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Daycare allocation as a matching problem 

• Matching mechanisms are 
used for daycare allocation. 

• Policy experiments to improve 
matching mechanisms. 

• Teacher-child ratio (& space-
child ratio) varies with age 
(Okumura, 2016) 

→not standard “capacity”; 
instead, matching with 
constraints
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        Daycare seats over-demand in Japan



Markets with constraints
• Many other matching markets are subject to 

constraints too

• Affirmative action (diversity constraints) 

• Gender composition in workplace 

• More real-life examples (later) 

• Question: Desirable outcomes & mechanisms?
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Main Results
• Stable matching does not always exist 

• Fair matchings are characterized via fixed points 
of a  function 

• Necessary and sufficient condition for existence of 
a student-optimal fair matching (SOFM)

• general upper-bound 

• Application to daycare allocation with data
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Model
• Students (denoted i, I) and schools (denoted s, S)  

• Many-to-one matching 

• Each Student has strict preferences over schools 
(& outside option, ∅) 

• Each school has a strict priority order over 
students 

• Generalizable to weak priority (i.e., ties)
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Constraints
• Each school s is subject to a constraint 

• For each subset I’ of students, a constraint tells 
“feasible” or “infeasible” 

• c.f. Constraints at the level of sets of schools 
(Biro et al. 2010, Kamada and Kojima, 2015, 
2016a,b, Kojima et al. 2016, Goto et. al 2016) 

• For each school, assume there is at least one 
feasible set of students. 
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Desirable properties
• Feasibility (students feasible at every school), IR (students should 

be matched to ∅ or better) 

• Non-wastefulness: there are no i, s, such that  

• i prefers s to her own assignment,  

• moving i to s results in a feasible matching 

• Fairness (elimination of justified envy): there are no i, i’, s, such that  

• i prefers s to her own assignment,  

• i’ is matched to s and i has a higher priority than i’ at s
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Discussion on fairness
• Fairness (elimination of justified envy): there are no i, i’, s, such that  

• i prefers s to her own assignment,  

• i’ is matched to s and i has a higher priority than i’ at s 

• Appropriate fairness concept depends on applications 

• Labor markets (medical match): weak fairness 

• College admission with disability, disaster relief material: fairness 

• Non-existence problem robust to fairness concepts employed
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• and replacing i’ with i is feasible at s

Weak fairness



Preliminary Facts
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• Fact 1: feasibility & IR & fairness & non-wastefulness ⇔ stability 

• Fact 2: Stability (=Feasibility & IR & Fairness & Non-
wastefulness) leads to non-existence

• “Necessary and sufficient” condition turns out to be capacity 
constraints (later)



Fair matching

• Approach: Don’t insist on (exact) non-wastefulness 
but require fairness (+ feasibility, IR) 

• Existence? Structure? 

• Characterization via a mapping
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Cutoff adjustment function
• Ps : the cutoff (=lowest priority/“score” to be admitted) at school s; 

•  regarded as an element in {1,…,n,n+1}, where n:=number of 
students. 

• P=(Ps)s: a cutoff profile at all schools. 

• D(P)=(Ds(P))s: the demand profile at P  
• each student chooses favorite available school given P (or ∅) 

• Cutoff adjustment function T from cutoff profiles to themselves:   
• Ts(P)=Ps+1 (mod n+1) if Ds(P) is infeasible (i.e., “over-demanded”) 
• Ts(P)=Ps otherwise. 

• T is like Walrasian tatonnement but doesn’t try to eliminate under-
demand
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Characterization

• Proof: Given P induces matching D(P)=(Ds(P))s, 

• there is no guarantee that D(P) is feasible, but  

• D(P) is IR and fair 

• P=T(P) iff D(P) is feasible by definition of T.
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Theorem: If a cutoff profile P is a fixed point of T, then 
the induced matching is feasible, individually rational, 
and fair. Moreover, if a matching is feasible, individually 
rational, and fair, then there exists a cutoff profile that 
induces it.



Problem with fairness

• An arbitrary fair matching may be undesirable. 

• Is there a “(most) desirable” fair matching?
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SOFM
• A matching is a student-optimal fair matching (SOFM) if 

1.  fair, IR, feasible, and 

2.  weakly preferred by every student to any matching 
satisfying (1). 

• Similar to “student-optimal stable matching” in standard case 

• note a stable matching may not exist

 14



General upper bound

• We say constraints are general upper-bound if 
every subset of a feasible subset is also feasible 
• subsume standard settings like (1) capacity 

constraints and (2) type-specific quotas 
(diversity in schools), but exclude e.g., minimum 
(floor) constraints 

• More examples of general upper-bound; next
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General upper bound
• Recall general upper-bound; every subset of a 

feasible subset is also feasible 
• More (less standard) examples of general upper-bound 

• College admission with students with disability 
(budget constraint) 

• Refugee match (Delacretaz et al. 2016) 
• School Choice and bullying (Kasuya 2016) 
• Separating conflicting groups in refugee match 
• Daycare/nursery school matching: more on this later
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Sufficiency for SOFM

• Similar to the existence of SOSM in standard case 

• note a stable matching may not exist 

• Computation is easy (c.f. proof)
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Theorem: If each  school’s constraint is a general 
upper bound, then there exists an SOFM.



Proof (1)
• Given our characterization theorem, we study fixed points of T. 

• Under general upper bound, use Tarski’s fixed point theorem (below) 

• A set is called a lattice if for any pair of elements, their “join” (least upper 
bound) and “meet” (greatest lower bound) both exist. 

• Example: “set of cutoff profiles”={1,…n+1}m  with the product order. 

• In particular, there is a “largest” and “smallest” elements
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Tarski’s Theorem (special case): Let X be a finite lattice and f: X→X 
be weakly increasing, i.e., x≤x’ implies f(x)≤f(x’).  

Then the set of the fixed points of f is a finite lattice. In particular, 
there are largest and smallest fixed points.



Proof (2)
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• Back to proof: We’ll show T is weakly increasing. Suppose P ≤P’.  
1. If Ps <P’s, then Ts(P)≤Ps+1≤P’s ≤Ts(P’). 
2. Suppose Ps =P’s.  

• Demand for s is (weakly) larger if students face higher 
cutoffs at all other schools, so Ds(P) is a subset of Ds(P’). 

•  So, Ts(P)=Ps+1 implies Ts(P’)=P’s+1, thus Ts(P)=Ts(P’). 
• So T(P)≤T(P’).  

• Smallest fixed point induces SOFM.                 QED

Tarski’s Theorem (from last slide): Let X be a finite lattice and f: 
X→X be weakly increasing, i.e., x≤x’ implies f(x)≤f(x’).  

Then the set of the fixed points of f is a finite lattice. In particular, 
there are largest and smallest fixed points.



Algorithm
• Tarski’s theorem gives an intuitive (and polynomial-time) algorithm. 

• Start with lowest possible cutoff profile, P (i.e., every student is 
above the cutoff at every school) 

• Then P≤T(P) 

• Apply T repeatedly and get: P≤T(P)≤T(T(P))≤T3(P)≤T4(P)≤… 

• At some point it stops at some P*, and 

• T(P*)=P*; so it induces a feasible, IR, and fair matching 

• For any fixed point P, P*≤P; P* corresponds to SOFM
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More general constraints?
• The “general upper-bound” includes many practical cases, 

but not all (e.g., minimum constraints) 

• Does SOFM exist more generally? 

• Answer: “no” in a specific sense
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Theorem: Suppose the constraint of a school s is not a general 
upper bound. Then there exist student preferences and capacity 
constraints at other schools s.t., SOFM does not exist.



Proof (1)

• Suppose the constraint at s is not a general upper 
bound.  

• Consider two cases:
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Proof (2)

• Case 1 (“easy” case): Suppose the empty 
matching (i.e., no one is matched) is infeasible at s.  

• Assume all students find s unacceptable. 

• Clearly, there is no feasible and IR matching.
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Proof (3)
• Case 2 (“less easy” case): Suppose the empty matching is feasible 

at s. 

• Note there is some set I’ of students and its subset I’’ such that I’ is 
feasible but I’’ is not (and both are nonempty). 

• Fix s’≠s and assume preferences  

• students in I’’: s, s’ 

• students in I’\I’’: s’, s 

• all other students find all schools unacceptable 

• s’ has a large capacity
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Proof (4)
•  Two fair (&feasible and IR) matchings: 

1. everyone in I’ is matched to s and 
everyone else is unmatched 

2. everyone in I’ is matched to s’ 
and everyone else is unmatched. 

• If there is SOFM, then it should 

• match everyone in I’’ to s, I’\I’’ to s’ 
and un-match everyone else                                                                           
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• Recall (from last slide) 

• students in I’’: s, s’ 

• students in I’\I’’: s’, s 

• all other students find 
all schools 
unacceptable 

• s’ has a large capacity

→infeasible!   QED       



Application: Daycare Match 
• Some resources (teachers, rooms, 

etc.) can be used for kids of different 
ages (Okumura 2017) 

• Resource demand per kid varies 
across ages (younger kids need 
more teachers and space per capita) 

→ general upper bound (while not 
capacity) 

• Centralized matching algorithms.  

• flexible assignments tried in 
several municipalities (but in ad 
hoc manners)
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• Japan: daycare is greatly over-
demanded 

• Municipal governments are 
under great pressure to 
accommodate more children 



Comparative statics

• Easy to prove, true more generally for arbitrary 
“relaxation of constraints” 

• c.f. Results for SOSM in standard models (e.g., 
Crawford 1991; Konishi and Unver 2006) 

• Flexibility across different ages will help. 

• How about the magnitude?
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Proposition: SOFM under flexible constraints is Pareto superior for 
students to SOFM under rigid constraints.



Daycare Match Data Analysis
• Data from Yamagata City (Yamagata) 

and Bunkyo City (Tokyo), Japan: 

• preferences (mechanism is 
strategy-proof) 

• priorities 

• outcomes 

• We simulate SOFM under “flexible” 
and “rigid” constraints  

•
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Recall: SOFM under flexible constraints is 
Pareto superior to SOFM under rigid 
constraints.

Yamagata

Bunkyo



 29

(Data: Yamagata)

(1437 applicants in total)
Match Rate
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(Data: Yamagata)

(1437 applicants in total)
Match Rate
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(Data: Yamagata)

(1437 applicants in total)
Match Rate
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(1437 applicants in total)

(Data: Yamagata)

How many people are better off?
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(1437 applicants, 93 daycares in total)

(Data: Yamagata)

Justified Envy

Number of justified envy is comparable to TTC in Boston and New 
Orleans (Abdulkadiroglu et al. 2018)



Rank distribution

 34 (Data: Yamagata)



Extension: Tie in priority
• College admission in Hungary (Biro 2010) uses a mechanism 

like deferred acceptance, but 

• Ranking over students are based on test score → ties 

• Admitting all students with a score is infeasible → reject all 
students of that score 

• Disaster shelter in Kobe and Tohoku earthquakes (Hayashi 
2003, Hayashi 2011) 

• Priorities include lots of ties (e.g., own house livable or not) 

•  Insufficient food supply was not allocated
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Problems with ties:

• A has capacity of 1 

• A ranks 1 and 2 equally 

• But our theory extends: SOFM exists, etc. 

• Characterization: fair and non-wastefulness are 
compatible iff capacity constraints and no ties.
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1 2 A

A A 1,2

∅ ∅ ∅



Stability: Maximal domain

• Note: “necessary and sufficient” condition for stable matching existence 

• The conclusion holds for any priorities and constraints at other schools.
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Theorem: Suppose the constraint of a school s is not a capacity 
constraint (while being a general upper-bound). Then there exist a 
priority at s and student preferences s.t. there exists no stable 
matching.

• Recall stability (=Feasibility & IR & Fairness & Non-wastefulness) 
leads to non-existence. In fact,



Strategic issues

• But 

• The same impossibility holds for any mechanism with feasibility, fairness, 
and unanimity. 

• Approximate incentive compatibility holds in large markets.
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Theorem: Suppose the constraint of a school s is not a capacity 
constraint. Then there are school priorities and standard capacity 
constraints at other schools such that the SOFM mechanism isn’t 
strategy-proof for students.

• SOFM mechanism isn’t necessarily strategy-proof for students 

• Capacity constraints → SP for students 

• Turns out this is “necessary” as well.
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Conclusion
• Characterization of fair matchings via a cutoff adjustment function 

• The general upper-bound is the most general condition to 
guarantee existence of SOFM 

• Daycare match application 

• Future research 

• Solution under non-general upper bounds 

• More numerical and empirical study (new data just granted) 

• Implementing the new design
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