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Annals of Economic and Social Measurement, 2/4, 1973 

KALMAN FILTER MODELS 

A BAYESIAN APPROACH TO ESTIMATION OF TIME-VARYING 

REGRESSION COEFFICIENTS 

BY ALEXANDER H. SARRIS* 

The origins of time-varying linear regression coefficients are discussed, and it is noted that time variation 
cannot be estimated unless some restrictions are placed on the infinite forms of possible time changes. 
For example, a Markov structure imposed a priori on the coefficients renders them estimable. The struc- 
ture imposes an incompletely specified prior probability distribution on the coefficients. The prior becomes 
completely determined through fitting it to the data. Bayes’ theorem is then used to derive an estimator 
of the parameters. Under the assumption of perfect prior fit, the Bayes estimator is unbiased, minimum 
variance, and orthogonal to the residuals. Under the assumption of incomplete prior fit, the optimality 
properties of the estimator hold asymptotically. Finally, the problem of identifying the best Markov 
structure that fits the parameters is examined, and a Bayesian solution is proposed. This last discussion 
indicates the limitations of any method that attempts to identify time-varying coefficients. 

1. INTRODUCTION 

Over the last two decades great effort has been spent by econometricians, statisti- 

cians and system theorists on the problem of system identification. This problem is 

concerned with construction of a model whose output is close in some sense to the 

observed data from the real system. The modeler is guided by experience, know- 

ledge of the real thing he is trying to describe, and intuition in specifying some 

equations (dynamic or static) which he terms the “structure” of the model. The 

equations are usually specified to within a number of parameters or coefficients 

which must be estimated by fitting the equations to the available data. The 

unknown parameters are usually assumed a priori to be constant. Then the prob- 

lem of system identificaiion is reduced to one of constant parameter estimation. 

There is a wealth of methods for the solution of this problem. A good survey of the 

ones that have been developed by econometricians and statisticians can be found 

in Theil (1971), while Astrém and Eykhoff (1971) have surveyed the methods that 

have been developed primarily in system theory. 

There are several reasons for suspecting that the parameters of many models, 

constructed by both engineers and econometricians, are not constant but in fact 

time varying. In engineering the origins of parameter variation are usvally not 

very hard to pinpoint. Component wear, metal fatigue or component failure are 

some very common reasons for parameter variations. The major objective of 

construction of engineering models is control and regulation of the real system 
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modeled. Therefore, most of the research in that area has concentrated on devising 

ways to make the output of the model insensitive to parameter variations. 

On the other hand the origins of time varying parameters in econometric 

models are not very easy to isolate. Suspicions that shocks in the economy lead to 

sometimes permanent changes in the parameters of econometric models, have 

been substantiated ever since it was noticed that models of the economy fitted 

with prewar data gave noticeably different parameters than when fitted with 

postwar data. However, if one examines the process of economic modeling he will 

see several other sources of parameter variation. | will mention four of the most 

common ones. 

Many econometric equations are mis-specified in the sense that they exclude 

variables that could possibly be part of the equation. Consider an equation of the 

form 
k v 

(1) Vi > -Bixit — > Yj jt + e, 
i=1 j=l 

where y is an endogenous variable and the x;, z; are the true explanatory variables. 

If the econometrician ignores the z; and lumps them with the error term «, then 

whenever the z,’s behave in a non-stationary fashion there will be time variations 

in the intercept of (1). 

Nonlinearities also give rise to parameter variations. If, for instance, the true 

relation is: 

(2) Vy = My + AX, + ax? + &, 

and the analyst considers the linear relation 

(3) De Wes B, + B2.X, + &, 

then 

(4) i = Ba = a2 + 203%, 

thus B,, is not constant. 

Finally proxy variables and aggregation are also sources of parameter varia- 

tion. For a detailed exposition of the sources of parameter variation the reader is 

referred to Cooley (1971). 

This paper is concerned with a Bayesian method of estimation of time vary- 

ing parameters. In section 2 a survey of previous research is given. The problem 

posed here is described in section 3. In sections 4 through 6 the method proposed 

for parameter estimation is presented and the properties of the estimator analysed. 

Sections 7 and 8 consider some problems that arise in applying the estimation 

technique. In section 9 the question of identifiability of a particular Markov 

structure is taken up, and a Bayesian solution which is the only feasible one is 

proposed. The last section summarizes the results. 

2. PREVIOUS RESEARCH ON ESTIMATION OF TIME VARYING PARAMETERS 

The problem of estimation of time varying parameters has not received very 

much attention from econometricians. On the other hand system theorists have 
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devoted many years of research to various aspects of it. The reasons for this 

apparent gap will become clearer later. 

The model from this point on will be assumed to be linear in the parameters. 

The following three classes of non-constant parameters are distinguished 

(a) Time varying but non-stochastic 

(b) Random but stationary 

(c) Random but not necessarily stationary. 

The earliest time varying parameter in econometrics dealt with parameters 

that were piecewise constant (Quandt (1958, 1960)) namely in class (a). This work 

was continued later by McGee and Carleton (1970), Brown and Durbin (1971) and 

Belsley (1973) but is still far from solved. 

The second class of varying coefficients :aentioned above applies to many 

problems in econometrics and statistics, and especially to the analysis of cross- 

sectional data. The problem is usually posed in terms of a relation of the form 

. 

(5) = pa BinXit + &, 
i=1 

where at each period t the parameters £;, (i = 1,...,k) are a sample from a multi- 

variate distribution with mean yp and covariance matrix L. The objective is usually 

to estimate yp and Y. Work on this problem has been done by Rao (1965), Hildreth 

and Houck (1968), Burnett and Guthrie (1970), Swamy (1970), and Rosenberg 

(1972). 

Under the third category mentioned above come the various sequential 

variation models of the form 

(6) Bis, = TB, + %. 

This model is very common in the engineering literature and can be utilized to 

represent a wide variety of sample paths. In the econometrics literature to my 

knowledge only Rosenberg (1967, 1968a, b) has dealt extensively with this kind 

of sequential variation. Cooley (1971) has also used it, mainly as a predictive tool. 

On the other hand the engineering literature on estimation of models of the 

form (6) is huge. The earliest work was the one by Kalman and Bucy (1961). For 

extensive bibliographies and various aspects of the problem the reader can consult 

the textbooks of Sage and Melsa (1971), and Astrém (1970) as well as the special 

issue of the IEEE (1971) Transactions on Automatic Control. 

In most of the engineering literature the statistics of the uncertain quantities 

are assumed known. This is a severe restriction when one is transferred to the realm 

of statistics and econometrics and is one of the primary reasons for which there is 

a large gap between research in system theory and the quantitative social sciences. 

Interesting exceptions to the rule in the engineering literature are the papers by 

Mehra (1970, 1971, 1972), and Kashyap (1970). Furthermore, the engineers usually 

inake strong a priori assumptions about the matrix T, which as will be seen in 

section 9 do not, in general, hold in an econometric framework. 

3. PROBLEM DESCRIPTION 

Consider the following model 

(7) bas xB, + &, 
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where y, is the response to the effects of the k explanatory variables x,,, x>,,..., 

Xue, X, iS a 1 x k vector of the mentioned explanatory variables, B, is a k x 1 

vector of time varying coefficients, and ¢, is a disturbance term that is assumed 

to be normally distributed with the following properties. 

(8) E[e] = 0 

(9) E{e?] = o? 

(10) Efe,e,] = 075, 

(11) E{e,B,] = 0 

where 6,, is the Kronecker delta, and a? is an unknown constant. The assumption 

is that there are N observations on the endogenous variable y and the k exogenous 

variables. 

Define the following quantities 

(12) y = (1, 2,---> Yn] 

where (’) denotes the transposition. 

(13) B = [B;, B2..--, Br] 

(14) @ = [€,,&2,...,Ey} 

(15) | [* Yas. © 

wine... © 
X=|- ; 

0 *Xy 

The available information now can be written as follows: 

(16) y=XBr+e. 

It can be readily seen now that it is impossible to estimate the vector B (a 

Nk x 1 vector) from (16), via ordinary least squares (OLS) regression. To use the 

OLS formula the matrix X’X must be invertible. It is easily seen, however, that 

this Nk x Nk matrix has rank at most equal to N. So there are not enough degrees 

of freedom to estimate f. 

The conclusion from the above discussion is that there is no hope of estimat- 

ing B unless some more information about the vector becomes available. I will 

assume that the B;’s can be generated by a Markovian structure of the form 

(17) Bi+ 1 = TB, + toy (t = 0,1,...,N —1) 

where: T is a known k x k transition matrix and u ;18ak x 1 vector of random 

shocks distributed as multivariate normal with zero mean and covariance matrix 

(18) E{uju,) = of R6,; 

where R is a known k x k positive semidefinite matrix. 

The vector By will be assumed unknown. 
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With the assumption of 2 structure such as the above, what is achieved is a’ 

prior distribution on the vector B. However, this distribution is not completely 

known because a? and f, are not known. So it is not a complete Bayesian prior 

and so Bayesian analysis cannot be carried out immediately. Some “‘fitting” 

must be done before the Bayesian analysis is started. 

The idea of an incomplete prior distribution might seem strange. A rationaliza- 

tion of it is the following. With the assumption of (17) the vector valued time 

series {B,} is restricted to a class of particular sample paths. However, the econo- 

metrician is ignorant about the level at which the sample paths start, and about 

the spread that he can allow the class of sample paths to have. He expresses this 

by letting the data define these quantities for him. 

The problem now is two-fold. First find the prior for # that best fits the data. 

Then use the calculated prior to carry out a prior to posterior analysis to obtain 

the posterior distribution of £. 

4. ESTIMATION OF THE BEST PRIOR OF f 

In this section maximum likelihood is used to estimate the quantities Bo, 

o? and o2. First B, is expressed in terms of Bo. 

(19) B, = TBy-; + % = T(TBy-2 + U-1) + & 

T*B,_> + Uy, + Tu,-; =... 

k 
T*By + > T*4u,. 

ye 3 

By substituting in (7) the following is obtained 

(20) ; Seung Vx => x,B, + Ey = x,T Bo + X, Y = 1u; + Ey. 
j=1 

Define: 

(21) %, @%7- 2 ae ee N) 

k 
(22) Vy = Xx Y T*~4u, + & (k => 1,2 geees N). 

j=1 

Letting 

(23) Z =([z1,22,.-->Zn] 

and 

(24) v = [v,,02,..., Un} 

the relations (20) can be written compactly as follows: 

(25) y= ZBo + v. . 

The vector v is distributed as multivariate normal with mean 

E(v) = 0 
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and covariance matrix given by the following equations: 

k A 
Evj => El x - ¥ T*4u, + | E + | Y ir }x,| 

j=1 j=l j= 
k 

(26) = 02 + cin Y riRt) < 
j=1 

k l 
Ev,v, = el x > T*-4u, + a| E + | Y wrt) | 

j=1 j=1 j= 

I 
(27) = | y ToT") ifk>! 

j=1 

k . . 
(28) a nf y TORT") ifk <1. 

j=l 

It is readily noticed that (27) and (28) give the same quantities. The covariance 

of v can be written as 

(29) (Evv’) = 621 + 620 

where J isa N x N unit matrix and Q isa N x N known matrix with entries 

; min{i,j} ' , 
(30) Q;; = Xi > 7) mac x} = Qj. 

n=1 

Furthermore define 

(31) @ = a/c? 

and write 

(32) E(vv’) = o2(I + 0Q) = a?P(6). 

So the covariance matrix of v is known up to two scalar constants. 

The logarithm of the likelihood of y can now be written as 

if 
(33) L(y: Z, Bo, 62, 0) = ew (2x) — . In o? — $1n |P(0)| 

2 2 

1 
ae 552 — ZBoy P(O)~ ty ~ ZBo) 

where |P| denotes the determinant of P. The values of 8, and o? that maximize this 

likelihood are 

(34) Bo(0) = [Z'P~ (0)Z]~'!Z'P~ *(0)y 

, N 

36) _ y'P(@)" {I — Z[Z'P(6)"*Z)"‘Z'P(6)" "Jy 
= 
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Now by substituting the expressions for £,(@) and (6) in the logarithmic likeli- ° 

hood function, the concentrated likelihood for @ is obtained. 

(37) L(y; Z, 0) = yin (27) 

N 
-F Ina {yP Ul ~ AZ'P-'Z)~'Z'P~"}y} 

1 N 

The concentrated likelihood function can be maximized numerically for @ 

to obtain a maximum likelihood estimator of # and the procedure is over. The only 

possible difficulty is the inversion of the N x N matrix P(@) for every value of 0. 

This can be avoided, however, with the following trick. 

P(O) = I + 6Q. 

Find an orthogonal matrix G which diagonalizes Q, so that 

(38) Q=GDG 

with G'G = Iand DaN x N diagonal matrix. Then 

(39) P(0) = I + 0G'DG = GI + @D\G 

= G'D*(#)G 

where D*(@) is diagonal. Hence 

(40) P~*(0) = G'D*~ '(0)G 

and inversion of P~ '(@) is reduced to inversion of a diagonal matrix which is trivial. 

Note that if y* and Z* are defined as 

(41) y* = Gy 

(42) Z* =GZ 

the estimators for B, and o? become 

(43) B,(0) = [Z*’D*~ '(0)Z*)~'Z*' D*~ '(@)y* 

(44) 63(0) = ay" Dt \(@)[I — Z*(Z*’D*~1(0)Z*]~1Z*’ D*~ (0) y*} 

and they are equal to the ones given by (34)(36). 

Note that the diagonalization is to be done only once and not at every itera- 

tion for 0. This is a significant computational advantage. There exist very efficient 

algorithms for achieving diagonalization for large non-sparse matrices. I have 

heard of a procedure at Argonne National Laboratories that took 80 seconds on 

a IBM-195 computer to diagonalize a 768 x 768 dense matrix.’ 

The procedure outlined above for finding the best prior is not new. Cooley 

(1971) has used a similar procedure, although his problem was quite different than 

' | owe some of these comments to Dr. Virginia Klema of the N.B.E.R. Computer Research Center. 
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mine. He has given complete proofs of the consistency and efficiency of the 

estimators obtained by this procedure and the interested reader is referred to his 

work. 

Note that the estimator for By is unbiased and identical to the Generalized 

Least Squares (GLS) estimator obtained by minimizing 

(45) (y — ZBo)'[P(0)]~ (vy — ZBo). 

The estimator of o? is biased because 

N -k 

Bgl ee 
(46) E67(0) = 

For large N the bias is negligible. The imbiased estimator of o? 

= 62(0) 
N -—k 

which is obtained from GLS could also be used instead of the one given in (35). 

Presumably, the estimate of 0 would be slightly different, but for large N the 

difference would be minor. 

Another approach that could have been used, is to assess a prior distribution 

jointly for By, 02 and @. Then Bayes’ theorem could be used to estimate the posterior 

distribution of B,, o? and 0, and inferences about the unknown quantities could 

thus be made. 

It seems to the author, however, that the econometrician will almost never 

have any prior information or feeling about the above mentioned unknown quanti- 

ties. Assuming diffuse priors on the other hand would not lead to any substantially 

different results than the ones obtained by the maximum likelihood approach 

mentioned. 

5. BAYESIAN ESTIMATION OF THE TIME VARYING COEFFICIENTS 

In the previous section the prior distribution of the Nk x 1 vector B was 

assessed. For the purposes of this and the next section the constants £,, ¢? and 0 

will be assumed known accurately. Consider now the model (16) 

y=XBr+eE 

B has a multivariate normal prior density with mean 

fE(B,)| — [ TBo | 

E(B) T*Bo 
(48) Ss A. od 

 E(By) | | T™Bo | 

and covariance matrix 

(49) E((B — w)(B — w)) 
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where 
V,; = cov (B;, B)) = Ei(B; — E(B))(B; — E(B ;))'} 

03 r-u][$ rm} 
min{i.j} , , 

=o2 ¥ Ti*RTS-", 
1 m 

If the following matrix is defined 

, 2 

ele ae 0 

(51) M=|T? TIO 

* ggaererimneetes * 1 | 

then 

(52) V = o2M(R @ Iy)M' 

where J, is the N x N unit matrix, and @ denotes the Kronecker product of two 

matrices. Note that V is invertible if and only if R is invertible. It will be assumed 

that R is positive definite so that V is invertible. 

The likelihood of the data y given f is multivariate normal with mean XB 

and variance 71. The joint density of y and f can thus be found by multiplying the 

prior of B and the likelihood function 

1 
(53) ply, B) = p(B y: X, B) = (n)*2 p12 XP {-271B — wiV~(B — wp} 

1 . 
"Qn X2qN &XP \-si20 — XB)(y - xp. 

The quadratic form of B in the exponent is now manipulated so as to complete the 

square in p. 

1 
(54) mau — XBy(y — XB) + (B — WV “(B - 

= E ms [2%°x + SP + xy) |(Sxx + v- 
ai a? ; a; Go; 

1 a 1 
jp=-) 2s +97) ifs SP 
p (3 | - ’)| 

1 BS 
yy + pV p—([V-'p+ SX’ + | byy +o u | eT oS | 

é 

1 Se 1 
(axx + v-} tae + 5X’ I. 

€ 
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The joint density thus becomes easily integrable with respect to B. After B is 

integrated out to obtain the marginal density of y, the posterior density of B given 

y is obtained as following 

,B) _ \(l/oz)x'X + V~*| 1 Ne ori 
(55) pBly) = ms = (mre exp \-5] _ \ex'x +V } 

frgolllgrer lor} 

0; 0; 

The posterior density is therefore multivariate normal with mean 

1 ’ -1 _ =f l , 
(56) B = E(Bly) = |XX +V Vow + GX'y 

and variance 

(57) E{(B — E(Bly)\(6 — EtAly)iiy} = [ox +V7 ) 
€ 

If the loss used in calculating the best estimator is quadratic, namely of the form 

E(B — By(B — B)) 

then it is well known that the best estimator is the mean of the posterior density 

of B. Therefore, for quadratic loss equation (56) gives the optimal estimator. Now 

equation (56) involves inversion of a Nk x Nk matrix. This is excessive. To circum- 

vent the problem the matrix inversion lemma which is stated here without proof 

is invoked. (For a proof see e.g. Duncan and Horn (1972).) 

Lemma 5.1. If S = [M~' + AR~'B]~' then 

(58) S = M -- MA[R + BMA]~'BM. 

Using (58) the Nk x Nk matrix in (56) can be written 

=} 
(59) [2x°x + v-] = V —VX'[o2ly + XVX]~'XV 

Theorem 5.1. Suppose that the prior density of B is multivariate normal with 

mean pu and covariance matrix V. Suppose that V is positive definite. If the likeli- 

hood of the data y given f is multivariate normal with mean Xf and covariance 
matrix a7], then the posterior density of B given the data y is multivariate normal 

with mean 

(60) E(Bly) = w+ VX'[ozly + XVX'} (y — Xp) 

and covariance matrix equal to 

(61) CB = V — VX"[o27Iy + XVX']"'XV. 

*[-] denotes the expression for the mean of £ appearing in the first bracket. 
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Proof. This theorem summarizes the results proved above. The only thing that 

needs proof is equation (60). (56) with the aid of lemma 5.1 becomes 

1 
E(Bly) = (V — VX(e21y + xvxy xv" + 2X} 

ev 

=y+ yxy — (o2Iy + XVX')"'Xp 

joy 
— S(o7ly + XVXYIXVX'y| 

u t+ VX"(o71y + xVxY"| (62 + XVX'}oy 

1 
~Xp-—5 vx'y| a2 

é 

w+ VX(o27ly + XVX') Wy — Xp). t=] 

It is of considerable interest to notice that the matrix o7], + X VX’ is nothing 

but the matrix o?P(0) defined by (32), and whose elements are given by equations 

(26)}{28). Since the inversion of this matrix has been accomplished during the first 

part of the estimation process, namely the “‘fitting” part, formula (60) provides 

an easy way to estimate the complete series (f,,..., By) at once. A simplification 

of equation (60) is now given, that will enhance the reader’s intuition about (60), 

and will clarify the “smoothing” character of the estimator. 

Theorem 5.2. The Bayesian estimator of f is equivalent to the following 

sequential estimator 

jn ® 1 ' 
(62) Bi aa TB;- 1|N + a2 RMP (ANY aad X p) 

where Bow = Bo, 

(63) M,=[0 0,...,: og eee Fe x) 

ak x N matrix, and By, denotes the ith (k x 1) vector component of f (cf. (13)). 

Proof. The proof hinges on observing the structure of the matrix V. Denote 

by V, the first k rows of V, by V, the next k rows, etc. up to Vy. It is then easy to 

see, having in mind the definition of V by (50) that 

(64) Vi=TV_,+F, 

where 

(65) F; = [0 0...R,RT’,...,RT™~*] 

then 

(66) V.X' = TV,_,X’ + FX’ = TV,_,X' + RM, 
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Defining »; = T‘B, and using (60) 

1 
Bun =f, + nx(2(R@r')o — Xp) 

l 
= Ty;-, + [TV,-,X' + RM;] [2 cr1-'} — Xp) 

o é 

1 
= T| w + KX (2(70)"')o a xw| 

+ Ro | 2170)" Jo ~ Xp) 

1 
= TB,- sy + GE RMIP)) 'y — Xp). a 

Theorem 5.2 shows explicitly how data subsequent to period i enter the 

estimation process. Notice also that the covariance matrix given in (61) is more 

general than the one traditionally deduced in the engineering literature. There, 

interest centers mostly on the covariance matrices of ,, B,,..., By and not on 

the cross-covariance matrices between f, and f j for i # j. Equation (61) gives 

explicitly all the necessary covariances. Equation (62) is a so-called “smoothing” 

equation, because it shows the effect on B; of observations obtained before as well 

as after time i. 

As far as the author is aware, the combined Bayesian estimation procedure 

for all the unknown parameters presented in sections 4 and 5, has not appeared 

in the literature before. 

6. PROPERTIES OF THE BAYESIAN ESTIMATOR 

In this section some small and large sample properties of the estimator ob- 

tained in the previous section are examined. 

Theorem 6.1. (Unbiasedness.) Suppose that the explanatory variables x, do 

not contain any lagged values of the endogenous variable y. Then the Bayesian 

estimator given by (60) is unbiased, in the sense that E(f — f) = 0. 

Proof. If there are no lagged values of y in x, then the matrix 07], + XV X’ 

is not a random variable. Therefore: 

E(B — B) = E{u + VX'(o2Iy + XVX') (y — Xp) — B} 

= p+ VX(o?ly + XVX') '[E(y) — Xu] — EB 

=u+ VX(o27ly + XVX') (Xu — Xp) -—p=0. Ez 

If the explanatory variables contain lagged values of the endogenous variable, 

then the estimator obtained in the previous section remains unchanged because 

the likelihood function is the same. This can be seen since 

(67) = Uys B) = p(vIB) = PO IB)pLvaly1; B)-- - PwlY1s Y2>-+ +> Yn-15 B)- 
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However, the estimator is now biased in a complicated way. Some experi- 

mental results employing a special case of the estimator (60) reported by Wieslander 

and Wiitenmark (1971) support the hypothesis that the estimator in this case has 

a small negative bias. 

For the rest of this section the assumption is that there are no lagged values 

of the endogenous variable in X. 

Theorem 6.2. (Properties of 8.) The Bayesian estimator of B obtained in the 

previous section and given in theorem 5.1 has the following properties : 

(1) 8 — f is distributed as multivariate normal with mean equal to zero and 

variance V — VX"[o7Iy + XVX'] ‘XV. 

(2) E(B — By — XBY = 0. 

(3) E(B — py =0. 
Proof. 
(1) It was seen in theorem 6.1 that # has mean x. Its variance is 

(68) E((B — w(B — w)] = VX'[ozly + XVX') Elly — Xwy — XW) 

-[o21y + XVX']"'XV 

(69) El(y — Xp)(y — Xp] = E(X(6 — ») + &)(X(B6 — ») + 8) 

= XVX'+o7ly. 

Therefore 

(70) E(B — w)(B — pw!) = VX'[o? ly + XVX']'XV 

(71) El(B — w(B — wi] = VX [o2 ly + XVX') Elly — Xw\(6 - yw) 

VX'[o2ly + XVX'T'E{LX(B — 1) + ENB — W)} 

VX'[o21y + XVX']" XV. 

Now using (70) and (71) 

(72) 

(73) 

(74) 

E(B — p)(B — BY) = EX(@ — » — 6 - wb - w — (6 - wy} 

E((B — w(B — 1 + EB — wb - wy) 

— E((B — w)(B — vw] — EB — Hb - 

V — VX'"[o2Iy.+ XVX']'XV. 

y—-Xp=X(B-f)+e 

E(B — By — XB] = E[—-(B — BB — By X’ + (B - Be’ 

E[(B — Boe’) = E{((u — B) + VX'[o2Iy + XVX']"' 

-[X(B — pw) + e]]} 

= VX'[o7Iy + XVX]"'o?1y. 
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Using property (1) and equations (73) and (74) the following is obtained 

E((B — B)\(y — XB] = —VX’' + VX'[o2Iy + XVX]-'XVX' 

+ VX"[o2Iy + XVX']~'o?2Iy = —VX' + VX' =0. 

(3) E(B — By] = EL(B — By’ — BX’ + BX’) 

= E[(B — B)B IX’ = E{((B — »w) — (6 — wR — w + vy} xX’ 

= E((B — w)(B — WX’ — E(B — w(B - wx’ 

+ E(B — B)ly'x’ 

= VX"[o7Iy + XVX']"'XVX’' — VX'[o? ly 

+ XVX]"'XVX’ 

= 0. . Zz 

The above theorem indicates that f is the projection of B on y. 

Notice that # is affine in y; i.e. of the form Ay + a. The following theorem 

proves that # has minimum variance among the class of unbiased affine estimators 

of B. 

Theorem 6.3. Let B be any estimator of that is affine in y and unbiased. Then 

the matrix 

A = E((B — BB — By) — El(B — yb - By) 

is positive semidefinite. 

Proof. Write 

(75) B=B+Hy+h. 

Unbiasedness yields 

(76) E(B — B) = E(B —B + Hy +h)=HXyn+h=0 

(77) E(B — BB — By) = E((B — B)(B — BY] + El(Hy + h)\(Hy + hy) 

+ E[(B — B)(Hy + hj] + E{(Hy + h)(B — By’. 

Unbiasedness and property (3) of theorem 6.2 render the cross terms equal to 

zero. The matrix A now becomes 

A = El(Hy + h)(Hy + h’)) = E(ff’) 

so indeed A is always a positive semidefinite matrix. | 

Although the estimator of B was derived using the Bayesian framework, it is 

of interest to examine its large sample properties. The arguments will be sketchy 

since a lot of discussions have appeared elsewhere. Large sample properties of 

posterior distributions have been examined among others by Jeffreys (1961, 

p. 193), Johnson (1967), and Zellner (1971, p. 31). It has been shown that under 

mild assumptions the posterior distribution for a vector of parameters approaches 

a normal distribution with mean equal to the maximum likelihood estimate, and 

covariance matrix equal to the information matrix. The way the maximum 

likelihood estimate of f, is derived is shown below. 

514 



The first step is to express all vector 8; with i # k in terms of B, as following 

(78) 

(79) 

(80) 

a—-§ 

B, =(T~'*-'B, — ¥ (TY ui; fori<k 
j=1 J 

B; = B, fori =k 

fori > k. B; 

i-k 

T*B, + YT 
j=1 j= 

Then the data is written with £, appearing as the only unknown. 

(81) 

where 

(82) 

(86) 

(87) 

where 

y= ZB, é. p*) 

x, 

ZY) = ted 

xyT*~? 
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The maximum likelihood estimator of , is then 

(89) B, = (Z°" [PMO] *Z) "ZT PM(O)]- *y. 

Notice that for k = 0 (79) reduces to (34); ie. the maximum likelihood estimator 

of By obtained earlier. Cooiey (1971) has proven that this estimator of 8, is con- 

sistent and efficient. Since for large samples the Bayesian estimate of 8, approaches 

the maximum likelihood estimate of B,, it also will be consistent and efficient. 

However, besides this point there are obvious advantages to the Bayesian estima- 

tors since their complete distribution is known, and the interactions between f; 

and f; for i ¥ j are easily seen. 

7. EFFECTS OF ERRORS IN fy, o, AND @ 

The resuits of the previous two sections hold only if the parameters Bo, ¢, 

and @ are known with certainty. Since By, 0, and @ are not known with accuracy, 

the errors of # in estimating f will be compounded. Cooley (1971) has proven in a 

‘similar context that the estimators of quantities like B,,¢, and 6 are consistent 

and efficient. So the results of the previous two sections are certainly true for large 

samples. For small samples, experimental results would indicate the validity of 

the theory. The problem of time varying parameters, however, is new to econo- 

metrics and statistics and published experimental! work is still lacking. 

On the other hand, the engineering literature has touched on the subject with 

research under the general name of “‘adaptive filtering.” Heffes (1966) has men- 

tioned that in general the estimator obtained with erroneous parameters will not 

be minimum variance. However, the error will not, in general, be large. Work on 

devising algorithms to compensate for the errors has been reported by Mehra 

(1970, 1972). The subject, however, has still not come under detailed scrutiny. 

8. EFFECTS OF SINGULAR R MATRIX 

In section 5 the covariance matrix of the shocks that change the coefficients 

was assumed positive definite. This was done to guarantee the invertibility of V 

(i.e. its positive definiteness) and the validity of the Bayesian approach. In most 

practical cases, however, the case will be that R is singular. If, for example, one of 

the coefficients is assumed to remain unchanged then the corresponding column 

and row of R will be zero. 

Notice that theorem 5.i indicates a form of the estimator which requires 

only the inversion of XV X’ + o71y. This inversion can always be done, as long 
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as V is positive semidefinite. Equation (60) was derived through the Bayesian 

approach, but itself does not require nonsingularity of R. The keen reader must — 

have noticed that in the proof of all the theorems of section 6, only form (60)+(61) 

of the estimator and its variance was used. The following theorem has thus been 

proved implicitly in the previous sections. 

Theorem 8.1. Let the covariance matrix R, of the coefficient shocks, be singu- 

lar. Then the minimum variance estimator of B is 

(90) B= p+ VX [o?ly + XVX')} (y — Xp) 

and has covariance matrix equal to 

(91) V — VX"[o7Iy + XVX']"'XV. 

9. THE IDENTIFIABILITY OF THE TRANSITION MATRIX 7 

Throughout the previous sections the transition matrix T was assumed 

constant and known. In this section this assumption is relaxed, and the conse- 

quences of alternate T’s are examined. 

The imposition of a transition relation is crucial to the determination of the 

prior distribution of the time varying coefficients. The choice of an appropriate T 

reflects the analyst’s prior beliefs about the class of sample paths that he will allow 

the B to be a member of. It is, therefore, of considerable interest to examine mem- 

bers of various classes of sample paths that arise from consideration of different 

T’s. The autoregressive integrated moving average (ARIMA) class of time series 

models, analyzed in depth by Box and Jenkins (1970), is general enough to describe 

most sample paths of interest. ARIMA models are capable of generating trends, 

cycles, as well as violent fluctuations. 

To obtain a feeling for the kinds of sample paths that ARIMA models generate, 

a scalar parameter f, will be considered. First assume that the matrix T is the unit 

matrix, namely T= 1 in the scalar case considered here. Then the Markov 

structure imposed on the varying coefficient is of the form 

(92) B, = B,-1 + U,. 

This is the most commonly used a priori Markov structure, and is appealing because 

of its simplicity. Figure 9.1 shows typical sample paths generated by this kind of 

structure (these and all the subsequent sample paths were generated by Monte 

Carlo simulations of the relevant structures). What is evident from the figure is 

that structure (92) leads to very noisy time series. If the analyst feels a priori that 

the parameters of the model are varying violently from period to period, then (92) 

seems an appropriate structure. 

In many cases, however, the a priori belief might be that the parameters drift 

slowly across time. In these situations the following model might seem more 

appropriate. 

(93) B, = 2B,-1 — B,~2 + U,. 

This model implies that the second time difference is stationary, as opposed to 

stationary first difference used in (92). Equation (93) can be reduced to the familiar 
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Figure 9.1 Time Series Sample Paths of the Structure f, = £,_, + u,. The initial conditions are zero 
for all paths; u, is normal white disturbances. 

form by the definitions 

(94) % = Bis 

(95) 

6, = B,. 

Then (93) becomes 

06 Heb Male , rm fie Os se a 

which is in the familiar form (notice that the covariance matrix of the redefined 

error is singular). Typical sample paths for structure (93) are shown in figure 9.2. 
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Figure 9.2 Time Series Sample Paths of the Structure f, = 28,_, — B,_, + u,. The initial conditions 
are zero for all paths; u, is normal white disturbances. 

It is apparent from the figure that the a priori assumption about the variation of f, 

is much different than the one used in posing structure (93). 

It is obvious that many different ARIMA structures can be imposed on f,. 

Figure 9.3 shows sample paths from a (0, 1,2) ARIMA process of the form 

(97) B, _ B,-; + U, 

(98) u, — 1.2u,_, + 0.32u,_. =€. 

Figure 9.4 shows sample paths from a (1, 1,0) ARIMA process and figure 9.5 

shows sample paths from a (0, 1, 1) ARIMA process. 
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Figure 9.3 Time Series Sample Paths of the Structure 8, = B,_, + u, with u, — 1.2u,_, + 0.32u,_, = 
é,. The initial conditions are zero for all paths; ¢, is normal white disturbances. 

The difficulty of identifying the transition matrix T, or in general the a priori 

structure of the time variation now becomes clear. For different ARIMA models 

different structure is posed a priori on the parameters. Even if the analyst feels 

strongly about one particular kind of variation, there are probably more than one 

ARIMA models that give sample paths with the desired character. The dilemma to 

the analyst is not an easy one to resolve. It is similar to the problem of isolating 

the kinds of variables to be included in an econometric model. 

Notice that once the structure is imposed then the theory developed earlier 

in the paper can be used to estimate the time series 8. The following procedure is 

suggested to resolve the identifiability problem. 
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Figure 9.4 Time Series Sample Paths of the Structure £, = f,_, + u, with u, = ¢, — 0.6e,_,. The 
initial conditions are zero for ali paths: e, is normai white disturbances. 
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Figure 9.5 Time Series Sample Paths of the Structure B, = B,_, + u, with u, = 0.6u,_, + e,. The 
initial conditions are zero for all paths; ¢, is normal white disturbances. 

Procedure 

(a) By careful thinking about the problem isolate a finite set of structures of 

the form (92) or (93) or any other appropriate character. Denote by s{i = 1,...,m) 

the ith chosen structure. 

(b) Assign, a priori, a probability mass function on the set S = {s;}. 

(c) For each structure s; the likelihood function of the data is [(y; s,), and will 

be a function of the unknown as yet vector f and the other unknown parameters 

of s; (e.g. the B., o, and a, of section 4). 
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(d) Use the results of sections 4 and 5 to estimate all the unknown quantities 

of (y; s;) (namely the whole vector f as well as By, o, and ¢,). 

(e) Substitute the estimates thus found to the likelihood function iy; s;). 

Denote the likelihood function thus obtained by /°(y; s;). 

(f) Repeat steps (c}H{e) for all i. 

(g) Use Bayes’ theorem to find the posterior probability mass function on S 

as following 

I%(y; 5;)p(s;) 

zit (y; S))P(S;) 
(99) P(sily) = 

where p(s;) is the a priori probability that the ith structure is the correct one. 

It is hoped that the above discussion has indicated the limits of methods that 

attempt to identify time varying coefficients. The difficulty of the problem is orders 

of magnitude higher than the problem of estimating constant parameters because 

there is an infinity of ways the nonconstant coefficients can vary. 

10. SUMMARY AND CONCLUSIONS 

The estimation of time varying parameters in this paper was made possible 

by assigning to the coefficients a Markov structure. This structure essentially 

imposed a prior probability distribution on all the parameters. This prior was not 

specified completely and some “‘fitting’’ had to be done to determine the unknown 

parameters of the prior. This was done by minimizing the sum of squared residuals 

obtained by substituting the Markov structure in the equation. Once the fitting 

was finished and the prior was completely specified, a prior to posterior analysis 

yield the Bayesian estimators of the time varying coefficients. It was shown that 

if the prior had been fitted perfectly, so that its unknown parameters were known 

exactly, then the Bayesian estimators would have a host of desirable small sample 

properties, not the least of which is that they would be minimum variance. Given 

the inaccurate prior, the properties of the estimators hold only asymptotically. It 

was also seen that if exact restrictions were placed on the coefficients, so that the 

covariance matrix of the shocks that effect changes was singular, then the estimators 

so obtained were still optimal. 

The discussion of section 9 indicated the limitations of the method presented 

here, as well as of any method that attempts to identify time varying coefficients. 

The Bayesian approach was seen to be a possible answer to the dilemma of which 

prior structure to use. The final choice of method and structure rests on the analyst 

and should be dictated by the goals of his analysis. 

All the results derived in this paper hold when the matrix X does not include 

lagged values of the endogenous variable. Research must still be done on estima- 

tion methods that take this fact into account. Furthermore, much experimental 

work is needed to obtain information about the small sample properties of time 

varying parameter estimators. 
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