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A NOTE ON MATRIX FACTORIZATION* 

VIRIGINIA KLEMA 

Over the last twenty-five years numerical algebraists have investigated the numeri- 

cally stable solution of certain problems of digital computing. Such problems often 

had their origin in the physical sciences, but developments over the last five years 

in computing hardware and econometrics-oriented software systems now make 

it appropriate to relate particular algorithms in the literature of numerical algebra 

to the analysis of data for large econometric models. The cross-fertilization of 

disciplines at the NBER’s Computer Research Center facilitates this application of 

numerical analysis research to the field of econometrics. 

This note, expository in nature, is intended to draw attention to papers which 

describe—and programmed procedures which implement—stable algorithms for 

solving linear systems of equations, least squares problems, and pseudo-inverses. 

Implicit in the solution of nonlinear systems of equations is the need for the 

information provided by a matrix inverse or pseudo-inverse (though the inverse 

or pseudo-inverse need not be computed explicitly). The choice of matrix-factoriza- 

tion method is important because it governs numerical stability, computer time, 

and storage requirements. 

Methods of factorization are correlated, in Table 1, with the properties of 

matrices to which they apply. Papers describing the algorithmic details are cited 

in the following discussion and are listed in the bibliography. Attention is focused 

on direct methods for computing x of Ax = B, where a direct method defines x 

in a finite number of arithmetic operations and, at times, square roots. If the 

structure of a matrix of coefficients guarantees convergence of iterative methods 

such as Jacobi, Gauss-Seidel, SOR, or ADI, these methods can be used. Such 

techniques are not included here though their viability in connection with partial 

differential equations is well known. 

The classes of matrices considered are those whose dimensions and rank are 

as follows: 

(1) n x n, rank n; 

(2) m x n, rank min (m, n); 

(3) m x n,rankr,r < min (m, n). 

Each is considered first for the case in which primary storage is sufficient for the 

factorization, and second for the case in which secondary storage must be used. 

The case in which the rank must be determined during computation is also 

considered. 

Since the explicit inverse or pseudo-inverse is, in general, not required, the 

problem is to find a factorization of A that gives triangular matrices formed by 

* This work was supported by National Science Foundation Grant GJ-1154x to the National 
Bureau of Economic Research, Inc. The author wishes to thank Brian Smith of the Argonne National 
Laboratory for valuable discussions on singular value analysis ; Edwin Kuh for suggesting the inclusion 
of Table 1; and John Kirsch for editorial assistance. 
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TABLE | 

PROPERTIES OF MATRICES AND METHODS OF FACTORIZATION 

Properties of » : s . Le 
matrices 3 Zri-s V 2 Stl oc 
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a = Es 

Choleski A = LL’ or A = LDL? xX 

Bunch A = LDL’, D block diagonal xX 

LU with partial pivoting xX 

Householder transformations QU, 
Q7Q=!1 X 

Givens matrices QU: Q7Q = I! X xX xX 

SVD, A = UXV"™ 
Householder transformations xX 

SVD, A = UxYT | 
Givens matrices X 

* High ordcr implies matrix dimensions are such that the array cannot be held in core. 

elementary or unitary transformations on A. The result of the factorization can 

usually overwrite A. 

Given Class (1), where A is real, non-symmetric, 

Ax = b, 

the simplest factorization is based on elementary transformations giving 

Ax = LUx =b 

from which 

Ly =b 

Ux=y 

where L and U are lower and upper triangular matrices, respectively, with L 

being unit-triangular (i.e., L has 1’s on the diagonal). The elementary transforma- 

tions usually require partial pivoting such that appropriate row or column 

interchanges are made to ensure numerical stability in the sense that multipliers 

are small throughout the calculation. Efficient ALGOL, FORTRAN, and PL/1 

implementations on this algorithm are given in [5], and the posteriori error analysis 

is given in [17], [25], and [26]. Necessary equilibration is discussed in [5]. The LU 

decomposition is used for the case in which A is real non-symmetric; whereas A, 
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symmetric positive definite, is decomposed by Choleski factorization 

A=LL’ or A=LDL™ 

where L is lower triangular and L’ is the transpose of L. The factorization LDL™ 

permits L to have unit diagonal ; D is a diagonal matrix ; and the computation of 

square roots is avoided. See [20] for an ALGOL implementation and [26] for 

the associated error analysis. Pivoting is not necessary for the positive-definite 

symmetric matrix. 

The LU decomposition requires 1/3 n> multiplicative operations; Choleski 

factorization, 1/6 n*; and a solution x for each right-hand-side b, n?. Note that 

the computation of A’, where A’ is the inverse of A, requires n* multiplications ; and 

computation of A‘b would require n? additional multiplications and would be 

less precise than the solution obtained from the triangular decomposition. 

Symmetric indefinite systems are treated in [1]. 

Class (2) represents the linear least squares problem, i.e., the solution of the 

normal equations 

A'™Ax = A'b 

where A’ is the transpose of A. 

One seeks x, the solution of an overdetermined system of equations, such 

that 

ib — Ax|| = min 

where ||b — Ax|| is the euclidean norm. The euclidean norm is unitarily invariant, 

and we choose a factorization 

A= QU 

where A is m x n, m>n; Q?Q =1; and U is upper-triangular of dimension 

n x n, rank n. The linear least squares solution is 

x = U'Q"b. 

The condition of A is represented in U ; and working with A’ A, whose condition 

number is the square of that of A, is avoided. The upper triangular matrix can be 

inverted easily whereas A’A cannot. 

Given computation with exact arithmetic, the orthogonal factorization can 

be obtained by the classical Gram-Schmidt, the modified Gram-Schmidt, the 

Householder, or the Givens transformations. However, by the classical Gram- 

Schmidt algorithm, using finite precision arithmetic, the columns of Q can depart 

from orthogonality so severely that reorthogonalization is not effective (see [25] 

and [26]). Therefore, the three other methods are better. Published ALGOL 

procedures using Householder transformations are given in [3], and FORTRAN 

subroutines are in the subroutine library of the Applied Mathematics Division, 

Argonne National Laboratory. Lucid expositions of this problem are published in 

[10] and [22], and certain FORTRAN subroutines are compared in [24]. A PL/I 

implementation of [3] was written at the NBER Computer Research Center by 

Harry Bochner. 

The unitary factorization requires twice the number of operations needed for 

the factorization by elementary transformations. However, the extra work is 
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compensated by the property that Q7Q = I, and by the fact that norms are pre- 

served. In many cases, the addition or deletion of rows or columns of A (i.e., the 

factorization of A) is important. Updating methods are described in [4], [7], 

and [13]. 

In [22] Wilkinson wrote, “It is well known that the problem of determining 

the rank of a matrix is far from trivial when rounding errors are involved, as 

invariably they are on a digital computer.” The least squares problem has a unique 

solution when the m x n matrix A has rank n. However, if the rank r is less than n, 

a family of solutions provides a unique solution vector x of minimal euclidean 

norm. To determine this solvtion, it is essential that r be defined during computa- 

tion. Further, r must be defined explicitly for computations involving the pseudo- 

inverse. The most effective way to determine r is by singular value analysis. Singular 

value decomposition has not been widely used, though this decomposition is 

needed to determine the condition number of the matrix. 

Class (3) is dealt with in [11] and [12] by forming 

A = Uv" 

where A is m x n,m >n; U'U = V'V = VV" = 1; and & is diagonal in which 

O,>6,2>...2>6, > 0. U contains n eigenvectors associated with the n largest 

eigenvalues of AA’ ; and V contains the eigenvectors of AA. The o{i = 1,2,...,n) 

are the nonnegative square roots of the eigenvalues of A’A and are called the 

singular values of A. If the rank of A is r, each element o,,, ...¢, = 0 to within 

working accuracy of the machine. The condition number of a matrix A with 

respect to the solution of the linear system Ax = b is defined to be the ratio 

i) max _ K(A) 

6 min 

where ¢,,,, is the largest singular value of A, and ¢,,;,, is the smallest singular value. 

The condition number of the symmetric positive definite matrix is given by the 

ratio of the largest to the smallest eigenvalues of the matrix. 

Singular value decomposition frequently reveals singular values that are 

small relative to some norm of the matrix but are not exactly zero. The columns 

of U and V are orthonomalized, and the transformations to obtain U, ©, and V 

are norm-preserving ; it follows that 

Al] = |UZV"| = |Z}. 

Therefore, the user—or more appropriately, the computer programmer—can 

determine the reliable tolerance by which r is fixed. The deflation of rank causes the 

data to be perturbed by o,,,. For example, if o,,, = 10~°, the deflation changes 

the data in the sixth decimal place but not in the first five. 

The authors of [10], [12], [14], and [19] analyze, and make good suggestions 

for, the use of singular value decomposition for solving linear and nonlinear systems 

of equations and linear least squares problems. 

Singular value decomposition is a powerful tool of numerical analysis. 

Much information is obtained, but 2mn? + 4n? operations are required. Updating 

this decomposition requires operations of the order n° and is described in [2]. 
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The ALGOL procedures listed in [11]}—and FORTRAN subroutines based 

on these procedures and written at the Applied Mathematics Division, Argonne 

National Laboratory—compute the singular value decomposition and the 

solution of minimal norm. 

Large computing installations have, or can obtain, efficiently coded programs 

for computing these factorizations for matrices whose dimensions are sufficiently 

small for the matrix A, and the right-hand-side b’s, to be held in core. On a paged 

machine modifications may be necessary; [21] suggests such a modification for 

LU decomposition. 

To deal with high order matrices (on a non-paged machine) that require use 

of secondary storage, it is necessary to use factorizations that minimize the number 

of accesses to the secondary storage device. In particular, either rows or columns, 

but not both, are required for a given stage of the computation. This requirement 

is not satisfied by elementary transformations with partial pivoting or by the 

Householder transformations for unitary factorizations. 

The Householder factorization represents a sequence of rotations in the 

plane and is typically formed in the following way. The matrix A is successively 

transformed by matrices P“, k = 1,2,...,n such that 

Akt) — pi 4 

in which a‘ is annihilated for i = k + 1,...,n. The generation of the matrices 

P“ is described in [3], and requires the square root of the sum of squares of the 

elements aff’ for i = k,...,n—that is, the elements in the kth column of A. 

The matrix P“ is usually not computed explicitly, but its transformation demands 

access to the columns of A; processing by groups of rows or columns is awkward 

unless A can be contained completely in core. All remaining columns of A must 

be processed in stage k before stage k + 1 can begin. On Householder factoriza- 

tion, see further [3], [16], and [17]. 

An alternative unitary factorization is presented by Givens in [8] and [9]. 

This method creates the necessary zero elements but permits processing by one 

or more rows at a time. The initial implementation of the Givens rotations requires 

4/3 n® operations, twice the number required by Householder transformations. A 

recent modification of the Givens matrices by Morvin Gentleman [6] shows thai 

the Givens transformations can be obtained in only 2/3 n* operations. The Givens 

transformations show a marked increase in efficiency when A is of high order; 

in particular, they take advantage of any sparsity in A. An early implementation 

of the Givers rotations for solving linear systems is described in [8]. This should 

now incorporate Gentleman’s modifications. 

Whenever a matrix can -be partitioned into submatrices, the probiem is 

much more tractable. Such partitioning, related to particular structures, has been 

used in [18] for the Leontief model and in [15] for linear programming. Steward’s 

algorithm [23] is used to expose a block recursive structure for economic modeling 

problems. 

National Bureau of Economic Research 
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