6% 

chance of being benign, 33.3% chance of being malignant, and a 0.1% of not being 

real. 4 

The action is whether some intervention is needed. For instance, if a potential tumor is identified 

in a non-invasive scan, then this will inform whether an invasive examination will be conducted. 

In terms of identifying the state of the world, the invasive exam is costly but safe – it can deduce 

a cancer with certainty and remove it if necessary. The role of a non-invasive exam is to inform 

																																																								
3 "You did not go to medical school to measure lung nodules." http://www.medscape.com/viewarticle/863127#vp_2  
4 http://www.medscape.com/viewarticle/863127#vp_3  
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whether an invasive exam should be forgone. That is, it is to make physicians more confident about 

abstaining from treatment and further analysis. In this regard, if the machine improves prediction, 

it will lead to fewer invasive examinations. 

Judgment involves understanding the payoffs. What is the payoff to conducting a biopsy if 

the mass is benign, malignant, or not real? What is the payoff to not doing anything in those three 

states? The issue for radiologists in particular is whether a trained specialist radiologist is in the 

best position to make this judgment or will it occur further along the chain of decision-making or 

involve new job classes that merge diagnostic information such as a combined 

radiologist/pathologist (Jha and Topol, 2016). Next we formalize these ideas. 

4 Baseline Model 

Our baseline model is inspired by the “bandit” environment considered by Bolton and Faure-

Grimaud (2009) although it departs significantly in the questions addressed and base assumptions 

made. Like them, in our baseline model, we suppose there are two states of the world, {𝜃2, 𝜃3} 

with prior probabilities of {𝜇, 1 − 𝜇}. There are two possible actions: a state independent action 

with known payoff of S (safe) and a state dependent action with two possible payoffs, R or r as the 

case may be (risky).  

As noted in the introduction, a key departure from the usual assumptions of rational decision-

making is that the decision-maker does not know the payoff from the risky action in each state and 

must apply judgment to determine that payoff.5 Moreover, decision-makers need to be able to make 

a judgment for each state that might arise in order to formulate a plan that would be the equivalent 

of payoff maximization. In the absence of such judgment, the ex ante expectation that the risky 

action is optimal in any state is 𝑣. To make things more concrete, we assume 𝑅 > 𝑆 > 𝑟.6 Thus, 

																																																								
5 Bolton and Faure-Grimaud (2009) consider this step to be the equivalent of a thought experiment where thinking 
takes time. To the extent that our results can be interpreted as a statement about the comparative advantage of humans, 
we assume that only humans can do judgment.  
6 Thus, we assume that the payoff function, u, can only take one of three values, {R, r, S}. The issue is which 
combinations of state realization and action lead to which payoffs. However, we assume that S is the payoff from the 
safe action regardless of state and so this is known to the decision-maker. As it is the relative payoffs from actions 
that drive the results, this assumption is without loss in generality. Requiring this property of the safe action to be 
discovered would just add an extra cost. Implicitly, as the decision-maker cannot make a decision in complete 
ignorance, we are assuming that the safe action’s payoff can be judged at an arbitrarily low cost. 
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we assume that 𝑣 is the probability in any state that the risky payoff is R rather than r. This is not 

a conditional probability of the state. It is a statement about the payoff, given the state.  

In the absence of knowledge regarding the specific payoffs from the risky action, a decision 

can only be made on the basis of prior probabilities. Then the safe action will be chosen if: 

𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 = 𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆 

So that the payoff is: 𝑉A = max	{𝑣𝑅 + 1 − 𝑣 𝑟, 𝑆}. To make things simpler, we will focus our 

attention on the case where the safe action is – in the absence of prediction or judgment – the 

default. That is, we assume that: 

A1 (Safe Default) 𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆  

This assumption is made for simplicity only and will not change the qualitative conclusions 

below.7 Under A1, in the absence of knowledge of the payoff function or a signal of the state, the 

decision-maker would choose S.  

Judgment in the absence of prediction 

Prediction provides knowledge of the state. The process of judgment provides knowledge of 

the payoff function. Judgment therefore allows the decision-maker to understand which action is 

optimal for a given state should it arise. Suppose that this knowledge is gained without cost (as it 

would be assumed to do under the usual assumptions of economic rationality). In other words, the 

decision-maker has knowledge of optimal action in a given state. Then the risky action will be 

chosen (1) if it is the preferred action in both states (which arises with probability 𝑣3); (2) if it is 

the preferred action in 𝜃2 but not 𝜃3 and 𝜇𝑅 + 1 − 𝜇 𝑟 > 𝑆 (with probability 𝑣 1 − 𝑣 ); or (3) if 

it is the preferred action in 𝜃3 but not 𝜃2 and 𝜇𝑟 + 1 − 𝜇 𝑅 > 𝑆 (with probability 𝑣 1 − 𝑣 ). 

Thus, the expected payoff is:  

𝑣3𝑅 + 𝑣 1 − 𝑣 max 𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆 + 𝑣 1 − 𝑣 max 𝜇𝑟 + 1 − 𝜇 𝑅, 𝑆 + 1 − 𝑣 3𝑆 

Note that this is greater than 𝑉A. The reason for this is that, when there is uncertainty, judgment is 

valuable because it can identify actions that are dominant or dominated – that is, that might be 

																																																								
7 Bolton and Faure-Grimaud (2009) make the opposite assumption. Here, as our focus is on the impact of prediction, 
it is better to consider environments where prediction has the effect of reducing uncertainty over riskier actions. 
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optimal across states. In this situation, any resolution of uncertainty does not matter as it will not 

change the decision made.  

A key insight is that judgment itself can be consequential. 

Result 1. If max	{𝜇𝑅 + 1 − 𝜇 𝑟, 𝜇𝑟 + 1 − 𝜇 𝑅	} > 𝑆, it is possible that judgment alone can 
cause the decision to switch from the default action (safe) to the alternative action (risky).  

As we are motivated by understanding the interplay between prediction and judgment, we want to 

make these consequential. Therefore, we make the following assumption to ensure prediction 

always has some value: 

A2 (Judgment Insufficient) max	{𝜇𝑅 + 1 − 𝜇 𝑟, 𝜇𝑟 + 1 − 𝜇 𝑅} ≤ 𝑆  

Under this assumption, if different actions are optimal in each state and this is known, the decision-

maker will not change to the risky action. This, of course, implies that the expected payoff is: 

𝑣3𝑅 + (1 − 𝑣3)𝑆 

Note that, absent any cost, full judgment improves the decision-maker’s expected payoff. 

Judgment does not come for free. We assume here that it takes time (although the 

formulation would naturally match with the notion that it takes costly effort). Suppose the discount 

factor is d < 1. A decision-maker can spend time in a period determining what the optimal action 

is for a particular state. If they choose to apply judgment with respect to state 𝜃D, then there is a 

probability 𝜆D that they will determine the optimal action in that period and can make a choice 

based on that judgment. Otherwise, they can choose to apply judgment to that problem in the next 

period.  

It is useful, at this point, to consider what judgment means once it has been applied. The 

initial assumption we make here is that the knowledge of the payoff function depreciates as soon 

as a decision is made. In other words, applying judgment can delay a decision (and that is costly) 

and it can improve that decision (which is its value) but it cannot generate experience that can be 

applied to other decisions (including future ones). In other words, the initial conception of 

judgment is the application of thought rather than the gathering of experience. Practically, this 

reduces our examination to a static model. However, in a later section, we consider the experience 

formulation and demonstrate that most of the insights of the static model carry over to the dynamic 

model. 
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In summary, the timing of the game is as follows: 

1. At the beginning of a decision stage, the decision-maker chooses whether to apply 

judgment and to what state or whether to simply choose an action without judgment. 

If an action is chosen, uncertainty is resolved and payoffs are realized and we move 

to a new decision stage. 

2. If judgment is chosen, with probability, 1 − 𝜆D, they do not find out the payoffs for 

the risky action in that state, a period of time elapses and the game moves back to 1. 

With probability 𝜆D, the decision-maker gains this knowledge. The decision-maker 

can then take an action, uncertainty is resolved and payoffs are realized, and we move 

to a new decision stage (back to 1). If no action is taken, a period of time elapses and 

the current decision stage continues. 

3. The decision-maker chooses whether to apply judgment to the other state or whether 

to choose an action without further judgment. If an action is chosen, uncertainty is 

resolved and payoffs are realized and we move to a new decision stage (back to 1). 

4. If judgment is chosen, with probability, 1 − 𝜆FD, they do not find out the payoffs for 

the risky action in that state, a period of time elapses and the game moves back to 1. 

With probability 𝜆FD, the decision-maker gains this knowledge. The decision-maker 

then chooses an action, uncertainty is resolved and payoffs are realized and we move 

to a new decision stage (back to 1).  

When prediction is available, it will become available prior to the beginning of a decision stage. 

The various parameters are listed in Table 1. 

Table 1: Model Parameters 

Parameter Description 
S Known payoff from the safe action 
R Potential payoff from the risky action in a given state 
r Potential payoff from the risky action in a given state 
𝜃D Label of state 𝑖 ∈ {1,2} 
m Probability of state 1 
𝑣 Prior probability that the payoff in a given state is R 
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𝜆D 
Probability that decision-maker learns the payoff to the risky action 𝜃D if 
judgment is applied for one period 

d Discount factor 
 

Suppose that the decision-maker focusses on judging the optimal action (i.e., assessing the 

payoff) for 𝜃D. Then the expected present discount payoff from applying judgment is: 

𝜆D 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝜆D 𝛿𝜆D 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝜆D J𝛿J𝜆D 𝑣𝑅 + 1 − 𝑣 𝑆
K

JL3

 

=
𝜆D

1 − 1 − 𝜆D 𝛿
𝑣𝑅 + 1 − 𝑣 𝑆  

The decision-maker eventually can learn what to do and will earn a higher payoff than without 

judgment but will trade this off against a delay in the payoff. 

This calculation presumes that the decision-maker knows the state--that 𝜃D is true—prior to 

engaging in judgment. If this is not the case, then the expected present discounted payoff to 

judgment on, say, 𝜃2 alone is: 

𝜆2
1 − 1 − 𝜆2 𝛿

max	{𝑣 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟

+ 1 − 𝑣 𝜇𝑟 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆}

=
𝜆2

1 − 1 − 𝜆2 𝛿
max	{𝑣 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆} + 1 − 𝑣 𝑆  

where the last step follows from (A1). To make exposition simpler, we suppose that 𝜆2 = 𝜆3 = 𝜆. 

In addition, let 𝜆 = M
NO NOM P.	 𝜆	can be given a similar interpretation to 𝜆, the quality of judgment.  

If the strategy were to apply judgment on one state only and then make a decision, this would 

be the relevant payoff to consider. However, because judgment is possible in both states, there are 

several cases to consider.  

First, the decision-maker might apply judgment to both states in sequence. In this case, the 

expected present discounted payoff is: 

𝜆3 𝑣3𝑅 + 𝑣 1 − 𝑣 max 𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆 + 𝑣 1 − 𝑣 max 𝜇𝑟 + 1 − 𝜇 𝑅, 𝑆 + 1 − 𝑣 3𝑆

= 𝜆3 𝑣3𝑅 + 1 − 𝑣3 𝑆  
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where the last step follows from (A1).  

Second, the decision-maker might apply judgment to, say,	𝜃2 first and then, contingent on 

the outcome there, apply judgment to 𝜃3. If the decision-maker chooses to pursue judgment on 𝜃3 

if the outcome for 𝜃2 is that the risky action is optimal, the payoff becomes: 

𝜆 𝑣𝜆 𝑣𝑅 + 1 − 𝑣 max	{𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆} + 1 − 𝑣 max	{𝜇𝑟

+ 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆} = 𝜆 𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝑣 𝑆  

If the decision-maker chooses to pursue judgment on 𝜃3 after determining that the outcome for 𝜃2 

is that the safe action is optimal, the payoff becomes: 

𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝜆(𝑣max	{𝜇𝑟 + (1 − 𝜇)𝑅, 𝑆}

+ 1 − 𝑣 𝑆) = 𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝜆𝑆  

Note that this is option is dominated by not applying further judgment at all if the outcome for 𝜃2 

is that the safe action is optimal.  

Given this we can prove the following: 

Proposition 1. Under A1, and A2, and in the absence of any signal about the state, (a) judging 
both states and (b) continuing after the discovery that the safe action is preferred in a state are 
never optimal. 

PROOF: Note that judging two states is optimal if: 

𝜆 >
𝑆

𝑣max 𝜇𝑟 + 1 − 𝜇 𝑅, 𝑆 + 1 − 𝑣 𝑆 

𝜆 >
𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟

𝑣𝑅 + 1 − 𝑣 max 𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆  

As (A2) implies that 𝜇𝑟 + 1 − 𝜇 𝑅 ≤ 𝑆, the first condition reduces to 𝜆 > 1. Thus, (a) 
judging two states is dominated by judging one state and continuing to explore only if the 
risky is found to be optimal in that state. 
Turning to the strategy of continuing to apply judgment only if the safe action is found to 
be preferred in a state, we can compare this to the payoff from applying judgment to one 
state and then acting immediately. Note that: 

𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝜆𝑆
> 𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆  

This can never hold proving that (b) is dominated. 
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The intuition is similar to Propositions 1 and 2 in Bolton and Faure-Grimaud (2009). In particular, 

applying judgment is only useful if it is going to lead to the decision-maker switching to the risky 

action. Thus, it is never worthwhile to unconditionally explore a second state as it may not change 

the action taken. Similarly, if judging one state leads to knowledge the safe action continues to be 

optimal in that state, in the presence of uncertainty about the state, even if knowledge is gained of 

the payoff to the risky action in the second state, that action will never be chosen. Hence, further 

judgment is not worthwhile. Hence, it is better to choose immediately at that point rather than 

delay the inevitable. 

Given this proposition, there are only two strategies that are potentially optimal (in the 

absence of prediction). One strategy (we will term here J1) is where judgment is applied to one 

state and if the risky action is optimal, then that action is taken immediately; otherwise the safe 

default is taken immediately. The state where judgment is applied first is the state most likely to 

arise. This will be state 1 if 𝜇 > N
Q. This strategy might be chosen if: 

𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆 > 𝑆 

⟹ 𝜆 > 𝜆S2 ≡
𝑆

𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆 

which clearly requires that 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 > 𝑆. 

The other strategy (we will term here J2) is where judgment is applied to one state and if the 

risky action is optimal, then judgment is applied to the next state; otherwise the safe default is 

taken immediately. Note that J2 is preferred to J1 if: 

𝜆 𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝑣 𝑆 > 𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆

⟹ 𝜆𝑣 𝑣𝑅 + 1 − 𝑣 𝑆 > 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆  

⟹ 𝜆 >
max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆

𝑣𝑅 + 1 − 𝑣 𝑆  

This is intuitive. Basically, it is only when the efficiency of judgment is sufficiently high, that more 

judgment is applied. However, for this inequality to be relevant, J2 must also be preferred to the 

status quo yielding a payoff of S. Thus, J2 is not dominated if:  
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𝜆 > 𝜆S3

≡ max	{
max 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆

𝑣𝑅 + 1 − 𝑣 𝑆 ,
𝑆 4𝑣3𝑅 + 𝑆 1 + 2𝑣 − 3𝑣3 − 1 − 𝑣 𝑆

2𝑣 𝑣𝑅 + 1 − 𝑣 𝑆 } 

where the first term is the range where J2 dominates J1 while the second term is where J2 

dominates S alone; so for J2 to be optimal it must exceed both. Note also that as 𝜇 → XOY
ZOY		(its 

highest possible level consistent with A1 and A2), then 𝜆S3 → 1.  

If 𝜇𝑅 + (1 − 𝜇)(𝑣𝑅 + 1 − 𝑣 𝑟) > 𝑆, note that: 

𝜆S3 > 𝜆S2 ⟹
𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟

𝑣𝑅 + 1 − 𝑣 𝑆 >
𝑆

𝑣 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 + 1 − 𝑣 𝑆

⟹ (1 − 𝑣)𝑆(𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 − 𝑆)

> 𝑣(𝑅𝑆 − 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 3) 

which may not hold for v sufficiently high. However, it can be shown that when 𝜆S3 = 𝜆S2, then 

the two terms of 𝜆S3 are equal and the second term exceeds the first when 𝜆S3 < 𝜆S2. This implies 

that in the range where 𝜆S3 < 𝜆S2, J2 dominates J1. 

This analysis implies there are two types of regimes with judgment only. If 𝜆S3 > 𝜆S2, then 

easier decisions (with high 𝜆) involve using J2, the next tranche of decisions use J1 (with 

intermediate 𝜆) while the remainder involves no exercise of judgment at all. On the other hand, if 

𝜆S3 < 𝜆S2, then the easier decisions involve using J2 while the remainder do not involve judgment 

at all.  

Prediction in the absence of judgment 

Next, we consider the model with prediction but no judgment. Suppose that there exists an 

AI that can, if deployed, identify the state prior to a decision being made. In other words, 

prediction, if it occurs, is perfect; an assumption we will relax in a later section. Initially, suppose 

there is no judgment mechanism to determine what the optimal action is in each state. 

Recall that, in the absence of prediction or judgment, (A1) ensures that the safe action will 

be chosen. If the decision-maker knows the state, then the risky action in a given state is chosen 

if: 
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𝑣𝑅 + 1 − 𝑣 𝑟 > 𝑆 

This contradicts A1. Thus, the expected payoff is: 

𝑉\ = 𝑆 

which is the same outcome if there is no judgment or prediction.  

Prediction and judgment together 

Both prediction and judgment can be valuable on their own. The question we next wish to 

consider is whether they are complements or substitutes.  

While perfect prediction allows you to choose an action based on the actual rather than 

expected state, it also affords the same opportunity with respect to judgment. As judgment is costly, 

it is useful not to waste considering what action might be taken in a state that does not arise. This 

was not possible when there was no prediction. But if you receive a prediction regarding the state, 

you can then apply judgment exclusively to actions in relation to that state. To be sure, that 

judgment still involves a cost but at the same time does not lead to any wasted cognitive resources. 

Given this, if the decision-maker were the apply judgment after the state is predicted, their 

expected discounted payoff would be: 

𝑉\S = max	{𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 , 𝑆} 

This represents the highest expected payoff possible (net of the costs of judgment). A necessary 

condition for both prediction and judgment to be optimal is that: 𝜆 ≥ 𝜆\S ≡ X
^Z_ NO^ X. Note that 

𝜆\S ≤ 𝜆S2,	𝜆S3. 

Complements or substitutes? 

To evaluate whether prediction and judgment are complements or substitutes we adopt the 

following parameterization for the effectiveness of prediction: we assume that with probability e, 

an AI yields a prediction while otherwise, the decision must be made in its absence (with judgment 

only). With this parameterization, we can prove the following. 

Proposition 2. In the range of l where 𝜆 < 𝜆S3, e and l are complements, otherwise they are 
substitutes. 

PROOF: Step 1: Is 𝜆S3 >
`

3 a`b 2Fa c
? First, note that: 
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max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆
𝑣𝑅 + 1 − 𝑣 𝑆 >

𝑅
2(𝑣𝑅 + 1 − 𝑣 𝑆)

⟹ max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 > 2
3
𝑅 

Note that by (A2) and since 𝜇 > N
Q, 𝑆 > 𝜇𝑅 + 1 − 𝜇 𝑟 > N

Q𝑅 so this inequality always holds. 

Second, note that: 

𝑆 4𝑣3𝑅 + 𝑆 1 + 2𝑣 − 3𝑣3 − 1 − 𝑣 𝑆

2𝑣 𝑣𝑅 + 1 − 𝑣 𝑆 >
𝑅

2 𝑣𝑅 + 1 − 𝑣 𝑆
⟹ 𝑆 4𝑣3𝑅 + 𝑆 1 + 2𝑣 − 3𝑣3 > 𝑣𝑅 + 1 − 𝑣 𝑆 3 ⟹ 𝑆 𝑆 − 2𝑅
> 𝑣(𝑅3 − 6𝑅𝑆 + 𝑆3) 

which holds as the left-hand side is always positive while the right-hand side is always 
negative.  

Step 2: Suppose that 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆, then J1 is never optimal. In 
this case, the expected payoff is: 

𝑒𝑉\S + 1 − 𝑒 𝑉S3 = 𝑒𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + (1 − 𝑒)𝜆 𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝑣 𝑆  

This mixed partial derivative with respect to (𝑒, 𝜆) is 𝑣(𝑅 − 2𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 ). This is 
positive if Z

Q ^Z_ NO^ X ≥ 𝜆. By step 1, this implies that for 𝜆 < 𝜆S3, prediction and judgment 
are complements, otherwise they are substitutes. 

Step 3: Suppose that that 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 > 𝑆. Note that for 𝜆S2 < 𝜆 < 𝜆S3, 
J1 is preferred to J2. In this case, the expected payoff to prediction and judgment is: 

𝑒𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + (1 − 𝑒)𝜆 𝑣max 𝜇𝑅 + (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆  

This mixed partial derivative with respect to (𝑒, 𝜆) is 𝑣 𝑅 −max 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 +
1 − 𝑣 𝑟 , 𝑆 > 0. By step 1, this implies that for 𝜆 < 𝜆S3, prediction and judgment are 

complements, otherwise they are substitutes. 
 

The intuition is as follows. When 𝜆 < 𝜆S3, then, in the absence of prediction either no judgment is 

applied or, alternatively, strategy J1 (with one round of judgment) is optimal. e parameterizes the 

degree of difference between the expected value with both prediction and judgment and the 

expected value without prediction with an increase in l, increasing both. However, with one round 

of judgment, the increase when judgment is used alone is less than that when both are used 

together. Thus, when 𝜆 < 𝜆S3 prediction and judgment are complements.   

By contrast, when 𝜆 > 𝜆S3, then strategy J2 (with two rounds of judgment) is used in the 

absence of prediction. In this case, increasing l increases, the expected payoff from judgment alone 

increases disproportionately more because judgment is applied on both states whereas under 
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prediction and judgment it is only applied on one. Thus, improving the quality of judgment reduces 

the returns to prediction. And so, when 𝜆 > 𝜆S3 prediction and judgment are substitutes. 

5 Prediction Reliability and Judgment 

Designers of AI have an important decision. Do they emphasize the extensive margin 

(returning a prediction) versus the intensive margin (the reliability of predictions)? Should they 

emphasize reliability at the expense of having fewer predictions, or emphasize the number of 

predictions at the expense of reliability?  

In particular, we continue to assume that with probability e, an AI yields a prediction while 

otherwise, the decision must be made in its absence. We also assume that if an AI predicts a state 

𝜃D, there is a probability (a), independent of the probability a state arises, that it is reliable. 

Otherwise, with probability 1 – a, the state predicted is not the state that will actually arise. 

We suppose it is the case that if you want a prediction to be reported more often (a higher 

e), then that only comes about with a sacrifice in reliability (a). That is, you can design the machine 

prediction technology to report more predictions (that is, reporting a prediction of the state more 

often) but at the expense of that prediction being less likely to be true. By contrast, a cautious 

prediction would be one that it was reported more sparingly but that was more likely to be true 

when reported. An alternative interpretation of this trade-off is to consider e as not simply a 

prediction but the ability of a human to parse the prediction (that is, to understand it). In this 

interpretation, the more a prediction can be explained, the less reliable it becomes. Regardless of 

interpretation, what interests us here are situations where there is a technical constraint that relates 

the reliability of prediction to its availability. 

To consider this, assume that the technical relationship between e and a is described by e(a); 

a decreasing, quasi-concave function. What we are interested in is how the effectiveness of human 

judgment changes the type of prediction technology chosen. 

Proposition 3. As l increases, the optimal value of e decreases while the optimal value of a 
increases.  

PROOF: The fact that the AI can be an imperfect predictor impacts upon 𝑉\S which now 
becomes: 
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𝑉\S = 𝑒max 𝜆 𝑣(𝑎𝑅 + 1 − 𝑎 𝑣𝑅 + 1 − 𝑣 𝑟 ) + 1 − 𝑣 𝑆 , 𝑆
+ 1 − 𝑒 max	{𝜆(𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆
+ 1 − 𝑣 𝑆), 𝜆 𝑣max 1 − 𝜇 𝑅 + 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆 } 

For l low, it is not optimal to use judgment at all. But as l rises, it is optimal to use it in 
conjunction with prediction. When 𝜆 < 𝜆S3, J1 is the optimal (no prediction) strategy but it 
can readily be seen that in this case,  
𝜕𝑉\S/𝜕𝑒
𝜕𝑉\S/𝜕𝑎

=
𝑣(𝑎𝑅 + 1 − 𝑎 𝑣𝑅 + 1 − 𝑣 𝑟 ) − 𝜆 𝑣max 1 − 𝜇 𝑅 + 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 }

𝑒 𝑣(𝑅 − 𝑣𝑅 + 1 − 𝑣 𝑟 )  

is independent of 𝜆. However, for 𝜆 ≥ 𝜆S3, J2 is optimal so that: 

𝜕𝑉\S/𝜕𝑒
𝜕𝑉\S/𝜕𝑎

=
𝑣(𝑎𝑅 + 1 − 𝑎 𝑣𝑅 + 1 − 𝑣 𝑟 ) − (𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 )}

𝑒 𝑣(𝑅 − 𝑣𝑅 + 1 − 𝑣 𝑟 )  

which is decreasing in 𝜆. This proves to comparative static in the proposition. 

Intuitively, an improvement in judgment (l) impacts on the expected payoff from prediction and 

judgment and judgment alone in the same manner. However, it has a larger impact on J2 as 

judgment is applied potentially to both states prior to a decision being made. This strategy is only 

likely to be used if no prediction is realized. Thus, the greater is judgment, the lower is the return 

to having a prediction per se and thus, it falls relative to the return to more reliable prediction. 

Hence, improved judgment (or easier decisions) will be associated with an AI design that favours 

reliability over supplying a prediction. As judgment improves, the decision maker needs better 

predictions but less often. 

It is useful to note that the returns to improving a by an AI provider are subject to increasing 

returns. Below some threshold, the decision-maker chooses not to apply judgment and takes the 

safe action: 

𝑎 ≤
2
j
𝑆 − 𝑣𝑅

𝑣(1 − 𝑣)(𝑅 − 𝑟) −
𝑆 + 𝑟

𝑣(𝑅 − 𝑟) 

Above this threshold, the expected discounted payoff to the decision-maker increases linearly in 

a. This arises because of the complementarity between prediction and judgment. We observe this 

here because it is something that may impact on the strategic value of AI. 
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6 Complexity 

Thus far, the model illustrates the interplay between knowing the reward function (judgment) 

and prediction. While those results show that prediction and judgment can be substitutes, there is 

a sense in which that are more naturally complements. The reason is this: what prediction enables 

is a form of state-contingent decision-making. Without a prediction, a decision-maker is forced to 

make the same choice regardless of the state that might arise. In the spirit of Herbert Simon, one 

might call this a heuristic. And in the absence of prediction, the role of judgment is to make that 

choice. Moreover, that choice is easier – that is, more likely to be optimal – when there exists 

dominant (or “near dominant”) choices. Thus, when either the state space or the action space 

expand (as it may in more complex situations), it is less likely that there will exist a dominant 

choice. In that regard, faced with complexity, in the absence of prediction, the value of judgment 

diminishes and we are more likely to see decision-makers choose default actions that, on average, 

are likely to be better than others. 

Suppose now we add a prediction machine to the mix. While in our model such a machine, 

when it renders a prediction, can perfectly signal the state that will arise, let us consider a more 

convenient alternative that may arise in complex situations: the prediction machine can perfectly 

signal some states (should they arise) but for other states, no precise prediction is possible except 

for the fact that one of those states is the correct one. In other words, the prediction machine can 

sometimes render a fine prediction and otherwise a coarse one. Here, an improvement in the 

prediction machine means an increase in the number of states in which the machine can render a 

fine prediction. 

Thus, consider an N-state model where the probability of state i is 𝜇D. Suppose that states {1, 

…, m} can be finely predicted by an AI while the remainder cannot be distinguished. Suppose that 

in the states that cannot be distinguished applying judgment is not worthwhile so that the optimal 

choice is the safe action. Also, assume that when a prediction is available, judgment is worthwhile; 

that is, 𝜆 ≥ X
^Z_ NO^ X. In this situation, the expected present discounted value when both prediction 

and judgment are available is: 

𝑉\S = 𝜆 𝜇D(𝑣𝑅 + 1 − 𝑣 𝑆)
k

DL2

+ 𝜇D𝑆
l

DLkb2
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Similarly, it is easy to see that 𝑉\ = 𝑉S = 𝑆 = 𝑉A as 𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆. Note that as m increases 

(perhaps because the prediction machine learns to predict more states), then the marginal value of 

better judgment increases. That is, 𝜆𝜇k 𝑣𝑅 + 1 − 𝑣 𝑆 − 𝜇k𝑆 is increasing in 𝜆. 

What happens as the situation becomes more complex (that is, N increases)? An increase in 

N will weakly lead to a reduction in 𝜇D for any given i. Holding m fixed (and so the quality of the 

prediction machine does not improve with the complexity of the world), this will reduce the value 

of prediction and judgment as greater weight is placed on states where prediction is unavailable; 

that is, it is assumed that the increase in complexity does not, ceteris paribus, create a state where 

prediction is available. Thus, complexity appears to be associated with lower returns to both 

prediction and judgment. Put differently, an improvement in prediction machines would mean m 

increases with N fixed. In this case, the returns to judgment rise as greater weight is put on states 

where prediction is available. 

This insight is useful because there are several places in the economics literature where 

complexity has interacted with other economic decisions. These include, automation, contracting, 

and firm boundaries. We discuss each of these in turn, highlighting potential implications. 

Automation 

The literature on automation is sometimes synonymous with AI. This arises because AI may 

power new robots that are able to operate in open environments thanks to machine learnings. For 

instance, while automated trains have been possible for some time since they run on tracks, 

automated cars are new because they need to operate in far more complex environments. It is 

prediction in those open environments that has allowed the emergence of environmentally-flexible 

capital equipment. Note that leads to the implication that as AI improves, tasks in more complex 

environment can be handled by machines (Acemoglu and Restrepo, 2017).  

However, this story masks the message that emerges from our analysis that recent AI 

developments are all about prediction. Why prediction enables automated vehicles is because it is 

relatively straightforward to describe (and hence, program) what those vehicles should do in 

different situations. In other words, if prediction enables ‘state contingent decisions’ then 

automated vehicles arise because someone knows what decision is optimal in each state. In other 

words, automation means that judgment can be encoded in machine behavior. Prediction added to 
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that means that automated capital can be moved into more complex environments. In that respect, 

it is perhaps natural to suggest that improvements in AI will lead to a substitution of humans for 

machines as more tasks in more complex environments become capable of being programmed in 

a state-contingent manner.  

That said, there is another dimension of substitution that arises in complex environments. As 

noted above, when states cannot be predicted (something that for a given technology is more likely 

to be the case in more complex environments), then the actions chosen are more likely to be 

defaults or the results of heuristics that perform, on average, well. Many, including Acemoglu and 

Restrepo (2017) argue that it is for more complex tasks that humans have a comparative advantage 

relative to machines. However, this is not at all obvious. If it is known that a particular default or 

heuristic should be used then a machine can be programmed to undertake this. In this regard, the 

most complex tasks – precisely because little is known regarding how to take better actions given 

that the prediction of the state is coarse – may be more, not less, amenable to automation.  

If we had to speculate, imagine that states were ordered in terms of diminished likelihood 

(ie., 𝜇D ≥ 𝜇m for all 𝑖 < 𝑗). The lowest index states might be ones that, because they arrive 

frequently, there is knowledge of what the optimal action is in each and so they can be programmed 

to be handled by a machine. The highest index states similarly, because the optimal action cannot 

be determined can also be programmed. It is the intermediate states that arise less frequently but 

not infrequently where, if a reliable prediction existed, could be handled by humans applying 

judgment when those states arose. Thus, the payoff could be written: 

𝑉\S = 𝜇D(𝑣𝑅 + 1 − 𝑣 𝑆)
o

DL2

+ 𝜆 𝜇D(𝑣𝑅 + 1 − 𝑣 𝑆)
k

DLob2

+ 𝜇D𝑆
l

DLkb2

 

where tasks 1 through k are automated using prediction because there is knowledge of the optimal 

action. If this was the matching of tasks to machines and humans, then it is not at all clear whether 

an increase in complexity would be associated with more or less human employment.  

That said, the issue for the automation literature is not subtleties over the term ‘complex 

tasks’ but as AI becomes more prevalent where might the substitution of machines for humans 

arise. As noted above, an increase in AI increases m. At this margin, humans are able to come into 

the marginal tasks and, because a prediction machine is available, use judgment to conduct state-
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contingent decisions in those situations. Absent other effects, therefore, an increase in AI is 

associated with more human labour on any given task. However, as the weight on those marginal 

tasks is falling in the level of complexity, it may not be the more complex tasks that humans are 

performing more of. On the other hand, one can imagine that in a model with a full labour market 

equilibrium, that an increase in AI that enables more human judgment at the margin may also 

create opportunities to study that judgment to see if it can be programmed into lower index states 

and be handled by machines. So, while the AI does not necessarily cause more routine tasks to be 

handled by machines it might create the economic conditions that lead to just that.  

Contracting 

Contracting shares much with programming. Here is Jean Tirole (2009) on the subject: 

Its general thrust goes as follows. The parties to a contract (buyer, seller) 
initially avail themselves of an available design, perhaps an industry standard. 
This design or contract is the best contract under existing knowledge. The 
parties are unaware, however, of the contract's implications, but they realize 
that something may go wrong with this contract; indeed, they may exert 
cognitive effort in order to find out about what may go wrong and how to draft 
the contract accordingly: put differently, a contingency is foreseeable (perhaps 
at a prohibitively high cost), but not necessarily foreseen. To take a trivial 
example, the possibility that the price of oil increases, implying that the contract 
should be indexed on it, is perfectly foreseeable, but this does not imply that 
parties will think about this possibility and index the contract price accordingly.  

Tirole argues that contingencies can be planned for in contracts using cognitive effort (akin to what 

we have termed here judgment) while others may be optimally left out because the effort is too 

costly relative to the return given, say, the low likelihood that contingency arises.  

This logic can assist us in understanding what prediction machines might do to contracts. If 

an AI becomes available then, in writing contracts, it is possible, because fine state predictions are 

possible, to incur cognitive costs to determine what the contingencies should be if those states 

should arise. For other states, the contract will be left incomplete – perhaps for a default action or 

alternatively some renegotiation process. A direct implication of this is that contracts may well 

become less incomplete.  

Of course, when it comes to employment contracts, the effects may be different. As Herbert 

Simon (1951) noted, employment contracts differ from other contracts precisely because it is often 



	 24	

not possible to specify what actions should be performed in what circumstance. Hence, what those 

contracts often allocate are different decision rights.  

What is of interest here is the notion that contacts can be specified clearly – that is, 

programmed – but also that prediction can activate the use of human judgment. That latter notion 

means that actions cannot be easily contracted – by definition, contractibility is programming and 

needing judgment implies that programming was not possible. Thus, as prediction machines 

improve and more human judgment is optimal, then that judgment will be applied outside of 

objective contract measures – including objective performance measures. If we had to speculate, 

this would favor more subjective performance processes including relational contracts (Baker, 

Gibbons and Murphy, 1999).8  

Firm Boundaries 

We now turn to consider what impact AI may have on firm boundaries (that is, the make or 

buy decision). Suppose that it is a buyer (B) who receives the value from a decision taken – that 

is, the payoff from the risky or safe action as the case may be. To make things simple let’s assume 

that 𝜇D = 𝜇 for all i, so that 𝑉 = 𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝜆(𝑚 − 𝑘) 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝑁 −𝑚 𝑆.  

We suppose that the tasks are undertaken by a seller (S). The tasks {1, …., k} and {m+1, …., 

N) can be contracted upon while the intermediate tasks require the seller to exercise judgment. We 

suppose that the cost of providing judgment is a function 𝑐(𝜆) which is non-decreasing and convex. 

(We write this function in terms of 𝜆 just to keep the notation simple). The costs can be anticipated 

by the buyer. So if one of the intermediate states arises, the buyer can choose to give the seller a 

fixed price contract (and bear none of the costs) or a cost-plus contract (and bear all of them).  

Following Tadelis (2002), we assume that the seller market is competitive and so all surplus 

accrues to the buyer. In this case, the buyer return is: 

𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 +max	{𝜆 𝑚 − 𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 , 𝑆} + 𝑁 −𝑚 𝑆 − 𝑝 − 𝑧𝑐(𝜆) 

while the seller return is: 𝑝 − (1 − 𝑧)𝑐(𝜆). Here 𝑝 + 𝑧𝑐(𝜆) is the contract price and z is 0 for a 

fixed price contract and 1 for a cost-plus contract. Note that, only with a cost-plus contract does 

																																																								
8 A recent paper by Dogan and Yildirim (2017) actually considers how automation might impact on worker contracts. 
However, they do not examine AI per se and focus on how it might change objective performance measures in teams 
moving from joint performance evaluation to more relative performance evaluation. 
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the seller exercise any judgment. Thus, the buyer chooses a cost-plus over a fixed price contract 

if: 

𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 +max 𝜆 𝑚 − 𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 , 𝑆 + 𝑁 −𝑚 𝑆 − 𝑐 𝜆

> 𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝑁 − 𝑘 𝑆 

It is easy to see that as m rises (i.e., prediction becomes cheaper), a cost-plus contract is more likely 

to be chosen. That is, incentives fall as prediction becomes more abundant. 

Now we can consider the impact of integration. We assume that the buyer can choose to 

make the decisions themselves but at a higher cost. That is, 𝑐 𝜆, 𝐼 > 𝑐 𝜆  where I denotes 

integration. We also assume that wx M,y
wM

> wx M
wM

. Under integration, the buyer’s value is 

𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝜆∗ 𝑚 − 𝑘 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝑁 −𝑚 𝑆 − 𝑐 𝜆∗, 𝐼  

where 𝜆∗ maximizes the buyer payoff in this case. Given this, it can easily be seen that as m 

increases, the returns to integration rise.  

By contrast, notice that as k increases, the incentives for a cost-plus contract are diminished 

and the returns to integration fall. Thus, the more prediction machines allow for the placement of 

contingencies in a contract (the larger m-k), the higher powered will seller incentives be and the 

more likely there is to be integration. 

Forbes and Lederman (2009) showed that airlines are more likely to vertically integrate with 

regional partners when scheduling is more complex: specifically, where bad weather is more likely 

to lead to delays. The impact of prediction machines will depend on whether they lead to an 

increase in the number of states where the action can be automated in a state-contingent manner 

(k) relative to the increase in the number of states where the state becomes known but the action 

cannot be automated (m). If the former, then we will see more vertical integration with the rise of 

prediction machines. If the latter, we will see less. The difference is driven by the need for more 

costly judgment in the vertically integrated case as m-k rises. 

7 Conclusions 

In this paper, we explore the consequences of recent improvements in machine learning 

technology that have advanced the broader field of artificial intelligence. In particular, we argue 
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that these advances in the ability of machines to conduct mental tasks are driven by improvements 

in machine prediction. In order to understand how improvements in machine prediction will impact 

decision-making, it is important to analyze how the payoffs of the model arise. We label the 

process of learning payoffs ‘judgment.’  

By modeling judgment explicitly, we derive a number of useful insights into the value of 

prediction. We show that prediction and judgment are generally complements, as long as judgment 

isn’t too difficult. We also show that improvements in judgment change the type of prediction 

quality that is most useful: Better judgment means that more accurate predictions are valuable 

relative to more frequent predictions. Finally, we explore the role of complexity, demonstrating 

that, in the presence of complexity, the impact of improve prediction on the value of judgment 

depends on whether improved prediction leads to automated decision-making. Complexity is a key 

aspect of economic research in automation, contracting, and the boundaries of the firm. As 

prediction machines improve, our model suggests that the consequences in complex environments 

are particularly fruitful to study.  

Overall, this paper emphasized that AI is a prediction technology, and predictions cannot be 

valued in the absence of knowing how payoffs arise. Of course, there may be many other 

consequences of improved prediction, and we leave those for future work. 
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