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Annals of Economic and Social Measurement, 2/4, 1973 

CRITERIA, CONSTRAINTS AND MULTICOLLINEARITY IN 

RANDOM COEFFICIENT REGRESSION MODELS 

BY P. A. V. B. -Swamy* 

This paper analyzes six alternative estimators for random coefficient regression models: (1) minimum 
variance linear unbiased estimator (MV LU), (2) the Stein-like estimator, (3) the ridge regression estimator, 
(4) minimum conditional mean square error estimator (MCMSE), (5) the mixed regression estimator, and 
(6) a maximum likelihood estimator (ML). Attention is focused on the criteria of estimation and parametric 
constraints in RCR models. 

1. INTRODUCTION 

It has been recognized by many econometricians that the usefulness of the conven- 

tional fixed-parameter regression model in the analysis of cross-section data is 

limited because individuals differ greatly in their behavior, and the diversity of 

individual decision units implies parameter variation across units, see Swamy 

(1971) and the references cited therein. In recent years, econometric models, which 

permit different schemes of parameter variation, have been developed. All these 

different schemes have beén compared by Swamy (1972) who developed an 

asymptotically efficient procedure of estimating the parameters in a general random 

coefficient regression (RCR) model. Application of these estimation methods in 

the analysis of real world data is just beginning, see Feige and Swamy (1972). It 

has been observed that the use of RCR methods can result in more fruitful and 

meaningful econometric analyses of micro panel data. In the present paper we 

analyze alternative estimators with purely algebraic tools. Attention is focused on 
the criteria of estimation and parametric constraints in RCR models. 

The plan of the paper is as follows. Section 2 sets out the estimation rules for 

random coefficient regression models with and without an unbiasedness condition. 

Constraints on the parameters and partial prior information are introduced in 

Section 3 and it is indicated how their presence can help estimation. Methods of 

using sample data in conjunction with the first two moments of a prior distribu- 

tion are reviewed in Section 4. The maximum likelihood method of estimating 

the parameters of a random coefficient model is discussed in Section 5. Summary 

and Conclusions of the study are presented in Section 6. 

2. RANDOM COEFFICIENT REGRESSION MODEL 

2.1. The Model 

Swamy (1971) considers the problem of estimating the following equation 

from a time series of cross-sections. 

(1) y=X$,+u, (=1,2,..., n) 

* | am grateful to Professor A. Zellner and Dr. Richard D. Porter for helpful comments. 
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where y; = ();;, Yi2,---, Vir) is a TX1 vector of observations on a dependent 

variable, X, = {x,,}(k = 1,2,...,K3;t¢ = 1,2,..., T) isa TXK matrix of observa- 

tions on K independent variables, B; is a KX1 vector of coefficients, and u; = 

(U;,,Uj2,---,Uj;r) isa TX vector of disturbances. 

Observations on y’s and x’s for n individuals taken over T periods of time are 

available. These temporal cross-section data are obtained by assembling cross- 

sections of T years, with the same n cross-section units appearing in all years. The 

individuals here may be firms, consumers or regions. The subscript i indexes 

cross-section observations and the subscript t indexes time series observations. 

In (1) both B; and u, are regarded as realizations of random vectors,’ and the 

following assumptions are made. 

Assumption I : 

(1) The rank of A; is K,n > K and T> K; 

(2) For i,j = 1,2,...,n; Eu; = 0 and Eu’ = o,,Q;; where ip?*ij 

a. a. 

1 Pj l a 
gg : : ‘ ; ts an | oi 

1 — pip; : ‘ : ; 

Pi ae 1. le 7 

(3) For i,j = 1,2,...,n: EB; = B, 

8 — BB, — 8 i ifi = j 
E(B; — B)(B; — BY = 

, 0 otherwise, 

A = {6,,.}(k,k’ = 1,2,..., K) is positive definite ; 

(4) B; is independent of u; for i,j = 1,2,...,n; 

(5) The x, are exogenous variables distributed independently of B; and u,.” 

Furthermore, X; is nonstochastic. 

The implications of Assumption | are discussed by Swamy (1972). If we arrange 

the observations on each variable first by individual and then according to period, 

we may represent eq. (1) by 

(2) y=XBP+DE+u 

where y = (yi, Y2,---,Yn), X =[X1,X,..-, Xa], B = (Bi, B2,---Bx)’, D. = 

diag [X,,X>,..., Xn], § = [61,§2,---. 5], B;: = B + §; and u = (uj, ub,...,u,/. 

For given X the random vector y is distributed with mean X6 and variance- 

covariance (V—C) matrix of the form 

[X ,AX) + 0,,Q), 6122;> vee FQ n 

(3) T. 62,Q3, X AX, + 622222 ... F2r7Qon 

Oni Qui On2Qu2 — X ,AX;, + Onn Qn 

' With an abuse of notation we use the same symbol to denote a random quantity and its value. 
? This assumption is partly relaxed in Swamy (1972). 
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The objective is to estimate the parameter vector @ = (B’, @’)’ where @ is a 

[n? + K* + n] x 1 vector containing all the elements of {o;,}, A and p; (i = 

1,2,...,n) arranged in any order. 

Model (1) contains a sample space Y of elements y. The distribution of y over 

Y can be taken as known to belong to a continuously parameterized family of 

distributions with probability density function (pdf), p(y|X,9), the parameter 

vector 6 ranging over a well-defined parameter space © = {0:— < f, < w, 

0 < by, < fork = 1,2,...,K;5%, < b,,6,4', 54 = O,, fork # k’ = 1,2,....K; 

Gj, < O40;; Oj; = 0; for i #j = 1,2,...,n; 0< 64 < 0, O< |p| <1 for i= 

+ n}. We assume that the unknown true value of 8 belongs to 0. 

2.2. Criteria of Estimation 

Suppose that the seriousness of sampling errors, = B, is indicated by the 

loss matrix @ - B)p — B)’ and we wish to find an estimator B for which 

(4) 1'EG — BG — By1 

is minimum for every B € © and every arbitrary vector 1 ¥ 0. 

We assume that the loss matrix which expresses the demerit of the estimate 

6 of 0 is separable in its components § and w. We do not specify the loss function 

involving @. It is worth noting that in the problem of estimating @ a quadratic 

loss function does not seem to be appropriate, see Ferguson (1967, p. 179). For 

each fixed 0, the expected value of (B — B)(® — By’ relative to the distridution of y 

determined by 6 is called the risk matrix or the matrix of second order moments 

of around B. E(B, — B,)* is called the mean square error of ,. 

A moment’s reflection will reveal that it is not possible to find an estimator B 

which minimizes (4) for every B ¢ © and every 1 # G, see Silvey (1970, p. 24). For 

example, if we take 6 = = a(a vector of constants) for all y, this estimator will have 

zero risk when p = a and thus to have a better estimator in the sense of (4), an 

estimator B must have zero risk for every B. This is obviously not possible. So we 

must modify our criterion of estimation. 

As is well-known, if we restrict ourselves to a class of linear unbiased estima- 

tors of B, we can find an estimator which minimizes the risk in (4) for every Be © 

and every 1 # 0. Such an estimator is the minimum variance linear unbiased 

(MVLU) estimator 

(5) b(@) = (X’E~ 1X)" XL" y. 

In the practical situation in which @ is unknown, an estimate @ of @ developed by 

Swamy (1972) can be used in place of the known value used in (5). We can offer 

an asymptotic justification for this procedure. 

It has been emphasized by many statisticians that there is an element of 

arbitrariness in the criterion of MVLU, particularly with regard to unbiasedness. 

Consequently, in what follows we modify the criterion of MVLU. 

2.3. Stein-like Estimators 

Following one approach of Zellner and Vandaele (1971), we consider the 

problem of estimating B when the loss function is quadratic. Specifically, let the 

431 



quadratic loss function be  — By’ Oo’ — B) where Q is a known positive definite 

matrix. Since the range of each B, is bounded, the risk function E® — BY O@ — B) 

is bounded, provided B has finite V-C matrix. Zellner and Vandaele (1971) show 

that among all estimators of the form cb(@), where c is a scalar lying between 0 

and 1, the estimator 

tr(X’E-'X)-'O + BOB 
(6) c*b(@) = [ — 

tr(X’x~'X)"'@ [fee 

has the smallest risk. That is, E[cb(@) — B]'Q[cb(@) — B] takes the smallest value 

for every B € © when c = c*. Also, 

(7) E{c*b(@) — B)'Q[c*b(@) — B) < E[b(m) — B)' O[b(@) — B) VB eo. 

Since c*b(@) involves parameters with unknown values, it cannot be com- 

puted. Therefore, as in Zellner and.Vandaele (1971) we may approximate c*b(@) by 

a fs tr(x’E-'x)-' 
(8) eb@) = | te * mea ° lio ) 

where = and b(@) are as shown in Swamy (1972). 

The estimator @*b() is in the form of an estimator developed by Stein for the 

mean vector of a K-dimensional normal population, see Zellner and Vandaele 

(1971). 

Following Mehta and Srinivasan (1971) we may approximate c* by an 

exponential function with two adjustable parameters and write 

(9) Ayyb(@) = [1 — y, exp { —y,b(@)X’E~ | XD()} ]b@) 

where 0 < y, < Landy, > 0. 

Notice that the factor @* multiplying b(@) in (8) can take on negative values 

with positive probability. Baranchik’s analysis of simpler situations (see Stein, 

1966) indicates that the estimator in (8) can be improved upon by restricting ¢* 

to be nonnegative. The factor f(y) multiplying b(@) in (9) can be made positive by 

suitably choosing the values of y, and y,. Experience in simpler situations (Mehta 

and Srinivasan, 1971) has shown that by judicious choice of y, and y, one can make 

the risk associated with f(y)b(®) smaller than that associated with b(@) or with 

¢*b(®) for a range of values of B around 0. Since the estimators in (8) and (9) provide 

only approximations to the optimal linear estimator c*b(@), neither of them is an 

estimator which has minimum average risk within the class of linear or nonlinear 

estimators of B, see Strawderman and Cohen (1971). Consequently, there are other 

ways of obtaining linear or nonlinear estimators which have smaller risks than 

é*b(@) and f(y)b(®) (see Section 4 below). 

The estimator in (8) takes b(@) and pulls it towards a central value 0 or past 0 if 

b'(®)Ob(@) < tr (X’E~'X)~'Q.3 Since all elements of b(@) are shrunk by the same 

factor towards 0, the extreme values experience most shift. The estimators in (8) 

and (9) may do very poorly in estimating those elements of B with unusually large 

3 If we knew a priori that the true values of the elements of B lay closely to a value other than 
zero, we could easily modify the formulae in (8) and (9) to shrink the estimated value of B towards 
that value, see Zellner and Vandaele (1971), and Mehta and Srinivasan (1971). 
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or small values. Unless the true values of all the elements of B lie closely in almost . 

the same interval around 0, the estimators in (8) and (9) may not yield good esti- 

mates of all the elements of B. It may happen that for some values of B the total risk 

associated with (8) is smaller than that associated with b(@) but the risk associated 

with an element of (8) is larger than that associated with the corresponding element 

of b(®). To put it differently, the estimator ¢*b(@) may have good ensemble proper- 

ties but not good component properties. This is also true of f (y)b(@). 

To guard against this bad property of Stein-like estimators, Efron and Morris 

(1972) develop a “limited translation estimator”’ which is a compromise between 

Stein’s estimator and the maximum likelihood estimator (MLE). The compromise 

consists of following the Stein rule as closely as possible subject to a fixed constraint 

on how far the estimator is allowed to deviate from MLE. This procedure is sensible 

if the probability that an ML estimator of B will! be far removed from the true value 

of B is small. Indeed, this probability is large if X’2~ 'X is close to singularity. 

The average value of the squared distance from b(@) to 6 is given by 

kK 
(10) E{b(@) — B)'(b(w) — B) = tr(X'D> 1X)! = ¥ Az! 

i=1 

where /; is a latent root of X’X~'X. Consequently, if the set of independent 

variables is such that reasonable data collection results in an XZ" ' X with one 

or more latent roots close to 0, then the average distance from b(@) to B will be 

large. In this case the Efron—Morris procedure of pulling an estimate of B towards 

b(@) amounts to pulling an estimate away from B, which is not desirable. If the 

least squares estimates b(@) lie far away from the true value of B as a result of high 

multicollinearity, then so will be the estimates given by {(y)b(O) and @*b(@). 

Typicaliy, X’X will not be close to a diagonal matrix in applications of economic 

relevance. In the next section we discuss procedures which are specifically designed 

to minimize the bad effects of significant departures of X'X from /. In order to 

guarantee good component properties we say that B is “uniformly”’ better than 

B* if 

(11) E(B — BB — B)1 < 1 EB* — ByP* — By 

for every 1 # 0 and every B € O, with strict inequality for some B. In this way we 

avoid the specification of Q. An estimator, B*, is “inadmissible”’ if there exists 

another estimator of B which completely dominates B* in the sense of (11); other- 

wise it is “admissible”. Notice that f is uniformly better than B* in the sense of 

(11), if and only if, E®* — B)(®* — By exceeds EB — B)(® — By by a positive 
semi-definite matrix for every 8e€ O. 

3. SUGGESTED PROCEDURE OF ESTIMATION IN CASES OF PARTIAL 

PRIOR INFORMATION 

3.1. Ridge Regression 

For the model in the present paper, let B be constrained to be ina hypersphere 

of radius r. Let the estimation criterion be the minimum residual sum of squares 

(y — XB)=~ '(y — XB) subject to the condition B’'B = r* < oo. The value of that 
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minimizes the function 

(12) (y — XBYZ~"(y — XB) + uBR — r’) 

is 

(13) b,(@) = (X’L~'X + pl) X=" !y. 

This is the ridge estimator developed by Hoerl and Kennard (1970a). 

Unlike the Stein procedure, the above procedure takes into account the 

restrictions on the ranges of B. The estimation procedure based on the matrix 

(X’X~'X + wl) with p > Orather than X’D~'X can be used to circumvent many 

of the difficulties associated with the multicollinearity problem, and it can be used 

to obtain a point estimate of B, which is on the average closer to B than is b(@). 

The average value of the squared distance from b,(@) to B is 

(14) E{b,(@) — B)'(b,(@) — B) = tr (0 + W(X’D" 1X)" (XE xy! 

(WM X'D~ 1X)! + 1! + PB (XI NX + wl 7B 

K 
= ¥ AMA, + wh)? + wB(X'D'X + wl) 7B. 

This can be compared with (10). If a A; is close to zero, (14) will be substantially 

smaller than (10) depending on the value of yw. That is, when X’Z~'X is ill- 

conditioned, the estimates of B based on b(@) (but not on b,(@)) have a high proba- 

bility of being far removed from B. Hoerl and Kennard show that there exists a 

range of values of for which the average distance from b,(@) to B is smaller than 

that from b(@) to B. 

The relationship of a ridge estimator to the Aitken estimator b(@) is given 

by the alternative form 

(15) b,(@) = [1 + WX’D~'X)~*'} 'b@). 

We may rewrite (13) as 

(16) b,(@) = (X’D"'X + pl) 'X’l~ Xd(@). 

The estimator b,(@) will be recognized as a “matrix weighted average” of the 

vectors b(@) and 0. Like c*b(@), it also shrinks the estimated value of B a fixed 

percentage away from b(@) towards 0. But the shrinkage factor is not the same for 

all the elements of b(@). Thus, the ridge regression technique, by utilizing the 

restriction on the range of B, leads to an estimator which does not suffer from the 

limitations of c*b(@). The estimator in (15) is insensitive to multicollinearity. On 

the other hand, when X’Z~'X = IJ, the matrix factor multiplying b(@) in (16) 

reduces to a scalar times identity matrix. In this case, by appropriately defining yu 

we can equate b,(@) to c*b(@). 

The second order moment matrix of b,(@) around B is 

(17) — E{b,(@) — B)[b,(@) — BY = (1 + (XE > 1X) (XE xX)! 

C+ (XD OEX)Y YH! + (XD X + pl) PB(X’I NX + pw. 

The first term on the r.h.s. of (17) is the V-C matrix of b,(@) and the second term 

is the matrix of squares and cross products of the biases of the elements of b,(@). 
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As is well-known, (X’Z~'X)~' is the V-C matrix of b(@). The matrix 

(XD 1X) 7) — + XDI XY) (XD X) + Wf X’'E1X)-"'7)-! is non- 

negative definite so that for some values of y and B in a neighborhood of 0 there is a 

possibility of E[b(@) — B)(b(w) — 6)’ — E[b,(@) — B)[b,(@) — B) being positive 

semi-definite. However, the mean square error of an element of b,(@) may not be 

substantially smaller than that of the corresponding element of b(@), if the true 

value of B is not sufficiently close to 0. 
An approximate ridge regression estimator is 

(18) b,(@) = (X’D~'X + pl)! x’E-!y. 

In Hoerl and Kennard (1971b) some recommendations for choosing a p > 0 
are given. 

3.2. Minimum Conditional Mean Square Error Estimator of 

Recall that the second order moment matrix of a linear estimator Ay + a 

around 6 is 

(19) AXA’ + [(AX — IB + al[(AX — DB + al. 

The quantity in (19) cannot be minimized unless it is bounded, see Barnard 

(1963). Since the range of 8 is bounded, the elements of (19) are bounded. Let B* 

be a guessed value of B. Using B* in place of B, we obtain 

(20) ALA’ + [(AX — IB* + al [(AX — IB* + al’ 

If (20) is chosen as a criterion of estimation, the optimum choice of a is 0 

and that of A is (see Rao, 1971, p. 389) 

(21) A* = B*B*’ X'(XB*B*'X' + X)-'. 

Consequently, the optimal estimator of B, given B*, is 

(22) b*(@) = B*B* X'(XB*B*’X’ + Z)~'y. 

(Henceforth we shall refer to b*(@) as the minimum conditional mean square error 

(MCMSE) estimator of B. The result in (22) is given as an exercise in Theil (1971, 

p. 125, Problem 4.3).) Notice that the estimator b*(@) exists even when the rank 

of X is less than K. In cases where the rank of X is K, we can write 

(23) (XpBxX’ + X)-' = =-! — LI X(X’T  X) XT! 

+ £7 1X(X’'E~ 1X) BB" + (XD 1X)" ')7 

“€ s he fhe & ong 

see Rao (1965, p. 29, Problem 2.9). 

Inserting this back into (22) givés 

(24) b*(@) = B*B* [B*B*’ + (X’D~ | X)~')~ 'b(@). 

In the practical situation in which = is unknown, the estimator b*(@) can 

be approximated by 

(25) b*(@) = B*B*’ X'(XBP*B*'X’ + L)'y. 

= B*B* (B*p*’ + (X’D-'X)-']-'b®) [by (23)] 

where © is as defined in (8). 
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In the Appendix to the paper, it will be shown that a sufficient condition for 

(X’=~'X)~! — E{[b*(@) — B)[b*(@) — B)’'IB*} to be positive definite is 

(26) sup B'p,piB < | 

where p, is the kth column of P, P is a nonsingular matrix such that 

P(X’="'X)"'P = I, P’B*B*'P = A*i,i, , and i, is the first column of an identity 

matrix of order K. 

It is clear from (A.4) in the Appendix that the conditional variance of an 

element of b*(@), given B*, is substantially smaller than the variance of the corre- 

sponding element of the Aitken estimator b(@) for every @. But, for some values of 

0, due to high magnitude of bias the conditional mean square error of an element 

of b*(@), given B*, exceeds the variance of the corresponding element of b(@). 

Condition (26) indicates the values of @ for which b*(@) based on given B* is better 

than b(@). Consequently, the. approximate MCMSE estimator b*(®) cannot 

completely dominate the approximate MVLU estimator b(@) in the sense of (11). 

When K = 1, condition (26) is satisfied if the square of the coefficient of variation 

of the MVLU estimator b(@) is greater than one. In the general case condition (26) 

is likely to be satisfied if X'X~'X is close to singularity. Under these conditions, 

one can improve upon the MVLU estimator by relaxing the unbiasedness condition 

as in (20). 

We now compare the moment matrices of b,(@) and b*(@). It is seen from (A.4) 

and (A.6) in the Appendix that since the rank of B*B*’ is unity, the conditional 

variance of an element of b*(@) is substantially smaller than the variance of the 

corresponding element of b,(@). However, for any reasonable values of and B*, 

the magnitude of bias of an element of b*(@) is likely to be larger than that of bias 

of the corresponding element of b,(@). For certain values of parameters, b*(@) is 

better than b,(@). 

Next, we note that, if a prior estimate of B is not available, we may consider 

the following estimator : 

(27) b(@) = b,(@)b'(@)X'[Xb(@)b'(@)X’ + Z)~'y. 

When there is near-extreme multicollinearity, a precise estimation of B is not 

possible, but a relatively precise estimation of XB and ~ is possible, see Rao (1965, 

pp. 184-5) and Theil (1971, pp. 153-4). The estimator B(@) is based on the precise 

estimates of B, XB and £. 

The estimator b*(@) is based on a prior estiraate of B, while the estimator b,(@) 

is based on a prior knowledge of the range of B’p. Since the rank of B*B*’ is unity, 

we cannot express b*(@) in the form of a matrix weighted average of the vectors 

b(@) and 0. However, when K = 1, by appropriately defining » we can equate 

b,(@) to b*(@), see Theil (1971, p. 126, Problem 4.4). , 

In summary, we have found that none of the estimators b(@), ¢*b(@), f (7)b(@), 

b,(@), and b*(@) is uniformly better than the other in the sense of (11). Conse- 

quently, it is not possible to choose among them unless we know “where in the 

parameter space to look” for the most efficient estimates. When we are faced 

with an extreme multicollinearity situation, we may use b*(@) if a reliable prior 

estimate of B is available and b(@) otherwise. 
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4. ESTIMATING PARAMETERS WITH THE FIRST TwO MOMENTS OF A 

PRIOR DISTRIBUTION 

There are several situations in which extraneous information on some of the 

parameters of an equation is available. This information may arise from an 

analysis of past data and/or from theoretical and practical considerations ; that is, 

from sources other than currently available sample. To incorporate such a prior 

information the following procedure was suggested by Durbin (1953) and 

developed further by Theil and Goldberger (1961) and Theil (1963). 

4.1. Mixed Estimation When B is Regarded as Fixed 

Suppose that extraneous information of the following form is available. 

(28) r=RB+v with Ev=0 and Ew’ = 1’y, 

where r is a q x 1 vector of prior estimates of RB, R is aq x K matrix of known 

constants, vis aq x 1 vector of errors inr and g < K. We assume that v is uncor- 

related with u and € in (2). We now combine equations (2) and (28) and apply the 

Aitken theorem to obtain the following estimator for B. 

“ l 
(29) B(@) = X’x"'X + RVR] [xE-'y + Rw 't 

The estimator B(@) is the MVLU estimator of B where linear now means linear in 

y and r. Here the distinction between b(@) as a MVLU estimator of B and B,(@) 

as a MVLU estimator of the same is to be clearly understood. The linear function 

of y, namely b(@), is the MVLU estimator of B in the sense that any other estimator 

of B which is also linear in the vector y and unbiased has a V-C matrix which 

exceeds that of b(@) by a positive semidefinite matrix. On the other hand, B, (@) 

is the MVLU estimator of B in the sense that any other estimator of B which i is 

linear in y and r and unbiased has a V—C matrix which exceeds that of B, (@) bya 

positive semidefinit~ mawix. We shall refer to 6, (@) as the “mixed regression” 

estimator. We again remind the reader that the criterion of MVLU is defective in 

its premises, in that the condition of unbiasedness sometimes leads to inadmiss- 

ible estimates, see Ferguson (1967, pp. 135-6). 

As t? + 0, the estimator B,(@) approaches the restricted estimator of B given 

by the normal equations (see Chipman, 1964, p. 1101) 

hee eP ' rl KM es ie 
(30) = : 

R O-} Lp r 

Eq. (30) is obtained by minimizing 

(31) Hy — XBY=~ '(y — XB) — p'(r — RB) 

where yp is a vector of Lagrangian multipliers. Theil and Goldberger (1961), solve 

eq. (30) under the assumption that the ranks of X and R are K and q respectively, 

while Rao and Mitra (1971, p. 147) solve the same equation without any restric- 

tions on the ranks of X and R. 
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Chipman (1964, pp. 1101-2) points out an important special case of (29). If 

w is knowr, eq. (28) can be written as 

(32) ye = yo PRB + yy 

* = R*B + v*. 

When the rank of X is less than K, and when X*’ = X’Z~ '/? and R* are “comple- 

mentary”,* X*~ = (X’E~'X + (1/t7)R'w 'R)” 'X*’ is a generalized inverse of 

X*, independently of 1/t”, as long as 0 < 1/t* < 0, because for all such 1/r?, 

1/tR* has the same row space as R*. Similarly, R*~ = (t?X’E~'X + R’ yu 'R)~'R* 

isa gencralian | inverse of R*, independently of 1/r?, as long as 0 < 1? < ~, since 

for all such t?, tX* has the same row space as X*. Therefore the estimator B,, (@) 

is functionally independent of 1/1? as long as 0 < 1/t? < oo and R* is comple- 

mentary to X*. In this case the estimator B, (@) can be computed even when 1? 

is unknown. : 

To consider another case, let g = K and R = I. ThenB p(@) becomes 
-1 

(33) B(@) = [x2-tx + i [x=-'y + sy. 

It is easily seen that B,(@) in (33) is a “matrix weighted average” of b(@) and r, 

with weights inversely proportional to their respective V-C matrices. Hence, an 

estimate of B is pulled towards r away from b(@). The estimator in (33) covers 

b,(@) in (13) asa special case. Whenr = Oandt7y = (1/u)I,b,(@) is the same as (33). 

Analysis of simpler situations has shown that the estimator 

-1 
(34) 6 (@) = [x8-1x +0") [xf-'y + Sur4. 

with known t7y, completely dominates b(@) in the sense of (11), provided Ev = 0 

and & and u are normal, see Swamy and Mehta (1969), and Mehta and Swamy 

(1972b). In cases where E(v — y)(v — 9) = t7w, 9 is unknown, t7y is known, and 

€ and u are normal, B,(@) is better than b(@) if only the coefficient of variation of 

each element of v is sufficiently large in magnitude, see Swamy and Mehta (1972). 

Thus, if we misspecify the prior moments, there is no guarantee that each diagonal 

element of the second order moment matrix of B,(®) around 6 will be less than or 

equal to the corresponding diagonal element of the second order moment matrix 

of b(®) around B. 

The compatibility test statistic developed by Theil (1963) can be utilized to 

test whether prior information is in conflict with sample information. Mehta and 

Swamy (1972a) have derived the exact finite sample distribution of Theil’s 

compatibility test statistic. They have also considered the consequences for estima- 

tion, in terms of mean square error, of making preliminary tests. The efficiency of 

preliminary testing procedures has been examined by comparison of the risk 

functions of preliminary test estimators with that of pure regression estimator, 

b(@), which is an Aitken estimator when no prior information is used. The . 

preliminary test estimator dominated the pure regression estimator over certain 

regions of the parameter space. 

* The matrices X* and R* are complementary if (1) rank (X*) + rank (R*) = K, (2) X* and R* 
have the same number of columns, and (3) the row spaces of X* and R* have only the origin in common. 
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Returning again to the case where Ev = 0 and Evv' = 17y, it can be scen that 

the matrix 

=-% 1 ey A 
XEX+ Sw!) — BB BBY + OE TE xy 

x [B*B* + (X'D~ 1X)" *) BBY — (XTX) BBY 

+ (X'E1X)" "PRB BY + (XTX) XE x)! 

is positive definite only for certain values of 6, B* and t*y. Consequently, the 

estimator b*(@) in (25) will not be uniformly better than B (a) in (34) even when the 

first two moments of r are exactly known. 

A particular case which can be solved exactly, and for which there is a com- 

plete and simpler treatment is the following. Let K = 1, and B*? = |r? — ry}. 

Notice that Er? = B? + t7. We can use standard analytical and numerical 

methods (Mehta and Swamy, 1972a) to evaluate the unconditional mean square 

error of b*(@) with respect to the distributions of B*? and y. If the square of the 

coefficient of variation of r,(t7y/B?), is greater than one and the square of the coeffi- 

ent of variation of the MVLU estimator b(@) is greater than or equal to one, then 

b*(q) is better than f (@). 

Formulae (25) and (34) provide two different ways of combining prior informa- 

tion with sample information. Neither one of them is better than the other regard- 

less of the true values of parameiers. It should be emphasized that the estimator 

b*(®) should not be used unless B*$*’ is a reliable estimate of BB’. If the prior point 

estimates of the elements of B are not reliable, then it is better to express the uncer- 

tainties associated with these estimates in the form of a distribution with mean B 

and V—C matrix tw and use the estimator B,(). That the prior information be 

unbiased is a severe restriction on the nature of such information, see Zellner 

(1970, p. 189). This restriction will be eliminated in the next subsection. 

4.2. Bayesian Estimation When § is Regarded As a Random Variable 

We now make the following “‘wide-sense’’ assumption. 

Assumption 2: A probability distribution on a class of measurable sets in © 

exists. The variable B is judged a priori to be distributed independently of @ whose 

distribution is a point distribution with the whole mass of the distribution concen- 

trated at one point. Furthermore, EB = r and E(B — r)(® — vr)’ = t7W which is 

positive definite. 

Even if a purely pragmatic attitude is adopted it does seem to be true that for 

at least some inference problems, an-approach which assumes the existence of a 

prior distribution of 8 is more appropriate than one which does not. However, it 

is very restrictive to assume that the distribution of @ is a point distribution. If 

this assumption is relaxed, the analysis gets very complicated, see Lindley and 

Smith (1972). 

Assuming that @ is a random variable, Zellner and Vandaele (1971) discuss 

the Bayesian interpretations (attributable to Lindley and others) of the Stein-like 

estimator c*b(@). When X’X = I, Q = I, = = o7I, and the prior distribution of B 

has mean 0 and scalar V-C matrix, one can generate a Bayes estimator of the form 
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c*b(@). Notice that when r is regarded as a fixed parameter, B, (@) is still a linear 

function of y but becomes a biased estimator of B. It is interesting to note that if B 

is considered to be a random variable with mean equal to fixed r and fixed V-C 

matrix 17, then B,(@) in (33) is the “‘best linear” predictor of B in the sense that any 

other predictor of B which is also linear in the vector y has an averaged second order 

moment matrix around B which exceeds that of 6, (@) by a positive semidefinite 

matrix. In other words, if r and t7w are the mean and V-C matrix of B, then B,(@) 

completely don:inates every other linear—in y—estimator (predictor) of B in "the 

sense of (11).° Proof of this important result is given in Chipman (1964, p. 1105) 

and Rao (1965, p. 192). If r # 0, y # J and Assumption 2 is true, the formulae 

c*b(@) and b,(@) are inappropriate. When B is random, the procedure outlined in 

subsection 3.2 is also inappropriate because, under Assumption 2, (i9) is not the 

second order moment matrix of Ay + a around B, see Chipman (1964, p. 1104). 

Notice that the estimators b(@), c*b(@), b,(@) and b*(@) for given B*, are all linear 

functions of y. Hence, it follows from the Chipman-Rao theorem that they are 

inferior to the best linear estimator B, (@) if Assumption 2 is true. Thus, the biased 

estimators generated through the Chipman- Rao procedure are better than those 

generated through the procedure outlined in subsection 3.2. 

We called B ,(@) the best linear estimator of B. The qualification linear can be 

dropped if the prior distribution of B, given r and 17, is normal and the condi- 

tional distribution of y, given X, £, and B, is also normal. This is because, under 

these normality assumptions, the estimator 6, (@) is the mean of the conditional 

posterior distribution of B, given &, r, t7y and the data, see Zellner (1971, p. 76), 

and Zeliner and Vandaele (1971). The posterior mean p p(@) with known &, ty 

and r is admissible with respect to a quadratic loss function, see Zellner (1971, 

p. 24). Thus, admissible estimates can be found if the prior distribution of @ is 

completely known, see Ferguson (1967). 

Even though the result in (33) is intuitively appealing, it has certain weak- 

nesses. In (13) and (33) different posterior means have been obtained by combining 

two different priors with the same likelihood of parameters. These priors were 

therefore influential in deciding the posterior means in small samples. It is worth 

noting that if the Aitken estimate b(@) and the prior mean rare very different, then 

the estimate (33) is a long way from b(@). In this case it may happen that either the 

model specification is at fault or the prior information is incompatible with sample 

information, see Box and Jenkins (1970, p. 251). Efron and Morris (1971) also 

point out that the estimator B,, (@) must give bad estimates when r is far from B. 

Let N,(r, t7~) represent the true prior distribution of B.° Suppose that this distri- 

bution is actually a mixture of various other distributions, one of which is 

N,(r,,77W,) such that t7y — t?W, is positive definite. For any fixed value of 

tiw,, the expected squared error risk of an element of B ,(@) with respect to the 

prior distribution N,(r,,77,) can be made arbitrarily large by moving r, arbit- 

rarily far from r. That is, the estimator Bo) does well on the population, 

N,(r, t7), as a whole, but may perform very poorly on a particular subpopele 

tion, N,(r,,77W,). The estimator (X’E~ 1X + (1/t3)W7')7 (XD ty + (1/227!) 

° The requirerrent that an estimator of B be linear arises from the absence, in our “distribution- 
free’ formulation, of the assumption about the form of the prior distribution of B. 

© N,(r, t7W) represents K-dimensional normal with mean r and V—C matrix 17. 
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does well on the subpopulation N,(r,,tjw,). If we knew that a particular B 

belonged to the subpopulation N,(r,,t7w,), then we could use the estimator 

(X’'LD~ 1X + (1/c7W7')7 (X'S "'y + (1/27) ',) rather than B(). Information 

on subpopulation distributions can be obtained by assessing r and ty as precisely 

as possible. Now the relevant question is: How can we assess a prior distribution 

in practice? 

Notice that the probability distribution en a class of measurable sets in © is 

viewed merely as a reflection of the belief of the statistician about where the true 

value of @ lies prior to an observation being made. Conditions under which such a 

listribution exists are given in Ferguson (1967, Section 1.4). It has been shown by 

Savage and others that personal probabilities assessed in accordance with certain 

plausible behavioral postulates of ““coherence”’ must conform mathematically to 

a probability measure, see Lindley (1971). Winkler (1967a,b ; 1971) discusses the 

practical problem of the assessment of personal probabilities. An operational way 

of assessing a probability is through the study of relevant gambles. Methods such 

as scoring rules and bets are useful in leading individuals to make careful proba- 

bility assessments. 

It should be emphasized, however, that in many economic situations there 

remains the practical difficulty of assessing a prior distribution to reflect one’s 

degree of belief. If the parameter space contains a finite number of points, then by 

sufficient introspection one can arrive at the prior odds at which one would just 

accept a bet on this parameter value rather than that, and so eventually find the 

prior distribution appropriate for a particular problem. If © is continuous, as it 

usually is, it is not clear whether any reasonable consideration of the way in which 

inferences cohere leads to the existence of the prior distribution, see Lindley (1971, 

pp. 7-8). The difficulty of choosing a prior distribution is highlighted, when the 

parameter space is infinite-dimensional as in Sims (1971). Efron and Morris (1971, 

p. 808) argue that in the realistic situations there is seldom any one prior distribu- 

tion that is “true”’ in an absolute sense. There are only more or less relevant priors. 

If a distribution with mean r and V—C matrix t’y is at all in doubt, it would be 

well to modify the estimator B (a). 

In large samples the situation improves. With a reasonably informative 

experiment, the values r and t7w adequate for describing rather imprecise know- 

ledge can be changed quite considerably without affecting the final result all that 

much. This is the consequence of the fact that, under general conditions, sample 

information dominates prior information in fairly large samples. In fact, Lindley 

(1971, p. 62) has shown that if the pdf p(y|X, ®) satisfies certain regularity conditions 

(see Silvey, 1961 and Perlman, 1972), the method of maximum likelihood is shown 

to be a reasonably “‘coherent”’ technique in large samples. We, therefore, turn to a 

study of this topic. 

5. MAXIMUM LIKELIHOOD METHOD 

In this section we assume the following: z 

Assumption 3: Given X, B, and %, y is normally distributed with mean XB 

and V—C matrix &, ie., y ~ N,7(XB, 2). 
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For simplicity, we let o,, = 0ifi # j and p; = 0 for every i. Now ®@ = (B’, a’) 

where @ is a (n + K”)X1 vector. @ denotes the vector presentation of the o;;'s 

and all elements of A in which o,,,...,¢,, appear in order first, then the elements 

of the first column of A, the elements of the second column and so on. 

The pdf of y, given X, is 

(35) plylX,0) = (2n)-"7? TT] {og#7-1X;X 171A + XX 1} 
i=1 

Re T — K)s;; AB 
“exp {-5 x jo + (b; — By 

i=1 ii 

(A + o{X;Xj)~ i ‘(b; — »|} 

where 

s; = y¥iMy/(T —K), M,=1— X{X;X)"'X; 

and 

b; = (X;X,)'Xiy;. 

see Swamy (1971, pp. 111-12). 

Now, given the data y, X, p(y|X, 8) in (35) may be regarded as a function of 8. 

When so regarded, it is called the likelihood function of @ for given y and X. The 

likelihood function is defined up to a multiplicative constant. The likelihood 

expresses the relative plausibilities of different parameter values after we have 

observed the data y and X, see Barnard (1967). Methods of eliminating nuisance 

parameters from the likelihood function so that inferences can be made about the 

parameters of interest are considered by Kalbfleisch and Sprott (1970). In this 

regard “marginal” and “conditional” likelihoods are introduced. These can be 

computed if only the likelihood function factors into two parts, one of which 

contains a parameter of interest, say B,, only and the other being uninformative 4 

about f, in the absence of knowledge of other parameters. It is clear from (35) ; 

that the likelihood function has the form (apart from irrelevant constants) 

(36)  1(Bly, xa{ TI oi] exp \-3 Y | Sen Sat 

i=1 i=1 Gii 

| ht IA + oA(XiX) > “i exp 1-3 y (b, — By [A 
j i=1 i=1 

+ G(X ;X)~'}" "0; > pt. 

Each of the first n factors on the right hand side of (36) contains one of the a; 

only. It contains no available information concerning B and A in the absence of 
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knowledge of the o,,. Unfortunately, the last factor contains available information _ 
about every element of 0, see Kalbfleisch and Sprott (1970, p. 200). However, as 

T > o since (X;X;)"' — 0, the last factor gives less and less information about the 

o;;s. Band A are the parameters of our interest and we cannot derive their marginal 

likelihoods from (36). It is meaningless to integrate 1(O\y, X) in an attempt to obtain 

the marginal likelihoods of the elements of B, see Box and Tiao (1973, p. 73). How- 

ever, a close study of the likelihood function is always desirable. In certain instances, 

the data will contain no information regarding certain parameters. It is important 

to study the likelihood function’s properties to determine when this is the case, 

see, for example, Box and Jenkins (1970, pp. 225-6), Silvey (1970, pp. 81-2), Swamy 

and Mehta (1971), and Swamy and Rao (1971). A general method for obtaining a 

reasonable estimate of 8 in most situations is the well-known maximum likelihood 

method, see Rao (1962). In this section we try to verify the conditions which ensure 

the consistency and asymptotic normality of an ML estimator 6 of @. First, we 

indicate a method of obtaining 6. 

An ML estimate 6 is any element of © such that ply|X,6) = supg.e ply|X, 9). 

6 belongs to the set which is most plausible after we have observed y and X. At 

this point it should be appreciated that the ML method always estimates the entire 

underlying distribution from given data. Successful estimation of the entire under- 

lying distribution is the maximum of objectives attainable by any statistical method. 

Since © is an open set, it may happen that no ML estimate of 8 exists. However, a 

neighborhood ML estimate of 8, which is defined by Kiefer and Wolfowitz (1956, 
p. 892), exists in some cases where an ML estimate does not. Usually, ML estimates 

emerge as a solution of the likelihood equations é log 1(0|y, X)/00 = 0 shown in 

Swamy (1971, p. 112). These equations are nonlinear in the unknowns and have to 

be solved numerically. A convenient method of solving the likelihood equations is 

the method of scoring described in Rao (1965, p. 302), see also Silvey (1970, 70-1). 

This method requires an explicit derivation of information matrix which is given 

by (see Swamy, 1971, p. 114) ‘ 

Ed? log 17 

Pee’ 

| Ed? log 1 

Opop’ 
(36) 1(8) = 

Ed? log 1 

OBCB 

n 
= ¥ [A+ 6,4X;X)7'J"', 

i=1 

Eé? log 1 

a 



A, denotes the vector presentation of all elements of A in which the elements of the 

first row appear in order first, then the elements of the second row and so on; 

_E@*log1 _ 1(T— K) 

06,00; 2 af 

(A + o{X;X)~ "> (Xj;X)"' (= 1,2,...,n) 

+ $5tr[A + oj X ;X j)~ (Xi X)-* 

Eé? log 1 

66 ;,00 ;; 

_ Ed? log 1 

00;,0A 

=0 ifiFj, 

ng {3[A 7 oi X;X )~ )" (X}X)~ [A + o,{X;X)~*}~"} 

= 3,2....,0) 

Eé*logi 12 
a 7 LA t odXiX)'T OIA + oAXiXI'T', 

‘hms i=1 

@ denotes the Kronecker product, see Tracy and Dwyer (1969, pp. 1580, 88-89). 

5.1. Consistency of An ML Estimator of ® 

The pdf p(y|X, 8) in (35) depends on an unknown parameter vector @ belong- 

ing to a metric space © which is a subset of [K + n + $K(K + 1)]-dimensional 

Euclidean space. In (35) there is a family of possible distributions given by different 

values of 8 in © and we do not know which one is appropriate. Let 6, be the 

unknown true value of 8. We shall denote by E, log p(y|X, 8) and var, log p(y|X, 9) 

the mean and variance respectively of the random variable log p(y|X, 8) on the 

sample space Y (of elements y) with respect to the distribution of y determined by 

0,. Let Ny be an open neighborhood of 8,. To prove that 6 is weakly consistent 

we have to show that [log p(y|X,0,) — supg.¢_ y, log p(y|X,8)] > 0 in proba- 

bility according to p(y|X, 0.) see Silvey (1961, pp. 445-6). This means that the value 

of 8 which maximizes 1(0|y, X) belongs to N, in probability when 8, obtains. If, 

for every n,T and @40,, we have E, log p(y|X,®,) > E, log p(y|X,®), and 

E, {log ply|X, 8.) — log p(y|X,9)} is large relative to [vary {log ply|X,05) — 

log p(y|X, )}]'/?, then it follows from Chebychev’s inequality that the method of 

maximum likelihood will discriminate well between 8, and other 6. By putting 

certain regularity conditions on 1(@\y, X) we can guarantee that the method will 

discriminate well between 8, and, simultaneously, all other parameter values 

outside an open neighborhood of 8,, for large enough n and T. This is the basis of 

consistency proofs given by Silvey and others. 

The likelihood function in (36) contains terms of different orders, each contain- 

ing a particular subvector of 8. Consequently, we proceed as follows: First, we 

assume that 0, € ©. Second, we rewrite (35) as 

i=1 
(37) Ply|X, 8) = hy esos) |f1X.0) 
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where 
] — K)s,. 

g(s,lo,)ao; *7~™ exp 5 oe 
u 

and 

' oe 
fO1X. | TI |\A + o,{X;X,)~ '|~/7] exp 5 > (bo; - 

i=1 i=1 

By Jensen’s inequality (Silvey, 1970, p. 75) we have 

? o. ‘ 
(38) E,| > log g(S;\6j:0) + , os fx, 0.) > 

E, | y log g(s;;\0;;) + “10g /.X.0)| 
i=1 

where 6;;. is the true value of o;,. The inequality in (38) is strict unless 8 = 0, 

because, in view of Assumption 1, 6 is identified and the distributions correspond- 

ing to 6, and @ are different. 

There is a connection between “local” identifiability of a vector-valued 

parameter 9 and positive definiteness of the information matrix /(®), see Rothenberg 

(1971) and Silvey (1970, pp 81-2). 

Assumption 4: The vectors X;, 

the matrix T' xx, converges to a finite positive definite matrix as T — 0. 

Let D = diag [nI,, TI,,, nIx2]. Now consider D~ ''71(@,)D~ ‘'* where I(8,) is 

obtained from (36) by replacing @ by 8,. The positive definiteness of lim, _.,, ,,..., 

D~*'/?1(®,)D~ ''? which is necessary for the local identifiability of 8, follows from 

Assumption 4. Following the same argument as in Silvey (1970, pp. 81-2) we can 

show that for any 8 # 0, 

(39) lim E |= y log 8(S;i1F jo) lo “log f (bl X, 0) | 
T-« i=1 ama 

1 l 
> lim Esl y log g(s,\0;;) + — ~ log fix, 0). 

T7-« nT ; 
n~« 

It is easy to show that for every 8€ O 

1 1 
(40) Eo] y log g(s,lo;;)) + - ~ log f(b/X, 0)| - = O(1), 

i=1 

l 1 
(41) vato| y log g(s,Jo, |- o(-*]. 

i=1 

and 

(42) vate log f (bX, 0) in O(n~'). 

Let ©, be a compact subset of ©. 
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Assumption 5: 0, € ®,. 

In various practical situations it is often possible to rule out sufficiently 

extreme values of 8 on theoretical grounds and form ©, so that 0, € ©,. In cases 

where the maximum likelihood procedure outlined in the previous subsection leads 

to implausible estimates like negative estimates for the diagonal elements of A, 

Assumption 5 may not hold. In these cases we should examine Assumption | more 

closely. Under certain additional conditions we can replace Assumption 5 by a 

wider condition, see Perlman (1972). 

The function p(y|X, 9) is a pdf on the sample space Y, given X, for each 8 in 

©,, and the function 1(@ly, X) is continuous on the metric space ©, for each y, 

given X. Since ©, — N, is compact, we can cover it by a finite number, say h, of 

open spheres of radius ry, having centers 8, 6,. say. Let log ply|X, 9,,, ry.) 

be the supremum of log p(y|X,9,;) with respect to 6; when ||6,, — 8;|| < ry,. For 

any 9,,€ ©, we have, lim Ey log p(y|X, 9,,,1'y,) < 2 as ry, > 0 because p(y|X, 8) 

is uniformly bounded in y, 8 and-E, log p(y|X, 8,) < 00. We can show that 

Oo 
(43) E4| x 

i=1 

1 
log g(Sji\Fiim> No) + > log f (b|X, 6,,, rw) 

ae 1 E 
< E4| Y log g(siiloiio) + — log ix. 0) (m = 1,2,..., h). 

nT =; n 

The results in (38}{43) are adequate to establish the consistency of an ML 

estimate of 8, see Swamy and Rao (1971), and Silvey (1961). 

5.2. Asymptotic Normality 

The standard method of establishing the asymptotic normality of an ML 

estimator 6 of @ utilizes the following results : 

(a) Taylor’s theorem in the expansion of 0 log 16ly, X)/08, : 

(b) a central limit theorem applied to D~ '/7(é log 1(Op|y, X)/00,): 

(c) a law of large numbers applied to D~ '/?(d? log 1(O oly, X)/00, 00,)D~ *'?. 

Under Assumptions 1, 3, 4 and 5 we have enough regularity conditions to estab- 

lish the above results, see Silvey (1971, pp. 77-8) and Swamy and Rao (1971). 

Consequently, D~ '/2(6 — @,) is asymptotically normal with mean 0 and V-C 

matrix [lim;_.,, D~ ‘/?1(@,)D~ "/?)~'. 

The argument just presented, combined with the fact that the prior distribu- 

tion of 8 does not depend on n and T, shows that in large samples, when Assump- 

tions l—S are satisfied, the posterior distribution of 8 is approximately normal with 

mean 8 and V-C matrix [ —(0? log 1(8ly, X)/00 00’)]~ ' evaluated at 6; see Lindley 

(1971, p. 62) and Zellner (1971, pp. 32-3). This result is true even when the prior 

distribution of @ is not a point distribution, provided the above conditions are 

satisfied. 

6. SUMMARY AND CONCLUSIONS 

In this paper we considered six different estimators of the mean of a random 

coefficient vector. These are (1) the MVLU estimator b(@), (2) the Stein-like 

estimator c*b(@), (3) the ridge regression estimator b,(o), (4) the MCMSE 
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estimator b*(q), (5) the mixed regression estimator B,, (@), and (6) an ML estimator 

p of B. We also found feasible approximations to these estimators. None of the 

estimators b(@), c*b(@), b,(@) and b*(@) is uniformly better than the other. Each of 

these estimators has its own weaknesses. In cases where a priori unbiased estimator 

r of B is available and its V-C matrix t?y is known, the estimator B (@) is uni- 

formly better than the estimator b(w). Under these conditions, the estimator B, (@) 

is also better than b*(@) if B*B*’ is not a reliable estimate of BB’. The estimators 

b ,(@), b*(@) and B, (@) are insensitive to extreme multicollinearity. The estimator 

B,, (@) covers the estimators c*b(@) and b ,(@) as special cases. 

When 8 is regarded as a random variable, the formula b*(@) is inappropriate 

and the estimator B, (@) covers the estimators b ,(@) and _c*b(@) as special cases. 

The prior information utilized in obtaining the estimator (@) is likely to provide 

a better numerical approximation to the practical situation than those utilized in 

obtaining the estimators c*b(@) and b ,(@). The estimator B, (@) is uniformly better 

than the estimators b(@), c*b(@), b (o) and b*(@) if B is distributed with mean r 

and V—C matrix tp. Furthermore, B, (@) has ali the desirable properties of a 

poscerior mean corresponding to a normal prior and normal likelihood. In small 

samples one cannot find a uniformly better estimator of B unless the prior distri- 

bution of B is proper and known. 

Under certain regularity conditions, the maximum likelihood estimate B i is at 

least as good as any other estimator of B in large samples. 

Federal Reserve System, Washington D.C. 

APPENDIX 

Here we provide the proof of (26). The conditional second order moment 

matrix of b*(@) in (24) around B, given B*, is 

(Al) B*B*[B*BY + (X'D" 1X) EX) BBY + (EX) |) BBY 

+ (XD X) [BBY + (X'E" 1X)" BB BBY 

4a ea Oe eee". 

The first term in (A.1) is the conditional V-C matrix of b*(@) and the second term 

is the matrix of squares and cross-products of the biases of the elements of b*(o) 

for given B*. Subtracting (A.1) from the V-C matrix of b(@) gives 

(A.2) (X’D~'X)-! — pepe [Psp + (X’D~ 1X) EX’ TX)! 

[B*B* + (X'D> 1X) BBY — (xD LX) BB + (XE EX) 

BBB BY’ + (XD EX) XE Xx) 

Let P be a nonsingular matrix such that P'(X’D~'X)~'P = I, and P’B*B*’P = 

A*i,i, where i, is the first column of an identity matrix of order K. We pre and 

post multiply (A.2) by P’~'P’ and PP™~' respectively to obtain 

(A3) 9 P'PO! — Pasi ati, + D7 2Ati PO! 

—P’“(Atii, + D7 'A,0,0,(A4i,i, + DIP! 
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where 0, is the characteristic vector corresponding to the nonzero root A, of 

P’BB’'P. Using an identity in Swamy (1971, p. 25, Lemma 2.2.2) we have 

%*2 vi A. 1 — p-i *~ 1 
(1 + A*)? f 1+ At 

Sees rae 
° ee eres : 

* 
(A.4) P-'p-) — py Po i) 2.0.0 

Consequently, given B*, 

(A.5)  E[b(w) — B)[b(@m) — By — E[b*(@) — B)[b*(@) — By 

, At? 1,07 AF1,0 ie s—1 is erer 1 1 hed 3 ost 0.0’ ad ded FI 
-« f nt E + ap (+ ad mpi 

(i,0, + oyhPe' 

where 0, , is the first element of 0,. 

Let the matrix within the curl brackets be B. The matrix in (A.5) is positive 

definite if B is positive definite. Since B is symmetric, B is positive definite if all its 

diagonal elements are positive. The first diagonal element of B is positive if 

B’p,p,B < 1 + 24% where p, is the first column of P. Every other diagonal element 

of B is positive if B’p,p,B < 1 k = 2,...,K. 

Using P we may rewrite (17) as 

(A.6)  P'{PP(P’P + wl)?P’P}P7' + P'S y(P’P + wl) PBB'P 

-(P’P + pl)" *}P7'. 
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