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Abstract

The benefits of economic growth are widely touted in the literature. But what

about the costs? Pollution, nuclear accidents, global warming, the rapid global

transmission of disease, and bioengineered viruses are just some of the dangers

created by technological change. How should these be weighed against the bene-

fits, and in particular, how does the recognition of these costs affect the theory of

economic growth? This paper shows that taking these costs into account has first-

order consequences. Under standard preferences, the value of life may rise faster

than consumption, leading society to value safety over economic growth. As a re-

sult, the optimal rate of growth may be substantially lower than what is feasible, in

some cases falling all the way to zero.
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Certain events quite within the realm of possibility, such as a major aster-

oid collision, global bioterrorism, abrupt global warming — even certain lab

accidents— could have unimaginably terrible consequences up to and in-

cluding the extinction of the human race... I am not a Green, an alarmist,

an apocalyptic visionary, a catastrophist, a Chicken Little, a Luddite, an ant-

icapitalist, or even a pessimist. But... I have come to believe that what I shall

be calling the “catastrophic risks” are real and growing...

— Richard A. Posner (2004, p. v)

1. Introduction

In October 1962, the Cuban missile crisis brought the world to the brink of a nuclear

holocaust. President John F. Kennedy put the chance of nuclear war at “somewhere

between one out of three and even.” The historian Arthur Schlesinger, Jr., at the time

an adviser of the President, later called this “the most dangerous moment in human

history.”1 What if a substantial fraction of the world’s population had been killed in a

nuclear holocaust in the 1960s? In some sense, the overall cost of the technological in-

novations of the preceding 30 years would then seem to have outweighed the benefits.

While nuclear devastation represents a vivid example of the potential costs of tech-

nological change, it is by no means unique. The benefits from the internal combus-

tion engine must be weighed against the costs associated with pollution and global

warming. Biomedical advances have improved health substantially but made possible

weaponized anthrax and lab-enhanced viruses. The potential benefits of nanotechnol-

ogy stand beside the threat that a self-replicating machine could someday spin out of

control. Experimental physics has brought us x-ray lithography techniques and super-

conductor technologies but also the remote possibility of devastating accidents as we

smash particles together at ever higher energies. These and other technological dan-

gers are detailed in a small but growing literature on so-called “existential risks”; Posner

(2004) is likely the most familiar of these references, but see also Bostrom (2002), Joy

(2000), Overbye (2008), and Rees (2003).

1For these quotations, see (Rees, 2003, p. 26).
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Technologies need not pose risks to the existence of humanity in order to have costs

worth considering. New technologies come with risks as well as benefits. A new pes-

ticide may turn out to be harmful to children. New drugs may have unforeseen side

effects. Marie Curie’s discovery of the new element radium led to many uses of the

glow-in-the-dark material, including a medicinal additive to drinks and baths for sup-

posed health benefits, wristwatches with luminous dials, and as makeup — at least

until the dire health consequences of radioactivity were better understood. Other ex-

amples of new products that were intially thought to be safe or even healthy include

thalidomide, lead paint, asbestos, and cigarettes.

The benefits of economic growth are truly amazing and have made enormous con-

tributions to welfare. However, this does not mean there are not also costs. How does

this recognition affect the theory of economic growth?

This paper explores what might be called a “Russian roulette” theory of economic

growth. Suppose the overwhelming majority of new ideas are beneficial and lead to

growth in consumption. However, there is a tiny chance that a new idea will be par-

ticularly dangerous and cause massive loss of life. Do discovery and economic growth

continue forever in such a framework, or should society eventually decide that con-

sumption is high enough and stop playing the game of Russian roulette?

While this existential risk interpretation is one possible view of the model devel-

oped here, there is another more mundane interpretation. The mortality risk can apply

to each person in the economy independently: the risk may be idiosynchratic rather

than aggregate. In this case, an idea with a small probability of death kills a small but

deterministic fraction of the population each period — reminiscent of the lead paint or

asbestos examples.

What happens to growth when such costs are taken into account? The answer turns

out to depend on preferences. For a large class of conventional specifications, includ-

ing log utility, safety eventually trumps economic growth. The optimal rate of growth

may be substantially lower than what is feasible, in some cases falling all the way to

zero.

This paper is most closely related to the literature on sustainable growth and the

environment; for example, see Gradus and Smulders (1993), Stokey (1998), and Brock

and Taylor (2005). Those papers show that when pollution and the environment di-
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rectly enter utility or the production function, a “growth drag” may result. Here, the

key concern — the loss of life associated with potentially dangerous technologies — is

quite different. Nevertheless, there are interesting links with this literature that will be

discussed later.

Section 2 presents a simple model that illustrates the main results of the paper. The

advantage of this initial framework is its simplicity, which allows the basic intuition

of the results to shine through. The disadvantage is that the tradeoff between growth

and safety is a black box. Sections 3 and 4 then develop a rich idea-based endogenous

growth model that permits a careful study of the mechanisms highlighted by the simple

model. Section 5 provides some numerical examples that help quantify the slowdown

in growth that results from safety. Finally, Section 6 discusses a range of empirical evi-

dence that is helpful in judging the relevance of these results.

2. A Simple Model

At some level, this paper is about speed limits. You can drive your car slowly and safely,

or fast and recklessly. Similarly, a key decision the economy must make is to set a safety

threshold: researchers can introduce many new ideas without regard to safety, or they

can select a very tight safety threshold and introduce fewer ideas each year, potentially

slowing growth.

To develop this basic tradeoff, we begin with a simple two period OLG model. Sup-

pose an individual’s expected lifetime utility is

U = u(c0) + e−δ(g)u(c), c = c0(1 + g) (1)

where c denotes consumption, g is the rate of consumption growth, and δ(g) is the

mortality rate so e−δ(g) is the probability an individual is alive in the second period. A

new cohort of young people is born each period, and everyone alive at a point in time

has the same consumption — this generation’s c0(1 + g) is the next generation’s c0.

To capture the “slow and safely or fast and recklessly” insight, assume δ(g) is an in-

creasing function of the underlying rate of economic growth. Faster growth raises the

mortality rate. In the richer model in the next section, this “black box” linking growth

and mortality will be developed with much more care. For the moment, let’s just ex-
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plore its implications. (This is not to deny that other aspects of growth — for example

improvements in health technology — could reduce mortality. We are focusing on the

cost side of things for now, however.)

Each generation when young chooses the growth rate for the economy to maximize

their expected utility in equation (1). The privately optimal growth rate balances the

concerns for safety with the gains from higher consumption. The first order condition

for this maximization problem can be expressed as

u′(c)c0 = δ′(g)u(c). (2)

At the optimum, the marginal benefit from higher consumption growth, the left hand

side, equals the marginal cost associated with a shorter life, the right hand side. This

condition can be usefully rewritten as

1 + g =
ηu,c

δ′(g)
(3)

where ηu,c is the elasticity of u(c) with respect to c.

To make more progress, assume the following functional forms:

δ(g) = δg (4)

u(c) = ū+
c1−γ

1 − γ
. (5)

where all parameter values are positive. Utility takes the familiar form that features

a constant elasticity of marginal utility; the important role of the constant ū will be

discussed momentarily.

2.1. Exponential Growth: 0 < γ < 1

To begin, let’s assume γ < 1 and set ū = 0. In this case, the elasticity of utility with

respect to consumption is ηu,c = 1 − γ, so the solution for growth in (3) is

g∗ =
1 − γ

δ
− 1. (6)
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As long as δ is not too large, the model yields sustained positive growth over time. For

example, if γ = 1/2 and δ = 1/10, then g∗ = 4 and 1 + g∗ = 5: consumption increases

by a factor of 5 across each generation. This comes at the cost of a life expectancy that

is less than the maximum, but such is the tradeoff inherent in this model.

One can check that this conclusion is robust to letting ū 6= 0. In general, that will

simply introduce transition dynamics into the model with γ < 1. The key elasticity ηu,c

then converges to 1 − γ as consumption gets large, leading to balanced growth as an

asymptotic result.

2.2. The End of Growth: γ > 1

What comes next may seem a bit surprising. We’ve already seen that this simple model

can generate sustained rapid growth for a conventional form of preferences. What we

show now is that in the case where γ is larger than one, the model does not lead to

sustained growth. Instead, concerns about safety lead growth to slow all the way to

zero, at least eventually.

In this case, the constant ū plays an essential role. In particular, notice that we’ve

implicitly normalized the utility associated with “death” to be zero. For example, in (1),

the individual gets u(c) if she lives and gets zero if she dies. But this means that u(c)

must be greater than zero for life to be worth living. Otherwise, death is the optimal

choice at each point in time. With γ > 1, however, c1−γ

1−γ is less than zero. For example,

this flow is −1/c for γ = 2. Therefore for our problem to be interesting, we must add

a positive constant to flow utility. In this case, the flow utility function is shown in

Figure 1. Notice that flow utility is bounded, and the value of ū provides the upper

bound.2

Assuming γ > 1 and ū > 0, the first order condition in (3) can be written as

(1 + g)

(

ūcγ−1
0 (1 + g)γ−1 +

1

1 − γ

)

=
1

δ
. (7)

Notice that the left-hand side of this expression is increasing in both c0 and in g. As the

2As the figure illustrates, there exists a value of consumption below which flow utility is still negative.
Below this level, individuals would prefer death to life, so they would randomize between zero consump-
tion and some higher value; see Rosen (1988). This level is very low for plausible parameter values and can
be ignored here.
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Figure 1: Flow Utility u(c) for γ > 1

u(c) = ū + c
1− γ

1−γ

for γ > 1

Consumption,  c

Utility

0

ū

Note: Flow utility is bounded for γ > 1. If ū = 0, then flow utility is negative and
dying is preferred to living.

economy gets richer over time and c0 rises, then, it must be the case that g declines in

order to satisfy this first order condition. The optimal rate of economic growth slows

along the transition path.

In fact, one can see from this equation that consumption converges to a steady state

with zero growth. According to the original first order condition in (3), the steady state

must be characterized by η∗u,c = δ — that is, the point where the elasticity of the utility

function with respect to consumption equals the mortality parameter. More explicitly,

setting g = 0 in (7) reveals that the steady state value of consumption is given by

c∗ =

(

1

ū

(

1

δ
+

1

γ − 1

))
1

γ−1

. (8)

Because growth falls all the way to zero, mortality declines to zero as well and life ex-

pectancy is maximized.

To see the intuition for this result, recall the first order condition for growth: 1 + g =

ηu,c/δ. When γ > 1 (or when flow utility is any bounded function), the marginal utility of

consumption declines rapidly as the economy gets richer — that is, ηu,c declines. This

leads the optimal rate of growth to decline and the economy to converge to a steady
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state level of consumption.

A crucial implication of the bound on utility is that the marginal utility of consump-

tion declines to zero very rapidly. Consumption on any given day runs into sharp di-

minishing returns: think about the benefit of eating sushi for breakfast when you are

already having it for lunch, dinner, and your midnight snack. Instead, obtaining extra

days of life on which to enjoy your high consumption is a better way to increase utility.

This point can also be made with algebra. Consider the following expression:

u(ct)

u′(ct)ct
=

1

ηu,c
= ūcγ−1

t +
1

1 − γ
. (9)

The left side of this equation is based on the flow value of an additional period of life,

u(c). We divide by the marginal utility of consumption to value this flow in units of

consumption rather than in utils, so u(c)/u′(c) is something like the value of a period of

life in dollars. Then, we consider this value of life as a ratio to actual consumption.

The right side of this equation shows the value of life as a ratio to consumption un-

der the assumed functional form for utility. Crucially, for γ > 1, the value of life rises

faster than consumption. As the economy gets richer, concerns about safey become

more important than consumption itself. This is the essential mechanism that leads

the economy to tilt its allocation away from consumption growth and toward preserv-

ing life in the model.

Interestingly, this same result obtains with log utility. That is, the γ = 1 case of

u(c) = ū + log c also leads growth to slow to zero even though utility is unbounded. In

this case, ηu,c = 1/u(c), so the elasticity of the utility function declines as consumption

rises. Or, in terms of equation (9), the value of life as a ratio to consumption is just u(c)

itself, which grows with consumption.

2.3. Summary of the Simple Model

This simple model is slighty more flexible than the “Russian roulette” example given in

the introduction. Rather than choosing between stagnation and a fixed rate of growth

with a small probability of death, the economy can vary the growth rate and the associ-

ated death rate smoothly. This death rate can be given two different interpretations. It

may apply independently to each person in the population, so that e−δ(g) is the fraction
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of the population that survives to old age in each cohort. Alternatively, it may represent

an existential risk that applies to the entire economy (think of a nuclear holocaust or

some unimagined disaster associated with the Large Hadron Collider).

With γ < 1, the optimal tradeoff between growth and mortality leads to sustained

exponential growth, albeit with some positive death rate. In the idiosynchratic inter-

pretation of the death rate, life expectancy is simply less than its maximum but the

economy continues forever. In the existential risk interpretation, the economy grows

exponentially until, with probability one, the existential risk is realized and the econ-

omy comes to an end.

A very different result occurs when γ ≥ 1. In this case, the marginal utility of con-

sumption in any period falls rapidly as individuals get richer. In contrast, each addi-

tional year of life delivers a positive and growing amount of utility. The result is an

income effect that favors safety over growth. Growth eventually ceases, consumption

settles to a constant, and life expectancy rises to its maximum. In the existential in-

terpretation, the economy stops playing Russian roulette and, assuming it did not get

unlucky before reaching the steady state, goes on forever.

3. Safety and Ideas in an Endogenous Growth Model

The simple model in the previous section is elegant and delivers clean results for the

interaction between safety and growth. However, the way in which faster growth raises

mortality is mechanical, and it is simply assumed that the economy can pick whatever

growth rate it desires.

In this section, we address these concerns by adding safety considerations to a stan-

dard growth model based on the discovery of new ideas. The result deepens our under-

standing of the interactions between safety and growth. For example, in this richer

model, concerns for safety can slow the rate of exponential growth from 4% to 1%, for

example, but will never lead to a steady-state level of consumption. Alternatively, de-

pending on the nature of technological danger, it could be optimal to slow the growth

rate all the way to zero, but only as consumption rises to infinity. While supporting the

basic spirit of the simple model, then, the richer model illustrates some important ways

in which the simple model may be misleading.
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The model below is a standard idea-based growth model, along the lines of Romer

(1990) and Jones (1995). Researchers introduce new varieties of intermediate goods,

and the economy’s productivity is increasing in the number of varieties. The key change

relative to standard models is that each variety i also comes with a danger level, zi.

Some ideas are especially dangerous (nuclear weapons or lead paint) and have a high

value of zi, while other ideas are relatively harmless and have a low zi. A consumer’s

mortality rate then depends on the values of the zi that are consumed as well as on the

amount consumed.

3.1. The Economic Environment

The economy features three types of goods: consumption goods (which come in a

range of varieties), ideas, and people. People and ideas are the two key factors of pro-

duction, combining to produce the consumption goods and new ideas.

At any point in time, a variety of consumption goods indexed by i on the interval

[0, At] are available for purchase. We could define utility directly over this variety of

goods, but for the usual reasons, it is easier to handle the aggregation on the production

side. Hence, we assume these varieties combine in a CES fashion to produce a single

aggregate consumption good:

Ct =

(
∫ At

0
Xθ

itdi

)1/θ

, 0 < θ < 1. (10)

New varieties (ideas) are produced by researchers. If Lat units of labor are used

in research with a current stock of knowledge At, then research leads to the discovery

of αLλ
atA

φ
t new varieties. This technology for producing new ideas is similar to Jones

(1995).

What’s novel here is that each new variety i is also associated with a danger level,

zi > 0. This danger level is drawn from a distribution with cdf F (z) and is observed as

soon as the variety is discovered.3 Researchers decide whether or not to complete the

development of a new variety after observing its danger level. Given that varieties are

otherwise symmetric, this leads to a cutoff level zt: varieties with a danger level below

3We assume F (0) = 0, F (z) > 0 for z > 0, and that the first moment of F (z) exists. These assumptions
essentially mean that all ideas entail some danger, and the only way to have no technological danger is to
set the threshold so that no new ideas are used.
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zt get implemented, whereas more dangerous varieties do not. zt is a key endogenous

variable determined within the model. The fraction F (zt) = Pr [zi ≤ zt] of candidate

varieties get implemented, so the additional number of new varieties introduced at any

point in time is

Ȧt = αF (zt)L
λ
atA

φ
t , A0 given. (11)

One unit of labor can produce one unit of any existing variety, and labor used for

different purposes cannot exceed the total amount available in the economy, Nt:

∫ At

0
Xitdi+ Lat ≤ Nt. (12)

This total population is assumed to grow over time according to

Ṅt = (n̄− δt)Nt, N0 given. (13)

The parameter n̄ captures exogenous fertility net of any other sources of mortality un-

related to technological change.

Mortality from technological danger is denoted δt. In principle, it should depend

on the amount of each variety consumed and the danger associated with each variety,

and it could even be stochastic (nuclear weapons are a problem only if they are used).

There could also be timing issues: the use of fossil fuels today creates global warming

that may be a problem in the future.

These issues are interesting and could be considered in future work. To keep the

present model tractable, however, we make some simplifying assumptions in deter-

mining mortality. In particular, all of the deaths associated with any new technology

occur immediately when that technology is implemented, and the death rate depends

on average consumption across all varieties. That is,

δt = δ̄ȦtxtΓ(zt), (14)

where xt ≡
∫ At
0 Xit/Ntdi/At is the average amount consumed of each variety and Γ(zt)

is the average mortality rate of the varieties below the cutoff level zt. That is, Γ(zt) ≡

E[zi|zi ≤ zt] =
∫ zt
0 zdF (z)/F (zt) is the average mortality rate associated with those new

varieties that are actually consumed. The mortality rate δt, then, is the product of the
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per capita quantity of new varieties consumed, Ȧtxt, and their average mortality rate.

Individuals care about expected utility, where the expectation is taken with respect

to mortality. Let St denote the probability a person survives until date t conditional on

being alive at date 0. Expected utility is given by

U =

∫ ∞

0
e−ρtu(ct)Stdt, (15)

where

Ṡt = −δtSt, S0 = 1. (16)

Finally, we assume that flow utility u(c) is

u(ct) = ū+
c1−γ
t

1 − γ
, ct ≡ Ct/Nt, ū > 0.4 (17)

3.2. A Rule of Thumb Allocation

Given the symmetry of Xit, there are two nontrivial allocative decisions that have to be

made in this economy at each date. First is the allocation of labor between Lat andXit.

Second is the key tradeoff underlying this paper, the choice of the safety threshold zt. A

high cutoff for zt implies that more new ideas are introduced in each period but it also

means a higher mortality rate. This is the model’s analog to driving fast and recklessly

instead of slowly and safely.

In the next main section, we will let markets allocate resources and study an equi-

librium allocation. To get a sense for how the model works, however, it is convenient

to begin first with a simple rule of thumb allocation. For this example, we assume the

economy puts a constant fraction s̄ of its labor in research and allocates the remainder

symmetrically to the production of the consumption goods. In addition, we assume

the safety cutoff is constant over time at z̄.

Let gx denote the growth rate of some variable x along a balanced growth path.

Then, we have the following result (proofs for this and other propositions are given

in Appendix A):

4In the case of γ ≤ 1, ū ≤ 0 is permissible.
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Proposition 1 (BGP under the Rule of Thumb Allocation): Under the rule of thumb

allocation with 0 < s̄ < 1 and z̄ > 0, there exists a balanced growth path such that

gc = σgA where σ ≡ (1 − θ)/θ and

δ∗ = δ̄gA(1 − s̄)Γ(z̄) (18)

gN = n̄− δ∗ (19)

gA =
λ(n̄− δ∗)

1 − φ
=

λn̄

1 − φ+ λδ̄(1 − s̄)Γ(z̄)
. (20)

Along the balanced growth path, the mortality rate is constant and depends on

(a) how fast the economy grows, (b) the intensity of consumption, and (c) the dan-

ger threshold. As in Jones (1995), the steady-state growth rate is proportional to the

rate of population growth. However, the population growth rate is now an endogenous

variable because of endogenous mortality. For example, an increase in research inten-

sity s̄ will reduce the steady-state mortality rate (a lower consumption intensity) and

therefore increase the long-run growth rate.

The effect of changing the danger threshold z̄ is more subtle and is shown graphi-

cally in Figure 2. As emphasized earlier, there is indeed a basic tradeoff in this model

between growth and safety. Over the first 300+ years in the example, the safer choice

of z̄ leads to slower growth as researchers introduce fewer new varieties. However, this

tradeoff disappears in the long run because the growth rate itself depends on popula-

tion growth. A safer technology choice reduces the mortality rate, raises the population

growth rate, and therefore raises consumption growth in the long run.

4. A Competitive Equilibrium with Patent Buyouts

The rule of thumb allocation suggests that this model will deliver a balanced growth

path with an interesting distinction between the medium-run and long-run tradeoffs

between growth and safety. Moreover, the model features endogenous growth in the

strong sense that changes in policy can affect the long-run growth rate. Somewhat sur-

prisingly, neither of these results will hold in the competitive equilibrium, and our rule

of thumb allocation turns out not to be a particularly good guide to the dynamics of the

competitive equilibrium. Moreover, the features of the equilibrium allocation turn out
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Figure 2: Growth under the Rule of Thumb Allocation
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Note: There is a medium-run tradeoff between growth and technological danger,
but no long-run tradeoff. In the long run, safer choices lead to faster net popula-
tion growth and therefore faster consumption growth.

to hold in the optimal allocation as well, so the rule of thumb allocation is the one that

proves to be misleading.

4.1. An Overview of the Equilibrium

A perfectly competitive equilibrium will not exist in this model because of the nonri-

valry of ideas (Romer, 1990). Instead of following Romer and introducing imperfect

competition, we use a mechanism advocated by Kremer (1998). That is, we consider

an equilibrium in which research is funded entirely by “patent buyouts”: the govern-

ment in our model purchases new ideas at a price Pat and makes the designs publicly

available at no charge. The motivation for this approach is largely technical: it simpli-

fies the model so it is easier to understand. However, there is probably some interest in

studying this institution in its own right.

The other novel feature of this equilibrium is that we introduce a competitive mar-

ket for mortality: idea producers pay a price vt for every person they kill, and house-

holds “sell” their mortality as if survival were a consumer durable. This market bears

some resemblence to one that emerges in practice through the legal system of torts and
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liabilities.

In equilibrium, these two institutions determine the key allocations. Patent buyouts

pin down the equilibrium amount of research and the mortality market pins down the

danger cutoff.

4.2. Optimization Problems

The equilibrium introduces three prices: a wage wt, the price of mortality vt, and the

price of new ideas Pat. The equilibrium then depends on three optimization problems.

First, a representative household supplies a unit of labor, chooses how much of her

life to sell in the mortality market, pays a lump-sum tax τt, and eats the proceeds. Our

timing assumption is that mortality is realized at the end of the period, after consump-

tion occurs.

HH Problem: Given {wt, vt, τt}, the representative household solves

max
{δht }

∫ ∞

0
e−ρtu(ct)Stdt

s.t. ct = wt + vtδ
h
t − τt and Ṡt = −δh

t St.

Next, a representative firm in the perfectly competitive market for the final good

(FG) solves the following profit maximization problem:

FG Problem: At each date t, given wt andAt,

max
{Xit}

(
∫ At

0
Xθ

itdi

)1/θ

− wt

∫ At

0
Xitdi.

Finally, a representative research firm produces ideas in the perfectly competitive

idea sector and chooses a cutoff danger level zt based on the price of mortality. The

research firm sees constant returns to idea production at productivity αt, so any effects

associated with λ < 1 and φ 6= 0 are external:

R&D Problem: At each date t, given Pat, wt, vt, xt, αt,

max
Lat,zt

PatαtF (zt)Lat − wtLat − vtδtNt s.t δt = δ̄xtαtF (zt)LatΓ(zt).
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4.3. Defining the Competitive Equilibrium

The competitive equilibrium in this economy solves the optimization problems given

in the previous section and the relevant markets clear. The only remaining issue to

discuss is the government purchase of ideas. We’ve already assumed the government

pays a price Pat for any idea and releases the design into the public domain. We as-

sume this is the only option for researchers — there is no way to keep ideas secret and

earn a temporary monopoly profit. As discussed above, the reason for this is to keep

the model simple; nothing would change qualitatively if we introduced monopolistic

competition, either through secrecy or patents.

In addition, we assume the idea purchases are financed with lump-sum taxes on

households and that the government’s budget balances in each period. Moreover, we

assume the government sets the price at which ideas are purchased so that total pur-

chases of ideas are a constant proportion β of aggregate consumption; we will relax this

assumption later.

The formal definition of the equilibrium allocation follows:

Definition A CE with patent buyouts for R&D consists of quantities {ct, δ
h
t ,Xit, At, Lat

Nt, τt, δt, zt, αt, xt} and prices {wt, Pat, vt} such that

1. {ct, δ
h
t } solve the HH Problem.

2. Xit solve the FG Problem.

3. Lat, zt, δt, At solve the R&D Problem.

4. wt clears the labor market:
∫ At
0 Xitdi+ Lat = Nt.

5. vt clears the mortality market: δh
t = δt.

6. The government buys ideas: PatȦt = βctNt.

7. Lump sum taxes τt balance the budget: τt = PatȦt/Nt.

8. Other conditions: Ṅt = (n̄−δt)Nt,αt = αLλ−1
at Aφ

t , andxt ≡
1

At

∫ At
0 Xitdi/Nt.

4.4. The Benchmark Case

The equilibrium behavior of the economy depends in important ways on a few param-

eters. We specify a benchmark case that will be studied in detail, and then in subse-
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quent sections consider the effect of deviating from this benchmark. In specifying the

benchmark, it is helpful to note that in equilbrium ct = Aσ
t (1 − st), where σ ≡ 1−θ

θ is

the elasticity of consumption with respect to the stock of ideas. The benchmark case is

then given by

Assumption A. (Benchmark Case) Let η ≡ limz→0 F
′(z)z/F (z). Assume

A1. Finite elasticity of F (z) as z → 0: η ∈ (0,∞)

A2. Rapidly declining marginal utility of consumption: γ > 1

A3. Knowledge spillovers are not too strong: φ < 1 + ησ(γ − 1).

We will discuss the nature and role of each of these assumptions in more detail as we

develop the results. The least familiar assumption is A1, but note that both the expo-

nential and the Weibull distributions have this property. In contrast, the lognormal and

Fréchet distributions have an infinite elasticity in the limit as z goes to zero. This has

interesting implications that we will explore in detail.

4.5. The Equilibrium Balanced Growth Path

In the benchmark case, the equilibrium allocation in this growth model with dangerous

technologies exhibits a balanced growth path:

Proposition 2 (Equilibrium Balanced Growth): Under Assumption A, the competitive

equilibrium exhibits an asymptotic balanced growth path as t→ ∞ such that

st →
β

1 + β + η
(21)

zt → 0 (and therefore δt → 0) (22)

żt/zt → gz ≡ −(γ − 1)gc, δ̇t/δt → gz (23)

ċt/ct → gc = σgA ≡
λσn̄

1 − φ+ ησ(γ − 1)
(24)

u′(ct)vt →
ū

ρ
. (25)

The somewhat surprising result that emerges from the equilibrium under Assumption

A is that mortality and the danger threshold, rather than being constant in steady state,
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decline at constant exponential rates. Technological change becomes increasingly con-

servative over time, as an ever-rising fraction of possible new ideas are rejected because

they are too dangerous.

The consequence of this conservative bias in technological change is no less sur-

prising: it leads to a slowdown in steady-state growth. There are several senses in

which this is true, and these will be explored as the paper goes on. But two are ev-

ident now. First, the negative growth rate of zt introduces a negative trend in TFP

growth for the idea sector, other things equal. Recall that the idea production func-

tion is Ȧt = αF (zt)L
λ
atA

φ
t . zt declines at the rate (γ − 1)gc, ultimately getting arbitrarily

close to zero. By Assumption A1, the elasticity of the distribution F (z) at zero is finite

and given by η, so F (zt) declines at rate η(γ − 1)gc = η(γ − 1)σgA.

The second way to see how this bias slows down growth is to focus directly on con-

sumption growth itself. The steady-state rate of consumption growth is

gc =
λσn̄

1 − φ+ ησ(γ − 1)
. (26)

The last term in the denominator directly reflects the negative TFP growth in the idea

production function resulting from the tightening of the danger threshold.

That this slows growth can be seen by considering the following thought experi-

ment. A feasible allocation in this economy is to follow the equilibrium path until zt

is arbitrarily small and then keep it constant at this value. This results in a mortality

rate that is arbitrarily close to zero, and, as suggested by Proposition 1, the growth rate

in this case will be arbitrarily close to λσn̄/(1 − φ), which is clearly greater than the

equilibrium growth rate. Rather than keep z constant at a small level, the equilibrium

continues to reduce the danger cutoff, slowing growth. Some numerical examples at

the end of this paper suggest that this slowdown can be substantial.

Of course, this raises a natural question: Why does the equilbrium allocation lead

the danger threshold to fall to zero? To see the answer, first consider the economic in-

terpretation of the mortality price vt. This is the price at which firms must compensate

households per unit of mortality that their inventions inflict. In the terminology of the

health and risk literatures, it is therefore equal to the value of a statistical life (VSL).5

5Suppose the mortality rate is δt = .001 and vt = $1 million. In this example, each person receives
$1000 (= vtδt) for the mortality risk they face. For every thousand people in the economy, one person will
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Along the balanced growth path, the value of life satisfies equation (25):

u′(ct)vt →
ū

ρ
.

This equation says that the value of life measured in utils is asymptotically equal to the

present discounted value of utility: as consumption goes to infinity, flow utility con-

verges to ū, so lifetime utility is just ū/ρ.

Viewed in another way, this equation implies that the value of life grows faster than

consumption. Given our functional form assumption for preferences, u′(ct) = c−γ
t . So

c−γ
t vt converges to a constant, which means that gv → γgc. Because γ is larger than one,

marginal utility falls rapidly, and the value of life rises faster than consumption.

With this key piece of information, we can turn to the first-order condition for the

choice of zt in the R&D Problem. That first-order condition is

zt =
Pat

vtNtδ̄xt
=

βct
vtδ̄gAt(1 − st)

. (27)

The first part of this equation says that the danger threshold zt equals the ratio of two

terms. The numerator is related to the marginal benefit of allowing more dangerous

technologies to be used, which is proportional to the price at which the additional ideas

could be sold. The denominator is related to the marginal cost, which depends on the

value of the additional lives that would be lost.

The second equation in (27) uses the fact that PatȦt = βCt to eliminate the price of

ideas. This last expression illustrates the key role played by the value of life. In particu-

lar, we saw above that vt/ct grows over time since γ > 1; the value of life rises faster than

consumption. Because both gAt and 1−st are constant along the balanced growth path,

the rapidly rising value of life leads to the exponential decline in zt. More exactly, vt/ct

grows at rate (γ − 1)gc, so this is the rate at which zt declines, as seen in equation (23).

What is the economic intuition? Because γ exceeds 1, flow utility u(c) is bounded

and the marginal utility of additional consumption falls very rapidly. This leads the

value of life to rise faster than consumption. The benefit of using more dangerous tech-

nologies is that the economy gets more consumption. The cost is that more people die.

Because the marginal utility of consumption falls so quickly, the costs of people dying

die, and the total compensation paid out for this death will equal $1 million.
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exceed the benefit of increasing consumption and the equilibrium delivers a declining

threshold for technological danger. Safety trumps economic growth.

4.6. Growth Consequences

From the standpoint of growth theory, there are some interesting implications of this

model. First, as we saw in the context of the rule-of-thumb allocation, this model is

potentially a fully endogenous growth model. Growth is proportional to population

growth, but because the mortality rate is endogenous, policy changes can affect the

mortality rate and therefore affect long-run growth, at least potentially.

Interestingly, however, that is not the case in the equilibrium allocation. Instead, the

mortality rate trends to zero and is unaffected by policy changes in the long run. Hence,

the equilibrium allocation features semi-endogenous growth, where policy changes

have long-run level effects but not growth effects. In particular, notice that the patent

buyout parameter β, which influences the long-run share of labor going to research,

is not a determinant of the long-run growth rate in (26). Moreover, the invariance of

long-run growth to policy is true even though a key preference parameter, γ, influences

the long-run growth rate.

Finally, it is interesting to consider the special case of φ = 1, so the idea production

function resembles that in Romer (1990). In this case,

Ȧt

At
= αF (zt)L

λ
at.

Here, growth does not explode even in the presence of population growth, as can be

seen in equation (26). Instead, the negative trend in zt and the fact that the mortality

rate depends on the growth rate conspire to keep growth finite.

5. Extensions

The crucial assumptions driving the results have been collected together and labeled as

Assumption A. In this section, we illustrate how things change when these assumptions

are relaxed. Briefly, there are two main findings. First, when we consider distributions

with an infinite elasticity at z = 0, the concern for safety becomes even more extreme:



THE COSTS OF ECONOMIC GROWTH 21

equilibrium growth slows all the way to zero asymptotically. Second, we highlight the

role played by γ > 1: if instead γ < 1, then the equilibrium allocation looks like the rule

of thumb allocation, selecting a constant danger threshold in steady state.

5.1. Relaxing A1: Letting η = ∞

Recall that η is the elasticity of the danger distribution F (z) in the limit as z → 0. Intu-

itively, this parameter plays an important role in the model because F (z) is the fraction

of new ideas that are used in the economy, and z is trending exponentially to zero. The

term ηgz = −η(γ−1)gc therefore plays a key role in determining the growth rate of ideas

along the balanced growth path:

gA =
λn̄

1 − φ+ ησ(γ − 1)
. (28)

Assumption A1 says that η is finite. This is true for a number of distributions, includ-

ing the exponential (η = 1), the Weibull, and the gamma distributions. However, it is

not true for a number of other distributions. Both the lognormal and the Fréchet distri-

butions have an infinite elasticity at zero, for example. Given that we have no prior over

which of these distributions is most relevant to our problem, it is essential to consider

carefully the case of η = ∞.

In fact, it is easy to get a sense for what will happen by considering equation (28).

As η rises in this equation, the steady-state growth rate of the economy declines. Intu-

itively, a 1% reduction in z has a larger and larger effect on F (z): an increasing fraction

of ideas that were previously viewed as safe are now rejected as too dangerous. This

reasoning suggests that as η gets large, the steady-state growth rate falls to zero, and

this intuition is confirmed in the following proposition:

Proposition 3 (Equilibrium Growth with η = ∞): Let Assumptions A2 and A3 hold, but

instead of A1, assume η = ∞. In the competitive equilibrium, as t→ ∞

1. The growth rate of consumption falls to zero: ċt/ct → 0

2. The level of consumption goes to infinity: ct → ∞

3. The technology cutoff, the mortality rate, and the share of labor devoted to research

all go to zero: zt → 0, δt → 0, st → 0.



22 CHARLES I. JONES

When η = ∞, the increasingly conservative bias of technological change slows the

exponential growth rate all the way to zero. However, this does not mean that growth

ceases entirely. Instead, the level of consumption still rises to infinity, albeit at a slower

and slower rate.

5.2. Relaxing A2: Assume γ < 1

The most important assumption driving the results in this paper is that marginal utility

diminishes quickly, in the sense that γ > 1. For example, the value of a year of life in

year t as a ratio to consumption is

u(ct)

u′(ct)ct
= ūcγ−1

t +
1

1 − γ
.

For γ > 1, this rises to infinity as consumption grows. But for γ < 1, it converges to

1/(1 − γ): the value of life is proportional to consumption. In this case, the elasticity of

utility with respect to consumption remains positive rather than falling to zero, which

keeps the value of life and consumption on equal footing. The result is that the trend

toward rising safety disappears: the economy features exponential growth in consump-

tion with a constant danger cutoff and a constant, positive mortality rate:

Proposition 4 (Equilibrium Growth with γ < 1): Let Assumption A1 hold, strengthen

A3 to φ < 1, but instead of A2, assume γ < 1. The competitive equilibrium exhibits an

asymptotic balanced growth path as t→ ∞ such that

zt → z∗ ∈ (0,∞), δt → δ∗ ∈ (0,∞)

st →
β(1 − Γ(z∗)

z∗ )

1 + β(1 − Γ(z∗)
z∗ )

ċt
ct

→ gc =
λσ(n̄ − δ∗)

1 − φ
=

λσn̄

1 − φ+ λδ̄(1 − s∗)Γ(z∗)

vt

ct
→

1

1 − γ
·

1

ρ+ δ∗ − (1 − γ)gc

For γ < 1, the economy looks very similar to the rule of thumb allocation; for exam-

ple, compare the growth rate to that in Proposition 1. The economy features a constant
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danger cutoff as well as endogenous growth: an increase in idea purchases by the gov-

ernment (a higher β) will shift more labor into research, lower the mortality rate, and

increase the long-run growth rate.6

5.3. Optimality

In this section, we study the allocation of resources that maximizes a social welfare

function. There are three reasons for this. First, it is important to verify that the de-

clining danger threshold we uncovered in the equilibrium allocation is not a perverse

feature of our equilibrium. Second, in the equilibrium allocation, individuals put no

weight on the welfare of future generations; it is a purely selfish equilibrium. It is in-

teresting to study the effect of deviations from this benchmark. Finally, our equilib-

rium allocation employed a particular institution for funding research: patent buyouts

where spending on new ideas is in constant proportion to consumption. This institu-

tion is surely special (and not generally optimal), so it is important to confirm that it

is not driving the results. The bottom line of this extension to an optimal allocation is

that all of the equilibrium results hold up well.

In this environment with multiple generations, there is no indisputable social wel-

fare function. However, a reasonably natural choice that serves our purposes is to treat

flows of utility from different people symmetrically and to discount flows across time

at rate ρ. This leads to the following definition of an optimal allocation:

Definition An optimal allocation in this economy is a time path for {st, zt}

that solves

max
{st,zt}

∫ ∞

0
e−ρtNtu(ct)dt subject to

ct = Aσ
t (1 − st)

Ȧt = αF (zt)s
λ
tN

λ
t A

φ
t

Ṅt = (n̄− δt)Nt

δt = δ̄αsλ
tN

λ
t A

φ−1
t (1 − st)

∫ zt

0
zf(z)dz.

6The intermediate case of log utility (γ = 1) requires separate consideration. In this case, the technol-
ogy cutoff zt still declines to zero, but this decline is slower than exponential. The long-run growth rate is
then precisely back to the semi-endogenous growth case for η <∞: gA = λn̄/(1 − φ).
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The optimal allocation can then be characterized as follows.

Proposition 5 (Optimal Balanced Growth): Under Assumption A and the optimal allo-

cation, the economy exhibits an asymptotic balanced growth path as t→ ∞ such that

st

1 − st
→

λσgA

(1 + η)(ρ− n̄+ (γ − 1)gc) + (1 − φ)gA − ησgA

zt → 0 (and therefore δt → 0)

żt/zt → −(γ − 1)gc, δ̇t/δt → −(γ − 1)gc

ċt/ct → gc,

where gc and gA are the same as in the competitive equilibrium.

The key properties of the competitive equilibrium carry over into the optimal al-

location. In particular, the danger threshold declines exponentially to zero at the rate

(γ − 1)gc, and this technological bias slows the growth rate of the economy. The long-

run growth rate is the same as in the equilibrium allocation.

5.4. Comparing the Simple and Full Models

The simple toy model at the start of the paper and the richer model developed subse-

quently lead to slightly different conclusions. In the simple model, consumption con-

verges to a constant value if γ > 1, while in the richer model the worst that happens is

that the growth rate slows to zero as consumption rises to infinity. Why the difference?

The answer turns on functional forms and modeling choices about which we have

very little information. We have already seen an example of this in the question about

the magnitude of η. Another example goes back to the simple model. If instead of

assuming the mortality function δ(g) is linear, we instead assume δ(g) = δgθ , then the

simple model leads consumption to rise to infinity as the growth rate slows to zero

when θ > 1.7

7The first order condition analogous to equation (3) becomes

gθ−1(1 + g) =
ηu,c
δθ

which implies that g → 0 only occurs as ηu,c → 0 when γ > 1.
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Absent empirical evidence on the details of functional forms, the general result of

this paper is that concerns for safety can lead to slowing growth, with the precise nature

of the slowdown depending on modeling details.

6. Numerical Examples

We now report a couple of numerical examples to illustrate how this economy behaves

along the transition path. We make some attempt to choose plausible parameter values

and to produce simulations that have a “realistic” look to them. However, the model

abstracts from a number of important forces shaping economic growth and mortality,

so the examples should not be taken too literally. Mainly, they will illustrate the extent

to which growth can be slowed by concerns about the dangers of certain technologies.

The first example features sustained exponential growth (η < ∞). The second as-

sumes a distribution F (z) with an elasticity that rises to infinity as z falls to zero. Ac-

cording to Proposition 3, this second example exhibits a growth rate that declines to

zero, even though consumption itself rises indefinitely.

6.1. Benchmark Example

The basic parameterization of the benchmark case is described in Table 1. For the cur-

vature of marginal utility, we choose γ = 1.5; large literatures on intertemporal choice

(Hall 1988), asset pricing (Lucas 1994), and labor supply (Chetty 2006) suggest that this

is a reasonable value. ForF (z), we assume an exponential distribution so that η = 1; we

also assume this distribution has a mean of one. We set β = .02: government spend-

ing on ideas equals 2% of aggregate consumption. For the idea production function,

we choose λ = 1 and φ = 1/2, implying that in the absence of declines in zt, the idea

production function itself exhibits productivity growth. Finally, we assume a constant

population growth rate of 1% per year. The remaining parameter values are relatively

unimportant and are shown in the table. Other reasonable choices for parameter val-

ues will yield similar results qualitatively. The model is solved using a reverse shooting

technique, discussed in more detail in Appendix B.

Figure 3 shows an example of the equilibrium dynamics that occur in this economy

for the benchmark case. The economy features a steady-state growth rate of per capita
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Table 1: Benchmark Parameter Values

Parameter Value Comment

γ = 1.5 Slightly more curvature than log utility

η = 1 F (z) is an exponential distribution

β = 0.02 Government spends 2% of consumption on ideas

λ = 1, φ = 1/2 Idea production function: Ȧt = αF (zt)A
1/2
t Lat

n̄ = .01 Long-run population growth rate

σ = 2 Elasticity of consumption wrt ideas

ρ = .05 Rate of time preference

δ̄ = 50 Mortality rate intercept

Note: These are the baseline parameter values for the numerical examples.

Figure 3: Equilibrium Dynamics: Benchmark Case

0 100 200 300 400 500 600
0 

1%

2%

3%

4%

5%

6%

Consumption
   growth,ċt/ct

Danger threshhold,
      z

t
 (× 100)

Mortality rate,
   δ

t
 (× 1000)

SS Growth with small,
constant  z:λσn̄/(1 −φ)

Time

 

Note: Simulation results for the competitive equilibrium using the parameter val-
ues from Table 1. Consumption growth settles down to a constant positive rate,
substantially lower than what is feasible. The danger threshold and mortality rate
converge to zero.
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consumption of 1.33%. This constant growth occurs while the danger threshold and

the mortality rate decline exponentially to zero; both zt and δt grow at -0.67%.

Several other features of the growth dynamics are worth noting. First, the particular

initial conditions we’ve chosen have the growth rate of consumption declining along

the transition path; a different choice could generate a rising growth rate, although de-

clining growth appears to be more consistent with the value of life in the model (more

on this below).

Second, consider total factor productivity for the idea production function. With

λ = 1, TFP is αF (zt)A
φ
t . Because we’ve assumed φ = 1/2, this production function

has the potential to exhibit positive TFP growth as knowledge spillovers rise over time.

However, a declining danger threshold can offset this. In steady state, TFP growth for

the idea production function is φgA + ηgz = −0.33%. That is, even though a given

number of researchers are generating more and more candidate ideas over time, the

number that get implemented is actually declining because of safety considerations.

Finally, the steady-state growth rate of 1.33% can be compared to an alternative

path. It is feasible in this economy to let the technology-induced mortality rate fall to

some arbitrarily low level — such as 1 death per billion people — and then to keep

it constant at that rate forever by maintaining a constant technology cutoff z̄. As this

constant cutoff gets arbitrarily small, the steady state growth rate of the economy con-

verges to λσn̄/(1 − φ) — that is, to the rule-of-thumb growth rate from Proposition 1.

For our choice of parameter values, this feasible steady-state growth rate is 4.0% per

year. That is, concerns for safety make it optimal in this environment to slow growth

considerably relative to what is possible in the steady state.

The reason for this, of course, is the rising value of life, shown for this example in

Figure 4. The value of life begins in period 0 at about 100 times annual consumption; if

we think of per capita consumption as $30,000 per year, this corresponds to a value of

life of $3 million, very much in the range considered in the literature (Viscusi and Aldy

2003; Ashenfelter and Greenstone 2004; Murphy and Topel 2005). Over time, the value

of life relative to consumption rises exponentially at a rate that converges to 0.67%, the

same rate at which mortality declines.
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Figure 4: The Value of Life: Benchmark Case
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Note: Simulation results for the competitive equilibrium using the parameter val-

ues from Table 1. The value of life rises faster than consumption.

6.2. Numerical Example When η = ∞

One element of the model that is especially hard to calibrate is the distribution from

which technological danger is drawn, F (z). The previous example assumed an expo-

nential distribution so that η = 1; in particular, the elasticity of the distribution as z

approaches zero is finite. However, this need not be the case. Both the Fréchet and

the lognormal distributions feature an infinite elasticity. In Proposition 3, we showed

that this leads the growth rate of consumption to converge to zero asymptotically. For

this example, we consider the Fréchet distribution to illustrate this result: F (z) = e−z−ψ

and we set ψ = 1.1.8 Other parameter values are unchanged from the benchmark case

shown in Table 1, except we now set δ̄ = 1, which is needed to put the value of life in

the right ballpark.

Figure 5 shows the dynamics of the economy for this example. The growth rate of

consumption now converges to zero as η(z) gets larger and larger, meaning that a given

decline in the danger threshold eliminates more and more potential ideas. Interest-

8Assuming ψ > 1 ensures that the mean exists. The elasticity of this cdf is η(z) = ψz−ψ , so a small value
of ψ leads the elasticity to rise to infinity relatively slowly.
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Figure 5: Equilibrium Dynamics: Fréchet Case
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Note: Dynamics when F (z) is Fréchet, so η = ∞: growth slows to zero asymptot-
ically. See notes to Figure 3.

ingly, this rising elasticity means that the danger threshold itself declines much more

gradually in this example.

Figure 6 — with its logarithmic scale — suggests that this declining consumption

growth rate occurs as consumption gets arbitrarily high. The value of life still rises faster

than consumption, but the increase is no longer exponential.

7. Discussion and Evidence

A key result from both the simple model and the richer endogenous growth model is

that safety has a large impact on the nature of economic growth if the marginal utility

of consumption declines rapidly, that is if γ > 1. In this section, we discuss a range of

evidence on γ. Is γ > 1 or γ < 1 likely to be the more relevant case? To summarize the

findings, the evidence appears quite mixed. The case for γ > 1 may certainly be the

relevant one, but it may not be. More work will be needed to decide.
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Figure 6: Consumption and the Value of Life: Fréchet Case
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Note: Dynamics when F (z) is Fréchet, so η = ∞: consumption still rises to infin-

ity. See notes to Figure 4.

7.1. Risk Aversion and the Elasticity of Intertemporal Substitution

In the most common way of specifying preferences for macro applications, the coeffi-

cient of relative risk aversion, γ in our notation, equals the inverse of the elasticity of

intertemporal substitution. Large literatures on asset pricing (Lucas 1994) and labor

supply (Chetty 2006) suggest that γ > 1 is a reasonable value.

Evidence on the elasticity of intertemporal substitution, 1/γ in our notation, is more

mixed. The traditional view, supported by Hall (1988), is that this elasticity is less than

one, consistent with the case of γ > 1. This view is supported by a range of careful

microeconometric work, including Attanasio and Weber (1995), Barsky, Juster, Kimball

and Shapiro (1997), and Guvenen (2006); see Hall (2009) for a survey of this evidence.

On the other hand, Vissing-Jorgensen and Attanasio (2003) and Gruber (2006) find ev-

idence that the elasticity of intertemporal substitution is greater than one, suggesting

that γ < 1 could be appropriate.
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7.2. Empirical Evidence on the Value of Life

Direct evidence on how the value of life changes with income is surprisingly difficult to

come by. Most of the empirical work in this literature is cross-sectional in nature and

focus on getting a single measure of the value of life (or perhaps a value by age); see

Ashenfelter and Greenstone (2004), for example. There are a few studies that contain

important information on the income elasticity, however. Viscusi and Aldy (2003) con-

duct a meta-analysis and find that across studies, the value of life exhibits an income

elasticity below one. On the other hand, Costa and Kahn (2004) and Hammitt, Liu and

Liu (2000) consider explicitly how the value of life changes over time. These studies

find that the value of life rises roughly twice as fast as income, supporting the basic

mechanism in this paper.

7.3. Evidence from Health Spending

The key mechanism at work in this paper is that the marginal utility of consumption

falls quickly if γ > 1, leading the value of life to rise faster than consumption. This tilts

the allocation in the economy away from consumption growth and toward preserving

lives. Exactly this same mechanism is at work in Hall and Jones (2007), which studies

health spending. In that paper, γ > 1 leads to an income effect: as the economy gets

richer over time (exogenously), it is optimal to spend an increasing fraction of income

on health care in an effort to reduce mortality. The same force is at work here in a

very different context. Economic growth combines with sharply diminishing marginal

utility to make the preservation of life a luxury good. The novel finding is that this force

has first-order effects on the determination of economic growth itself.

What evidence is there for an income elasticity of health spending larger than one?

Figure 7 shows two pieces of evidence. Panel (a) documents that health spending as

a share of GDP is rising in many countries of the world, not only in the United States.

Indeed, for the 19 OECD countries reporting data in both 1970 and 2006 (many not

shown), all experienced a rising health share.

Panel (b) shows another well-documented fact: the share of GDP an economy spends

on health rises with GDP per capita. That is, rich countries spend a higher fraction of

their income on health than poor countries, although this result is more nuanced when
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Figure 7: International Evidence on the Income Effect in Health Spending
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other controls are included; see Newhouse (1977) Reinhardt, Hussey and Anderson

(2002), and the extensive survey in Gerdtham and Jonsson (2000). The cross-sectional

evidence shown in Figure 7 for the year 2006 suggests a simple income elasticity of

1.145. Of course, this ordinary least squares estimate of the elasticity is biased because

a country’s per capita income is surely a function of its health spending, at least to some

extent (Fogel (1994); Becker et al. (2005); Weil (2007); Acemoglu and Johnson (2007)).

Acemoglu, Finkelstein and Notowidigdo (2009a) estimate an elasticity of hospital

spending with respect to transitory income of 0.7, less than one, using oil price move-

ments to instrument local income changes at the county level in the southern part of

the United States. While useful, it is not entirely clear that this bears on the key pa-

rameter here, as that paper considers income changes that are temporary (and hence

might reasonably be smoothed and not have a large effect on health spending) and lo-

cal (and hence might not alter the limited selection of health insurance contracts that

are available).

7.4. Evidence from Accident Rates

Less direct evidence may be obtained by considering our changing concerns regarding

safety. It is a common observation that parents today are much more careful about the

safety of their children than parents a generation ago. Perhaps that is because the world

is a more dangerous place, but perhaps it is in part our sensitivity to that danger which

has changed.

Starr (1969) is an early example of a study that looked at accident rates for differ-

ent technologies in a cost-benefit fashion. A trend toward increasing safety is revealed

in Figure 8, which shows injury and fatality rates for motor vehicle, airplanes, and ac-

cidental drownings. (The choice of these categories was guided by a concern to mini-

mize the role of progress in health care interventions, though this cannot be completely

achieved).

Safety standards also appear to differ significantly across countries, in a way that is

naturally explained by the model. While more formal data is clearly desirable, different

standards of safety in China and the United States have been vividly highlighted by

recent events in the news. Eighty-one deaths in the United States have been linked

to the contamination of the drug heparin in Chinese factories (Mundy 2008). In the
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Figure 8: The Trend toward Increasing Safety in the United States
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summer of 2007, 1.5 million toys manufactured for Mattel by a Chinese supplier were

recalled because they were believed to contain lead paint (Spencer and Ye 2008). And

in an article on the tragic health consequences for workers producing toxic cadmium

batteries in China, the Wall Street Journal reports

As the U.S. and other Western nations tightened their regulation of cad-

mium, production of nickel-cadmium batteries moved to less-developed

countries, most of it eventually winding up in China. “Everything was trans-

ferred to China because no one wanted to deal with the waste from cad-

mium,” says Josef Daniel-Ivad, vice president for research and development

at Pure Energy Visions, an Ontario battery company. (Casey and Zamiska

2007)

A limitation of this evidence on safety, of course, is that the differences over time

and across countries could reflect transition dynamics in a model with γ < 1.

7.5. Sustainable Growth and the Environment

This paper is most closely related to the literature on sustainable growth and the en-

vironment; for example, see Solow (1974), Stiglitz (1974), Gradus and Smulders (1993),
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and Aghion and Howitt (1998, Ch. 5). Particularly relevant are Stokey (1998) and Brock

and Taylor (2005), who study the environmental Kuznets curve in which pollution first

rises and then falls with economic development. In these papers, pollution enters the

utility function as a cost in an additively separable fashion from consumption. These

models feature an income effect for γ > 1 because the utility from growing consump-

tion is bounded. This leads to a “growth drag” from the environment: growth is slower

than it would otherwise be because of environmental concerns. While the key issues

here are very distinct — the utility costs of pollution in one case versus the loss of life as-

sociated with dangerous technologies in the other — it is interesting that the curvature

of marginal utility plays a central role in both and can slow growth.

One of the ways in which pollution has been mitigated in the United States is through

the development of new, cleaner technologies. Examples include scrubbers that re-

move harmful particulates from industrial exhaust and catalytic converters that reduce

automobile emissions. Researchers can spend their time making existing technolo-

gies safer or inventing new technologies. Rising concerns for safety lead them to divert

effort away from new technologies, which may slow growth. Acemoglu, Aghion, Bursz-

tyn and Hemous (2009b) explore this kind of directed technical change in a model of

growth and the environment.

8. Conclusion

Technological progress involves risks as well as benefits. Considering the risks posed

to life itself leads potentially to first-order changes in the theory of economic growth.

This paper explores these possibilities, first in a simple “Russian roulette” style model

and then in a richer model in which growth explicitly depends on the discovery of new

ideas. The results depend somewhat on the details of the model and, crucially, on how

rapidly the marginal utility of consumption declines. It may be optimal for growth to

continue exponentially despite the presence of existential risks, or it may be optimal for

growth to slow to zero, even potentially leading to a steady-state level of consumption.

The intuition for the possible end to exponential growth turns out to be straightfor-

ward. For a large class of standard preferences, safety is a luxury good. The marginal

utility associated with more consumption on a given day runs into sharp diminishing
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returns, and ensuring additional days of life on which to consume is a natural, welfare-

enhancing response. When the value of life rises faster than consumption, economic

growth leads to a disproportionate concern for safety. This concern can be so strong

that it is desirable that growth slow down.

The framework studied here clearly omits other factors that may be important. Health

technologies can help to extend life, possibly offsetting some of the concerns here. Even

dangerous technologies like nuclear weapons could have a life-saving use — for exam-

ple if they helped to divert an asteroid that might otherwise hit the earth.

This paper suggests a number of different directions for future research on the eco-

nomics of safety. It would clearly be desirable to have precise estimates of the value of

life and how this has changed over time; in particular, does it indeed rise faster than in-

come and consumption? More empirical work on how safety standards have changed

over time — and estimates of their impacts on economic growth — would also be valu-

able. Finally, the basic mechanism at work in this paper over time also applies across

countries. Countries at different levels of income may have very different values of

life and therefore different safety standards. This may have interesting implications

for international trade, standards for pollution and global warming, and international

relations more generally.

A Appendix: Proofs of the Propositions

This appendix contains outlines of the proofs of the propositions reported in the paper.

Proof of Proposition 1. BGP under the Rule of Thumb Allocation

Equations (18) and (19) follow immediately from the setup. The growth rate of ideas

then comes from taking logs and derivatives of both sides of the following equation,

evaluated along a balanced growth path, and using the fact that δ∗ = δ̄gA(1 − s̄)Γ(z̄):

Ȧt

At
= αF (z̄)

s̄λNλ
t

A1−φ
t

.

QED.
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Proof of Proposition 2. Equilibrium Balanced Growth

Solving the optimization problems that help define the equilibrium and making

some substitutions leads to the following seven key equations that pin down the equi-

librium values of {ct, st, vt, zt, At, δt, Nt}:

ct = Aσ
t (1 − st) (29)

st

1 − st
= β −

vtδt
ct

= β(1 −
Γ(zt)

zt
) (30)

vt =
u(ct)/u

′(ct)

ρ+ δt + γgct − gvt
(31)

zt =
βct

vtδ̄gAt(1 − st)
(32)

Ȧt

At
= αF (zt)

sλ
tN

λ
t

A1−φ
t

(33)

δt = δ̄gAt(1 − st)Γ(zt) (34)

Ṅt

Nt
= n̄− δt (35)

We start with some preliminaries. Two technical assumptions are needed in the

proof. First, we assume the first moment of F (z) exists (this assumption can be weak-

ened). Second, we assume that F (z) > 0 for z > 0. It is straightforward to show that

Γ(z) ≤ z so that from (30) st ∈ [0, β/(1 + β)] ensuring st < 1. Moreover, st > 0 if zt > 0.

With these preliminaries out of the way, we begin by proving that ct → ∞. Especially

in light of the results from the simple model at the start of the paper, this is an important

step. This proof proceeds by contradiction. Suppose not. That is, suppose ct → c∗ ∈

(0,∞). The contradiction arises because the model has a strong force for idea growth.

Because ct = Aσ
t (1 − st) and st ≤

β
1+β , limAt ≤ (1 + β)c

1/σ
∗ , which means that gAt → 0.

Because (31) implies that vt → v∗, (32) requires

zt =
βct

vtδ̄gAt(1 − st)
→ ∞.

But this suggests that the economy is using all the new ideas that are created, which

will produce a contradiction in that gA > 0 will arise. To see this, consider the idea
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production function in (33):

lim
t→∞

gAt = lim
t→∞

αF (zt)
sλ
tN

λ
t

A1−φ
t

= α
sλ
∗N

λ
∗

A1−φ
∗

where we’ve used the fact that F (∞) = 1 and s∗ > 0 because lim zt = ∞ > 0. The only

way gAt → 0, then, is if N∗ = 0. However, this not the case. Instead, the death rate is

given by δt = δ̄gAt(1−st)Γ(zt) → 0 since gAt → 0 while Γ(∞) <∞due to the assumption

that the first moment of F (z) exists. But this means that gN → n̄ and therefore N∗ 6= 0,

which is a contradiction, proving that it must be the case that ct → ∞.

Next, we show that δt → 0 and zt → 0. Consider equation (31):

vt =
u(ct)/u

′(ct)

ρ+ δt + γgct − gvt
.

With our specification of utility, u(ct)/u
′(ct) = ūcγt + ct/(1 − γ). With ct → ∞ and γ > 1,

vt/ct → ∞, as the value of life rises faster than consumption. The presence of δt in the

denominator above turns out not to be a problem, as one can use the fact that Γ(z) ≤ z

to show that

δt = δ̄gAt(1 − st)Γ(zt) ≤ δ̄gAt(1 − st)zt = β ·
ct
vt
,

so that δt → 0.

Equation (32) then implies that

ztgAt =
βct

vtδ̄(1 − st)
. (36)

But then vt/ct → ∞ implies that ztgAt → 0.

We show that this requires zt to go to zero. Why? Suppose not. That is, suppose

instead that zt → z∗ > 0 and gAt → 0. Because δt → 0, the population grows at rate n̄

eventually and the law of motion for ideas (33) would lead to exponential growth in At,

which is a contradiction. Therefore zt has to go to zero.

Now consider growth rates along a balanced growth path. First return to the value of

life in equation (31). In the long run, vt is proportional to u(ct)/u
′(ct) = ūcγt + ct/(1− γ).

Since γ > 1, the growth rate of the value of life must be equal to γgc along an (asymp-

totic) balanced growth path. Equation (31) then implies the last result in the proposi-

tion, namely that u′(ct)vt → ū/ρ. The fact that gv → γgc immediately implies from (32)
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that gz = −(γ − 1)gc.

To get the growth rate of ideas, recall that

Ȧt

At
= αF (zt)

s̄λNλ
t

A1−φ
t

.

Taking logs and derivatives of this equation along a balanced growth path, and using

the fact that η ≡ limz→0 F
′(z)z/F (z) is finite from Assumption A, we have

(1 − φ)gA = ηgz + λn̄.

The growth rate results of the proposition then follow quickly, after we note that gc =

σgA and gz = −(γ − 1)gc. For example

gA =
λn̄

1 − φ+ ησ(γ − 1)
.

Finally, the share of labor devoted to research in steady state can be found from

equation (30). Using L’Hopital’s rule, one can show that

lim
zt→0

Γ(zt)

zt
= lim

zt→0

∫ zt
0 zdF (z)

ztF (zt)
= lim

zt→0

ztF
′(zt)

F (zt) + ztF ′(zt)
= lim

zt→0

ztF ′(zt)
F (zt)

1 + ztF ′(zt)
F (zt)

=
η

1 + η
. (37)

Substituting this into (30) yields the asymptotic value for s. QED.

Proof of Proposition 3. Equilibrium Growth with η = ∞

The proof of this proposition closely follows the proof of Proposition 2 above; after

all, the main difference is the value of η. In particular, the proof that ct → ∞ and zt → 0

is identical.

We depart from the previous proof just after we showed that zt → 0, following equa-

tion (36). There we found that ztgAt → 0 and zt → 0. In Proposition 2, we then showed

that gAt → gA > 0. Now instead we show that gAt must also go to zero.

Rewrite (33) as
gAtA

1−φ
t

Nλ
t

= αF (zt)s
λ
t .

Because zt → 0, the righthand side of this equation goes to zero. This means the left-
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hand side must also, and this can happen in one of two ways. First, gAt → 0, which is

what we’d like to show. The alternative is that gAt → ĝ > 0 such that (1 − φ)ĝ < λn̄. But

we can show that this alternative case leads to a contradiction. If gAt settles down to a

positive constant rate, then many of the arguments used above to prove Proposition 2

hold. In particular, we can take logs and derivatives of the idea production function

in (33) to see that

(1 − φ)ĝ = lim
t→∞

η(zt)gz + λn̄.

Moreover, from (32) it must then be true that gz = −(γ − 1)gc = −(γ − 1)σĝ. However,

our key assumption for this proposition is that the elasticity of F (z) goes to infinity as

z → 0 implying that lim η(z) = ∞. The negative growth rate of zt then means that this

equation cannot yield a positive solution for ĝ. Therefore the first case above must hold

and gAt → 0.

The fact that st → 0 comes from (30) because limz→0 Γ(z)/z = 1 when η = ∞, as

can be seen by the argument above in equation (37). Finally, since ct = Aσ
t (1 − st) and

gAt → 0, it must also be true that gct → 0. QED.

Proof of Proposition 4. Equilibrium Growth with γ < 1

The equilibrium with γ < 1 is characterized by the same seven equations listed

above in the proof of Proposition 2, equations (29) through (35). The proof begins in the

same way, by studying the value of life in equation (31). With our specification of utility,

u(ct)/u
′(ct) = ūcγt +ct/(1−γ). Since γ < 1, the constant term disappears asymptotically

and the growth rate of the value of life equals gc along an (asymptotic) balanced growth

path. Equation (31) then implies the last result in the proposition, giving the constant

ratio of the value of life to consumption.

The fact that vt/ct converges to a constant means that zt converges to a nonzero

value, according to equation (32). Similarly, δt does as well, according to equation (34).

The solution for the growth rate and the research share are found in ways similar to

those in the proof of Proposition 2.

The solution for z∗ involves a nonlinear equation with no explicit solution. For ex-
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ample, one way to write this solution is

z∗

Γ(z∗)
= β(1 − γ)(1 + ρ/δ∗)

where δ∗ = δ̄g∗A(1 − s∗)Γ(z∗) and the equations stating g∗A and s∗ as functions of z∗ are

given in the statement of the proposition.

These equations can be combined to yield a single equation in z∗:

z∗

Γ(z∗)
= β(1 − γ)

(

1 +
ρ

n̄

[

1 − φ

λδ̄Γ(z∗)

(

1 + β(1 −
Γ(z∗)

z∗
)

)

+ 1

])

. (38)

I do not currently have a set of conditions that guarantee the existence or uniqueness of

a solution to this equation, though some progress can certainly be made with the equa-

tion above (for example, β sufficiently small goes a long way toward getting existence

and uniqueness). Numerical simulation for the case of the exponential distribution

leads to a unique solution. At the moment, then, a technical condition for the proposi-

tion to hold is that a unique nonnegative solution z∗ solves equation (38). QED.

Proof of Proposition 5. Optimal Balanced Growth

The Hamiltonian for the optimal growth problem is

H = Ntu(ct)+µ1tαF (zt)s
λ
tN

λ
t A

φ
t +µ2tNt

(

n̄− δ̄αF (zt)s
λ
t N

λ
t A

φ−1
t (1 − st)

∫ zt

0
zf(z)dz

)

.

Applying the Maximum Principle, the first order necessary conditions are

Hs = 0: Ntu
′(ct)A

σ
t = µ1tλ

Ȧt
st

− µ2tNt(λ
δt
st
− δt

1−st
)

Hz = 0: µ1t = µ2tNtδ̄zt ·
1−st
At

Arbitrage(At): ρ = µ̇1t

µ1t
+ 1

µ1t

(

Ntu
′(ct)σ

ct
At

+ µ1tφ
Ȧt
At

− µ2tNt(φ− 1) δt
At

)

Arbitrage(Nt): ρ = µ̇2t

µ2t
+ 1

µ2t

(

u(ct) + µ1tλ
Ȧt
Nt

+ µ2t(n̄ − δt) − µ2tNtλ
δt
Nt

)

together with two transversality conditions: limt→∞ µ1tAte
−ρt = 0 and limt→∞ µ2tNte

−ρt =

0.

Combining these first order conditions (use the first and second to get an expression
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Table 2: Key “State-Like” Variables for Studying Transition Dynamics

Variable Meaning Steady-State Value

ℓt ≡
vtδt
ct

Value of life × mortality ℓ∗ = β · η
1+η

mt ≡ gAt Growth rate of At m∗ = gA

δt Mortality rate δ∗ = 0

wt ≡
u(ct)

u′(ct)ct
· ct

vt
Value of a year of life relative

to mortality price

w∗ = ρ

for µ2t and substitute this into the arbitrage equation for Nt) and rearranging yields:

ρ− gµ2t − (n̄− δt) + λδt − λgAtδ̄(1 − st)zt

λδ̄gAtzt
1−st

st
− δt

1−st
(λ1−st

st
− 1)

=
u(ct)

u′(ct)ct
· (1 − st). (39)

This is the key equation for determining the asymptotic behavior of zt. In particular,

along a balanced growth path, the right-hand-side goes to infinity for γ > 1. This re-

quires that zt → 0 so that the denominator of the left side goes to zero (since δt → 0

as well). Moreover, with some effort, one can show that the denominator on the left

side grows at the same rate as zt along the balanced growth path, which implies that

gz = −(γ − 1)gc from the usual value-of-life argument used earlier.

The result for the growth rate of At and ct follows by the same arguments as in the

proof of Proposition 2. Finally, one can combine the first order conditions to solve for

the allocation of research. QED.

B Appendix: Solving the Model Numerically

The transition dynamics of the equilibrium allocation can be studied as a system of

four differential equations in four “state-like” variables that converge to constant val-

ues: ℓt, mt, δt, and wt. These variables, their meaning, and their steady-state values are

displayed in Table 2.

Letting a “hat” denote a growth rate, the laws of motion for these state-like variables
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are

ℓ̂t =
ρ+ δt −wt + (γ − 1)σmt + λ(n̄ − δt) − (1 − φ)mt

1 + kt

(

λ
β−ℓt

− γ
)

+ η(zt)+θ(zt)
1−θ(zt)

(40)

m̂t = −

(

η(zt)

1 − θ(zt)
+

λkt

β − ℓt

)

ℓ̂t + λ(n̄− δt) − (1 − φ)mt (41)

δ̂t = m̂t +

(

kt −
θ(zt)

1 − θ(zt)

)

ℓ̂t (42)

ŵt = δ̂t − ℓ̂t +

(

γ − 1 +
δt
wtℓt

)

(

σmt + ktℓ̂t

)

(43)

where θ(z) ≡ zΓ′(z)/Γ(z) = η(z)(z/Γ(z) − 1) is the elasticity of the conditional expec-

tation function and kt ≡ ℓt/(1 + β − ℓt). The only other variable that must be obtained

in order to solve these differential equations is zt, and it can be gotten as follows. First,

st = (β − ℓt)/(1 + β − ℓt). With st in hand, Γ(zt) can be recovered from the state-like

variables using the mortality rate: δt = δ̄mt(1 − st)Γ(zt). Finally, zt = βΓ(zt)/ℓt.

We solve the system of differential equations using “reverse shooting”; see Judd

(1998, p. 355). That is, we start from the steady state, consider a small departure, and

then run time backwards. For the results using the exponential distribution, we set

T = 600; for the results using the Fréchet distribution, we set T = 12150.

An interesting feature of the numerical results is that ℓ̂t ≈ 0 holds even far away

from the steady state. The reason is that limz→0 θ(z) = 1: if z changes by a small percent

starting close to zero, the conditional expectation changes by this same percentage. But

this means that ℓ̂t ≈ 0 since there is a 1/(1 − θ(zt)) term in the denominator. But since

zt/Γ(zt) = β/ℓt, if ℓt does not change by much, then zt will not change by much either.

QED.
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