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Practical Volatility and Correlation
Modeling for Financial Market
Risk Management

Torben G. Andersen, Tim Bollerslev,
Peter F. Christoffersen, and Francis X. Diebold

11.1 Introduction

It is now widely agreed that financial asset return volatilities and corre-
lations (henceforth “volatilities”) are time varying, with persistent dynam-
ics. This is true across assets, asset classes, time periods, and countries.
Moreover, asset return volatilities are central to finance, whether in asset
pricing, portfolio allocation, or market risk measurement. Hence the field
of financial econometrics devotes considerable attention to time-varying
volatility and associated tools for its measurement, modeling, and fore-
casting.

In this chapter we suggest practical applications of recent developments
in financial econometrics dealing with time-varying volatility to the mea-
surement and management of market risk, stressing parsimonious models
that are easily estimated. Our ultimate goal is to stimulate dialog between
the academic and practitioner communities, advancing best-practice mar-
ket risk measurement and management technologies by drawing upon the
best of both worlds. Three themes appear repeatedly, and so we highlight
them here.

The first is the issue of aggregation level. We consider both aggregated
(portfolio-level) and disaggregated (asset-level) modeling, emphasizing the
related distinction between risk measurement and risk management, because
risk measurement generally requires only a portfolio-level model, whereas
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mann, Patricia Jackson, Jim O’Brien, Hashem Pesaran, and Pedro Santa-Clara. For research
support, Andersen, Bollerslev, and Diebold thank the U.S. National Science Foundation, and
Christoffersen thanks Fonds Québécois de la Recherche sur la Société et la Culture (FQRSC),
Social Sciences and Humanities Research Council of Canada (SSHRC), and Institut de Fi-
nance Mathématique de Montréal (IFM?2).
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risk management requires an asset-level model. At the asset level, the issue
of dimensionality and dimensionality reduction arises repeatedly, and we
devote considerable attention to methods for tractable modeling of the
very high-dimensional covariance matrices of practical relevance.

The second theme concerns the use of low-frequency versus high-
frequency data, and the associated issue of parametric versus nonparamet-
ric volatility measurement. We treat all cases, but we emphasize the appeal
of volatility measurement using nonparametric methods in conjunction
with high-frequency data, followed by modeling that is intentionally para-
metric.

The third theme relates to the issue of unconditional versus conditional
risk measurement. We argue that, for most financial risk management pur-
poses, the conditional perspective is exclusively relevant, notwithstanding,
for example, the fact that popular approaches based on historical simula-
tion and extreme-value theory typically adopt an unconditional perspec-
tive. We advocate, moreover, moving beyond a conditional volatility per-
spective to a full conditional density perspective, and we discuss methods
for constructing and evaluating full conditional density forecasts.

We proceed systematically in several steps. In section 11.2, we consider
portfolio-level analysis, directly modeling portfolio volatility using histor-
ical simulation, exponential smoothing, and generalized autoregressive
conditional heteroskedastic (GARCH) methods. In section 11.3, we con-
sider asset-level analysis, modeling asset covariance matrices using expo-
nential smoothing and multivariate GARCH methods, paying special at-
tention to dimensionality-reduction methods. In section 11.4, we explore
the use of high-frequency data for improved covariance matrix measure-
ment and modeling, treating realized variance and covariance, and again
discussing procedures for dimensionality reduction. In section 11.5 we
treat the construction of complete conditional density forecasts via simu-
lation methods. We conclude in section 11.6.

11.2 Portfolio Level Analysis: Modeling Portfolio Volatility

Portfolio risk measurement requires only a univariate portfolio-level
model (e.g., Benson and Zangari 1997). In this section, we discuss such uni-
variate portfolio methods. In contrast, active portfolio risk management,
including value-at-risk (VaR) minimization and sensitivity analysis, re-
quires a multivariate model, as we discuss subsequently in section 11.3.

In particular, portfolio level analysis is rarely done other than via his-
torical simulation (defined subsequently). But we will argue that there is no
reason why one cannot estimate a parsimonious dynamic model for port-
folio-level returns. If interest centers on the distribution of the portfolio
returns, then this distribution can be modeled directly rather than via ag-
gregation based on a larger and almost inevitably less-well-specified multi-
variate model.
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Berkowitz and O’Brien (2002) find evidence that existing bank risk mod-
els perform poorly and are easily outperformed by a simple univariate
GARCH model (defined subsequently). Their result is remarkable in that
they estimate a GARCH model fit to the time series of actual historical
portfolio returns where the underlying asset weights are changing over
time. Berkowitz and O’Brien find that banks’ reported ex ante VaR fore-
casts are exceeded by the ex post profits and losses (P/Ls) on less than the
predicted 1 percent of days. This apparent finding of risk underestimation
could, however, simply be due to the reported P/Ls being “dirty” in that
they contain nonrisky income from fees, commissions, and intraday trad-
ing profits.! More seriously, though, Berkowitz and O’Brien find that the
VaR violations which do occur tend to cluster in time. Episodes such as the
fall 1998 Russia default and Long-term Capital Management (LTCM) de-
bacle set off a dramatic and persistent increase in market volatility which
bank models appear to largely ignore, or at least react to with considerable
delay. Such VaR violation clustering is evidence of a lack of conditionality
in bank VaR systems, which in turn is a key theme in our discussion that
follows.>

We first discuss the construction of historical portfolio values, which is
a necessary precursor to any portfolio-level VaR analysis. We then discuss
direct computation of portfolio VaR via historical simulation, exponential
smoothing, and GARCH modeling.?

11.2.1 Constructing Historical Pseudo-Portfolio Values

In principle it is easy to construct a time series of historical portfolio re-
turns using current portfolio holdings and historical asset returns:
(1) zwlrr”—W’ t=1,2,...,T.
In practice, however, historical prices for the assets held today may not be
available. Examples of such difficulties include derivatives, individual
bonds with various maturities, private equity, new public companies,
merger companies, and so on. For these cases, “pseudo historical” prices
must be constructed using either pricing models, factor models, or some ad
hoc considerations. The current assets without historical prices can, for ex-
ample, be matched to similar assets by capitalization, industry, leverage,
and duration. Historical pseudo asset prices and returns can then be con-
structed using the historical prices on these substitute assets.

1. Although the Basel Accord calls for banks to report 1 percent VaRs, for various reasons
most banks tend to actually report more conservative VaRs. Rather than simply scaling up a
1 percent VaR based on some arbitrary multiplication factor, the procedures that we subse-
quently discuss are readily adapted to achieve any desired, more conservative, VaR.

2. See also Jackson, Maude, and Perraudin (1997).

3. Duffie and Pan (1997) provide an earlier incisive discussion of related VaR procedures
and corresponding practical empirical problems.
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11.2.2  Volatility via Historical Simulation

Banks often rely on VaRs from historical simulations (HS-VaR). In this
case, the VaR is calculated as the 100p’th percentile or the (7 + 1)p’th or-
der statistic of the set of pseudo returns calculated in (1). We can write

) HS-VaR?

T+1|T

=r(T+ 1]p),

where r ([T + 1]p) is taken from the set of ordered pseudo returns (r,[1],
r[2], ..., ¢ [T]). If [T + 1]p is not an integer value then the two adjacent
observations can be interpolated to calculate the VaR.

Historical simulation has some serious problems, which have been well
documented. Perhaps most importantly, it does not properly incorporate
conditionality into the VaR forecast. The only source of dynamics in the
HS-VaR is the fact that the sample window in equation (1) is updated over
time. However, this source of conditionality is minor in practice.*

Figure 11.1 illustrates the hidden dangers of HS as discussed by Pritsker
(2001). We plot the daily percentage loss on an S&P 500 portfolio along
with the 1 percent HS-VaR calculated from a 250-day moving window. The
crash on October 19, 1987, dramatically increased market volatility; how-
ever, the HS-VaR barely moved. Only after the second large drop, which
occurred on October 26, does the HS-VaR increase noticeably.

This admittedly extreme example illustrates a key problem with the HS-
VaR. Mechanically, from equation (2) we see that HS-VaR changes signif-
icantly only if the observations around the order statistic r ([T + 1]p)
change significantly. When using a 250-day moving window for a 1 percent
HS-VaR, only the second and third smallest returns will matter for the cal-
culation. Including a crash in the sample, which now becomes the smallest
return, may therefore not change the HS-VaR very much if the new second
smallest return is similar to the previous one.

Moreover, the lack of a properly defined conditional model in the HS
methodology implies that it does not allow for the construction of a term
structure of VaR. Calculating a 1 percent one-day HS-VaR may be pos-
sible on a window of 250 observations, but calculating a ten-day 1 percent
VaR on 250 daily returns is not. Often the one-day VaR is simply scaled by
the square root of 10, but this extrapolation is only valid under the as-
sumption of i.i.d. normal daily returns. A redeeming feature of the daily
HS-VaR is exactly that it does not rely on an assumption of normal returns,
and the square root scaling therefore seems curious at best.

In order to further illustrate the lack of conditionality in the HS-VaR
method, consider figure 11.2. We first simulate daily portfolio returns from

4. Bodoukh, Richardson, and Whitelaw (1998) introduce updating into the historical sim-
ulation method. Note, however, the concerns in Pritsker (2001).
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Fig. 11.1 October 1987: Daily S&P 500 Loss and 1 percent HS-VaR

Notes: The thin line with dots shows the daily percentage loss on an S&P 500 portfolio dur-
ing October 1987. The thick line with squares shows the daily 1 percent VaR from historical
simulation using a 250-day window.

a mean-reverting volatility model and then calculate the nominal 1 percent
HS-VaR on these returns using a moving window of 250 observations.
As the true portfolio return distribution is known, the true daily cover-
age of the nominal 1 percent HS-VaR can be calculated using the return-
generating model. Figure 11.2 shows the conditional coverage probability
of the 1 percent HS-VaR over time. Notice from the figure how an HS-VaR
with a nominal coverage probability of 1 percent can have a true condi-
tional probability as high as 10 percent, even though the unconditional cov-
erage is correctly calibrated at 1 percent. On any given day the risk man-
ager thinks that there is a 1 percent chance of getting a return worse than
the HS-VaR, but in actuality there may be as much as a 10 percent chance
of exceeding the VaR. Figure 11.2 highlights the potential benefit of con-
ditional density modeling: the HS-VaR computes an essentially uncondi-
tional VaR, which on any given day can be terribly wrong. A conditional
density model will generate a dynamic VaR in an attempt to keep the con-
ditional coverage rate at 1 percent on any given day, thus creating a hori-
zontal line in figure 11.2.

The preceding discussion also hints at a problem with the VaR risk mea-
sures itself. It does not say anything about how large the expected loss will
be on the days where the VaR is exceeded. Other measures, such as ex-
pected shortfall, do, but VaR has emerged as the industry risk measure-
ment standard and we will focus on it here. The methods we will suggest
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Fig. 11.2  True conditional coverage of 1 percent VaR from historical simulation

Notes: We simulate returns from a GARCH model with normal innovations, after which we
compute the 1 percent HS-VaR using a rolling window of 250 observations, and then we plot
the true conditional coverage probability of the HS-VaR, which we calculate using the
GARCH structure. The true conditional coverage probability plotted thus denotes the likeli-
hood each day of getting a VaR violation when using a misspecified 1 percent HS-VaR when
the returns are simulated using GARCH.

can, however, equally well be used to calculate expected shortfall and other
related risk measures.

11.2.3  Volatility via Exponential Smoothing

Although the HS-VaR methodology discussed previously makes no ex-
plicit assumptions about the distributional model generating the returns,
the RiskMetrics (RM) filter/model instead assumes a very tight paramet-
ric specification. One can begin to incorporate conditionality via univari-
ate portfolio-level exponential smoothing of squared portfolio returns, in
precise parallel to the exponential smoothing of individual return squares
and cross products that underlies RM.

Still taking the portfolio-level pseudo returns from (1) as the data series
of interest, we can define the portfolio-level RM variance as

3) gZ=No?, + (1 — M2

w,t—12

where the variance forecast for day ¢ is constructed at the end of day 7 — 1
using the square of the return observed at the end of day 7 — 1 as well as the
variance on day 7 — 1. In practice, this recursion can be initialized by set-
ting the initial o equal to the unconditional sample standard deviation, for
example, 62.

Note that back substitution in equation (3) yields an expression for the
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Annual Standard Deviation

current smoothed value as an exponentially weighted moving average of
past squared returns:

B
2 — 2
a; Z ('F)/'r»v,r—lff’
j=0

where ¢; = (1 -~ N\)’M. Hence the name “exponential smoothing.”
Following RM, the VaR is simply calculated as

4) RM-VaR%., ;= 0, @, ",

where @ ! denotes the pth quantile in the standard normal distribution. Al-
though the smoothing parameter A may in principle be calibrated to best
fit the specific historical returns at hand, following RM it is often simply
fixed at 0.94 with daily returns. The implicit assumption of zero mean and
standard normal innovations therefore implies that no parameters need to
be estimated.

The conditional variance for the k-day aggregate return in RM is simply

(5) Var(r, o +h gt | F) =074, = kol

The RM model can thus be thought of as a random-walk model in vari-
ance. The lack of mean-reversion in the RM variance model implies that
the term structure of volatility is flat. Figure 11.3 illustrates the difference
between the volatility term structure for the random-walk RM model ver-
sus a mean-reverting volatility model. Assuming a low current volatility,
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Fig. 11.3 Term Structure of Variance in GARCH and RiskMetrics Models

Notes: We plot the term structure of variance from a mean-reverting GARCH model (thick
line) as well as the term structure from a RiskMetrics model (thin line). The current variance
is assumed to be identical across models.
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which is identical across models, the mean-reverting model will display an
upward sloping term structure of volatility, whereas the RM model will ex-
trapolate the low current volatility across all horizons. When taken this lit-
erally, the RM model does not appear to be a prudent approach to volatil-
ity modeling. The dangers of scaling the daily variance by k, as done in
equation (5), are discussed further in Diebold, Hickman, Inoue, and
Schuermann (1998).

11.2.4 Volatility via GARCH

The implausible temporal aggregation properties of the RM model,
which we discussed earlier, motivates us to introduce the general class of
GARCH models, which imply mean-reversion and which contain the RM
model as a special case.

First we specify the general univariate portfolio return process

(6) n.,=wtoz z~iid. E(z)=0 Var(z,)=1

In the following, we will assume that the mean is zero, which is common in
risk management, at least when short horizons are considered. Although
difficult to estimate with much accuracy in practice, mean-dynamics could
in principle easily be incorporated into the models discussed in the follow-
ing.

The simple symmetric GARCH(1,1) model introduced by Bollerslev
(1986) is written as

(7) ol=w+arl,_ | +Bo’,.

w,t—1

Extensions to higher-order models are straightforward, but for notational
simplicity we will concentrate on the (1,1) case here and throughout the
chapter. Repeated substitution in (7) readily yields

®
1-p
so that the GARCH(1,1) process implies that current volatility is an ex-
ponentially weighted moving average of past squared returns. Hence the
GARCH(1,1) volatility measurement is seemingly very similar to RM vola-
tility measurement. There are crucial differences, however.

First, GARCH parameters, and hence ultimately GARCH volatility, are
estimated using rigorous statistical methods that facilitate probabilistic in-
ference, in contrast to exponential smoothing, in which the parameter is set
in an ad hoc fashion. Typically we estimate the vector of GARCH param-
eters 0 by maximizing the log likelihood function,

2 —
g, =

+ o 2 Bf’lrf_j,

T

(8) log L(6; 7, 1. ... 1,,) = — O [logaX(®) — o;2(0)r2,].

=1

Note that the assumption of conditional normality underlying the (quasi)
likelihood function in equation (8) is merely a matter of convenience. The



Practical Volatility and Correlation Modeling for Risk Management 521

conditional return distribution will generally be nonnormal, but it does not
need to be: quasi maximum likelihood estimation still produces consistent
and asymptotically normal parameter estimates. The log-likelihood opti-
mization in equation (9) can only be done numerically. However, GARCH
models are parsimonious and specified directly in terms of univariate port-
folio returns, so that only a single numerical optimization needs to be per-
formed.*

Second, the covariance stationary GARCH(1,1) process has dynamics
that eventually produce reversion in volatility to a constant long-run value,
which enables interesting and realistic forecasts. This contrasts sharply
with the RM exponential smoothing approach. As is well-known (e.g.,
Nerlove and Wage 1964, Theil and Wage 1964), exponential smoothing is
optimal if and only if squared returns follow a “random walk plus noise”
model (a “local level” model in the terminology of Harvey 1989), in which
case the minimum mean squared error forecast at any horizon is simply the
current smoothed value. The historical records of volatilities of numerous
assets (not to mention the fact that volatilities are bounded below by zero)
suggest, however, that volatilities are unlikely to follow random walks, and
hence that the flat forecast function associated with exponential smooth-
ing is unrealistic and undesirable for volatility forecasting purposes.

Let us elaborate. We can rewrite the GARCH(1,1) model in equation
(7) as
) ol=(1—-a—B)o?+ar, , +po2

w,t—1 —1°
where 6> = /(1 — a — B) denotes the long-run, or unconditional daily vari-
ance. This representation shows that the GARCH forecast is constructed as
an average of three elements. Equivalently, we can also write the model as
(10) o=oc*+ta(?,_, — o)+ B(cz, —d?),

w,t—1 t—1

which explicitly shows how the GARCH(1,1) model forecasts by making

adjustments to the current variance and the influence of the squared return

around the long-run, or unconditional variance. Finally, we can also write
gZ=0’+ (a+ B)oz, — 0 + oo’ (z2, — 1),

t—1 —1

where the last term on the right-hand side, on average, is equal to zero.
Hence, this shows how the GARCH(1,1) forecasts by making adjustments
around the long-run variance, with variance persistence governed by (a +
B) and the (contemporaneous) volatility-of-volatility linked to the level of
volatility as well as the size of a.

The mean-reverting property of GARCH volatility forecasts has impor-

5. This optimization can be performed in a matter of seconds on a standard desktop com-
puter using standard software such as Excel, as discussed by Christoffersen (2003). For fur-
ther discussion of inference in GARCH models, see also Andersen, Bollerslev, Christoffersen,
and Diebold (2005).
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tant implications for the volatility term structure. To construct the volatil-
ity term structure corresponding to a GARCH(1,1) model, we need the
k-day ahead variance forecast, which is

(11) Ol i), =0+ (a+ By (o7, — o).

t+1

Assuming that the daily returns are serially uncorrelated, the variance of
the k-day cumulative returns, which we use to calculate the volatility term
structure, is then

(12) 0kl = ko? + (07, — )1 — (¢ + B —a = B)".

Compare this mean-reverting expression with the RM forecast in equa-
tion (5). In particular, note that the speed of mean reversion in the
GARCH(1,1) model is governed by a + B. The mean-reverting line in fig-
ure 11.3 is calculated from equation (12), normalizing by k and taking the
square root to display the graph in daily standard deviation units.

Third, the dynamics associated with the GARCH(1,1) model afford rich
and intuitive interpretations, and they are readily generalized to even richer
specifications. To take one important example, note that the dynamics may
be enriched via higher-ordered specifications, such as GARCH(2,2). In-
deed, Engle and Lee (1999) show that the GARCH(2,2) is of particular in-
terest, because under certain parameter restrictions it implies a component
structure obtained by allowing for time variation in the long-run variance
in (10),

(13) o;=¢q,+ O‘(Vﬁr,z—l —q,) t B}, —q,.),

with the long-run component, ¢, modeled as a separate autoregressive
process,

(14) q=0+pq_,+ ¢(V»2v,r—| - 0'12—1)'

Many authors, including Gallant, Hsu, and Tauchen (1999) and Alizadeh,
Brandt, and Diebold (2002) have found evidence of component structure
in volatility, suitable generalizations of which can be shown to approximate
long memory (e.g., Andersen and Bollerslev 1997, and Barndorff-Nielsen
and Shephard 2001), which is routinely found in asset return volatilities
(e.g., Bollerslev and Mikkelsen 1999).

To take a second example of the extensibility of GARCH models, note
that all models considered thus far imply symmetric response to positive
versus negative return shocks. However, equity markets, and particularly
equity indexes, often seem to display a strong asymmetry, whereby a nega-
tive return boosts volatility by more than a positive return of the same
absolute magnitude. The GARCH model is readily generalized to cap-
ture this effect. In particular, the asymmetric GIR GARCH(1,1) model of
Glosten, Jagannathan, and Runkle (1993) is simply defined by
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(15) ol=w+ar?,_, +yr,_ 1

w,t—1 w,t—1 w,t—1

<0) + Bo?

=1

Asymmetric response in the conventional direction thus occurs when
v>0.°

11.3  Asset Level Analysis: Modeling Asset Return Covariance Matrices

The preceding discussion focused on the specification of dynamic
volatility models for the aggregate portfolio return. These methods are well
suited to providing forecasts of portfolio-level risk measures such as ag-
gregate VaR. However they are less well suited for providing input into the
active risk management process. If, for example, the risk manager wants to
know the sensitivity of the portfolio VaR to increases in stock market
volatility and asset correlations, which typically occur in times of market
stress, then a multivariate model is needed. Active risk management such
as portfolio VaR minimization also requires a multivariate model, which
provides a forecast for the entire covariance matrix.’

Multivariate models are also better suited for calculating sensitivity risk
measures to answer questions such as: “If I add an additional 1,000 shares
of IBM to my portfolio, how much will my VaR increase?” Moreover, bank-
wide VaR is made up of many desks with multiple traders on each desk,
and any subportfolio analysis is not possible with the aggregate portfolio-
based approach.®

In this section we therefore consider the specification of models for the
full N-dimensional conditional distribution of asset returns. Generalizing
the expression in equation (6), we write the multivariate model as

(16) R=Q"Z Z~iid EZ)=0 Var(Z)=1I,

where we have again set the mean to zero and where 7 denotes the identity
matrix. The N X N Q!? matrix can be thought of as the square root, or
Cholesky decomposition, of the covariance matrix {2, This section will
focus on specifying a dynamic model for this matrix, whereas section 11.5
will suggest methods for specifying the distribution of the innovation vec-
tor Z,.

Constructing positive semidefinite (psd) covariance matrix forecasts,
which ensures that the portfolio variance is always nonnegative, subse-
quently presents a key challenge. The covariance matrix will have (1/2) N(N
+ 1) distinct elements, but structure needs to be imposed to guarantee psd.

6. Engle (2001, 2004) demonstrates empirically that allowing for asymmetries in the condi-
tional variance can materially affect GARCH-based VaR calculations.

7. Brandt, Santa-Clara, and Valkanov (2004) provide an alternative and intriguing new ap-
proach for dimension reduction by explicitly parameterizing the portfolio weights as a func-
tion of observable state variables, thereby sidestepping the need to estimate the full covariance
matrix. See also Pesaran and Zaffaroni (2004).

8. See Manganelli (2004) for an interesting new low-dimensional approach to this problem.
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The practical issues involved in estimating the parameters guarding the dy-
namics for the (1/2)N(N + 1) elements are related and equally important.
Although much of the academic literature focuses on relatively small mul-
tivariate examples, in this section we will confine our attention to methods
that are applicable even with N (relatively) large.

11.3.1 Covariance Matrices via Exponential Smoothing

The natural analogue to the RM variance dynamics in (3) assumes that
the covariance matrix dynamics are driven by the single parameter A for all
variances and covariance in €} :

(17) Q,=\2,_,+(1-MR_R_,

The covariance matrix recursion may again be initialized by setting €},
equal to the sample average coverage matrix.

The RM approach is clearly very restrictive, imposing the same degree
of smoothness on all elements of the estimated covariance matrix. More-
over, covariance matrix forecasts generated by RM are in general subopti-
mal, for precisely the same reason as with the univariate RM variance fore-
casts discussed earlier. If the multivariate RM approach has costs, it also
has benefits. In particular, the simple structure in (17) immediately guar-
antees that the estimated covariance matrices are psd, as the outer product
of the return vector must be psd unless some assets are trivial linear com-
binations of others. Moreover, as long as the initial covariance matrix is
psd (which will necessarily be the case when we set (), equal to the sample
average coverage matrix as suggested earlier, so long as the sample size 7T'is
larger than the number of assets N), RM covariance matrix forecasts will
also be psd, because a sum of psd matrices is itself psd.

11.3.2 Covariance Matrices via Multivariate GARCH

Although easily implemented, the RM approach (17) may be much too
restrictive in many cases. Hence we now consider multivariate GARCH
models. The most general multivariate GARCH(1,1) model is

(18) vech(Q))) = vech(C) + Bvech({},_,) + A vech(R,_,R]_)),

where the vech (“vector half”) operator converts the unique upper trian-
gular elements of a symmetric matrix into a (1/2)N(N + 1) X 1 column vec-
tor, and 4 and B are (1/2)N(N + 1) X (1/2)N(N + 1) matrices. Notice that
in this general specification, each element of (), | may potentially affect
each element of (), and similarly for the outer product of past returns, pro-
ducing a serious “curse-of-dimensionality” problem. In its most general
form, the GARCH(1,1) model (18) has a total of (1/2)N* + N3* N2 + (1/
2)N = O(N*) parameters. Hence, for example, for N = 100 the model has
51,010,050 parameters! Estimating this many free parameters is obviously
infeasible. Note also that without specifying more structure on the model
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there is no guarantee of positive definiteness of the fitted or forecasted co-
variance matrices.

The dimensionality problem can be alleviated somewhat by replacing
the constant term via “variance targeting,” as suggested by Engle and
Mezrich (1996). Variance targeting forces the model-implied uncondi-
tional covariance matrix to equal a precalculated estimate from the simple
sample average. This, in turn, avoids the cumbersome nonlinear estimation
of the matrix of constant terms, which instead is computed from the other
parameters as follows:

1 T
(19) vech(C)=(I— A4 — B)vech<7z R,R;).

This is also very useful from a forecasting perspective, as small perturba-
tions in 4 and B sometimes result in large changes in the implied uncondi-
tional variance to which the long-run forecasts converge. However, there
are still too many parameters to be estimated simultaneously in 4 and B in
the general multivariate model when N is large.

More severe (and hence less palatable) restrictions may be imposed to
achieve additional parsimony, as, for example, with the “diagonal GARCH”
parameterization proposed by Bollerslev, Engle, and Wooldridge (1988).
In a diagonal GARCH model, the matrices 4 and B have zeros in all off-
diagonal elements, which in turn implies that each element of the covari-
ance matrix follows a simple dynamic with univariate flavor: conditional
variances depend only on their own lags and own lagged squared returns,
and conditional covariances depend only on their own lags and own lagged
cross products of returns. Even the diagonal GARCH framework, how-
ever, results in O(N?) parameters to be jointly estimated, which is compu-
tationally infeasible in systems of medium and large size.

One approach is to move to the most draconian version of the diagonal
GARCH model, in which the matrices B and A are simply scalar matrices.
Specifically,

(20) Q,=C+BQ,_, +(R_R_),

where the value of each diagonal element of Bis 3, and each diagonal ele-
ment of 4 is a. Rearrangement yields

Q,=0+B@Q, , - Q) +aR_ R, — ),

which is closely related to the multivariate RM approach, with the impor-
tant difference that it introduces a nondegenerate long-run covariance ma-
trix (2, to which €, reverts (provided that a + < 1). Notice also, though,
that all variances and covariances are assumed to have the same speed of
mean reversion, because of common a and  parameters, which may be
overly restrictive.
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11.3.3 Dimensionality Reduction I: Covariance Matrices
via Flex-GARCH

Ledoit, Santa-Clara, and Wolf (2003) suggest an attractive Flex-
GARCH method for reducing the computational burden in the estimation
of the diagonal GARCH model without moving to the scalar version. In-
tuitively, Flex-GARCH decentralizes the estimation procedure by estimat-
ing N(N + 1)/2 bivariate GARCH models with certain parameter con-
straints, and then pasting them together to form the matrices 4, B, and C
in equation (18). Specific transformations of the parameter matrices from
the bivariate models ensure that the resulting conditional covariance ma-
trix forecast is psd. Flex-GARCH appears to be a viable modeling ap-
proach when N is larger than, say, 5, where estimation of the general diag-
onal GARCH model becomes intractable. However, when N is of the order
of 30 and above, which is often the case in practical risk management ap-
plications, it becomes cumbersome to estimate N(N + 1)/2 bivariate mod-
els, and alternative dimensionality reduction methods are necessary. One
such method is the dynamic conditional correlation framework, to which
we now turn.

11.3.4 Dimensionality Reduction II: Covariance Matrices
via Dynamic Conditional Correlation

Recall the simple but useful decomposition of the covariance matrix into
the correlation matrix pre- and post-multiplied by the diagonal standard
deviation matrix,

1) Q,=DID,

Bollerslev (1990) uses this decomposition, along with an assumption of
constant conditional correlations (I, = I') to develop his Constant Con-
ditional Correlation (CCC) GARCH model. The assumption of constant
conditional correlation, however, is arguably too restrictive over long time
periods.

Engle (2002) generalizes Bollerslev’s (1990) CCC model to obtain a Dy-
namic Conditional Correlation (DCC) model. Crucially, he also provides
a decentralized estimation procedure. First, one fits to each asset return an
appropriate univariate GARCH model (the models can differ from asset to
asset) and then standardizes the returns by the estimated GARCH condi-
tional standard deviations. Then one uses the standardized return vector,
say e, = R D', to model the correlation dynamics. For instance, a simple
scalar diagonal GARCH(1,1) correlation dynamic would be

(22) Qr = C + BQr—l + 0L(ez—lf’);—l)’

with the individual correlations in the I, matrix defined by the correspon-
ding normalized elements of Q,,
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(23) Pije = qu,t/( ViV quj,z)-

The normalization in (23) ensures that all correlation forecasts fall in the
[-1; 1] interval, while the simple scalar structure for the dynamics of Q, in
equation (22) ensures that I, is psd.

If C is preestimated by correlation targeting, as discussed earlier, only
two parameters need to be estimated in equation (22). Estimating variance
dynamics asset by asset and then assuming a simple structure for the cor-
relation dynamics thus ensures that the DCC model can be implemented
in large systems: N + 1 numerical optimizations must be performed, but
each involves only a few parameters, regardless of the size of N.

Although the DCC model offers a promising framework for exploring
correlation dynamics in large systems, the simple dynamic structure in (22)
may be too restrictive for many applications. For example, volatility and
correlation responses may be asymmetric in the signs of past shocks.’ Re-
searchers are therefore currently working to extend the DCC model to
more general dynamic correlation specifications. Relevant work includes
Franses and Hafner (2003), Pelletier (2004), and Cappiello, Engle, and Shep-
pard (2004).

To convey a feel for the importance of allowing for time-varying condi-
tional correlation, we show in figure 11.4 the bond return correlation be-
tween Germany and Japan estimated using a DCC model allowing for
asymmetric correlation responses to positive versus negative returns, re-
produced from Cappiello, Engle, and Sheppard (2004). The conditional
correlation clearly varies a great deal. Note in particular the dramatic
change in the conditional correlation around the time of the euro’s intro-
duction in 1999. Such large movements in conditional correlation are not
rare, and they underscore the desirability of allowing for different dynam-
ics in volatility versus correlation.!”

11.4 Exploiting High-Frequency Return Data for
Improved Covariance Matrix Measurement

Thus far our discussion has implicitly focused on models tailored to cap-
turing the dynamics in returns by relying only on daily return information.
For many assets, however, high-frequency price data are available and
should be useful for the estimation of asset return variances and covari-

9. A related example is the often-found positive relationship between volatility changes and
correlation changes. If present but ignored, this effect can have serious consequences for port-
folio hedging effectiveness.

10. As another example, cross-market stock-bond return correlations are often found to
be close to zero or slightly positive during bad economic times (recessions), but negative in
good economic times (expansions); see, for example, the discussion in Andersen, Bollerslev,
Diebold, and Vega (2004).
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Fig. 11.4 Time-Varying Bond Return Correlation: Germany and Japan

Notes: We reconstruct this figure from Capiello, Engle, and Sheppard (2004), plotting the cor-
relation between Germany and Japanese government bond returns calculated from a DCC
model allowing for asymmetric correlation responses to positive and negative returns. The
vertical dashed line denotes the euro’s introduction in 1999.

ances. Here we review recent work in this area and speculate on its useful-
ness for constructing large-scale models of market risk.

11.4.1 Realized Variances

Following Andersen, Bollerslev, Diebold, and Labys (2003; henceforth
ABDL), define the realized variance (RV) on day ¢ using returns con-
structed at the A intraday frequency as

1/A

(24) o= A
=

where 1/A is, for example, 48 for thirty-minute returns in twenty-four-hour
markets. Theoretically, letting A go to zero, which implies sampling con-
tinuously, we approach the true integrated volatility of the underlying con-
tinuous time process on day ¢.!!

In practice, market microstructure noise will affect the RV estimate when
A gets too small. Prices sampled at fifteen to thirty minute intervals, de-
pending on the market, are therefore often used. Notice also that, in mar-
kets that are not open twenty-four hours per day, the potential jump from
the closing price on day ¢ — 1 to the opening price on day ¢ must be ac-

11. For a full treatment, see Andersen, Bollerslev, and Diebold (forthcoming).
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counted for. This can be done using the method in Hansen and Lunde
(2005). Asis the case for the daily GARCH models considered earlier, cor-
rections may also have to be made for the fact that days following weekends
and holidays tend to have higher-than-average volatility.

Although the daily realized variance is just an estimate of the underlying
integrated variance and is likely measured with some error, it presents an
intriguing opportunity: it is potentially highly accurate, and indeed accu-
rate enough such that we might take the realized daily variance as an ob-
servation of the true daily variance, modeling and forecasting it using stan-
dard autoregressive moving average (ARMA) time series tools. Allowing
for certain kinds of measurement error can also easily be done in this
framework. The upshot is that if the fundamental frequency of interest is
daily, then using sufficiently high-quality intraday price data enables the
risk manager to treat volatility as essentially observed. This is vastly differ-
ent from the GARCH style models discussed earlier, in which the daily
variance is constructed recursively from past daily returns.

As an example of the direct modeling of realized volatility, one can spec-
ify a simple first-order autoregressive model for the log realized volatility,

(25) log(o,,) = ¢ + B log(o,_,,) + v,

which can be estimated using simple ordinary least squares (OLS). The
log specification guarantees positivity of forecasted volatilities and in-
duces (approximate) normality, as demonstrated empirically in Andersen,
Bollerslev, Diebold, and Labys (2000, 2001). ABDL show the superior
forecasting properties of RV-based forecasts compared with GARCH fore-
casts. Rather than relying on a simple short-memory ARMA model as in
equation (25), they specify a fractionally integrated model to better account
for the apparent long-memory routinely found in volatility dynamics.

Along these lines, figure 11.5 shows clear evidence of long-memory in
foreign exchange RVs as evidenced by the sample autocorrelation function
for lags of 1 through 100 days. We first construct the daily RVs from thirty-
minute FX returns and then calculate the corresponding daily sample au-
tocorrelations of the RVs. Note that the RV autocorrelations are signifi-
cantly positive for all 100 lags when compared with the conventional 95
percent Bartlett confidence bands.

The RV forecasts may also be integrated into the standard GARCH
modeling framework, as explored in Engle and Gallo (2004).'? Similarly,
rather than relying on GARCH variance models to standardize returns in
the first step of the DCC model, RVs can be used instead. Doing so would
result in a more accurate standardization and would require only a single

12. Intriguing new procedures for combining high-frequency data and RV-type measures
with lower-frequency daily returns in volatility forecasting models have also recently been de-
veloped by Ghysels, Santa-Clara, and Valkanov (2005).
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Fig. 11.5 Sample autocorrelations of realized volatility: Three currencies

Notes: We plot the sample autocorrelations of daily realized log standard deviations for three
FX rates, together with Bartlett’s £2 standard error bands for the sample autocorrelations of
white noise. We construct the underlying daily realized variances using thirty-minute returns
from December 1, 1986, through December 1, 1996.

numerical optimization step—estimation of correlation dynamics—
thereby rendering the computational burden in DCC nearly negligible.

We next discuss how realized variances and their natural multivariate
counterparts, realized covariances, can be used in a more systematic fash-
ion in risk management.

11.4.2 Realized Covariances

Generalizing the realized variance idea to the multivariate case, we can
define the daily realized covariance matrix as

1/A
(26) Qu=D Rkl

=
The upshot again is that variances and covariances no longer have to be
extracted from a nonlinear model estimated via treacherous maximum-
likelihood procedures, as was the case for the preceding GARCH models.
Using intraday price observations, we essentially observe the daily covari-
ances and can model them as if they were observed. ABDL show that, as
long as the asset returns are linearly independent and the number of assets,
N, is less than 1/A, the realized covariance matrix will be positive definite.
However, for a sampling interval of, for example, thirty minutes in twenty-
four-hour markets, 1/A is 48, so in large portfolios the condition is likely to
be violated. We return to this important issue at the end of this section.
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Microstructure noise may plague realized covariances, just as it may
plague realized variances. Nonsynchronous trading, however, creates ad-
ditional complications in the multivariate case. These are similar, but po-
tentially more severe, than the nonsynchronous trading issues that arise in
the estimation of, say, monthly covariances and CAPM betas with non-
synchronous daily data. A possible fix involves the inclusion of additional
lead and lag terms in the realized covariance measure (26), along the lines
of the Scholes and Williams (1977) beta-correction technique. Work on
this is still in its infancy, and we will not discuss it any further here, but an
important recent contribution is Martens (2004).

We now consider various strategies for modeling and forecasting real-
ized covariances, treating them as directly observable vector time series.
These all are quite speculative, as little work has been done to date in terms
of actually assessing the economic value of using realized covariances for
practical risk measurement and management problems.'?

Paralleling the tradition of the scalar diagonal GARCH model, directly
suggests the following model

27 vech((}, ,) = vech(C) + B vech(}, | ,) + v,

which requires nothing but simple OLS to implement, while guaranteeing
positive definiteness of the corresponding covariance matrix forecasts for
any positive definite matrix C and positive values of B. This does again,
however, impose a common mean-reversion parameter across variances
and covariances, which may be overly restrictive. Realized covariance ver-
sions of the nonscalar diagonal GARCH model could be developed in a
similar manner, keeping in mind the restrictions required for positive defi-
niteness.

Positive definiteness may also be imposed by modeling the Cholesky de-
composition of the realized covariance matrix rather than the matrix itself,
as suggested by ABDL. We have

(28) Q =FuPss

z.

where P, is a unique lower triangular matrix. The data vector is then
vech(P,,), and we substitute the forecast of vech(F,, ,) back into equation
(28) to construct a forecast of 0, , ,.

Alternatively, in the tradition of Ledoit and Wolf (2003), one may induce
positive definiteness of high-dimensional realized covariance matrices by
shrinking toward the covariance matrix implied by a single-factor struc-
ture, in which the optimal shrinkage parameter is estimated directly from
the data.

13. One notable exception is the work of Fleming, Kirby, and Oestdiek (2003), which sug-
gests dramatic improvements vis-a-vis the RM and multivariate GARCH frameworks for
standard mean-variance efficient asset allocation problems.
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We can also use a DCC-type framework for realized correlation model-
ing. In parallel to equation (21) we write

(29) Q _DIAFIADtA’

where the typical element in the diagonal matrix D, , is the realized stan-
dard deviation, and the typical element in I, , is constructed from the ele-
mentsin (), , as

(30) pz /IA i, /IA/(O-IIIAO‘-/,‘/.I,A)'

Following the DCC idea, we model the standard deviations asset by asset
in the first step, and the correlations in a second step. Keeping a simple
structure, as in equation (22), we have

(31) vech(Q,,) = vech(C) + B vech(Q,_,,) + v,,

where simple OLS again is all that is required for estimation. Once again,
anormalization is needed to ensure that the correlation forecasts fall in the
[-1;1] interval. Specifically,

(32) Pres = Guudl Vi, VG, ,,0)-

The advantages of this approach are twofold: first, high-frequency infor-
mation is used to obtain more precise forecasts of variances and correla-
tions. Second, numerical optimization is not needed at all. Long-memory
dynamics or regime switching could, of course, be incorporated as well.

Although there appear to be several avenues for exploiting intraday
price information in daily risk management, two key problems remain.
First, many assets in typical portfolios are not liquid enough for intraday
information to be available and useful. Second, even in highly liquid envi-
ronments, when N is very large the positive definiteness problem remains.
We now explore a potential solution to these problems.

11.4.3 Dimensionality Reduction III: (Realized) Covariance
Matrices via Mapping to Liquid Base Assets

Multivariate market risk management systems for portfolios of thou-
sands of assets in many cases work from a set of, say, thirty observed base
assets believed to be key drivers of risk. Such a base asset factor structure
is, of course, more justified for a relatively specialized application such as
a U.S. equity portfolio than for a large diversified entity such as a major in-
ternational bank. The choice of factors depends on the portfolio at hand
but can, for example, consist of equity market indexes, FX rates, bench-
mark interest rates, and so on, which are believed to capture the main
sources of uncertainty in the portfolio. The assumptions made on the multi-
variate distribution of base assets are naturally of crucial importance for
the accuracy of the risk management system.
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Note that base assets typically correspond to the most liquid assets in the
market. The upshot here is that we can credibly rely on realized volatility
and covariances in this case. Using the result from ABDL, a base asset sys-
tem of dimension N, < 1/A will ensure that the realized covariance matrix
is psd and therefore useful for forecasting.

The mapping from base assets to the full set of assets is discussed in Jo-
rion (2000). In particular, the factor model is naturally expressed as'*

(33) R,=BR,, +v,

where v, denotes the idiosyncratic risk. The factor loadings in the N X N,
matrix B may be obtained from regression (if data exists), or via pricing
model sensitivities (if a pricing model exists). Otherwise the loadings may
be determined by ad hoc considerations, such as matching a security with-
out a well-defined factor loading to another similar security which has a
well-defined factor loading.

We now need a multivariate model for the N, base assets. However, as-
suming that

(34) R, =07, Z,~iid. EZ,)=0 Var(Z,)=1I,

we can use the modeling strategies discussed earlier to construct the
N, X N, realized factor covariance matrix (), , and the resulting systematic
covariance matrix measurements and forecast.

11.5 Modeling Entire Conditional Return Distributions

Best-practice risk measurement and management often requires know-
ing the entire distribution of asset or base asset returns, not just the second
moments. Conventional risk measures such as VaR and expected short-
fall, however, capture only limited aspects of the distribution. They collapse
a two-dimensional object, the return distribution function, into a one-
dimensional object, the risk measure. Clearly information is lost in this di-
mension reduction in all but certain counterfactual special cases such as
the normal distribution with a zero mean, which only depends on one pa-
rameter (the variance).

In this section we explore various approaches to complete the model.
Notice that in equation (34) we deliberately left the distributional assump-
tion on the standardized returns unspecified. We simply assumed that the
standardized returns were i.i.d. We will keep the assumption of i.i.d. stan-
dardized returns and focus on ways to estimate the constant conditional
density. This is, of course, with some loss of generality, as dynamics in mo-
ments beyond second order could be operative. The empirical evidence for

14. Diebold and Nerlove (1989) construct a multivariate ARCH factor model in which the
latent time-varying volatility factors can be viewed as the base assets.
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such higher-ordered conditional moment dynamics is, however, much less
conclusive at this stage.

The evidence that daily standardized returns are not normally distrib-
uted is, however, quite conclusive. Although GARCH and other dynamic
volatility models do remove some of the nonnormality in the uncondi-
tional returns, conditional returns still exhibit nonnormal features. Inter-
estingly, these features vary systematically from market to market. For ex-
ample, mature FX market returns are generally strongly conditionally
kurtotic, but approximately symmetric. Meanwhile, most aggregate index
equity returns appear to be both conditionally skewed and fat tailed.

As an example of the latter, we show in figure 11.6 the daily quantile-
quantile (QQ) plot for S&P 500 returns from January 2, 1990, to Decem-
ber 31, 2002, standardized using the (constant) average daily volatility
across the sample. That is, we plot quantiles of standardized returns against
quantiles of the standard normal distribution. Clearly the daily returns are
not unconditionally normally distributed.

Consider now figure 11.7, in which the daily returns are instead stan-
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Fig. 11.6  QQ plot of S&P 500 returns standardized by the average volatility

Notes: We show quantiles of daily S&P 500 returns from January 2, 1990, to December 31,
2002, standardized by the average daily volatility during the sample, against the correspon-
ding quantiles from a standard normal distribution.
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Fig. 11.7 QQ plot of S&P 500 returns standardized by GARCH volatility

Notes: We show quantiles of daily S&P 500 returns from January 2, 1990, to December 31,
2002, standardized by volatility from an estimated asymmetric GIR GARCH(1,1) model,
against the corresponding quantiles from a standard normal distribution. The units on each
axis are standard deviations.

dardized by the time-varying volatilities from an asymmetric GJR
GARCH(1,1) model. The QQ plot in figure 11.7 makes clear that although
the GARCH innovations conform more closely to the normal distribution
than do the raw returns, the left tail of the S&P 500 returns conforms much
less well to the normal distribution than does the right tail: there are more
large innovations than one would expect under normality.

As the VaR itself is a quantile, the QQ plot also gives an assessment of
the accuracy of the normal-GARCH VaR for different coverage rates. Fig-
ure 11.7 suggests that a normal-GARCH VaR would work well for any
coverage rate for a portfolio which is short the S&P 500. It may also work
well for a long portfolio, but only if the coverage rate is relatively large, say
in excess of 5 percent.

Consider now instead the distribution of returns standardized by real-
ized volatility. In contrast to the poor fit in the left tail evident in figure 11.7,
the distribution in figure 11.8 is strikingly close to normal, as first noticed
by Zhou (1996) and Andersen, Bollerslev, Diebold, and Labys (2000).
Figures 11.7 and 11.8 rely on the same series of daily S&P 500 returns but
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Fig. 11.8  QQ plot of S&P 500 returns standardized by realized volatility

Notes: We show quantiles of daily S&P 500 returns from January 2, 1990, to December 31,
2002, standardized by realized volatility calculated from five-minute futures returns, against
the corresponding quantiles from a standard normal distribution. The units on each axis are
standard deviations.

simply use two different volatility measures to standardize the raw returns.
The conditional nonnormality of daily returns has been a key stylized fact
in market risk management. Finding a volatility measure that can generate
standardized returns that are close to normal is therefore surprising and
noteworthy.

Figure 11.8 and the frequently found lognormality of realized volatility
itself suggest that a good approximation to the distribution of returns may
be obtained using a normal/lognormal mixture model. In this model, the
standardized return is normal and the distribution of realized volatility at
time ¢ conditional on time 7 — | information is lognormal. This idea is ex-
plored empirically in ABDL, who find that a lognormal/normal mixture
VaR model performs very well in an application to foreign exchange re-
turns.

The recent empirical results in Andersen, Bollerslev, and Diebold (2006)
suggest that even better results may be obtained by separately measuring
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and modeling the part of the realized volatility attributable to jumps in the
price process through so-called realized bipower variation measures, as
formally developed by Barndorff-Nielsen and Shephard (2004). These re-
sults have great potential for application in financial risk management, and
their practical implications are topics of current research.

Although realized volatility measures may be available for highly liquid
assets, it is often not possible to construct realized volatility-based portfo-
lio risk measures. We therefore now survey some of the more conventional
methods, first for univariate and then for multivariate models.

11.5.1 Portfolio Level: Univariate Analytic Methods

Although the normal assumption works well in certain cases, we want to
consider alternatives that allow for fat tails and asymmetry in the condi-
tional distribution, as depicted in figure 11.7. In the case of VaR we are
looking for ways to calculate the cutoff z,! in

(35) Vary., =02,

Perhaps the most obvious approach is simply to look for a parametric dis-
tribution more flexible than the normal while still tightly parameterized.
One such example is the (standardized) Student’s 7 distribution suggested
by Bollerslev (1987), which relies on only one additional parameter in gen-
erating symmetric fat tails. Recently, generalizations of the Student’s 7 that
allow for asymmetry have also been suggested, as in Fernandez and Steel
(1998) and Hansen (1994).

Rather than assuming a particular parametric density, one can approxi-
mate the quantiles of nonnormal distributions via Cornish-Fisher approx-
imations. Baillie and Bollerslev (1992) first advocated this approach in the
context of GARCH modeling and forecasting. The only inputs needed are
the sample estimates of skewness and kurtosis of the standardized returns.
Extreme value theory provides another approximation alternative, in
which the tail(s) of the conditional distribution is estimated using only
the extreme observations, as suggested in Diebold, Schuermann, and
Stroughair (1998), Longin (2000), and McNeil and Frey (2000).

A common problem with most GARCH models, regardless of the in-
novation distribution, is that the conditional distribution of returns is not
preserved under temporal aggregation. Hence even if the standardized
daily returns from a GARCH(1,1) model were normal, the implied weekly
returns will not be. This in turn implies that the term structure of VaR or
expected shortfall needs to be calculated via Monte Carlo simulation, as
in, for example, Guidolin and Timmermann (2004). But Monte Carlo sim-
ulation requires a properly specified probability distribution, which would
rule out the Cornish-Fisher and extreme-value-theory approximations.

Heston and Nandi (2000) suggest a specific affine GARCH-normal
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model, which may work well for certain portfolios, and which, combined
with the methods of Albanese, Jackson, and Wiberg (2004), allows for rel-
atively easy calculation of the term structure of VaRs. In general, however,
simulation methods are needed; we now discuss a viable approach that
combines a parametric volatility model with a data-driven conditional dis-
tribution.

11.5.2 Portfolio Level: Univariate Simulation Methods

Bootstrapping, or Filtered Historical Simulation (FHS) assumes a para-
metric model for the second-moment dynamics but bootstraps from stan-
dardized returns to construct the distribution. At the portfolio level this is
easy to do. Calculate the standardized pseudo portfolio returns as

(36) 2., =r 5, fort=1,2...,T,

using one of the variance models from section 11.2. For the one-day-ahead
VaR, we then simply use the order statistic for the standardized returns
combined with the volatility forecast to construct

(37) FHS-VaR:,., = o, (T + 1]p).

Multiday VaR requires simulating paths from the volatility model using
the standardized returns sampled with replacement as innovations. This
approach has been suggested by Diebold, Schuermann, and Stroughair
(1998), Hull and White (1998), and Barone-Adesi, Bourgoin, and Gian-
nopoulos (1998), who coined the term FHS. Pritsker (2001) also provides
evidence on its effectiveness.

11.5.3 Asset Level: Multivariate Analytic Methods

Just as a fully specified univariate distribution is needed for risk mea-
surement, so too is a fully specified multivariate distribution often needed
for risk management. For example, a fully specified multivariate distribu-
tion allows for the computation of VaR sensitivities and VaR-minimizing
portfolio weights. The cost, of course, is that we must make an assumption
about the multivariate (but constant) distribution of Z, in (16).

The results of Andersen, Bollerslev, Diebold, and Labys (2000) suggest
that, at least in the FX market, the multivariate distribution of returns
standardized by the realized covariance matrix is again closely approxi-
mated by a normal distribution. As long as the realized volatilities are
available, a multivariate version of the lognormal mixture model discussed
in connection with figure 11.8 could therefore be developed.

As noted earlier, however, construction and use of realized covariance
matrices may be problematic in situations when liquidity is not high, in
which case traditional parametric models may be used. As in the univari-
ate case, however, the multivariate normal distribution, coupled with
multivariate standardization using covariance matrices estimated from
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traditional parametric models, although obviously convenient, does not
generally provide an accurate picture of tail risk.'

A few analytic alternatives to the multivariate normal paradigm do ex-
ist, such as the multivariate Student’s ¢ distribution first considered by Har-
vey, Ruiz, and Sentana (1992), along with the more recent related work
by Glasserman, Heidelberger, and Shahbuddin (2002). Recently much at-
tention has also been focused on the construction of multivariate densi-
ties from the marginal densities via copulas, as in Jondeau and Rockinger
(2004) and Patton (2002), although the viability of the methods in very
high-dimensional systems remains to be established.

Multivariate extreme value theory offers a tool for exploring cross-asset
tail dependencies, which are not captured by standard correlation mea-
sures. For example, Longin and Solnik (2001) define and compute extreme
correlations between monthly U.S. index returns and a number of foreign
country indexes. In the case of the bivariate normal distribution, correla-
tions between extremes taper off to zero as the thresholds defining the ex-
tremes get larger in absolute value. The actual equity data, however, behave
quite differently. The correlation between negative extremes is much larger
than the normal distribution would suggest.!® Such strong correlation be-
tween negative extremes is clearly a key risk management concern. Poon,
Rockinger, and Tawn (2004) explore the portfolio risk management impli-
cations of extremal dependencies, while Hartmann, Straetmans, and de
Vries (chapter 4, this volume) consider their effect on banking system sta-
bility. Once again, however, it is not yet clear whether such methods will be
operational in large-dimensional systems.

Issues of scalability, as well as cross-sectional and temporal aggregation
problems in parametric approaches, thus once again lead us to consider
simulation-based solutions.

11.5.4 Asset Level: Multivariate Simulation Methods

In the general multivariate case, we can in principle use FHS with dy-
namic correlations, but a multivariate standardization is needed. Using the
Cholesky decomposition, we first create vectors of standardized returns
from (16). We write the standardized returns from an estimated multivari-
ate dynamic covariance matrix as

(38) Z,=Q "R fort=1,2,...,T,

where we calculate Q;”z from the Cholesky decomposition of the inverse
covariance matrix {};'. Now, resampling with replacement vectorwise from
the standardized returns will ensure that the marginal distributions as well

15. In the multivariate case the normal distribution is even more tempting to use, because
it implies that the aggregate portfolio distribution itself is also normally distributed.

16. In contrast, and interestingly, the correlations of positive extremes appear to approach
zero in accordance with the normal distribution.
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as particular features of the multivariate distribution, as for example, the
cross-sectional dependencies suggested by Longin and Solnik (2001), will
be preserved in the simulated data.

The dimensionality of the system in equation (38) may render the neces-
sary multivariate standardization practically infeasible. However, the same
FHS approach can be applied with the base asset setup in equation (34), re-
sampling from the factor innovations calculated as

(39) Z.,=Q; "R, fort=1,2,...,T,

where we again use the Cholesky decomposition to build up the distribu-
tion of the factor returns. From equation (33) we can then construct the
corresponding idiosyncratic asset innovations as

(40) %, =R —BR, fort=12,...,T,

in turn resampling from Z, and ¥, to build up the required distribution of
the individual asset returns in the base asset model.

Alternatively, if one is willing to assume constant conditional correla-
tions, then the standardization can simply be done on an individual asset-
by-asset basis using the univariate GARCH volatilities. Resampling vec-
torwise from the standardized returns will preserve the cross-sectional
dependencies in the historical data.

11.6 Summary and Directions for Future Research

We have attempted to demonstrate the power and potential of dynamic
financial econometric methods for practical financial risk management,
surveying the large literature on high-frequency volatility measurement
and modeling, interpreting and unifying the most important and intrigu-
ing results for practical risk management. The paper complements the
more general and technical survey of volatility and covariance forecasting
in Andersen, Bollerslev, Christoffersen, and Diebold (2005).

Our discussion has many implications for practical financial risk man-
agement; some point toward desirable extensions of existing approaches,
and some suggest new directions. Key points include:

1. Standard model-free methods, such as historical simulation, rely on
false assumptions of independent returns. Reliable risk measurement re-
quires a conditional density model that allows for time-varying volatility.

2. For the purpose of risk measurement, specifying a univariate density
model directly on the portfolio return is likely to be most accurate. Risk-
Metrics offers one possible approach, but the temporal aggregation prop-
erties—including the volatility term structure—of RiskMetrics appear to
be counterfactual.

3. GARCH volatility models offer a convenient and parsimonious
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framework for modeling key dynamic features of returns, including volatil-
ity mean-reversion, long-memory, and asymmetries.

4. Although risk measurement can be done from a univariate model for
a given set of portfolio weights, risk management requires a fully specified
multivariate density model. Unfortunately, standard multivariate GARCH
models are too heavily parameterized to be useful in realistic large-scale
problems.

5. Recent advances in multivariate GARCH modeling are likely to be
useful for medium-scale models, but very large scale modeling requires de-
coupling variance and correlation dynamics, as in the dynamic conditional
correlation model.

6. Volatility measures based on high-frequency return data hold great
promise for practical risk management. Realized volatility and correlation
measures give more accurate forecasts of future realizations than their con-
ventional competitors. Because high-frequency information is only avail-
able for highly liquid assets, we suggest a base-asset factor approach.

7. Risk management requires fully specified conditional density models,
not just conditional covariance models. Resampling returns standardized
by the conditional covariance matrix presents an attractive strategy for ac-
commodating conditionally nonnormal returns.

8. The near lognormality of realized volatility, together with the near
normality of returns standardized by realized volatility, holds promise for
relatively simple-to-implement lognormal/normal mixture models in fi-
nancial risk management.
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Comment Pedro Santa-Clara

Andersen, Bollerslev, Christoffersen, and Diebold (henceforth ABCD) pro-
vide a comprehensive overview of financial risk management from the
point of view of both Wall Street and the ivory tower. Most usefully, ABCD
discuss a number of recent developments in the econometrics of time-
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varying risk that hold vast promise for risk management applications: the
dynamic conditional correlation model of Engle (2002), which permits
large-scale, flexible modeling of conditional covariance matrices, the use of
high-frequency data to measure realized variances and covariances that
has been developed largely by the authors, and the modeling of the full dis-
tribution of conditional returns. In this discussion I will just offer a couple
of comments and extensions to ABCD’s very well-organized survey.

Unconditional Versus Conditional Risk

ABCD discuss extensively the pros and cons of both unconditional and
conditional (dynamic) measures of risk. There is, however, an additional
source of risk dynamics that is ignored in the paper and that, in fact, has
not been studied much in the literature. Most financial assets are managed
over time, and it is therefore more important to study the risks of dynamic
investment strategies rather than the risks of static portfolios. Especially
for supervision and regulation purposes, it matters more to forecast the
risk of a portfolio taking into account the likely variation in its weights
than to forecast the risk of the current positions that are unlikely to remain
in place for long.

Assume that there exist some state variables that forecast both risk and
return. A trader that adjusts the portfolio according to those state vari-
ables, for instance to maximize the conditional Sharpe ratio, will produce
a portfolio with time-varying risk. Many authors have shown that the level
of interest rates, the term spread, and the default spread have forecasting
power for both first and second moments of returns of stocks and bonds.
Brandt and Santa-Clara (2005) show that the optimal asset allocation for
a mean-variance investor that recognizes the forecasting power of these
state variables displays considerable time variation in portfolio weights and
conditional moments.

As another example, investment strategies are typically conditioned on
the level of risk in the markets. Either formally, through Value-at-Risk
(VaR) constraints, or informally, according to the trader’s feelings, the level
of exposure is adjusted when risks change. Consider a trader with a VaR
limit that manages the exposure of the portfolio to always be at that limit.
When market risk is high, the exposure is reduced, and when risk is low, the
exposure is increased. Interestingly, the result of this dynamic strategy is a
series of returns that have constant conditional VaR. That is, in this case, a
dynamic strategy produces a series of returns with static risk.

This example explains why the realized risk of a managed portfolio may
not display GARCH characteristics even though the assets in the portfolio
have them. Ex ante, if the portfolio were to remain constant, its risk would
be changing. Ex post, given that the portfolio changes with the ex ante risk
assessment, the realized risk is not time varying. This distinction between
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ex ante and ex post risk of an investment strategy has been the basis of
much confusion relating to the need of unconditional versus conditional
risk models. It justifies the use of unconditional VaR by regulators, since
they care only about ex post risk. On the other hand, traders need the more
sophisticated models of conditional risk to be able to manage the expo-
sures in a timely manner.

Modeling the Entire Distribution of Returns

ABCD explain that the common use of summary statistics such as
volatility, VaR, or expected shortfall is likely to give a partial view of the
true risk of a portfolio. Only the full (conditional) distribution of returns,
including skewness and fat tails, will correctly capture the likelihood of
different levels of losses.

Santa-Clara and Schwartz (2005) offer a simple alternative that captures
the impact of the full distribution of returns on the risk of a portfolio. Their
approach can be summarized briefly. The idea is that the investor (or the
regulator) analyzes the distribution of returns through the lens of a utility
function of returns that is concave (reflecting risk aversion). A simple ex-
ample is the well-known power utility function, u(¢z) = (1 + r)!/(1 — ),
with relative risk aversion vy.

Given portfolio weights w, simulate the history of portfolio returns:

N
Foie1 = z‘vv,.;’,.J+1 fort=1,...,T—1,
i=1

and evaluate the corresponding time series of realized utilities of the port-
folio u(r, ,,). Then, regress the realized utilities on state variables z that
condition the joint return distribution:!

u(rp,ﬁ-l) = d)Zt + SH—I'

The fitted values of this regression are estimates of the conditional ex-
pected utility E (u[r, . ,]). At the current time 7, the regression is estimated
with historic data, and the fitted value E (u[r, ;. ,]) = bz, 1s a forecast of
the risk of the portfolio in the next period T + 1. Actually, a more easily in-
terpreted measure of risk is the conditional certainty equivalent ¢, =
u'(E,[u{r,,,,}]), which is expressed in units of returns.

We can run similar regressions for the partial derivatives of the expected
utility relative to portfolio weights. These derivatives can be used for risk
management as they quantify how much the utility (or certainty equiva-
lent) changes when the weight of each asset changes marginally.

Santa-Clara and Schwartz’s measure of risk takes into account the full

1. The variable z may contain basis functions of a more fundamental set of state variables
y. In this way the specification can accommodate a nonlinear relation between y and the ex-
pected utility. Also, the returns may be demeaned prior to running the regression in order to
concentrate on risk and discard the effect of the average return on the investor’s utility.
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distribution of returns. The investor cares about the expected value of the
utility, which in turn depends on all the moments of the distribution of the
portfolio returns:

E,[u(rpﬁl)] =~ u[Et(rp,M)] + u”[E,(rpﬁ1)]Var,(rp,,+l)/2
+ u”’[Et(rpét H)]Skew,(rp Vo + ...,

L1

which depend implicitly on the full joint distribution of the assets’ returns.
We have therefore a measure of risk that combines all the features of the
distribution of returns weighted in an optimal manner according to the
risk preferences of the investor.

Finally, this approach can easily accommodate dynamic investment
strategies. Simply model the portfolio weights as a function of state vari-
ables x, (which may or may not be different from z ):

N, N
rp,H—l = 2 Wi,rri,t-*—l = 2 (er)ri,ﬁ-l’
t=1 i=1

compute the realized utilities, and perform the above regression. Going a
step further, the coefficients of the portfolio policy can be optimized to
maximize the conditional expected utility of the portfolio along the lines of
Brandt and Santa-Clara (2005) and Brandt, Santa-Clara, and Valkanov
(2005):

T T

1 1 N
méaXF z u(rp,ﬁ-l) = 7 z] u[; (exz)ri,ﬁ—l]

=1 1=

Conclusion

The econometrics of risk is an exciting area right now. ABCD’s paper is
a precious guide to recent developments and points to interesting direc-
tions for future research.
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Discussion Summary

Ken Abbott opened the general discussion by suggesting that the meth-
ods suggested by the authors may be more applicable to modeling of credit
risk, where correlation skew is a concern and copula methods are coming
into favor, than in traditional market-risk applications. In his experience,
historical simulation methods work well in practice and are relatively easy
for bank staff and management to understand. The dynamic issues raised
by the authors, which are particularly dramatic in cases like the 1987 crash,
are handled in practice by stress-test exercises, which are done along with
VaR modeling.

Patricia Jackson observed that the use to which a VaR model is put is a
key consideration in its design. Where the purpose is estimating the capital
required by the financial institution, including dynamic volatility is unde-
sirable because volatility falls during safe periods and thus implied capital
requirements fall. The change to the high volatility characteristic of peri-
ods of stress may occur quickly, leaving the institution with little time to in-
crease its capital. Historical simulation methods are less subject to this
problem. However, the methods suggested by the authors may be prefer-
able for other uses.

On the other hand, Jim O’Brien noted that although historical simula-
tion may tend to give the “correct” number of violations of a VaR quantile,
violations tend to be bunched in time, which appears to be a sign of worri-
some historical dependence.

The discussion turned to technical considerations; Philipp Hartmann
noted that some of the methods suggested by the authors implicitly use lin-
ear measures in the tails of the return distribution, but tail events tend to
occur during crisis periods and may require a more complex specification.
Hayne Leland noted that bid-ask bounce and infrequent-trading problems
can be an issue in the high-frequency data that the authors suggest be used
for volatility estimation, and Hashem Pesaran noted that such data also are
often rather dirty. Peter Christoffersen agreed that such problems exist, but
suggested that they might be relatively easy to overcome for instruments
traded in very liquid markets.



