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Annals of Economic and Social Measurement, 2/1, 1973 

A MONTE CARLO STUDY OF COMPLEX FINITE 

DISTRIBUTED LAG STRUCTURES 

BY MALCOLM COHEN, ROBERT GI! LINGHAM, AND DALE HEIEN* 

This article uses Monte Carlo methods to assess the effectiveness of estimation techniques for determining 
lag structures. We conclude that for the power estimator approximation of the polynomial, both the R? 
criterion and the t statistics are of only marginal help in determining the correct length or shape of the lag 
structure. Restriction of some weights to zero provides some indication of the overall correctness of the 
specification. However, without a priori knowledge, it is impossible to determine whether the restriction 
compensates for misspecification in the variable set or the length of the lag. 

I. INTRODUCTION 

Early works involving distributed lag functions made highly restrictive assump- 

tions regarding the form of the lagged response. Fisher [5] assumed declining 

arithmetic weights. Koyck [8] specified declining geometric weights. Recent 

researchers have avoided these over-restrictive assumptions in order to fit the 

real world into the framework of a lag model. Jorgenson [7] developed an 

estimation technique which requires only that the distributed lag function be a 

ratio of two polynomials. Almon [1] developed a technique which requires the 

function to be finite. Despite their increased generality, these new techniques still 

require prior specification regarding the true shape and length of the lag under 

consideration. However, econometricians usually have very little theoretical 

justification for assuming any particular shape and length of lag structure.’ 

The purpose of this paper is to assess, using Monte Carlo methods, whether 

estimation techniques can be used to detect the true shape and length of a par- 

ticular type of underlying lag structure. A common but cumbersome technique 

used to estimate lags is the Almon technique which involves Lagrangian inter- 

polation. A power series approximation has been suggested as an alternative but 

simpler means of estimating distributed lags. This alternative and some computa- 

tional problems in its use are discussed in the next section. The third section 

provides a discussion of the design of our Monte Carlo experiments. Section four 

presents an analysis of the results. 

II. THE Power ESTIMATOR 

Almon [1] has suggested an estimation technique for approximating any 

finite distributed lag using Lagrangian interpolation. A simple and equivalent 

method is outlined here.? 

Let, N-1 

(1) t Beart {| > WwW X,-; + Uy, 
i=0 

* The authors are indebted to Lester Taylor for comments on an earlier draft of the paper. However, 
the authors alone are responsible for any errors. 

’ See Griliches [6] for a brief discussion of this problem. 
? This presentation is drawn largely from Tinsley (10). 
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where T is the number of observations on x and y, N is the length of the lag, u is a 

random error term with zero mean, constant variance (co?) and zero covariance, 

and the w,’s and y, are unknowns to be estimated subject to the constraint that, 

N-1 

(2) 7 w; = |. 
i=0 

Let 

(3) wh = 71M. 

We take the w*’s to lie on a function which can be approximated by the Kth 

order polynomial, 

(4) w* = my + mi + mi? +... + myi* i= 0,...,,...,.N—1 

Given (4) equation (1) can be rewritten in matrix notation as, 

(5) y= X Pm+v 

where X is a T x N matrix of current and successive lagged values of x; y is a 

T x 1 vector of observations on y, v is a T x 1 vector of random errors, m is a 

K x 1 vector of polynomial coefficients, P is a power matrix defined as 

py=?.i=Q1,...,.N-1; j= O1,...,K.? 

Applying ordinary least squares to (5) results in 

(6) mh = (P’X'XP)"'P’X'y 

and 

(7) w* = Pm 

where w* = Pm. If the weights defined by (4) lie exactly on the approximating 

polynomial and all the customary least squares assumptions are met, then 

(8) E(w*) = w*. 

The variance covariance matrix of Pm will be 

(9) var (w*) = o7 P(P’X'XP)'P’. 

Generalization of this presentation to allow for a constant term and additional 

variables is straightforward. 

In general, the vectors of the matrix X P will be highly multicollinear and of 

substantially different magnitudes. Hence P’X'XP will be difficult to invert 

accurately, with a danger that rounding errors may obscure the results. Tests 

suggested by Longley [9] and others confirmed the ill-conditioning of our trans- 

formed matrix. To overcome this problem we used the Gram—Schmidt ortho- 

normalization process and high precision arithmetic to estimate the inverse of the 

3 We employ the convention that 0° = 1. 



transformed matrix. We caution other researchers engaged in distributed lag 

estimation using the power estimator that problems of numerical accuracy are 

likely to be acute. Wampler [12] provides a description of the relative accuracy of 

the most popular inversion algorithms. Rounding errors in the Almon technique 

which involves even more computations are likely to be as severe. 

III. DESIGN OF THE MONTE CARLO EXPERIMENTS 

In order to perform the Monte Carlo experiments, we compute for any given 

lag structure and length of lag a set of observations on the dependent variable 

according to 

N-1 

(10) VY =Yot 1 L WiX-i + Y2zp t=1,...T. 
i=0 

The variables x and z are time series data on Corporate Profits After Taxes and 

Gross National Product. The coefficients yg, 7, and y, were obtained from an 

unlagged regression of Gross Private Nonresidential Investment on x, and z,. 

Their values are yp = 69.8133, y, = 0.3826, and 7, = 0.832. In the experiments, 

t runs quarterly from 1951 IV to 1967 IV with additional observations on x 

depending on the length of the lag. Corporate Profits was chosen as the lagged 

variable since it is less autocorrelated than GNP. Distributed lags on non- 

autocorrelated variables should be easier to detect since the effect of each individual 

weight will be more pronounced. Next a set of random error terms were added to 

the dependent variable in (10), for each replication within a given Munte Carlo 

experiment. These pseudo-random errors were generated by a computer sub- 

routine written at the Bureau of Labor Statistics. The method used is derived 

from an algorithm developed by Behrenz [2], while the approach suggested by 

Box and Muller [4] is used to obtain a normal distribution. The first two sample 

moments of ihe generated numbers are tested within the program to insure 

normality. The number of replications was set at 100 after determining that this 

number would provide stable estimates of the parameters to be analyzed. Two 

series of experiments using two distinct lag structures were performed. In each 

series, true weights were chosen which lie on a polynomial of known degree K 

and which satisfy the condition }'’-,' w; = 1. Series A, using a quartic lag, was 

designed to test for the effect of misspecifying the degree of the approximating 

polynomial. The assumed degree is denoted as k to differentiate it from the true 

* The GS process substitutes a sophisticated form of elimination procedure for the solution of the 
matrix of inner products as in more conventional regression techniques. Basically, it operates directly 
on the vectors of X, taking each in turn and eliminating its influence from the remaining vectors. It 
differs from straightforward elimination procedures in that it does not take the dependent variable (y) 
into account at all stages, but rather first transforms the vectors of X to have zero intercorreiations— 
in this way dealing witn the problem of multicollinearity. From a numerical standpoint, the electronic 
computer cannot carry the same number of decimals in all stages of calculation. It thus appears beneficial 
when there is wide size variance in the vectors to precondition the matrix by subtracting out integer 
means converted to floating point, negative integer means being inserted in the first row of the identity 
matrix. This step greatly reduces the incidence of computer round-off error. The interested reader 
should see Longley [9], Walsh [11], Wampler [12], and Yule and Kendall [13], for more details. The 
use of GS as the inversion algorithm is equivalent to using the transformation suggested by Tinsley [10] 
for generating an orthonormal set of weighting vectors. 
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degree K. Throughout this series the assumed length of lag (n) was correctly 

specified as the true length (N). Series B, using quadratic lag structure, was 

designed to test for the effect of misspecifying the length of lag. Throughout this 

series the assumed polynomial degree was correctly specified as 2. Both series 

of experiments were run using two different variances for the Monte Carlo error 

vector. The two values of o? were designed to provide, under correct specification, 

average R?’s of approximately 0.95 and 0.80. For each variance, experiments 

A and B were run for all combinations of (a) restricting (R) and not restricting 

(NR) the nth weight to zero and (b) not misspecifying (NM) and misspecifying {M) 

the variable set by omitting z. 

In each experiment we calculated from the 100 replications the mean, standard 

error, and t-ratio for B, m, 9, and the W,’s. In addition we report the mean R? and a 

goodness of fit statistic defined as: 
het iw* 2 

(11) “G= — - » 
i=0 71 

where w* is the mean of the non-normalized weights over the 100 replications 

and 7, is the mean of y, computed from the 100 replications, and w; is the true 

weight. Since w¥ = y,w,; and ) w, = 1, 7, = )"Y>} W¥. The calculation in (11) is 

more stable than one involving 
| {N-1 

A ee ay ay % W; = W} I(r wv} 
i=0 

computed for each regression. Both the numerator and denominator in (11) are 

computed across all 100 regressions. The smaller G, the better the fit. We also 

computed R? and a Durbin Watson statistic. These statistics are discussed when 

they have special importance. 

Before reporting the results, note that applying the restriction w, = 0 to the 

estimated relation can result in a zero variance for a particular weight, or a con- 

stant difference between two weights. For example, from (4): 

k 
(12) we = ¥ mi 

j=0 
and 

k 
(13) wt = Y hin’ 

j=0 

(14) WF = y mi — nr’). 

If, for example, k = 2 and n = 4 then 

(15) 4 wt = —10m, — 50m, wt = —3m, — 15m, 

we — WS = —m, — Sm, 

and thus w, = 0.3 and w, — w; = 0.1, each having zero variance. 
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IV. ANALYSIS OF THE RESULTS 

Experiment A. Experiment A deals with the problems which arise from mis- 

specifying the degree of the approximating polynomial. The power estimator 

reduces the number of independent variables to be estimated when k + 1 <n. 

However if k < K the approximation may result in an unsatisfactory fit. Experi- 

ment A is designed to detect the consequences of such misspecification. The 

results of specifying k > K also are noted. Table I provides a tabulation of sum- 

mary statistics for the Monte Carlo runs of Experiment A. 

TABLE I 

EXPERIMENT A—VARYING DEGREE OF APPROXIMATING POLYNOMIAL 

Summary Statistics 

k=2 k=4 k=6 

” R? G R? G R? G 

NM-NR 0.946 0.0224 0.946 0.0033 0.950 0.0174 
NM-NR 0.817 0.0190 0.823 0.0134 0.828 0.0240 
NM-R 0.943 0.0884 0.946 0.0007 0.949 0.0053 
NM-R 0.812 0.0893 0.815 0.0017 0.821 0.0055 
M-NR 0.913 0.1078 0.919 0.1281 0.921 0.1638 
M-NR 0.789 0.1068 0.792 0.1322 0.799 0.1698 
M-R 0.912 0.1019 0.915 0.0959 0.917 0.1190 
M-R 0.781 0.0999 0.791 0.0919 0.801 0.1135 

* NM — The equation was not misspecified. 
NR — The last weight was not restricted to zero. 
M — The equation was misspecified. 
R  — The last weight was restricted to zero. 

4 
11 
11 

— is defined in the text equation (11). 
“oui 

K 
N 
n 
G 

The combination of experiments shown in Table I was run for three different 

specifications for the degree of the approximating polynomial. The detailed 

results for these experiments are presented in Table II. We would expect, and do 

in fact, obtain, the best results (as measured by the lowest G) when k = K = 4 

and with a full set of independent variables. In addition, a very good fit is obtained 

when k = 6, the equation is not misspecified, and w, is restricted to zero. Lowering 

the error variance has little effect on the goodness oi fit unless the equation is 

appropriately specified. Here, however, the percentage improvement of G is large 

but the absolute decrease in G is small. None of the approximating polynomials 

give good estimates of the complicated lag structure when a variable is omitted 

from the equation. Restricting w, to zero improves the goodness of fit when 

k > 4 and the lag structure thus has sufficient degree to simulate the polynomial. 

The truly interesting question from Tables I and II is whether the regression 

statistics produced by the experiments can lead us to the correct specification of the 

lag structure without prior knowledge of K and N. Table I demonstrates the basic 

insensitivity of the R? criterion to changes in either the parameter k or restriction 
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TABLE II 

EXPERIMENT A—VARYING DEGREE OF APPROXIMATING POLYNOMIAL 

True and Estimated Weights* 

Specification NM NM NM NM MS MS MS MS 
Restriction NR NR R R NR NR R R 
o 15 60 15 60 15 60 15 60 

Pd. True wts. 
0 O.15i1 0.2204 0.1992 0.2446 0.2209 0.1694 0.1776 0.1630 0.1692 
1 0.2059 N=11 0.2290 0.2098 0.2011 0.1860 0.1510 01562 0.1492 0.1531 
2 0.2389 n=11 0.2262 0.2096 0.1619 0.1541 0.1335 0.1361 0.1352 0.1372 
3 0.2430 K=4 0.2118 0.1987 0.1269 0.1252 0.1169 0.1174 0.1209 0.1214 
4 02160 k=2 0.1859 0.1770 0.0961 0.0992 0.1012 0.1001 0.1065 0.1057 
5 0.1606 0.1485 0.1446 0.0697 0.0761 0.0864 0.0841 0.0919 0.0902 
6 0.0845 0.0995 0.1015 0.0474 0.0560 0.0725 0.0695 0.0771 0.0748 
7 0.0000 0.0391 0.0476 0.0294 0.0389 0.0595 0.0562 0.0621 0.0596 
8 —0.0754 —0.0328 -—0.01% 0.0157 0.0247 0.0474 0.0443 0.046% 0.0445 
9 —0.1194 —0.1163 -—0.0924 0.0062 0.0135 0.0361 0.0338 0.0314 0.0295 
10 —0.1050 —0.2113 -—0.1785 0.0010 0.0053 0.0258 0.0247 0.0158 0.0147 

0 O.1SI1 0.1225 02154 0.1473 0.1500 0.2031 0.1927 0.1439 0.1321 
1 0.2059 N=11 0.2260 0.1718 0.2066 0.1954 0.1096 0.1089 0.1543 0.1592 
2 0.2389 n=11 0.2701 0.1836 0.2374 0.2236 0.0968 0.1000 0.1477 0.1574 
3 0.2430 K=4 0.2648 0.2053 0.2371 0.2274 0.1147 0.1183 0.1313 0.1388 
4 0.2160 k=4 0.2214 0.2062 0.2068 0.2038 0.1289 0.1311 0.1105 0.1131 
5 0.1606 0.1519 0.1709 0.1511 0.1547 0.1201 0.1203 0.0895 0.0872 
6 0.0845 0.0690 0.0987 0.0783 0.0865 0.0840 0.0829 0.0709 0.0656 
7 0.0000 —0.0137 0.0038 0.0004 0.0100 0.0320 0.0305 0.0557 0.0503 
8 —0.0754 —0.0816 -—0.0844 -—0.0674 -—0.0592 -—0.0097 —0.0102 0.0436 0.0406 
9 —0.1194 —0.1194 -—0.1219 -—0.1057 -—0.1011 0.0001 0.0020 0.0328 0.0332 
10 —0.1050 —0.1110 -—0.0495 -—0.0920 -—0.0911 0.1199 0.1234 0.0198 0.0225 

0 O1511 0.2036 0.1317 0.1434 0.1177 0.2327 0.2629 0.1929 0.1549 
1 0.2059 0.1516 0.2247 0.2582 0.2123 0.0228 0.0088 0.1044 0.1414 
2 0.2389 N=11 0.2464 0.2760 0.2412 0.2201 0.1333 0.1084 0.1016 0.1172 
3 0.2430 n=11 0.2571 0.2333 0.2093 0.2224 0.1738 0.1647 0.1289 0.1163 
4 02160 K=4 01911 01608 0.1858 02221 0.1229 0.1305 0.1413 0.1226 
5 0.1606 k=6 0.1203 0.1206 0.1535 0.1948 0.0717 0.0794 0.1186 0.1118 
6 0.0845 0.0808 0.1142 0.0937 0.1232 0.0707 0.0649 0.0678 0.0759 
7 0.0000 0.0414 0.0811 0.0071 0.0164 0.0784 0.0663 0.0179 0.0315 
8 —0.0754 —0.0558 -—0.0430 -—0.0794 —0.0884 0.0136 0.0214 0.0033 0.0110 
9 —0.1194 —0.1846 -—0.2109 -—0.1227 —0.1395 -—0.0906 -—0.0530 0.0389 0.0371 

10 —0.1050 —0.0520 —0.0885 -—0.0900 —0.1012 0.1707 0.1457 0.0844 0.0803 

* See Table I for glossary of abbreviations. 

of the last weight to zero, although it is helpful at the more basic level of specifying 

the variable set. The R? criterion is of little help in choosing the correct degree of 

the approximating polynomial. 

The standard errors for both the polynomial interpolation coefficients (the 

m;’s) and the non-normalized weights (W*’s) are derived from the variance co- 

variance matrix for the interpolation coefficients. The multicollinearity of the 

independent variables (to be expected in time series analyses) causes the elements 

of this matrix and thus both sets of standard errors to be relatively large. This 

effect is especially pronounced for the interpolation coefficients. When k = K = 4, 

they exceed their standard errors only when there is an omitted variable, and, 

even in this case for only four out of the twenty coefficients. The non-normalized 

weights are more often significantly different from zero. High t-values are more 
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weight. TABLE III: 

EXPERIMENT A—VARYING DEGREE OF APPROXIMATING POLYNOMIAL 

Coefficients, Weights and t Values 

predominant in the first (positive) portion of the lag structure. However, with 

k = K = 4, an estimated weight exceeds twice its standard error only «nce, unless 

the standard error is decreased by either (1) restrictior. of w, to zero, or (2) omission 

of an independent variable. In other words, the size of the standard errors makes it 

difficult to determine even the sign of either an interpolation coefficient or a lag 

o” = 15 

Not misspecified 
Restricted 

Interpolation Coefficients 
1 0.1189 0.0550 0.0573 

(2.97) (0.55) (0.38) 

2 0.0222 0.0268 0.1025 
(— 1.38) (0.17) (0.14) 

3 0.0010 — 0.0042 — 0.0783 
(0.88) (—0.07) (0.12) 

4 — 0.0005 0.0254 
(—0.07) (0.11) 

5 0.0001 — 0.0041 
(0.18) (—0.11) 

6 0.0003 
(0.11) 

7 — 0.0000 
(—0.10) 

Non-normalized Weights 
0 0.0578 0.1189 0.0550. 0.0573 

(2.97) (0.55) (0.38) 

1 0.0788 0.0977 0.0771 0.1031 
(3.62) (2.63) (0.68) 

2 0.0914 0.0787 0.0886 0.0963 
(4.35) (1.78) (1.18) 

3 0.0930 0.0617 0.0885 0.0836 
(4.12} (2.09) (0.97) 

4 0.0826 0.0467 0.0771 0.0742 
(2.79) (2.71) (1.19) 

5 0.0614 0.0339 0.0564 0.0613 
(1.73) (1.86) (0.97) 

6 0.0323 0.0230 0.0292 0.0374 
(1.08) (0.87) (0.58) 

7 0.0000 0.0143 0.0001 9.0028 
(0.67) (0.00) (0.06) 

8 — 0.0288 0.0076 —0.0251 — 0.0317 
(0.39) (—0.97) (—0.41) 

9 —0.0457 0.0030 — 0.0394 — 0.0490 
(0.20) (— 1.00) (—0.95) 

10 — 0.0402 0.0005 — 0.0343 — 0.0360 
(0.05) (—0.83) (—0.32) 

Long run Coefficient 



Given the above described difficulty in assigning confidence intervals for 

coefficients, we might still ask if information can be gained from the relative 

significance of either the interpolation coefficients or the non-normalized weights. 

As pointed out above, neither R? nor the standard error of estimate is sensitive to 

misspecification in k. Therefore, the relative size of the standard errors as k is 

changed is determined by changes in either (P’X’X P)~' or P(P’X'X P)~'P’. The 

standard errors therefore increase with the number of intercorrelated regressors 

included in the equation, rather than reacting to the correctness of the specification. 

In general, the lower the number of regressors the lower the standard errors and 

thus the higher the t-values. Furthermore, the relative significance of an additional 

interpolation coefficient is not systematically related to whether k = K. 

Table III illustrates the difficulty of trying to determine correct lag specifica- 

tion from regression results. All the t-values vary inversely with k. Thus the t-values 

for k = 2 are highest even though this specification results in the most biased 

weight estimates and a serious bias in the long run coefficient of the lagged variable. 

On the other hand, when k(= 6) is overestimated with correspondingly high 

variances, the expected fit of the equation is superior to when k = 2. Without 

a priori knowledge of the true lag structure, there is no reason to select k = 4 as the 

correct specification. 

Experiment B. Experiment B deals with the consequences of misspecifying the 

estimated length of the lag, n. K and k both were set at 2. N was 11 and experiments 

were run forn = 7,n = 11,andn = 15. The results of these experiments are shown 

in Table IV through VI. Interpretation of these results when n, k, and the variable 

set are correctly specified is less straightforward than interpretation of the cor- 

rectly specified quartic lag structure of experiment A. The general lag shape is 

faithfully reproduced only when the error variance is low. When the variance is 

high, the estimator misses the mode of the distribution. When a variable is omitted, 

the lag structure is convex to the x-axis unless w, is restricted to zero. Surprisingly, 

the high variance, restricted equation (R) results in a very accurate estimate of the 

weight structure. 

TABLE IV 

EXPERIMENT A—VARYING LENGTH OF LAG 

Summary Statistics 

n= 7 n= il n= 15 

. R? G R? G R? G 

NM-NR 0.941 0.0338 0.942 0.0004 0.938 0.0027 
NM-NR 0.803 0.0395 0.802 0.0021 0.790 0.0034 
NM-R 0.938 0.0344 0.940 0.0000 0.940 0.0048 
NM-R 0.793 0.0331 0.802 0.0022 0.799 0.0052 
M-NR 0.896 0.0676 0.907 0.0113 0.916 0.0256 
M-NR 0.759 0.0576 0.771 0.0080 0.783 0.0224 
M-R 0.885 0.0273 0.904 0.0002 0.911 0.0108 
M-R 0.745 0.0281 0.769 0.0000 0.775 0.0100 

* Definitions same as in Table I 
K=2 
N= 11 
k=2 



TABLE V 

EXPERIMENT B—VARYING LENGTH OF LAG 

True and Estimated Weights 

) Specification NM NM NM NM MS MS MS MS* 
; Restriction NR NR R R NR NR R R 

o 15 60 15 60 15 60 15 60 

Pd. True wts. 
: 0 0.1129 0.1957 0.2073 0.0619 0.0677 0.2686 0.2575 0.1515 0.1613 
’ 1 0.1173 N=11 0.1419 0.1415 0.1337 0.1362 0.1530 0.1547 0.1721 0.1763 

2 0.1188 n=6 0.1098 0.1023 0.1786 0.1786 0.0816 0.0906 0.1786 ° 0.1786 
| - 3 01173 K=2 0.0994 0.0897 0.1966 0.1949 0.0545 0.0653 0.1710 0.1682 

4 0.1120 k=2 0.1108 0.1037 0.1878 0.1853 0.0715 0.0788 0.1494 0.1452 
5 0.1056 0.1438 0.1442 0.1520 0.1495 0.1327 0.1310 0.1136 0.1095 
6 0.0953 0.1986 0.2213 0.0895 0.0878 0.2382 0.2221 0.0639 0.0611 
7 0.0821 
8 0.0660 
9 0.0469 
10 0.0249 

' 0 0.1129 0.1102 0.0971 0.1134 0.1446 0.1412 0.1399 0.1223 0.1116 
i 0.1173 N=11 0.1130 0.1025 0.1176 0.1375 0.1202 0.1218 0.1233 0.1165 
2 0.1188 n=11 0.1136 0.1057 061189 0.1291 0.1028 0.1066 0.1219 0.1184 
3 01173 K=2 01120 01068 0.1173 0.1196 0.0891 0.0940 0.1180 0.1172 
4 01129 k=2 0.1081 0.1056 0.1128 0.1089 0.0791 0.0842 0.1117 0.1131 
5 0.1056 0.1021 0.1021 0.1054 0.0969 0.0727 0.0772 0.1030 0.1059 
6 0.0953 0.0937 0.0964 =: 0.0951 0.0838 0.0699 0.0729 0.0919 0.0958 
7 0.0821 0.0832 0.0884 0.0819 0.0694 0.0708 0.0713 0.0783 0.0826 
8 0.0660 0.0704 0.0783 0.0658 0.0539 0.0753 0.0725 0.0624 0.0665 
9 0.0469 0.0554 0.0659 0.0468 0.0371 0.0835 0.0765 0.0440 0.0473 

10 0.0249 0.0382 0.0512 0.0248 0.0192 0.0954 0.0831 0.0232 0.0252 

0 01129 0.1321 0.1222 0.1451 0.1160 0.0987 0.1001 0846 0.0874 
1 0.1173 N=11 0.1243 0.1223 0.1314 0.1101 0.0896 0.0916 0.0870 0.0891 
2 0.1188 n=15 0.1162 0.1205 0.1183 0.1039 0.0816 0.0839 0.0883 0.0897 
3 01173 K=2 0.1077 0.1169 0.1057 0.0974 0.0746 0.0771 0.0884 0.0892 
4 0.1129 k=2 0.0988 0.1114 0.0938 0.0907 0.0686 0.0711 0.0874 0.0877 
5 0.1056 0.0896 0.1041 0.0824 0.0838 0.0637 0.0660 0.0853 0.0851 
6 0.0953 0.0800 0.0949 0.0716 0.0765 0.0598 0.0619 0.0819 0.0815 
7 0.0821 0.0700 0.0839 0.0613 0.0691 0.0569 0.0585 0.0775 0.0767 
8 0.0660 0.0597 0.0710 0.0516 0.0613 0.0551 0.0561 0.0718 0.0709 
9 0.0469 0.0490 0.0563 0.0425 0.0533 0.0544 0.0545 0.0650 0.0640 
10 0.0249 0.0380 0.0398 0.0346 0.0451 0.0547 0.0538 0.0571 0.0560 
11 0.0000 0.0266 0.0214 0.0261 0.0366 0.0560 0.0540 0.0480 0.0470 
12 0.0000 0.0149 0.0012 0.0187 0.0278 0.0584 0.0550 0.0377 0.0368 
13 0.0000 0.0028 —0.0209 0.0119 0.0188 0.0618 0.0569 0.0263 0.0256 
14 0.0000 —0.0097 —0.0448 0.0057 0.0095 0.0662 0.0597 0.0137 0.0134 

* See Table 1 for glossary of abbreviations. 

As in experiment A, we wish to determine if the output from the distributed lag 

regression provides us with information for correctly specifying the distributed lag. 

In this experiment R? is sensitive only to a misspecification of the variable set and 

not to misspecification of the length of the lag. The Durbin Watson is also some- 

what sensitive to misspecification of the variable-set (especially when a? is low), but 

is useless for assessing the estimated length of lag. 

The standard errors and t-values of the interpolation coefficients and non- 

normalized weights provide little more information for specifying the degree of the 
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approximating polynomial. As in experiment A, t-values for the interpolation 

coefficients are in the main insignificantly different from zero. They are increased 

when either a variable is omitted or w, is restricted, but not to the same extent as 

are the t values of the weights. The t-values for the non-normalized weights may 

provide a small amount of judgmental information about the length of the lag. 

When n = 15 and the equation is otherwise specified correctly, the t-value for the 

weights in periods 12 through 15 are extremely low. However, when n = 11 or 15, 

weights in periods 9, 10, and 11 also have low t-values, so one cannot determine the 

actual length of the lag but only infer from the long tail of relatively insignificant 

weights that the length may be misspecified. In addition, when omission of a 

variable resulted in decreased standard errors for the non-normalized weights, 

even the spurious weights were significantly different from zero when o” was 

small. 

Restriction of w, to zero also provides some indication of the overall correct- 

ness of specification. The zero restriction can, ceteris paribus, alter the shape of the 

lag distribution and make it appear much more reasonable. Table VI illustrates 

two such cases. In only one of the two cases in the table, however, was the more 

reasonable appearing lag structure also correct and that occurred when the mis- 

specification was in the variable set rather than in the length of lag. Without 

a priori knowledge of the true lag shape, it is impossible to determine for what type 

of misspecification the zero restriction is compensating. When the equation is 

correctly specified, the effect of the restriction is far less. 

TABLE VI 

EXPERIMENT B—VARYING LENGTH OF LAG 

Coefficients, Weights and t Values 

Full variable set Variable Omitted 
o? = 60 o? = 60 

NR R NR R 
True Weights n=6 n=6 n= lil n=I11 

Normalized 
Weights 

0 0.1129 0.2073 0.0677 0.1399 0.1116 
1 0.1173 0.1415 0.1362 0.1218 0.1165 
2 0.1188 0.1023 0.1786 0.1066 0.1184 
3 0.1173 0.0897 0.1949 0.0940 0.1172 
4 0.1129 0.1037 0.1853 0.0842 0.1131 
5 0.1056 0.1442 0.1495 0.0772 0.1059 
6 0.0953 0.2113 0.0878 0.0729 0.0958 
7 0.0821 0.0713 0.0826 
8 0.0660 0.0725 0.0665 
u 0.0469 0.0765 0.0473 

10 0.0249 0.0831 0.0252 

V. SUMMARY 

The purpose of this paper is to assess whether the shape and length of lags 

can be estimated in the absence of a priori information. Monte Carlo experiments 

were run using the power estimator. The power estimator approximates the shape 
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of a polynomial by a power series expansion. By examining the measure of fit, G, 

we are able to answer the question—is it possible to estimate the true shape and 

length of lag by repeated regressions with different shapes and different lengths 

when the true shape and length are not known a priori? Our conclusion is that 

both the R? (or R”) criterion and the t statistics are of marginal help in determining 

either the correct length or shape of lag. Experiments were run omitting a non- 

lagged variable from the regression. This resulted in considerable deterioration in 

the closeness of the estimated and true weights, a lower R? or R?, and about the 

same difficulty in detecting either the shape or length of lag. The Durbin Watson 

statistic was not of much use except in possibly detecting a misspecified non-lagged 

variable. 

The significance statistics for * and W* Go not provide a basis for determining 

K. The t-statistics are inversely related to the magnitude rather than the correct- 

ness of specification of k. Some possibility for detecting the correct length of the 

lag was suggested by examining the tail of the estimated lag. However, the possible 

information gain appears extremely slight. In general, restriction of the nth weight 

to zero has a more marked effect on the weight estimates when some form of 

misspecification has been made. Whether weight estimates are improved depends 

upon what type of misspecification is present. 

Like any Monte Carlo studies these results may be peculiar to our particular 

model and may aot hold in general. The experiment is applicable at most for those 

lag structures which are smooth in the sense that an approximating polynomial 

can be specified of degree K such that K + 1 < N. 

University of Michigan 

Bureau of Labor Statistics 
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