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Annals of Economic and Social Measurement, 2/2, 1973 

ON THE USE OF SURVEY SAMPLE WEIGHTS 

IN THE LINEAR MODEL* 

BY RICHARD D. PORTER 

If individuals have different coefficients in a linear model, then the choice of regression technique for 
estimating population averages depends on the sample design. We examine various estimators of the 
random coefficient model for panel data, where the random component arises from the random selection 
of individuals out of a finite population. 

1. INTRODUCTION 

1.1. Problem 

Sample surveys such as the Current Population Survey are a rich source of 

economic data. If the sample is drawn according to the principles of sample 

survey theory, each member will have an attached weight. For example, suppose 

there are two strata A and B and that a sample is drawn in which members in A 

are sampled at a rate 6:1,000 (six per thousand population individuals in A) 

whereas members in B are sampled at a rate of 3:1,000. Then to compute a 

population total, say the total wage bill for the population as a whoie, it is sensible 

to give twice as much weight to an earnings measurement in B as to an earnings 

measurement in A, that is, the weights will be proportional to the inverse of the 

probability of being selected. But when different classes or strata are sampled at 

different rates, should the associated weights be used in estimating a behavioral 

econometric model? And how should they be used? In practice-we usually have 

more information about the method by which the sample was drawn than just 

sampling weights for each observation. We also know the type of sampling pro- 

cedure (such as simple random sampling with replacement, simple random 

sampling without replacement, stratified random sampling, single-stage Cluster 

sampling, multi-stage sampling) as well as detailed probability descriptions of the 

procedure. We often know the probability that any unit will be drawn as well as 

the joint probability that any pair of units will be drawn. As before, this information 

about the sampling design can be incorporated into estimates of population totals, 

standard error estimates for the estimated population totals, and so forth. But 

what use should we make of this information in estimating a behavioral econo- 

metric model? . 

In the econometric literature, opinions divide. Some authors advocate that 

the sample weights be used in linear econometric models in a way which is similar 

to the use of weights in computing finite population totals: they recommend 

using weighted least-squares.’ Other writers argue that such sample survey 

*1 wish to thank my colleagues, John Paulus, Joe Sedransk, P.A.V.B. Swamy and my discussant, 
Professor Arnold Zellner, for useful criticisms and comments. Thanks also go to my summer assistant, 
Ken Wise of Northfield Park and M.1.T., for valuable advice and invaluable Fig Newtons. An expanded 
version of this paper is available from the author. 

‘See Klein and Morgan (1951), Klein (1953, pp. 305-313), Hu and Stormsdorfer (1970), and 
Cohen, Rea, and Lerman (1970, pp. 193-194). 
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information is irrelevant for econometric models.2 Most econometric textbook 

authors do not discuss this issue.* 

1.2. Homogeneous Coefficients : The Choice of the Regression Technique Does Not 

Depend on the Sample Design 

If the coefficients in the behavioral model are homogeneous throughout the 

population, then the sample design does not affect the validity of the usual (least- 

squares) estimates. To pursue this point consider the following example. 

Suppose there are q possible samples of size n that can be drawn from a 

population of size N according to the sampling design chosen and that the 

probability of selecting each sample is known. To represent this probability 

model for sampling we construct a random variable S taking on q distinct values 

S;,52,...,S, with associated probabilities p,, p,...,p,. Let the regression model 

for any sample, say the sth, be given by 

(1) y,=X$+u,, 

where X, is a n x k matrix of regressors, y, is a n x 1 vector of regressands, 

B is a fixed k x 1 vector of unknown coefficients and u, is an x 1 vector of un- 

observed disturbances. We treat X, as fixed so that the only source of variation 

in y, is due to the variation in the disturbance vector u,. We postulate that u, is 

generated by a classical probability mechanism which is independent of the 

sampling design and exhibits the usual properties 

(2) E{u,|X ,) = 0 for all s, 

(3) E(uu,|X ,.) = 071 for all s, 

where E. denotes the expectator operator. We distinguish the operator by the 

subscript c, where c stands for the classical probability mechanism generating 

the disturbances. Assume X, has full column rank for all s so that the least-squares 

estimator of B, namely 

(4) b(s) = (X{X,)" 'X,y, 

exists. 

To evaluate properties of b remember that we must take into account two 

sources of random variation: that caused by the random selection of individuals 

and that caused by the random variation in the disturbance vector. Since the 

unconditional expectation Eb(s) is the sum of the conditional expectations, we have 

q 
(5) E[b(s)] = }° E{b(s)\S = s,]p;, 

i=1 

? See Cramer (1971, p. 143), Fleischer and Porter (1970, pp. 99-111), and Roth (1971). I became 
aware of several of these references by reading Roth’s memorandum, Roth (1971). 

> See e.g, Dhrymes (1970), Goldberger (1964), Goldberger (1968), Johnston (1963), Kmenta 
(1971), Malinveud (1966), Theil (1971), Zellner (1971). A notable exception is Klein’s pioneering text- 
book, Klein (1953); Champernowne—Champernowne (1969)—takes up survey sampling theory but 
does not relate it to the regression model. 
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where E[b(s)|S = s;] represents the conditional expected value of b(s) given the 

event S = s;. Given our specification for u we can show that b(s) is an unbiased 

estimator of B. Inserting (4) and (1) into (5) and simplifying gives 

q q 

(6) E(b(s)}) = > E{B + (X;X,)"'X‘uS = s;)p, = B Y p; = B. 
i=1 i=1 

The crucial relations used to derive (6) are (a) X, is fixed for a given sample and 

(b) E.[u,|S = s;] = 0. The assumption that u does not depend on the sampling 

procedure is critical for establishing (b). 

If we restrict our analysis to be conditioned upon the particular X matrix 

which is drawn, then the Gauss—Markov theorem holds and the least-squares 

estimator will be a best linear unbiased estimator (BLUE) of B.* Indeed, it would 

appear that b(s) will have these optimal properties when we also allow for sampling 

variations.° 

The implication of the foregoing analysis is that for homogeneous populations 

we are not obliged to incorporate the structure of the sampling plan into our 

regression analysis. Of course, the sample design is important regardless of 

whether coefficients are homogeneous or heterogeneous. 

1.3. Outline of the Paper 

In the rest of the paper we adopt the assumption that the coefficients differ 

across individuals. Then it appears that the choice of the regression technique 

depends on the sample design so we explore some procedures for combining the 

information on the sample design with the specification of the behavioral model to 

obtain estimates of certain population parameters. In Section 2 we review some 

results from sample survey theory. We employ these results in Section 3 to form 

estimators for the random coefficient regression model based.on panel data. 

Here the “random’”’ component in the coefficient arises solely from the random 

selection of individuals. Although this problem has been intentively studied 

recently,° the analysis has implicitly proceeded under the assumption of random 

sampling from an infinite population. We consider the more usual sampling 

design in which sampling is done without replacement from a finite population 

with unequal probabilities. See Konijn (1962) for a related contribution when the 

data source is a single cross section. ’ 

* See, e.g. Theil (1971, p. 119). 
5 The proof follows the standard proof of the Gauss—Markov theorem, Theil (1971, pp. 119-120). 

The proof consists of showing that the covariance matrix of the least squares estimator, say V, is 

pa( XX "4 Me-= V= 
1 

while any other linear unbiased estimator, say A,y,—where A, may be functionally dependent on s— 
has a covariance matrix equal to 

q 

i=1 

© See Rao (1965), Zellner (1966), Swamy (1968), (1970), (1971), (1972), Theil (1971), Lindley and 
Smith (1972) and Schmalensee (1972). 

7 | am grateful to Professor Zellner for bringing Konijn’s valuable study to my attention. 
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2. SAMPLING FROM FINITE POPULATIONS 

In this section we review some elements of sampling theory from finite 

populations.® The object of this theory is descriptive: to estimate finite population 

totals or averages. 

2.1. Simple Random Sampling Without Replacement 

We start with the concept of an ordered random sample. Let the finite popula- 

tion being sampled consist of N items, numbered 1, 2,..., N. An ordered sample 

from this population is an arrangement of the items in a particular order. For 

example, if the population consists of three elements {1, 2, 3}, there are six possible 

ordered samples of size two: (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2).2 When each of 

these ordered samples appears with equal frequency in repetitive sampling, the 

sample is called an ordered random sample. Define the product N(N — 1)... 

(N — n+ i) = 2(N,n). Probabilities are herein computed in accord with the 

equivalence law of ordered random sampling: 

Theorem 1 (The Equivalence Law of Ordered Random Sampling) 

If an ordered random sample of size n is drawn from a population of size N, 

then on any particular one of the n draws, each of the N items has the same prob- 

ability 1/N of appearing. 

Proof. See Hodges and Lehmann (1970, pp. 55-59). 

The theorem generalizes to more than one item in a general way but we need 

consider only: 

Theorem 2 

N 
Any pair of items, say J and J, has the same probability u 5 of appearing on 

any 2 specified draws. (Note that we do not indicate the order in which I and J 

appear on the two specified draws.) 

Proof. Without loss of generality suppose that the two draws are the first and 

the second. If J appears on the first and J appears on the second, the remaining 

items can be drawn in n(N — 2,n — 2) = (N — 2),(N — 3)...(N — n + 1) ways; 

alternatively, J may appear on the first and J on the second in 2(N — 2,n — 2) 

ways. Thus, the probability of {7,J} on draws 1 and 2 is 2x(N — 2,n — 2)/ 

N 
m™N,n) = u(3] = 2/(N)(N — 1). 

Suppose we are not interested in an ordered random sample but in an un- 

ordered random sample. We can obtain an unordered random sample by first 

drawing an ordered random sample and then disregarding the order.'® 

Let y designate the variable which we are measuring in the population; y may 

be a scalar or a vector. For the present we will let y be a scalar. The value of y for 

the first item in the population is y, , for the second y,, and so forth. If we consider 

8 Hodges and Lehmann (1970, Sections 2.3, 4.3, 7.2, 9.1 and 10.3), Kendall and Stuart (1966, 
Chapters 39-40), and Cochran (1963) are useful introductions to the sampling theory. We draw on 
them in this section. 

° Note that we use braces ‘*{ }”’ when the order is irrelevant and parentheses “( )”” when the order 
becomes important. 

'© See Hodges and Lehmann (1970, p. 54). 
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a random drawing of one item, say y, from this population, its expected value and 

variance are 

N N 

(7) Ey] = ¥ yPrG=y) = ¥ yAl/N) =u 
i=1 i=1 

N 

(8) Var [(¥] = > Oi — w(I/N) = 0”. 
i=1 

Note that the population mean and variance, yu and o7, are generated by a very 

simple probability mechanism: the random drawing of one item from this 

population. 

It will simplify matters if we adopt the following notational conventions. 

Let pr) be the probability that the ith person is selected on the rth draw. Let 

pr, Ss) be the probability that the i and jth individuals are selected on the r and sth 

draws respectively. Let N = {1,2,..., N} and # = {1,2,..., n}. As a shorthand 

we will write 

= N . N N n 
Yw= yw, Yw=yLY¥w Yw= > w, 

i=1 mpest iz1 

and 

yy = - 3 Wij- 
i= 1 j= 1 

itj 

We next draw an ordered random sample, say (j, j,..., j,,), from this popula- 

tion. By Theorem 1, each j has the same probability distribution: 

(9) p{r) = 1/N for all ie N and rei. 

Consequently for each rei 

(10) E(y,) = Yy,No' =p 

(11) Var (¥,) = }(y; — w)?N~* = 07”. 

In view of the proof of Theorem 2 we have 

(12) piAr,s) = 1/N(N — 1) for allr,sen,r # sand i,jeN,i $j. 

Thus the covariance between j, and j, is equal for all r and s. If C is this common 

covariance, C satisfies 

Var (> ¥,) = no? + (n? — n)C. 

When n = N,)'¥; is a constant with zero variance so No? + N(N — 1)C = 0 

and 

(13) C = -o*/(N — 1). 

We now consider the problem of estimating y. It is convenient to cast this 

problem in the format of a linear model. Let ¢; be a variable defined by ¢; = y; — y, 

for i in N. If we observe the entire population, y is known exactly ; this implies that 
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é;,i = 1,2,..., N are known quantities. However the sample values é, = j, — y, 

r in f, are random variables with the following properties : 

(14) pir) = N=! for allie N and allrefi 

piAr,s) = 1/N(N — 1) for all i,j¢ N,i A jandr,sen,r #s. 

Our sample (J,,92,..., J,) thus belongs in the following setup: 

(15) ¥Y=iImnp+é 

(16) E(é) = 0 

(17) E&?’ = 07Q,Q = (1 — p)l + pl’ 

where Q is a n x n matrix, p = —(N — 1)7' and f’ = (j,, F2,.... 5). & = (E, 

Sec gE: fh, 1,0535 1) are 1 x n vectors. For the model of (15), (16), and (17) 

the best linear unbiased estimator (BLUE) of p is, of course, the Aitken generalized 

least-squares estimator 

(18) A =(a-")-'V2-9. 

Let 

(19) r= {1+(n— I)p}. 

One can easily verify that’! 

(20) Q-' = aah — pW} 

so that 

rm =r"'l 

YQ" {b= r-'n. 

Thus 

(21) A=rn-'r'l¥¥ = LY = (I'l) ‘19. 

That is, the Aitken estimator and the ordinary least-squares estimator are identical 

in this case. 

2.2. Simple Random Sampling Without Replacement With Unequal Probabilities 

We now relax the assumption that all individuals have an equal chance of 

being selected on each draw and permit probabilities of being drawn to differ 

between individuals and from drawing to drawing. Most sample designs are 

special cases of this scheme.'? As before let p,{r,s) be the probability that the 

i and jth individuals are selected on the r and sth draws respectively in a sample of 

size n from a population of size N; i and j range from 1 to N and r and s from 

'! This result is well known. See, for example, Kendall and Stuart (1966, p. 167). 
'2 See Kendall and Stuart (1966, p. 177 ff). 
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1 ton where i # j and r ¥ s. The probability that the ith person is selected on the 

rth draw, p(r), is 

n N 

(22) pAr)= > » par, s\n — 1). 

pore ry 

Since someone is always selected at the rth drawing, 

(23) ¥ pdr) = 1. 

Let 2; be the probability that the ith person is selected in the sample, 

(24) m= > p§r). 
r=1 

Finally, let 2,; be the joint probability that the ith and jth persons are selected in 

the sample, 

(25) mj;= > > piAr,s). 
r=1s=1 

r#s 

Since p;{r, s) = pjAs,r), we have, of course, that 2; = 7. 

For our purposes, it will suffice to characterize the sampling design in terms 

of z, and 7,;. From (23) and (24) we find 

(26) y Tt; = Nn. 

From (22), (24), and (25) we get 

N 
(27) > 2; = (n — In, 

j=1 

N N 
(28) 3 > 7m; = n(n — 1). 

Before, we were careful to distinguish between the labelling of observations 

in the sample and that in the population. The second person in our sample will 

not usually be the second person in the population. However, now we will label 

the sample observations in the order in which they are drawn and not distinguish 

between the order in the sample and the order in the population. As long as we 

are considering symmetric functions’ of sample observations this notational 

convention will not lead us astray. 

A result we shall often call upon is the following: 

Theorem 3 

Suppose a sample of size n, y,, V2,..., y, is drawn from a population of size N. 

Then for any function g 

(29) EY gy] = y 72(y;) 

(30) E(>: ay. ¥))) = . 7; (Vi, Y;)- 
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Proof. So that there is no ambiguity let us first write out (29) and (30) fully: 

(29’) z| > ev = ? 72(y;) 
i=1 i j= 

(30’) el 5 ¥ ny) |= y y Ti8(¥i+ Y))- 
i=i j=1 t= b jj 1 

i#j 

To prove (29) note that 

(31) E{) a(vi)] = » Esty). 

But by definition Eg(y,) = »# g(y,)p Ai). Thus 

ALY giv) = EY siyppdd = ¥ ev) ¥ pAd = Yin, 
i-j i i j 

This proves (29); equation (30) follows by a similar argument. 

We can use Theorem 3 to obtain a linear unbiased estimator of the population 

mean, , 

1 N 

(32) =w he 

Suppose the same weight v; is to be assigned to an individual whenever he is 

selected. A linear estimator will have the form 

(33) A= ¥ vy, 

with the weights to be determined by the unbiasedness condition. Using (29) 

with g(y;) = v,y; we find 
7 

(34) E{f) = > (V;y)%;. 
i=1 

Then equating coefficients in (32) and (34) we must have 

(35) A= 
im: 

1 y 

NS a, 

3. SURVEY SAMPLING AND THE RANDOM COEFFICIENT 

REGRESSION MODEL FOR PANEL DATA 

3.1. Introduction 

Recently, there has been renewed interest in the random coefficient regression 

model.'* A specification leading to a random coefficient regression model occurs 

in the survey sampling framework. Suppose the population consists of N individuals 

13 See the references in footnote 6. Also see Hildreth and Houck (1968). Swamy (1971), (1972) 
provides an extensive bibliography on this literature. 
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and let the economic relationship for the ith unit be given by 

(36) y= Xf, +u,,ieN, 

where y; is a T x 1 vector of observations on the dependent variable, X; is a 

T x K matrix of observations with rank K on K independent variables, B; is a 

K x 1 vector of non-random coefficients and u; is a T x 1 vector of disturbance 

terms with mean zere for each i. ; 

It is convenient to think of T as the number of time periods so that, for 

example, the tth element of y; and u; refer to the rth period. We allow for hetero- 

geneity across individuals: each unit has its own coefficient vector. 

The random coefficient model arises when a sample is drawn from a popula- 

tion. At the beginning of the first sampling period n individuals are randomly 

selected out of the population. In T successive periods the same n individuals are 

sampled. Assembling the observations on the n individuals for T periods we have'* 

y, = X,B, +4, 

(37) y. = XB, + u, 

yn = XB, + u,,- 

The random selection of individuals determines the random coefficient model 

for the system in (37). Let the population coefficient vector of interest be given by'® 

(38) B = EB. 

We will develop various estimators for B under two sampling schemes: simple 

random sampling without replacement and random sampling without replacement 

with unequal probabilities. 

3.2. Simple Random Sampling Without Replacement 

In simple random sampling the units are drawn without replacement with 

equal probabilities. We shall make the following specification initially for the 

system of observations in (37) which came from the population in (36). 

Assumption 3.1: 

1. The number of units sampled (n) and the number of time periods (T) are 

such thatn > K and T > K. 

2. For each unit i in the population, the independent variables are fixed 

in repeated samples on y;. The rank of X = [Xj, X},..., Xi) is K for 

every possible sample drawn. 

3. The disturbance vectors u; (i¢ N) are independently distributed each 

having mean zero. The variance—covariance matrix of u; = o;/ 7. 

4. The n units are drawn by simple random nage without replacement 

from the population of N units. 

'# As in Section 2 we do not distinguish between the labeling order in the sample and the population. 
'’ We could carry out the analysis for other population concepts such as B* = ¥ w,B;, where w, 

are known weights. 
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As was stressed in the introduction, there are two different sources of random 

variation in this model, one being the behavioral random error, the u vectors, 

aud the other being the variation in 8 vectors caused by the random selection of 

individuals. In evaluating expectations of random variables it will often be con- 

venient to distinguish these two sources of variation. We shall use the shorthand 

S to denote the summation over individual units, i.e., the variation caused by 

sampling. And we shall let c denote the integration over the behavioral random 

errors, the u’s. 

Since the method of sampling is simple random sampling, the results reviewed 

in Section 2 apply directly to the B’s. In particular, from (10) we have 

(39) E(B) = 6, = ien. 

We shall define the variance-covariance matrix for the population by 

We assume that A is positive definite. The sampling errors 

(41) 5; = B; — B ieén have zero mean values. 

Using (11) we have 

(42) E(66;) = A, ie i. 

Finally, the matrix version of (13) is (43): 

; A a eye 
(43) E(6,6') = “ST i, j € i, i Fj. 

For the model of (3.1) we shall consider two estimates. The first will be the 

simple average of the least-squares estimators of each unit in the sample. The 

second estimator is an approximate Aitken estimator. 

Average Least-Squares Estimator 

Let b be the first estimator, 

where 

(45) b; = (X;X))~ 'Xiyi- 

Considering the variation in u; above we have the usual result that 

(46) E.(b|S) = B, 

where E.(b,|S) denotes the conditional expected value of b; given the ith unit is 

drawn. From (39) and (46) we obtain ' 

1 1 
(47) E(b) = — >’ EsE,[b\S] = — > Es(B,) = B. 

That is, b is an unbiased estimator of B. 
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Next we determine the variance—covariance matrix for b and an estimator 

of it. The error between b and 6 is 

(48) b — B=n™*[}(6,; + (X/X)"'Xju)). 

It will simplify notation to introduce P; by 

(49) P, = o;{X;X;)~*- 

The variance—covariance matrix of b, say S,,, is 

Sip = E(b — B)(b — By. 

Evaluating S,,, we find 

AN-n) 1¢ 
5 Sy = ——— + — SB. 
(50) 7s nN = 1) t Na 

To obtain an estimate of S,, we shall first evaluate the matrix S,, 

l 
(51) S, = > bb; 7 ~(), b) (> bj). 

Substituting 

b, = B, + (X:X)"'Xim, 

into (51) and taking expectations gives 

A (n — 1) 
52 =(n—1 —1 , (52) E[S,] = (n )\A + (n woit N > P,; 

Let 

(53) M,; = 1 — X{X;X))"'X; 

(54) e, = My;. 

As is well known 

ee; 
55 . 
oe v tee 

is an unbiased estimator of ¢;; so that 

1 
(56) — > s,fX;X)~' 

n 

is an unbiased estimator of (1/N) > P,. In view of (52) and (56), an unbiased 

estimator of A is 

= S, 1 N-1 
(57) A= F —_ es 

where 

(58) P, = s,{X;X)7'. 
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Thus an unbiased estimate of S,,, will be 

* ~ | m 

A possible operational difficulty with the estimator for A, A, is that it may 

not be positive definite or even positive semi-definite. A necessary condition for 

A to be positive semi-definite isn > K.'° However, this difficulty does not extend 

to the estimator for S,,. 

An Approximate Aitken Estimator 

Assuming that the estimate of A is positive definite, we can create an estimator 

for B which uses more of the model specification than the average least square 

estimator, b. This Aitken estimator has the property that it will be dependent on 

the particular X matrix which is drawn. To form this estimator of B we follow 

Swamy (1971, Chapter 4), and write the sample system of nT observations (37) 

together as 

(60) y = XB + D(x + u, 

where 

y = (yi,Y2.---. Yi) 

>) ie ae 7 

-—s£ 6 =). oF 

3? Aa 

D(X) = 

0 0 X,, | 

5 = (8;,55,...,8;) 

u = (u,,U5,..., u)) 

Conditional on X the nT x 1 disturbance vector for (60), D(X)é + u, has the 

following variance—covariance matrix 

E[{D(X)8 + u} {D(X)6 + u}’|X] = H(®) = 

(Nise. oat bet Ax, «. -2X AR.) 

(61) 28 AF: BAX; +e! ... -2XAN, 

| —zX,AX', aa X ,AX), + ol | 

wherez = 1/(N — l)ando = (1/N) ¥. o,;. The matrix H(®)isasymmetricnT x nT 

matrix. It is functionally dependent on X, z and an unknown 4{[K(K + 1) + 2] 

"© See Schmalensee (1972, p. 6) for a proof of this result for Swamy’s specification of the random 
coefficient model, Swamy (1971, Chapter 4). That proof carries over to our specification. 

'’ The zeroes in D are T x K null matrices. 
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vector of parameters, 8, containing the distinct elements of A and o arranged in a 

particular order. It can readily be shown that H(®) has an inverse.'® Conditional 

on X, the BLUE of B is the Aitken estimator, 

(62) b(@} = (X’H(®)"'X)~'X’H(®)"'y. 

Since A and o are unknown, b(®) is not operational. We can, however, form an 

approximate Aitken estimator by substituting unbiased estimates for A and co. 

Thus let H(6) be the nT x nT matrix formed by substituting A for A and 

s = (1/n) ¥'s,; for o into H(®). The approximate Aitken estimator is 

(63) b(6) = (X’H(6)-'X)-'x’H@)-'y. 

We conjecture that under fairly general conditions b(6) will have desirable 

asymptotic properties. '° 

3.3. Random Sampling Without Replacement With Unequal Probabilities 

We now generalize from simple random sampling to random sampling 

without replacement with unequal probabilities. We again consider two estimators : 

a simple weighted average of the least-squares estimators and an approximate 

Aitken estimator. 

We make the following assumption 

Assumption 3.2: j 

(1}{3) the same as Assumption 3.1 (1)}+{3). 

(4) Sampling is done without replacement with unequal probabilities. 2; will 

be the overall probability that the ith unit is drawn and 7;,,; the joint 

probability that the i and jth units are drawn. 

Weighted Average of Least Squares 

From (35) it follows that a natural estimator for B is a simple weighted average 

of the least-squares estimators, where the weights are inversely proportional to 

the probability of being selected in the sample. That is, consider the estimator b*, 

sb (64) b* = . : 
NS Ms 

Using (29) and (46) we find 

veo = [9] - os] 50, 
! 

'8 See appendix. 
'? See Swamy (1971), (1972) for a discussion of large sampie properties when N is infinite. His 

analysis needs to be modified for our work. However, much of his analysis does carry over to the present 
problem. For T sufficiently large with n fixed, we can treat b,(i = 1,2,..., n), as if they were sample of 
size n from the population of B’s, i.c., (B, , B2,..-., B,). Then we can combine the result with the central 
limit results of Hajek (1960) for finite populations, to get the full set of asymptotic properties of b(6). 
Also, see Theil (1971, p. 399). If u and 6 are symmetrically distributed about the null vector, then we 
can use the type of argument developed by Kakwani(1967) to show that b(6) is an unbiased estimator of B. 
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so that b* is an unbiased estimator of B. Let S,.,. be the variance—covariance 

matrix for b*. Evaluating S,.,. we find 

(65) Spey = 3 y P, + y BBC — Ti) + y PB 7 “A 

N?| —1; T; 1; 

By inspection of (65) we recognize that an unbiased estimator of S,.,. is 

1 [ (1 — mpbp; 
2 

“s bb{x,—2) . oP, 
(66) Swe = 592 he ed abn Z ancy d= |. 

An Approximate Aitken Estimator 

We now develop an approximate Aitken estimator for this model. As before 

the analysis is conditioned on X. 

To construct the Aitken procedure we would like to write an observation at, 

say, the rth draw as . 

(67) y, - XB + Vv, 

where the disturbance v, satisfies 

(68) E{v,|X] = 0. 

However, for random sampling without replacement with unequal probabilities, 

v, = X(B, — B) + 4, 

and 

(69) E[v,|X}] = X, > Bir) xs 6) 

Note that the expected value of v, will not vanish unless p{r) = 1/N,i.e., we engage 

in simple random sampling. To avoid this problem we transform each draw in 

the following way. If the /th unit in the population is chosen on the rth draw write 

e, = N~'p,r)~! 

and let 

9, = y,¢,, B, = B,e,, i, = we,. 

The transformed representation of the rth draw is then 

(70) j, = X,B, + @, 

and the expected value of 8, = B. The difficulty with this particular transformation 

is that the variance-covariance matrix for the transformed system of n draws 

depends on the draw-by-draw probabilities, the p(r) and p;{r, s) terms. To circum- 

vent this complication we assume that the sample design satisfies the following 

equations,”° 

2° If we interpret all quantities as referring to a particular stratum then whenever the number 
sampled (n) within a stratum is small relative to the number of units in the stratum (N), equations (71) 
and (72) are likely to be adequate approximations (within the stratum). See Cochran (1962, p. 260-262) 
for a description of a common method for selecting units with unequal probabilities but without 
replacement which will approximately satisfy these equations within a stratum. In this case the approxi- 
mate Aitken estimator developed in the text will be defined for each stratum. An estimate of the overall 
population mean for all strata taken together can then be formed by suitably averaging the estimates 
from the different strata. 
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(71) pdr) =< for all rei andie N 

(72) pir, s) = pe r for all r,s €f,r # s and i,je N,i ¥ j. 

We now analyze the transformed system of equations having the form of 

equation (70) for all ren, where e, = n/x,N when the /th unit is chosen at the rth 

draw. The following results will be useful in this analysis. From (71) and (72) we 

can easily show that for draws r and s,r # s, 

. 
(73) E,(z,) = 5 Miri 

(74) Ejaz) =- -——- 5 aye S425) =F in — 1) 1; 52 j2j- 

From (73) we find 

i —  B; 7; Pas 
75 E = et ee ee a 
( ) slB,] 2 Bipir) 2 e; n N 2B. B 

Let 5, be the sampling error in the transformed random coefficient f, 

(75) 5, = 6, — B, rei. 

By construction 

Each 6, will have the same variance-covariance matrix, say A, 

A = 56,5, = EBB, — Bp’. 

Evaluating A gives 

x_~BBin-2) 1% 
76 A=) —; —.., 6’. ( ) d N?n; N2 3 BB; 

We assume A is positive definite. By inspection of (76) we infer that an unbiased 

estimator of A is 

bbi(n — 7;) Pin — 2 T;) 

N?x? ~ 2° N?n? — ida 
(77) A=y- 

The covariance between 8, and 6,, say A., will be identical for all r # s and 

satisfy 

a A 
Tabet es | for all r and sea,r # s. 

Using the foregoing results, the system of nT observations may be written as 

(78) ¥ = XB + D(x +14 

155 



g***9 

grees 

gee 

and X and D(X) are given beneath (60). Given X the disturbance in (78) has a 

variance—covariance matrix G(@) 

Loree: Sar eee 

(79) Ghia) 2AT, RAK+H ... FAK 

| X,A,X! oe X AX’, + 61] 

where @ contains the distinct unknown parameters elements of A and &, with 

& = (n/N*) > (6;,/n)). 

If A and & were known, 

b(p) = (X'G(@)'X)~*X'G(@)"y* 

would be the BLUE of B. An approximate Aitken estimator may be formed by ~ 
substituting A, A. = A/(N — 1), and & = (n N’) > (s/n?) for A, A. and é into 

G(@) to obtain G(@); the estimator is 

(80) b(@) = (X'G(o)~'X)~ ' X’G(@)'¥. 

If A is not positive definite (or at least positive semidefinite) we face a negative 

variance problem.”' There does not appear to be an easy solution to the negative 

variance problem. One can never be sure whether or not the result arises because 

of a model misspecification or is just an anomaly of a given sample. 

An Extension 

It is not difficult to see how these results may be generalized to permit con- 

temporaneous correlation between u’s in the population. That is, consider 

Assumption 3.3. 

(1), (2), (4) same as corresponding conditions in Assumption 3.2. 

(3) The disturbance vectors u,, (i¢ N) each have mean zero and Eu; = o;;l 

for all i and j. 

The correct unbiased estimator of A becomes 

bb{n — z,) Pin—7) 1 bp; ef 
- d_ sipPiXiX P, 

Nea? = Nia? ~ NIX : 

| ’ 

NPD ss; j “tM jj 
(1) A=> 

1; 

where 

S;; = y;M;M jy;/trace (M;M ;) 

2! See Swamy (1971) and Schmalensee (1972) for discussions of this problem and additional 
references. 
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The matrix G(@) and therefore G(@) changes also for Assumption 3.3. The iith 

block diagonal matrix is still 

X AX; + él 

but the i-jth off-diagonal matrix becomes 

~ 1 ° 
a X AX',+ 61, where é, = = gay | ij jG ij€ie ;- 

4. FUTURE EXTENSIONS 

In this paper we explore the consequences of using information on the design 

of a sample survey to estimate population averages in a linear model. An analysis 

of the sampling properties of the alternative estimators considered awaits further 

study. 

Finally, we treat the sample design as being given exogenously. It may prove 

illuminating to relax this assumption and rank alternative sample designs on the 

basis of their precision in estimating population averages in a linear model. 

Economist, Board of Governors 

Federal Reserve System 

APPENDIX: INVERSE OF (6) 

H(®) may be written as 

(1) H(®) D(Z @ AjD'+ > @!l 

R + DBD’ 

where @ is the Kronecker product symbol, 

R=) @l;r, J=al,, B=Z@A, 

and Z = (z;,) is an equicorrelated matrix with z,; = 1, 

24; = —2,1F j. 

Since A is positive definite (by assumption) A~' exists. The inverse of Z is readily 

found, see Rao (1965, p. 53, problem 2(ii)). 

Now 

(2) R=) -'@l, 

(3) B-'=Z"'@A"'. 

Finally, using a result given in Rao (1965, p. 29, problem 29), we find 

(4) (R + DBD’)"' = R~' — R-'D(D'R™'D)"'D’R™' 

+ R~'D(D'B™'D)~'(D'R~'D)~! + B)~ (D'R™'D)~'DR™!. 

Inspecting the r.h.s. of (4) we note that in view of (2) and (3), the largest matrix to 

be inverted is nK by nK. If A is positive semidefinite, H(@) is also nonsingular. 
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