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Annals of Economic and Social Measurement, 2/1, 1973 

MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR EQUATION 

SYSTEMS WITH AUTO-REGRESSIVE RESIDUALS’ 

BY GREGORY C. CHOW AND Ray C. FAIR 

This paper applies Newton’s method to solve a set of normal equations when the residuals follow an 
autoregressive scheme. It is shown that this technique for computing maximum likelihood estimates can 
be applied to the “‘seemingly unrelated regression” model. An eight equation quarterly forecasting model 
of the U.S. economy is then used to illustrate the method described in the paper. 

1. INTRODUCTION 

The problem considered in this paper is the maximum likelihood estimation of a 

system of linear stochastic equations in which the residuals follow an autoregressive 

scheme. This problem has been studied previously by Sargan [10] and more 

recently by Hendry [5]. The former formulated the problem and provided numer- 

ical solution to a special case. The latter applied an algorithm of Powell [8] to 

this problem, an algorithm that does not require the use of first or second deriva- 

tives. The present paper provides an alternative method of computing the maximum 

likelihood estimates. It applies Newton’s method to solve a set of normal equations 

and is a generalization of the well-known Cochran—Orcutt technique to deal with 

autoregressive residuals in a regression. Thus our method is traditional in con- 

ception. Our experience, which is partly reported below, is that this method works 

weil. However, whether it is computationally better than Hendry’s or other 

methods remains to be investigated. 

In Section 2 a set of normal equations for the unknown coefficients in a linear 

econometric system is presented for the case in which the residuals are serially 

uncorrelated. The equations are first set forth without the imposition of linear 

restrictions, and then a method to deal with linear restrictions is discussed. A 

previous work, Chow [2], dealt only with linear restrictions on the coefficients 

within a single equation, and the method in Section 2 deals with linear restrictions 

on coefficients possibly belonging to different equations. The normal equations 

are nonlinear in the unknown coefficients, and both a direct iterative method and 

Newton’s method have been tried for solving them. As discussed in Chow [2], 

Newton’s method appears to converge more often and faster than the direct 

iterative method, and it is the method considered in this paper. 

In Section 3 the analysis is expanded to the case in which the residuals follow 

an auto-regressive scheme. The main point of this section is that this more general 

statistical problem can be decomposed into two sub-problems, each of which can 

be solved by the method in Section 2. The decomposition is based on the observa- 

tion that, given the coefficients of the auto-regressive scheme, the coefficients of 

the structural equations can be estimated by the method of Section 2, and, given 

The research described in this paper was supported by NSF Grant GS-2799 and the computer 
work by NSF Grant GJ-34. 

17 



the latter coefficients, the former coefficients can be estimated likewise. The result- 

ing solution of the more general problem is thus merely a two-step application of 

Newton’s method and poses no additional computational difficulties. 

A special case of the model considered in Section 3 is the case where the co- 

efficient matrix of the endogenous variables is an identity matrix. The model 

then reduces to the “seemingly unrelated regression” model analyzed by Zellner 

[11], Parks [7], and others. Neither the two-step procedure suggested by Zellner 

for the serially uncorrelated case nor the three-step procedure suggested by Parks 

for the first order serially correlated case is a maximum likelihood procedure, 

but it can easily be shown, as is done in Section 4, that both of the procedures 

become maximum likelihood procedures if one does not stop after the second or 

third step but continues to iterate until convergence is reached. It is also shown in 

Section 4 that iterating with the Zellner or Parks procedure is equivalent to solving 

the set of normal equations of the system by the direct iterative method. Since 

Newton’s method appears to be more useful in practice than the direct iterative 

method, the better way of obtaining the maximum likelihood estimates of the 

seemingly unrelated regression model appears to be to use the method discussed 

in Sections 2 and 3, which is based on Newton’s method, rather than to iterate with 

the Zellner or Parks procedure. 

The method described in this paper is quite general and can handle most of 

the problems associated with estimating linear equations systems. Linear restric- 

tions on the coefficients can be handled, first and higher order auto-regressive 

properties of the residuals can be handled, and various special cases can be con- 

sidered. Some of the more interesting special cases are the seemingly unrelated 

regression model, the case where the residuals obey a first-order auto-regressive 

scheme with a diagonal coefficient matrix, and the case where identities are present. 

In order to illustrate the use of the method described in this paper, a numerical 

example is provided in Section 5. An eight equation model is estimated in which 

the residuals obey a first-order auto-regressive process with a diagonal coefficient 

matrix. There are also linear restrictions on the coefficients of one of the equations 

in the model, and one of the equations in the model is an identity. The model has 

33 structural parameters and 7 auto-regressive parameters to be estimated. 

2. A METHOD OF MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR EQUATION 

SYSTEMS WITH LINEAR RESTRICTIONS ON THE COEFFICIENTS 

Let the linear system of structural equations be 

(2.1) YB = ZI” + U, 

with Y and Z denoting T x G and T x K matrices of observations on the G 

dependent variables and the K predetermined variables, U denoting a T x G 

matrix of residuals, and B’ and I’ (prime for transpose) denoting G x G and © 

K x G matrices of coefficients (the ith columns of B’ and I’ being the coefficients 

of the ith equation). Assume that the T rows of U are uncorrelated, and that the 

G elements of each row satisfy a multivariate normal distribution with mean 0 

and covariance matrix &. Then the log concentrated likelihood function can be 
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written as [1, 2] 

L oe const. — Flog | 50BY —TZ)(YB — zr)|/|Leyve|} 

T , 
const. — x log {|S|/;W]}. 

If all the variables with zero coefficients in the ith equation are excluded and if 

B;; is set equal to 1, then the ith equation of (2.1) can be written as 

(2.3) y; = YB; + Z,7; + u;, (i = 1,..., 6), 

where f; and y; are column vectors of the remaining unknown coefficients in the 

ith equation. 

Setting the partial derivatives of (2.2) with respect to these unknown co- 

efficients equal to zero yields the following system of normal equations [2, equation 

(2.8)], 

rah yyY,...g@¥,¥%  s!¥,Z,---s¥1Z,] [Bi] friday, | 
h 

qg°YY,...q°°YG% s!6¥5Z,...8%¥EZ,| | Be ¥5 D9", 

(2.4) lig y Giz y 117 — " 
ve) AE on) Ae on” * A ed ”; Zi2,9'% 

h 

| S'°ZG a! le et FR ee tO : ye | | ZG > sv"), | 

or 

f(a) = 0, 

where s‘/ and w” are respectively the i — j elements of the inverses of S and W as 

defined by (2.2), q‘/ = (s‘’ — w'’), and a stands for the vector of all of the unknown 

coefficients in the system. 

Newton’s method can now be applied to solve the system of normal equations 

(2.4). Let F be the matrix of partial derivatives of the elements of f with respect 

to the elements of «, as given explicitly in Chow [2], equations (4.8)-(4.10), and let 

a” be the value of o in the rth iteration. Newton’s method iterates by the formula” 

(2.5) ant! = gy” — [F(a’)]~ ' f(a’). 

If there are linear restrictions on the elements of « (these elements may be 

coefficients in different structural equations), one has to modify the vector f(a) 

2 In the programming of Newton’s method for the work in Chow [2] and for the work here, the 
actual value of a for the r + 1 iteration is taken to be a” + h(a”*' — a’). If the likelihood is larger for 
h = 1, then h = 1.25, (1.25)?,. .. is tried until the likelihood decreases. If the likelihood is not larger for 
h = 1, then h = 0.8, —0.8, (0.8)?, — (0.8)? . . . is tried in an attempt to find a larger likelihood. If a larger 
likelihood is not found and if the difference between a’ *' (as computed in (2.5)) and a’ is still sizeable, 
then the program breaks down. 
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and the matrix F(«) in equations (2.4) and (2.5). The modifications required can 

be seen by considering the restriction 

(2.6) a; = ca; + day. 

The unknown «; will be eliminated, since it is a known linear function of two of 

the remaining unknowns «; and a,. The likelihood function L will be replaced by 

a new function L* of a new set of variables «* (having one fewer element than a), 

by substituting the right-side of (2.6) for a; in L. By (2.6) and the chain rule of 

differentiation, the new f *(«*) = 0 will contain the following equations 

bL* OL, OL 
aides i ec ae 
ba, da, da, 

~ é ee L* 6L dL 
‘ely .4g=20 

da, da, da; : 

where it is understood that the argument «; of any derivative of L is replaced by the 

right side of (2.6)—likewise for equations (2.8) and (2.9) below. If f(«) has n elements, 

say, then f*(«*) and f(a) are related by the equation 

(2.8) f*(a*) = Mf (a), 

where M is an (n — 1) x n matrix which is constructed from the n x n identity 

matrix by (1) eliminating its ith row, (2) replacing the zero in the ith position of the 

jth row by c, and (3) replacing the zero in the ith position of the kth row by d. 

By differentiating the elements of f*(«*) with respect to the remaining n — 1 

variables, one can obtain the new matrix F*(«*) of second partial derivatives : 

(2.9) F*(a*) = MF(a)M’. 

Equations (2.8) and (2.9) can then be used to modify equation (2.5) in order to 

perform iterations by Newton’s method. If there is a second linear restriction, 

then another matrix, say M*, can be used to multiply f* and F* in the same way 

as M was used in equations (2.8) and (2.9) to multiply f and F. This process can be 

repeated for any number of linear restrictions. Setting a coefficient equal to a 

constant c amounts to setting it equal to c times the dummy variable 1 in the list 

predetermined variables; similarly, non-homogeneous linear restrictions can be 

treated by using this dummy variable. 

Two other points about the above method should be noted. First, as discussed 

in Chow [2, p. 107], identities can be quite easily handled by the above method. 

Secondly, the covariance matrix of the estimates of « can be consistently estimated 

by the inverse of — F evaluated at the maximizing value of «. 

3. MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR EQUATION SYSTEMS WITH 

AUTO-REGRESSIVE RESIDUALS 

Now let the model (2.1) be modified by assuming that its residuals U obey 

an auto-regressive scheme such as 

(3.1) U = U_,R, + U_,R, + E, 
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where the G columns of U _ , and U _, are the residuals of the G structural equations 

lagged one period and two periods respectively,’ R, and R, are matrices of co- 

efficients of the auto-regressive scheme, and the residuals E satisfy the same assump- 

tions originally made for U in the model (2.1). It will be shown in this section that 

the method of Section 2 can be applied to obtain maximum likelihood estimates 

of the matrices B, T’, R, and R, in this model. To simplify matters of exposition 

without loss of generality, R, will be assumed to be zero. 

Since the model lagged one period satisfies 

(3.2) Y_,B =Z_. + U.,, 

the equation system (2.1) and (3.1) can be written as (with R, = 0) 

(3.3) YB = Y_,BR, + ZI’ — Z_,I'R, + E 

= Y_,B, + ZT’ — Z_,1, + E. 

The log concentrated likelihood function for this model, by (2.2), is simply 

E’'E . BY'YB 
ig T - 

(3.5) <n ee ) A ee ae 

T 
(3.4) L = const. — 5 le} 

where E denotes 

with B, Tl, and R, treated as unknowns and Y, Y_,, Z, and Z_, treated as given 

data. 

To maximize (3.4) with respect to these unknowns, consider first the partial 

maximization with respect to B and I, given R,. From the second line of (3.3), 

this amounts to maximization with respect to B,T, B,, and I’, subject to the linear 

restrictions ° 

This problem can be solved by the method of Section 2. 

Now consider the maximization of (3.4) with respect to R,, given B and I. 

With B and T treated as given, the model can be written as, by rearrangement of 

(3.3), 

(3.7) (YB — ZI’) =(Y_,B — Z_,T)R, + E, 

with the terms in parentheses being treated as matrices of observed variables and 

R’, being treated as a matrix of coefficients. Maximizing (3.4) partially with respect 

to R, amounts to maximizing 

| 
—E'E 
T } 

since |(1/T)BY’Y B| is a constant. But (3.8) is precisely the log concentrated like- 

lihood function for the model (3.7), and the method of Section 2 can be applied to 

maximize this likelihood function with respect to the coefficient matrix R,. Of 

T 
(3.8) L, = const. — T los} 

3 Because of (3.1), one observation is of course lost for each order of the auto-regressive scheme. 
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course, if there are no restrictions on R,, the estimates are simply least squares 

estimates. In this case(Y_,B’ — Z_,I’’)is the matrix of the predetermined variables, 

and (YB’ — ZT”) is the matrix of the dependent variables whose coefficient matrix 

is restricted to be the identity matrix. 

The maximum likelihood estimates of B, , and R, in the model (3.3) can be 

obtained as follows. Start with an initial value for R, , possibly 0, and maximize the 

likelihood function with respect to B and T by the method of Section 2; take these 

values of B and [ as given and maximize the likelihood function with respect to 

R,, again by the method of Section 2; repeat this two-step process until conver- 

gence is reached. Convergence will be reached using this process if the method 

of Section 2 converges for the problem that it is supposed to solve, since the method 

of this section amounts simply to repeated applications of the method of Section 2. 

Let 5 denote the vector of all of the unknown coefficients in the system in- 

cluding the coefficients in R,, let h(6) = 0 stand for the system of normal equations 

derived from differentiating the likelihood function (3.4) (as f(«) = 0 stood for 

the system of normal equations derived from differentiating the likelihood function 

(2.2)), and let H be the matrix of partial derivatives of the elements of h with respect 

to the elements of 6. Then the covariance matrix of the estimator of 5 can be con- 

sistently estimated by the inverse of — H evaluated at the maximizing value of 6. 

The derivatives involved in such a procedure are quite complicated, however, and 

so an alternative procedure is recommended. This procedure is to compute the 

covariance matrix of the estimates of B and IT under the assumption that R, 

is known (and equal to its estimate) and to compute the covariance matrix of the 

estimator of R, under the assumption that B and I are known (and equal to their 

estimates). These two estimates of the covariance matrices fall out of the two-step 

process above (since the matrix F~' in (2.5) is computed in both steps) and so 

pose no further computational burden. These estimates will, of course, be an 

underestimate of the actual covariance matrix, since the stochastic nature of the 

estimator of B and T and the stochastic nature of the estimator of R, are not 

considered together. 

The comments made in Section 2 about the ability of the method to handle 

various problems generally pertain to the two-step process in this section as well. 

In particular, linear restrictions on the coefficients B and T can be handled (in- 

cluding, of course, the restrictions in (3.6)), and linear restrictions on the co- 

efficients of R, can be handled. The one type of restriction that cannot be handled 

by the two-step process is a restriction between the coefficients of B or T and the 

coefficients of R,. The process cannot handle, in other words, a restriction that 

says that a given element of R, is a linear combination of given elements of B or T. 

In practice, however, this is not likely to be a serious limitation of the method. 

The matrix R, can, of course, be restricted to be diagonal, and for many problems 

it may be advisable to do this. Otherwise, with R, unrestricted, a large number of 

coefficients will have to be estimated for even moderately sized models, and it may 

be difficult to obtain estimates of this many coefficients. 

4. A SPECIAL CASE: SEEMINGLY UNRELATED REGRESSIONS 

If B’ is an identity matrix, then (2.1) reduces to the “seemingly unrelated 

regression” model analyzed by Zellner [11], Parks [7], and others. The basic 
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method proposed by Zellner for the case in which the residuals are serially un- 

correlated consists in obtaining a consistent estimate of the variance-covariance 

matrix, S, of the residuals U and then using this estimate to compute the generalized 

least squares estimate of I. A consistent estimate of S can be obtained by estimating 

each equation of the model by ordinary least squares and using the estimated 

residuals from these equations to estimate S. 

The estimates obtained from Zellner’s procedure are not maximum likelihood 

estimates, but it can be shown that if one continued to iterate on S and achieved 

convergence, then the resulting estimates would be maximum likelihood estimates. 

When B’ is an identity matrix, then the system of normal equations (2.4) reduces to 

the block of equations in the lower right-hand corner of (2.4). Solving this block 

for y',,---, VG yields: 

h 
ud intioa ... 8 'Z1Z_ |Z, Ls"y, 

(4.1) |= : | 

YG s*°Zon, “ft oe A y of Y sy, 

h 

Equation (4.1) is the same as the equation for the generalized least squares estimator 

presented in Zellner [11], p. 351,.equation (2.7). One possible way to try to solve 

this system of equations is to iterate on the elements of S.* This iterative method 

is equivalent to the direct iterative method discussed in Chow [2], and to the 

extent that the method converges, iterating in this manner produces maximum 

likelihood estimates. 

As discussed in Chow [2], Newton’s method appears to work better than the 

direct iterative method, and thus the better way of obtaining the maximum likeli- 

hood estimates of the seemingly unrelated regression model would appear to be 

to use Newton’s method rather than the direct iterative method. The computational 

burden involved in computing the maximum likelihood estimates by Newton’s 

method does not appear so great that one has to rely on Zellner’s simpler two-step 

procedure to estimate the seemingly unrelated regression model. 

Parks expanded the analysis of the seemingly unrelated regression model to 

include the case in which the residuals are first order serially correlated, that is, 

to include the case in which R, is diagonal and R, is zero in (2.1). His method 

consists in obtaining consistent estimates of the serial correlation coefficients, 

using these estimate to obtain a consistent estimate of the variance-covariance 

matrix, and then using both of these sets of estimates to compute the generalized 

least squares estimate of I. Estimates of the serial correlation coefficients can be 

obtained from the ordinary least squares residuals of each equation. 

The estimates obtained from Parks’ procedure are not maximum likelihood 

estimates, but again it can be shown, in a manner similar to that done above 

for Zellner’s procedure, that iterating on the serial correlation coefficients and 

the elements of the variance-covariance matrix leads to maximum likelihood 

* Iterating in this manner was suggested by Zellner and Theil [12], p. 78, within the context of the 
three-stage least squares technique. 
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estimates. * Again, the computational burden involved in computing the maximum 

likelihood estimates does not appear so great that one has to rely on Parks’ 

three-step procedure, or some quasi-iterative version of it, to estimate the seemingly 

unrelated regression model with serially correlated residuals. The method proposed 

in Section 3 of this paper also has the advantage that linear restrictions on the 

coefficients can be easily handled and that more general auto-regressive properties 

of the residuals can be considered. 

5. AN EXAMPLE 

The model estimated in this section is the simultaneous part of the forecasting 

model developed in Fair [3]. The model is quarterly and consists of eight equations 

—seven equations explaining seven components of current dollar GNP and a 

GNP identity. The seven components are durable consumption, non-durable 

consumption, service consumption, plant and equipment investment, nonfarm 

housing investment, inventory investment, and imports. Government spending, 

exports, and farm housing investment are taken to be exogenous. The model is 

presented in Table I. A detailed description of the eight-equation model is presented 

in [3], along with a description of the overall forecasting model, and this description 

will not be repeated here. 

The model was estimated for the 1960 I-1970 III period,® and the results are 

presented in Table II. The model was estimated both by the full information 

maximum likelihood technique described in Sections 2 and 3 of this paper and by 

the two-stage least squares technique adjusted to account for first order serial 

correlation of the residuals. A description of this latter technique can be found in 

Fair [4]. The two-stage least squares estimmates were used as initial values for the 

maximum likelihood technique. 

Given the initial two-stage least squares values, it took three iterations for 

the estimates of the f’s and y’s to converge within a tolerance level of 0.i percent 

(i.e., 0.001 percentage points). The values of h’ for these three iterations were 

0.191, 0.919, and 1.003. Given these new values of the f’s and »’s, it then took two 

iterations for the estimates of the r’s to converge within the same tolerance level. 

The values of h for these two iterations were 0.902 and 0.997. The resulting es- 

tima.es from this first application of the two-step process are presented in Table II 

5 Parks did not propose any iterative procedure, but one of the methods considered by Kmenta 
and Gilbert [6] in this context is equivalent to iterating on the serial correlation coefficients. Kmenta 
and Gilbert did not propose iterating on the variance-covariance matrix, however. It should also be 
noted that Parks’ procedure does not yield consistent estimates if there are lagged dependent variables 
among the predetermined variables in the system, since in this case not all of the estimates of the serial 
correlation coefficients are consistent. In this case one must resort to an iterative procedure on the 
serial correlation coefficients in order to achieve consistent estimates. 

© The model could not be estimated before 1960 because of lack of good data on housing starts. 
Most of the equations in [3] were estimated beginning in 1956 I, but for the work here it was not possible 
to do this, since it was not possibie to estimate some equations over different sample periods than others. 
For the work in [3], observations were omitted from all of the equations for the automobile strike in - 
1964 and observations were omitted from the import equation for the dock strike in 1968-1969. For 
the work here, no observations were omitted because of strikes, but rather dummy variables were used 
in those equations most affected by the strikes. The dummy variables used are listed in Table I. For 
the work in [3] the sample period ended in 1969 IV, but for the work here the sample period ended in 
1970 II. 

7 See Footnote 2. 
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TABLE I 
THE E1GHT EQUATION MODEL 

Endogenous Variables 

cD CN cs IP IH V—V_, IMP GNP 

cD 1 0 0 0 0 0 0 Bis 
CN 0 1 0 0 0 0 0 Bos 
cs 0 0 1 0 0 0 0 Bas 
IP 0 0 0 1 0 0 0 Bas 
IH 0 0 0 0 1 0 0 Bsse 
V-V_, Be: Be2 0 0 0 1 0 0 
IMP 0 0 0 0 0 1 78 
GNP 1 1 1 1 1 1 —1| 1 

Predetermined Variables 

Cnst. G MOOD_, MOOD_, PE2 HSQ HSQ_, HSQ_, 

CD Va1 0 13 16 0 0 0 0 
CN 0 0 0 Y26 0 0 0 0 
cs 0 0 0 34 0 0 0 0 
IP Yat 0 0 0 Yas 0 0 0 
1H Ysi 0 0 0 0 ?s6 Ys7 Ys 
V-V_, Ye: 0 0 0 0 0 0 0 
IMP I 0 0 0 0 0 0 0 
GNP 0 | 0 0 0 0 0 0 

Ce, <n, C8. a D644 D651 D684 D691 D692 

CD 0 0 0 0 Y1.13 Vis6 0 0 0 
CN 0 72.10 0 0 0 if) 0 0 0 
cs 0 0 73.11 0 0 0 0 0 0 
IP 0 0 0 0 0 0 0 0 0 
IH 0 0 0 0 0 0 0 - 0 0 
a AE Yeo 76,10 0 ¥6,12 ¥6,13 Y6,14 0 0 0 
IMP 0 0 0 Y7,13 Y7,14 Y7,15 Y7,16 Y7,17 
GNP 0 0 0 0 

Restrictions: B,. = Bg;; 76,10 = Yeo- 
R, in (3.1) is assumed to be a diagonal matrix with diagonal elements r,,, 122,133, 

T4aa> T'ss>66> and r57- 
R, in (3.1) is assumed to be zero. 
The eighth equation is an identity and has no error term associated with it. 

Notation: 
CD = Durable Consumption Expenditures 
CN = Non-Durable Consumption Expenditures 
CS = Service Consumption Expenditures 
IP = Plant and Equipment Investment 
IH = Nonfarm Housing Investment 

V — V_, = Change in Total Business Inventories 
IMP = Imports 
GNP = Gross National Product 

G = Government Expenditures plus Farm Housing Investment plus Exports 
MOOD = Michigan Survey Research Center Index of Consumer Sentiment 

PE2 = Two-quarter-ahead Expectation of Plant and Equipment Investment 
HSQ = Quarterly Nonfarm Housing Starts 

V = Stock of Total Business Inventories (arbitrary base period value of zero in 1953 IV) 
D644 = Dummy variable that takes on a value of one in the fourth quarter of 1964 and zero 

otherwise. Similarly for dummy variables D651, D684, D691, and D692. 

Note: The subscript —1 or —2 after a variable denotes the one-quarter or two-quarter lagged 
value of the variable. 



TABLE Il 
COEFFICIENT ESTIMATES OF THE MODEL 

Full Information Maximum 
Likelihood Estimates 

Two-Stage Estimated 
Least Squares rirst Fourth Eleventh Standard Errors 

Estimates Pass Pass Pass on Eleventh Pass 

Bis 0.1085 0.10869 0.10897 0.10902 0.00172 
Bas 0.0446 0.045252 0.051593 0.054768 0.007782 
Bas 0.0212 0.027339 0.028243 0.029302 0.005707 
Bas 0.0801 0.073693 0.072075 0.073092 0.014802 
Bss 0.0141 0.014285 0.014340 0.014357 0.000941 
Bes — 0.2373 0.31191 0.49909 0.55695 0.15600 
Bas 0.0859 0.084856 0.084032 0.083556 0.003980 
Vi — 34.62 — 38.409 — 41.204 — 41.272 4.936 
¥13 0.1830 0.19866 0.20761 0.21723 0.05162 
Vi4 0.0695 0.09280 0.11157 0.10237 0.05769 
1,13 —2.32 — 2.0664 — 1.9956 — 2.0604 1.1298 
V1.14 2.66 3.2085 3.3190 3.2581 1.1142 
Y24 0.0443 0.052629 0.064539 0.070305 0.012678 
¥2.10 0.8297 0.82354 0.79461 0.78022 0.03289 
Y34 — 0.0233 — 0.023319 — 0.023373 —0.023511 0.002783 
¥3,11 0.9471 0.92279 0.91924 0.91513 0.02208 
Ya1 —9.74 — 7.8993 —7.77711 — 7.7009 6.9687 
Yas 0.4625 0.51473 0.53308 0.51534 0.13076 
51 —2.92 — 3.2580 — 2.7355 — 2.4767 1.4295 
¥s6 0.0660 0.056493 0.055539 0.055719 0.009949 
57 0.0869 0.094790 0.088803 0.087797 0.011565 
Ys 0.0146 0.017996 0.019883 0.018326 0.010238 
Y61 — 87.69 — 156.78 — 170.72 — 166.57 21.753 
Yeo 0.8296 0.67225 0.55839 0.47342 0.08858 
6.12 —0.3198 — 0.51523 — 0.53796 — 0.52106 0.05949 
6.13 —1.27 — 0.077041 0.43839 0.58868 1.70955 
6.14 6.47 0.61318 — 0.68113 — 1.26762 1.76805 
Y71 — 25.96 — 25.136 — 24.336 — 23.893 3.208 
7,13 0.55 0.23623 0.22515 0.22055 0.47947 
7,14 — 1.68 — 2.2084 — 2.2363 — 2.2541 0.4948 
77.15 —1.74 — 1.7990 — 1.7376 — 1.7466 0.5411 
77,16 —6.24 — 6.3386 — 6.2616 — 6.3141 0.6921 
7,17 1.66 1.4813 1.6556 1.5839 0.6908 
Pit 0.3862 0.26808 0.22098 0.23671 0.10597 
22 — 0.2896 — 0.23956 — 0.28516 — 0.27019 0.08099 
33 0.0139 — 0.09524 — 0.12780 — 0.12589 0.14360 
"44 0.8135 0.79745 0.85375 0.88649 0.10362 
I'ss 0.3829 0.43100 0.45379 0.44281 0.13285 
"66 0.9101 0.86736 0.77271 0.73130 0.04200 
a7 0.8931 0.88680 0.87756 0.87135 0.03993 
10-'? 1.283124 1.885751 2.124221 2.170796 - 
(Likelihood 

Ratio) 

under the heading “First Pass”. This first pass increased the likelihood ratio 

by about 47 percent from what it was for the two-stage least squares estimates. 

By the fourth application of the two-step process, the successive estimates of the 

r’s were within a tolerance level of 0.025 (i.e., the difference between the estimate 

of r;, on the third pass and the estimate of r;; on the fourth pass was less than 0.025 

for each i). The estimates on the fourth pass are presented in Table II. The likelihood 
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ratio increased by a little over one percent between the first and fourth pass. 

By the eleventh application of the two-step process, the successive estimates of 

the r’s were within a tolerance level of 0.002. The estimates on the eleventh pass 

are also presented in Table II. Within any one application of the two-step process, 

it never took more than three iterations for the estimates of the f’s and »’s to 

converge within a tolerance level of 0.1 percent, and it never took more than two 

iterations for the estimates of the r’s to converge. Near the end, the estimates 

were converging in one iteration. All of the values of h were very close to one after 

the first application of the two-step process. 

The above results thus indicate that the two-step process works quite well.® 

It is also encouraging to report that the process converged even when the initial 

values of the f’s, ’s, and r’s were all taken to be zero. In this case, it took 38 

iterations for the estimates of the £’s and y’s to converge the first time, with small 

values of h generally used for the first 34 iterations. Given these estimates of the 

B's and y’s, it then took eight iterations for the estimates of the r’s to converge 

for the first time, with small values of h used for the first four iterations. The value 

of the likelihood ratio after this first pass was 0.750279(10'7). 

The above model was also estimated under the assumption that R, in (3.1) 

is a diagonal matrix. This meant that there were 47 coefficients to be estimated— 

33 coefficients in B and T, 7 coefficients in R,, and 7 coefficients in R,. The full 

information maximum likelihood estimates in Table II were used as initial values 

for B, T, and R,, and zeros were used as initial values for R,. Given the initial 

values, it took three iterations for the r’s to converge within a tolerance level of 

0.1 percent. The values of h for these three iterations were 0.716, 1.000, and 1.000. 

After this first pass, it never took more than two iterations for the estimates of the 

B’s and y’s or of the r’s to converge. All of the values of h were very close to one. 

By the eighth pass the successive estimates of the r’s were within a tolerance level 

of 0.008. The likelihood ratio after the eighth pass was 3.488035(10"*). 

The technique described in this paper thus appears capable of handling 

fairly large problems with no difficulty. No problems of convergence were en- 

countered with any of the runs using the above model. There is no indication 

from the above results that the technique cannot handle problems even double or 

triple the size of the current problems. With respect to Hendry’s use of Powel’’s 

algorithm [5], it should perhaps be mentioned that Powell [9, p. 34] has reported 

that the algorithm tends to be inefficient for more than about ten parameters. 

However, the computational efficiencies of the algorithm here proposed, as 

compared with possible alternatives, remain to be further investigated.° 

6. CONCLUSION 

Most of the problems involved in estimating linear econometric systems 

can be handled by the method described in Sections 2 and 3 of this paper. A 

user-oriented computer program has been written to implement the method and 

8 It is conceivable, of course, that one could achieve even faster overall convergence by using 
larger tolerance levels for the first few passes and then smaller levels after the estimates are close to 
converging. 

° It should be noted with respect to Hendry’s method that Hendry considered only the case of 
completely unrestricted autoregressive coefficient matrices (i.¢., no zero elements). 
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is available from the authors on request.'° To the extent that such a program is 

available, one should not have to rely on less satisfactory, but computationally 

easier, procedures to estimate linear econometric systems. a 

Princeton University ‘a 
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‘0 The current program (in FORTRAN IV) was written by Douglas R. Chapman. An earlier program, ‘ A 
not incorporating restrictions across equations nor autoregressive properties of the error terms, was ‘ (F 
written by Richard Levitan. The current program is described in Douglas R. Chapman and Pay C. Fair, i ‘ 
“Full-Information Maximum Likelihood Program: User’s Guide,’ Research Memorandum No. 137, ; be 
Econometric Research Program, Princeton University, April 1972. : 
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