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Annals of Economic and Social Measurement, 1/4, 1972 

THE DISCRETE TIME LINEAR-QUADRATIC-GAUSSIAN 

STOCHASTIC CONTROL PROBLEM* 

BY MICHAEL ATHANST 

The purpose of this paper is to review in a tutorial fashion the role of the linear-quadratic stochastic 
control problem in discrete time system design. The design approach is motivated by considering the 
control of a nonlinear uncertain plant about a desired input-output response sequence. It is demonstrated 
how a design philosophy based on (a) deterministic optimal control, (b) deterministic perturbation control, 
(c) stochastic state estimation, and (d) linearized stochastic control, leads to an overall closed loop control 
system. The emphasis of the paper is on the philosophy of the design process, the modelling issue, and the 
formulation of the problem; the results are given for the sake of completeness, but no proofs are included. 
The systematic, off-line, nature of the design process is stressed throughout. 

1. INTRODUCTION 

This paper was motivated by the fact that most stochastic optimization problems in 

economics are most naturally described by difference equations. For this reason, it 

appeared appropriate that a summary paper describing a unified design philosophy 

based on advances in modern control theory, would contribute to the interchange 

of ideas between economists, management scientists, and control theorists. This 

paper then is a discrete-time version of the continuous time results (see reference 1) 

presented at the Princeton workshop. This paper focuses on the non-engineering 

aspects and interpretations of the theory. 

It should be stressed that trends in stochastic control research by engineers has 

been greatly influenced by two factors 

(a) a need to minimize on-line computations, and 

(b) the requirements in many aerospace applications that the control system be 

realized by analog hardware. 

In economic applications these requirements are not present, since the time 

period between decisions does allow for extensive digital computer calculations. 

Thus, one does have the luxury of examining more sophisticated decision and con- 

trol algorithms, which however have increased computational requirements. 

Nonetheless, it is important to know what are the “bread-and-butter”’ tools in 

control practice, which requires a very modest amount of on-line digital computa- 

tion. It is the purpose of this paper to state, in a summary form, this simple approach 

to the control of nonlinear stochastic systems. 

The basic problem in engineering control system design almost invariably 

involves the on-line (i.e., real-time), feedback control of an uncertain, usually non- 

linear, physical process. The engineer, usually likes to work with, and benefits from, 
a systematic approach to the design problem ; such systematic approaches are often 

the outcome of past design experience. 

*This research was carried out at the Decision and Control Sciences Group of the M.LT. 
Electronic Systems Laboratory with support extended by NSF under grant GK-25781. 

** The author wishes to express his sincere appreciation to Professor Gregory Chow and Mr. 
Kenneth Garbade of Princeton University, and to Professor S. Phillip Cooper and Dov Pekelman of 
the University of Chicago Business School whose discussions and comments greatly contributed to 
the motivation for and preparation of this paper. 
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Clearly, a “‘universal’’ system design approach must take into account 

® the desired specifications 

® actuator and sensor constraints 

® measurement errors 

® actuator errors 

@ design sensitivity due to piant parameter variations 

© effects of unpredictable disturbances 

® on-line vs. off-line computational requirements 

© design simplicity 

The purpose of this paper is to indicate how the available theory of optimal control 

and estimation for the so-called Linear-Quadratic-Gaussian problem provides 

such a unified design procedure. In particular, we wish to stress the advantages of 

this design process from the viewpoint of ease of computation since the theory pro- 

vides us with equations that can be readily solved by modern digital computers. 

Thus, the success of the design process hinges on the capability of the designer to 

understand the physics of the problem and his ability to translate physical require- 

ments and constraints into mathematical language. Once this crucial “‘modelling” 

has been done, the digital computer algorithms will readily generate the quantita- 

tive details of the design. 

Towards this goal, this paper is structured in the following manner. In Section 

2 we discuss the problem under consideration in the most general terms and we 

outline the design philosophy that we shall adopt. In Section 3 we discuss the 

deterministic aspects of the design problem, introduce the notions of the ideal 

input-state nominal time functions, dynamic linearization, provide the motiva- 

tion for using quadratic criteria, and state the solution of the deterministic linear- 

quadratic problem. In Section 4, we analyze the deterministic design from the view- 

point of uncertainty and sensor constraints. This leads us to the problem of esti- 

mating the state variables of the uncertain physical process, on the basis of past 

measurements via the Kalman—Bucy theory. In Section 5 we “hook-up” together 

the stochastic estimator of Section 4 with the deterministic controller of Section 3 

to obtain the desired compensator that translates actual sensor measurements to 

commanded control inputs. Section 6 contains a discussion of the results. Section 7 

presents a brief overview of the adaptive control problem. 

Of course, all the results outlined in this paper are available in one form or the 

other in the control literature. Hence, the hoped for contribution of this paper is 

that of unification, so that one can see how seemingly diverse topics in control 

theory can be combined to yield a systematic computer-aided design tool. Thus, the 

emphasis will be on philosophy, interpretation, and critical discussion of the inter- 

play between physical processes and the mathematical models required to apply 

the powerful tools of modern control theory. We also hope to convey the fact that 

this approach to design involves both “art and science’’, so that creativity and 

know-how are (as always) the key ingredients of success. 

2. THE PHYSICAL PROBLEM AND THE DESIGN PHILOSOPHY 

We commence our specific discussion with a brief description of the problem 

of controlling a physical dynamic process and a definition of the control problem. 
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2.1. Physical Plant, Actuators, Sensors 

We shall deal with the interconnected entity of a physical plant driven by 

actuators ; measurements can be made by sensors. 

2.1.1. Actuators: The actuators are actual “devices” that translate com- 

manded inputs, time sequences that can be specified by the designer, (e.g., com- 

manded government expenditures into actual plant inputs (e.g., actual government 

expenditures). This translation is not exact; this is modelled by the actuator 

uncertainties. It is assumed that the actual plant inputs cannot be measured, at 

least at t::¢ times that the decisions have to be made. 

2.1.2. Plant: The plant is a physical device that translates the actual plant 

inputs as well as other plani disturbances (e.g., probabilistic exogeneous variables) 

into a set of time sequences which we shall call the physical state variables of the 

plant (e.g., consumption, unemployment rate, interest rates, etc.). For our purposes, 

the plant state variables are the key physical variables that govern and specify 

completely the current behavior of the system. In economic applications they are 

the current and lagged values of the appropriate endogeneous variables. In the 

language of urban dynamics the state variables correspond to the level variables. 

2.1.3. Sensors: We assume that it is either impossible or not desirable for 

physical or economic reasons, to measure all the plant state variables. The physical 

sensors are devices that indicate which physical variables (state variables and/or 

combinations thereof) can be indeed measured. However, the actual sensor 

measurement signals are different than the signals that are sensed ; these errors are 

modelled by the inclusion of the sensor error and uncertainty signals, which take 

into account the measurement accuracy of any given sensor. 

2.2. Control System Objectives 

The desired behavior of the physical process as a whole is often judged on the 

basis of the actual time-evolution of all or some of the physical plant state variables. 

Of course, due to the sensor constraints one may not be able to deduce exactly 

what the plant is doing at each and every instant of time. Nonetheless, the plant 

state variables rather than the measurements are the key quantities that enter in 

the control problem formulation. 

In many cases, the time evolution of the plant state variables may possess cer- 

tain undesirable characteristics. These may be due to the effect of the plant dis- 

turbances and/or actuator errors, due to inherent plant instability or sluggish 

response. In such cases, one must be able to control the time evolution of the plant 

state variables by the adjustment of the time evolution of the commanded inputs, 

(which are the only variables that can be externally adjusted). 

It is appropriate to remark at this point that the issue of unreliable measure- 

ments has been somewhat ignored in the mathematical economics literature. There 

is evidence to suggest that the measurements can be unreliable (see for example 

references [2] and [3]). On the engineering side, during the past decade, noisy 

measurements have been treated as the rule rather than the exception; this has 

contributed to certain distinct evolutionary developments in the research contri- 

butions of these two areas. Hence, the control system objective can be loosely 

stated as follows: 
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Find the time-evolution of the commanded inputs (decision variables, policy 

variables) such that the time evolution of the physical plant state variables is 

satisfactory for the task at hand. 

2.3. Control System Structure 

Since the control objective hinges on the time-evolution of the physical state 

variables, and since we cannot sense them directly in view of the sensor constraints, 

it is intuitively obvious that the actual values of the commanded inputs at the 

present time must somehow (at least, partially) depend upon the current, and 

perhaps past, values of the sensor measurements. 

Thus, we are admitting right at the start that some feedback is necessary. 

This leads us to visualizing that we must construct a physical device which we 

shall call the compensator, whose task will be to translate the actual sensor meas- 

urement signals into the actual commanded inputs to the physical process. 

We can now reformulate the control objective of Section 2.2, as follows: 

Find the compensator, driven by the sensor measurement signals and generating 

the commanded inputs to the physical process, such that the time evolution of the 

physical plant state variables is satisfactory for the task at hand. 

2.4. The Design Philosophy 

It should be clear that the design of the compensator must hinge on 

© Natural dynamics of the physical process both in the absence of uncertainty 

(deterministic) and in the presence of uncertainty (stochastic) 

© The level of the uncertainty in the physical process (How big are the probable 

actuator errors? How large are the plant disturbances? How’ accurate are 

the sensors?) 

© The precise notion of what character.zes, for any given application, a 

satisfactory time-evolution of the physical plant state variables. 

In point of fact, our ability to construct such a compensator, must depend 

upon our ability to predict (exactly or approximately) what the physical plant state 

variables will be doing for any given 

® commanded input time-sequences 

® actuator errors, viewed as time-sequences 

@ plant disturbances viewed as time-sequences 

Clearly the design issue is clouded because it involves the interplay between the 

natural dynamics of the physical process, the stochastic nature of the uncertainties, 

and the effects of the deterministic commanded inputs. Nonetheless, one can adopt 

a design philosophy that involves the following three basic steps: 

Step 1. Deterministic Ideal Response Analysis and Design 

Step 2. Stochastic Estimation Analysis and Design 

Step 3. Stochastic Feedback Control System Design 

In the rest of the paper, we shall elaborate on precisely what we mean by this three- . 

part approach 

2.4.1. Deterministic Ideal Response Analysis and Design (Step 1). In this step, 

we pretend that there is absolutely no uncertainty. That is, we suppose that 
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® actuator errors do not exist 

® there are no plant disturbances 

® we can measure exactly all the physical plant state variables and output 

variables 

® the actuator and plant dynamics are known exactly 

© all parameter values are known exactly 

Under these assumptions, we can predict exactly what the plant state and output 

variables will do for any given commanded inputs. If this is the case, then somehow 

(and this will be treated in detail in Section 3) we should be able to determine: 

the ideal commanded inputs viewed as time-sequences which will give rise to an 

ideal set of plant state variable iime-sequences for the application at hand. 

In short, the basic end product of this first step of the design process, is the speci- 

fication of an ideal deterministic commanded-input state-variable pair that incor- 

porates the specifications of the application and the natural constraints and dynamics 

of the physical process. 

2.4.2. Stochastic Estimation Analysis and Design (Step 2). In this part of the 

design process, we reintroduce the uncertainty into our problem. In particular, we 

take into account that we cannot measure all of the plant state variables and that 

any measurement is subject to sensor errors. 

The basic question that we answer at this step of the design process is the 

following: 

Construct a device (state estimator, filter) that generates on the basis of the past 

sensor measurements a set of time-sequences which are as close as possible to 

the true values of the physical plant state and output variables at any instant of 

time. 

The way that this “state estimator” is constructed is the subject of Section 4. The 

reason that this step is essential to the design process becomes apparent in the next 

step. 
2.4.3. Stochastic Feedback Control System Design (Step 3). Let us recapitulate 

for a moment on what we have constructed up to now. From Step | we have: 

(1a) an ideal deterministic set of commanded input time sequences 

(1b) an ideal deterministic set of desired plant state variable and output time 

sequences. 

From Step 2 we have: 

(2a) a set of estimated plant state and output variable time sequences (which 

are hopefully close to the true plant state and output variables in the 

uncertain stochastic environment.) 

We now have the capability to compare the estimated state variables (from 2a) 

to the desired state variables (from 2b), at each and every instant of time. Their 

differences constitute a set of estimated deviations of the actual plant state variables 

from their ideal desired values at each instant of time. Thus, we have an approximate 

idea on how close is the response of thé physical process to its desired one. 

In general, due to the presence of uncertainties and plant disturbances, one 

would expect to observe such an estimated deviation. One can now reformulate the 

control objective as follows: 
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Desigr the compensator such that all estimated deviations of the plant state 

variables from their ideal desired values are close to zero for all instants of time. 

It should be clear that if we keep applying the ideal deterministic commanded 

input time functions (from Step 1a) that the above objective will not be met, since 

the deterministic input was found under assumptions (no uncertainty!) that are 

violated. Hence, one would expect that the actual commanded inputs to the 

physical process must be somewhat different than the ideal deterministic inputs 

found in Step 1. 

One can imagine that this is accomplished by constructing a set of control 

correction signals (generated on the basis of the estimated deviations of the state 

variables from their desired values) such that the actual commanded input to the 

physical process is the sum, at any instant of time, of the ideal inputs obtained in 

Step 1 and of the control corrections. 

2.5. Why Not Dynamic Programming? 

Since we are obviously dealing with a stochastic optimal feedback control 

problem, and since the only theoretical tool which is available to analyze this class 

of problems is dynamic programming (see reference 4), one may wonder why one 

does not attack the problem directly using the dynamic programming algorithm. 

The reason that dynamic programming is not used, is simply due to the curse of 

dimensionality (which is far more severe for stochastic problems as compared to 

deterministic problems). Thus, to obtain numerical solutions for realistic problems, 

we simply do not have, now and in the foreseeable future, digital computers with 

sufficient fast-access memories to solve this class of problems. It is for this very 

reason that the “suboptimal” three part approach to stochastic system design has 

gained popularity among engineering practitioners ; at the very least, the computa- 

tional requirements of this design approach are perfectly within the capabilities 

of modest digital computers. 

3. DETERMINISTIC IDEAL RESPONSE ANALYSIS AND DESIGN (STEP 1) 

3.1. Introduction 

As indicated in Section 2.4.1 the first step in the proposed design process 

assumes (only temporarily!) that the physical process operates in the absence of 

uncertainty. In this section we elaborate on the steps and techniques which cul- 

minate in the deterministic ideal pair of inputs and associated state variable 

response sequences. 

Our objective here is to indicate that additional “‘nonphysical”’ uncertainties 

can be introduced even if the physical process is assumed to operate in an otherwise 

deterministic physical environment. These “nonphysical”’ uncertainties are the 

results of modelling approximations. They lead to a structure similar to that of the 

overall stochastic problem even if all physical plant state variables can be measured 

exactly. 

454 



3.2. Deterministic Modelling 

It is essential for the overall design process that the physical process be 

modelled in a quantitative manner.* This of course requires a blending of natural or 

man made laws, experimentation, econometrics, etc., so as to determine the nominal 

parameter values of the physical process. 

Quite often assumptions that are made at this point are: 

1. Actuator dynamics are neglected 

2. Sensor dynamics are neglected 

3. The plant is modelled as a lumped system. 

3.2.1. Actuator-Plant Model. Under these assumptions the actuator and plant are 

modelled by a nonlinear time varying vector difference equation: 

(3.1) x(t + 1) = fi(x(), u(t),t);x(0) =x, ¢t¢=0,1,2,... 

where: 

x(t) is the plant state vector, an n-dimensional vector with components 
x(t), x2(t), ...,x,(t), for each value of the discrete time t 

u(t) is the plant control vector, an m-dimensional vector with components 

u,(t), u,(t),...,u,,(t), for each value of the discrete time t 

Xo = x(0) is the initial state vector at the initial time t = 0 

f(x(t), u(t), t) is the plant nonlinearity, a vector-valued nonlinear function 

with components /, (x(t), u(t),-t), f2(x(0), u(t), t), ..., f,(x(0), ufo), t). 

Remarks: 

1. In general, actuator dynamics, if significant, can be absorbed together with 

the plant dynamics, thus increasing the dimensionality of the state vector 

x(t). 

2. The function f{-,-,-) contains parameters whose values (nominal) are 

assumed known. : 

3. The function f{ - , - ,- ) is assumed (for technical reasons) continuous and at 

least twice differentiable with respect to its arguments x(t), u(t), and f. 

4. The effects of known exogeneous variables, known time-varying param- 

eters, etc., is absorbed in the time dependence of f(x(t), u(t), ¢). 

3.2.2. Sensor model. We let the output vector y(t) denote the r-dimensional vector 

that represents the variables that can be measured. Thus the components y,(t), 

y(t), ..., y,({t) ofy(t) denote the scalar variables that can be measured by the sensors, 

at each instant of time t. 

We assume that each output variable is at most a nonlinear combination of the 

state variables. This is modelled by. 

(3.2) y(t) = g(x(0), t) 

where g(x(t),t) is called the output nonlinearity, a vector-valued function with 

components g ,(x(t), t), g2(x(t), t), ..., g,(x(t), t). 

* We do not mean to minimize the difficulties associated with this step. Modelling is an extremely 
difficult process. The dynamics of aerospace systems are very simple and well understood as compared 
say to the dynamics of chemical process control systems or socio-economic systems. This is one of 
the reasons that most of the successful applications of the L-Q-G techniques have been to aerospace 
systems up to this time. 
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Remarks: 

1. Sensor dynamics, if significant, can be incorporated in the plant equation 

(3.1). 

2. The vector g(x(t), t) is assumed to be continuous and at least twice differen- 

tiable (once more for technical reasons). 

3.3. Ideal Input-State-Output Responses 

Under our assumptions the following is true 

Given 

© the current value state vector x(f) 

© the control input sequence u(t), t = t,t + 1,t + 2,... 

Then 

one can compute exactly the unique future state sequence {x(z)}, 

cet+it+2.... 

one can compute exactly the unique future output sequence {y(t)}, t = ¢, 

t+ it+ 2... 

This capability allows us to determine the ideal deterministic input-state pair for 

any given initial state x. In general, one is interested in the operation of the system 

over a finite time interval t = 0, 1, 2,... T. On the basis of the deterministic model 

one then defines : 

Ideal Deterministic Input Time Sequence: {u,(t)},t = 0,1,2,...,T — 1 

Ideal Deterministic State Sequence : {xo(t)},t = 0, 1,2,...,T 

Ideal Deterministic Output Time Sequence : {y,(t)},t = 0,1,2,...,T 

(3.3) Xo(t + 1) = f(xo(t), uo(t), t); x(0) = x 

Yolt) = g(Xo(?), ¢) 

3.3.1. Computation of ideal input-state response. The design procedure 

requires that to each initial state x, we associate an input-state pair of time 

sequences {up(t)} and {x,(t)},t = 0, 1, 2,..., T. The interpretation of {x(t)} is that 

it represents the desired state evolution of the system, provided that the system 

initial state is Xo. 

In principle, {up(t)} and {x9(t)} can be obtained by “experience” coupled with 

digital computer simulation. However, there is a systematic approach to the deter- 

mination of {u(t)} and {x,(t)} via the solution of a nonlinear deterministic optimal 

control problem. This involves the definition by the designer of a (nonquadratic 

in general!) scalar valued cost functional (objective function). 

T-1i 

(3.4) I = $(x(T)) + } L(x(t), u(t), t) 
t=0 

which incorporates any requirements on the terminal state x(T) by means of the 

penalty function $(x(T)), and any state variable constraints, control variable con- | 

straints, and optimality criteria in the function L(x(t), u(t), t). In this case then one 

can formulate a discrete-time deterministic optimal control problem of the form. 

Given the system (3.1) and the initial state xo. Find {uo(t)} and the resultant 

{Xo(t)} such that the cost functional (3.4) is minimized. 
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Remark 

It is possible to formulate and solve deterministic optimal control problems 

with “hard or soft” constraints on x(T), {u(t)}, and {x(t}}. However, these con- 

straints will be violated in the stochastic version of the problem, because of the 

unpredictable disturbances. It is for this reason that in this step, the deterministic 

optimal control problem is formulated in an unconstrained manner. 

3.3.2. The discrete matrix minimum principle. The deterministic discrete 

optimal control problem can be in principle solved by dynamic programming; in 

practice this is, however, not possible due to the curse of dimensionality. 

The appropriate theoretical tool is the so-called discrete minimum principle, 

which is the extension of Pontryagin’s maximum principle for continuous time 

systems (see reference 5), to discrete-time systems. Appropriate references for the 

discrete minimum principle are 6 to 8. We remark that the discrete maximum 

principle is essentially equivalent to the Kuhn—Tucker theorem. 

In the control literature, the dynamics of the system (3.1) are written in a some- 

what different form so as to make the discrete version of the minimum principle 

bear strong resemblance to the continuous time version. The statement of the 

problem and of the discrete version of the minimum principle are as follows: 

Problem 

Given a system described by the vector difference equation* 

(3.4) x(t + 1) — x(t) = fi(x(t), u(t), t); = x(0) = X_ 

and the cost functional, with T fixed 

F=-3 

(3.5) I = $(x(T)) + } L(x(0), u(t), 2) 
t=0 

Find the optimal control sequence, denoted by {u*(t)}, t-= 0,1,2,..., 7 — 1 

such that J is minimized. 

The Hamiltonian 

It is convenient to define the scalar valued function H, called the Hamiltonian, 

as follows: 

(3.6) H = H(x(t), u(t), p(t + 1), t) * L(x(0), u(o), 0) 

+ p(t + 1)f(x(2), u(t), 2) 

In (3.6) the sequence {p(t)},t = 0, 1,2,..., T is called the costate sequence ; p(t), the 

costate vector at time t, is an n-dimensional column vector (the same dimension as 

the state vector). 

The Discrete Minimum Principle 

Assume that an optimal control sequence exists. Let {u*(t)} denote the optimal 

control sequence, let {x*(t)} denote the optimal state sequence. Then there exists 

a corresponding costate sequence {p*(t)} such that the following conditions hold. 

* Note that f(- ) in (3.4) is not the same as the f{ - ) in (3.1). 
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A. Canonical Difference Equations 

State Dynamics 

H 
(3.7) x*(t + 1) — x*(t) = meh : = f(x*(t), u*(t), t) 

Costate Dynamics 

dH AL | of ) 
3.8 *(¢ + 1) — p*(t) = —-——~| = -=—| -|=-— t+1 G8) p+ )- P= -F5) =-S51 - lawl Met 

B. Boundary Conditions 

At the initial time t = 0: 

(3.9) x*(0) = x, 

At the terminal time T: 

wey 2G(x(T))| * = (3.10) WD) = a |. 

C. Minimization of Hamiltonian 

(3.11) H(x*(¢), u*(¢), p*(t + 1), 0) < H(x*(0), ule), p*(t + 1), 0) 

for each t = 0,1,2,..., 7 — 1 and all u(t)eR,,. Under appropriate smoothness 

conditions, (3.11) implies 

oH | 
3.12 =| = 
aida du(t)| , 

(3.13) fu | Ositive semidefinite m x m matrix 4 = m * 
oue?|, 

Remarks 

1. The precise conditions under which the discrete minimum principle is 

derived will not be given here ; see reference [6]. 

2. The discrete minimum principle yields, in general, a set of necessary con- 

ditions for optimality. Sufficiency requires additional (convexity type) 

assumptions. 

3.3.3. Computational algorithms. The control literature abounds with a host 

of computational algorithms, that use the necessary conditions of the minimum 

principle, which can be used to obtain in an iterative manner numerical solutions to 

the optimal control problem. 

The detailed description of these algorithms falls beyond the scope of this 

paper. The interested reader should consult references [9], Chapter 7, [10], [11] and 

[12]. Such methods as steepest descent, conjugate directions, conjugate gradient, 

quasilinearization, Newton’s method, etc., are extremely popular. We note that 

many of these algorithms are presented in the cited literature for the continuous- 

time optimal control problem ; however, their transliteration to the discrete time 

case is triviai. 
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3.3.4. Recapitulation. The solution of the deterministic optimal control prob- 

lem, using the discrete minimum principle and the associated computational 

algorithms, can be used to compute the ideal input {u,(t)}, state {xo(t)}, and output 

{yo(t)} sequences. We remark that this requires off-line computation. 

3.4. Control Under the Deterministic Assumption 

Let us now examine the interrelationship between our deterministic mathe- 

matical model and the physical process which appears in a deterministic environ- 

ment. 

Let {u(t)}, {x()}, {y(t)} denote the true input, state, and output sequences of 

the physical process. By assumption, all can be measured exactly. Let us imagine 

that we conduct the following experiment. We let 

(3.14) u(t) = u(t), t=#0,1,2....,T=1 

that is, we excite the physical system with the ideal input found in Section 3.3. Let 

us then measure the true state x(t) and output y(t) of the physical system. 

The natural question that arises is: 

Is x(t) = x(t) for all t = 0,1,2,...,T 

is y(t) = y(t) for all t = 0,1,2,...,T? 

In general, the answer is: no. The reason is that xo(t) and y,(t) were computed 

using a mathematical model of the physical process. However, the designer has to 

make some approximations (often intentionally) to arrive at the mathematical 

model, often neglecting to include second-order effects. Even if the equations were 

exact “structurally”, the values of the parameters used in the mathematical model 

are nominal ones and the true values may be slightly different. In addition, the actual 

initial state of the system x(0) may differ slightly from the ideally assumed one, 

X9(0). 

It then follows that errors in the deterministic model may by themselves con- 

tribute to deviations of the true physical plant state x(t) from its ideal deterministic 

one x,(t). In fact, small initial deviations, caused by the difference x(0) — x,(0), 

may get worse and worse as time goes on. 

3.5. Deterministic Perturbation Control Problem 

If we agree that our design objective is to keep the actual plant state x(t) near 

its ideal desired value x,(t), for all t = 0,1,..., T, then it is clear that the actual 

plant input sequence {u(t)} must be different from the precomputed ideal input 

sequence {up(t)}. 

This leads to define the following quantities 

® State perturbation vector ; 6x(t): 

(3.15) 5x(t) + x(t) — x,(t) 

© Output perturbation vector ; dy(t): 

(3.16) dy(t) + y(t) — yolt) 

® Control Correction Vector ; duit): 

(3.17) du(t) + u(t) — uo(t) 
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We can imagine that the control correction vector, du(t), is generated by a 

deterministic controller which is possibly driven by 

© the state perturbation sequence, {5x(t)} 

® the output perturbation sequence, {dy(t)} 

Thus, even in this deterministic case, one must use feedback control to take care of 

errors that are primarily associated with errors in modelling. We remark that this 

is one of the primary reasons for feedback, namely to make the system response be 

relatively insensitive to parameter variations.* 

The control objective can then be stated as follows: 

Given 5x(t) and dy(t), find u(t), t = t,t + 1,..., such that future state pertur- 

bation vectors, 6x(t), are “‘small’’ for allt = t + 1,..., T. 

3.6. The Linear-Quadratic Approach to the Deterministic Controller Design 

Since the compensator to be designed involves a relationship between 6x(t), 

du(t), and dy(t), it is natural to ask at this point how these quantities are related. 

The sought for relationship can be obtained by Taylor series expansions which lead. 

to the use of dynamic linearization ideas. 

3.6.1. The linearized perturbation model. The deterministic medel for our 

system is still employed (since we have no other!). Thus, we assume that the true 

control u(t), true state x(t), and true output y(t) are related by 

(3.18) x(t + 1) = fi(x(0), ud), 2) 

(3.19) y(t) = g(x(0), t) 

Similarly the ideal nominal control up(¢), state x(t), and output y,(t) are related by 

(3.20) Xo(t + 1) = f(xo(t), uo(t), 0) 

(3.21) Yo(t) = g(Xo(t), t) 

Expanding f(x(t), u(t), t) and g(x(¢), t) about x9(t), u(t) in a Taylor series expansion 

we obtain 

é 
(3.22) f(x(t)), u(t), t) = f(Xo(t), u(t), t) + a 5x(t) 

}0. 

+ = _ Bult) + ao(@x(0), Bu), 0 

fa) 
(3.23) g(x(t), t) = g(xo(t), t) + = 5x(t) + Bo(Sx(¢), t) 

0 

where a (x(t), 5u(t), t) and By(Sx(t), t) denote the higher order terms in the Taylor 

series expansions. 

From the above we readily deduce that 

(3.24) dx(t + 1) = Ao(t)dx(t) + Bo(t)u(t) + a (5x(t), du(s), t) 

(3.25) dy(t) = Co(t)dx(t) + Bo(Sx(2), ¢) 

* Parameter variations will also be discussed in Section 7 of this paper. 
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In the above we use the notations: 

(3.26) a Of 
Ao(t) = ox a of 

. ox xo(t) 
ao(t) 

isann x ntime-varying matrix which is obtained by evaluating the elements of the 

Jacobian matrix 0f/0x along the known (precomputed) time sequences {Xxp(t)} and 

{uo(t)}. 
of 

(3.27) B,(t) + za a of 
> Ou xo(t) 

ao(t) 

is ann x m time-varying matrix which is obtained by evaluating the elements of 

the Jacobian matrix Of/du along the known (precomputed) time sequences {x,(t)} 

and {u,(¢)}. 

A Og) » og 
(3.28) C(t) = Ox|) ax 

is an r x n time-varying matrix which is obtained by evaluating the elements of 

the Jacobian matrix 0g/dx along the known desired state sequence {x,(t)}. The 

equations (3.24) and (3.25), including the highest-order-terms represent the exact* 

relationship between 6x(t), u(t), and dy(r). 

The linearized perturbation model is obtained by setting the higher order terms 

equal to zero in equations (3.24) and (3.25) to obtain 

(3.29) 5x(t + 1) = Ap(t)dx(t) + Bo(t)du(t) 

(3.30) dby(t) = C,(0)6x(r) 

which is a standard state description of a linear discrete-time-varying system. 

Remark: 

The linear perturbation model (3.29) and (3.30) represents only an approxi- 

mate relationship between 6x(t), u(t), and dy(t), while (3.24) and (3.25) represents 

an exact model. 

xo(t) 

3.6.2. Justification of the quadratic criterion. As we have indicated before, the 

modelling aspects of a problem represent an extremely important part of the design 

process. The type of model is up to the designer; its relative accuracy is not of 

primary importance as long as one knows what are the effects of the approxima- 

tions to be made. Up to this point, the fact that the mathematical model x(t + 1) = 

f(x(t), u(t), t) was only an approximation to reality, forced us to introduce feedback 

and to seek the feedback controller. 

At this stage, we are also faced with a similar problem. The designer may wish 

to use the approximate linear perturbation model (3.29) and (3.30) rather than the 

more accurate nonlinear model (3.24) and (3.25). It is really up to him to do so, pro- 

vided that he can anticipate the effects of this choice upon the overall design. 

The fact that must be kept in mind is that one cannot simply ignore the higher 

order terms and hope that they are indeed going to be small. 

In order to trust the validity of the linear model the designer must guarantee 

that : the higher order terms a,(6x(t), du(t), t) and B,(x(t), t) are indeed “small”. 

* Assuming that x(t + 1) = fi(x(), u(t), t) and v(t) = g(x(t), t) are exact! 
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To see how this philosophy leads to the use of quadratic criteria and the linear- 

quadratic deterministic optimal control problem, it becomes necessary to examine 

in more detail the higher order terms. 

If we use Taylor’s theorem which allows us to truncate a Taylor series at an 

arbitrary point we can represent exactly the higher order terms as follows: 

0°f-) 

Ox?(t) | 
(3.31) &o(6x(t), du(t), t) = > baxio] 5x(t) 

i=1 

2 e 2 Ae 
+ du(t) OHA) du(t) + 28x'(1) A) iu) | 

du*(t) | Ox(t)Ou(t) | 

(3.32) Bo(Sx(t), t) = y 4x “(0 ix(| 

where 

(a) @; are the natural basis veetors in R, (i.e, @, = [1 0...0)). 

(b) The several second derivative (Hessian) matrices are evaluated at values 

X(t), i(t) which are jn general different than x,(t) and u,(t); the values of 

X(t) and fi(t) are, of course, not provided by Taylor’s theorem. 

The advantage of viewing the higher order terms in this context is that one 

can readily see that they are quadratic in x(t) and du(t). It is also clear that they 

involve certain unknown parameters since we do not know what X(t) and ii(t) are! 

This approach now leads to the following philosophy : 

To trust the validity of the linear model, one should select the {du(t)} such that 

eas 

(t) 

T-1 
(3.33) > ||@o(Sx(t), Su(t), t)|| = minimum 

t=0 

T-1 
(3.34) Y || Bo(Sx(t), t)|| = minimum. 

t=0 

Since ao(-) and Bo( - ) are quadratic in x(t) and du(t), one way of guaranteeing 

this is to select du(t) so that the “‘standard” quadratic cost functional* 
T-1 

(3.35) Jo = &x'(T)Qo(T) 8x(T) + FY [8x'(t)Qo(t) 5x(t) + Su‘(e)Ro(t) du(s)) 
t=0 

is minimized, where Q,(t), t = 0,1,..., T, are symmetric, at least positive semi- 

definite, matrices and Ro{t) is a symmetric positive definite matrix. 

The weighting matrices {Q,(t)} and {Ro(t)} are selected} by the designer as 

an upper bound to the effects of the second derivative matrices in equations 

(3.31) and (3.32) ; the matrix Q,(T) and the terminal penalty cost 6x’'(T)Q)(T) 5x(T) 

are often included to insure that the 5x(T) stay near zero at the terminal time, 

when the current actions of du(t) are not felt (since they take at least one unit of 

time to excite the system). 

We can see that the state dependent part (6x(T)Q,(T)6x(T) and 

5x'(t)Q_(t) 5x(t)) of the quadratic cost functional are consistent with the control 

objective of Section 3.5 which was to keep 6x(t) “‘small.’’ The difference is that 

* Gne could also include a cross term of the form 6x'(t)M,(1)6u(t) in (3.35). This causes no difficulty 
in its solution. (See for example, references [13] and [14].) 

+ The selection of the weighting matrices will be discussed in Section 3.9. 
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the vague “smallness” requirement has been translated into something very 

specific, namely, to a quadratic penalty on the state deviations 6x(t) from their 

desired zero values. 

The above arguments have hopefully communicated to the reader the notion 

that quadratic criteria can be used to keep a linear model as honest as possible. 

If the designer loved to work with nonlinear difference equations that were 

quadratic, then the Taylor series should have been terminated at the cubic terms 

and a cubic ci.terion should have been used to validate the quadratic model. 

Since the linear-quadratic problem has a “‘nice”’ solution, it may not be necessary 

to increase the complexity of the perturbation differential equation model further 

than the linear one. 

3.7. Formal Statement and Solution of the Deterministic Linear-Quadratic Problem 

Using the above philosophy (i.e., keeping our linearized model honest) we 

have arrived at the following precise mathematical optimization problem. 

3.7.1. The deterministic linear-quadratic problem. Given the linear, deter- 

ministic, time-varying system 

(3.36) 5x(t + 1) = Ao(t) dx(t) + Bo(t) du(t). 

Given a fixed time interval of interest t = 0,1,2,..., T. 

Find the contro! perturbation vector sequence {du(t)}, such that the following 

deterministic quadratic cost functional is minimized: 

(3.37) Jo = 6x'(T)Q,.(T) 6x(T) + y [Sx'(t)Q_(t) dx(t) + Su'(t)Ro(t) du(r)] 

where* ee 

(3.38) Q(t) = Q(t) > 0 forallt = 0,1,...,T (n x n matrix) 

(3.39) R,(t)=Rj(t)>90 forallt =0,1,...,T-—1 (m x m matrix). 

3.7.2. Solution of the linear-quadratic problem. The optimal control perturba- 

tion vector, du(t), is related to the state perturbation vector, 5x(t), by means of 

the linear time-varying feedback relationship 

(3.40) du(t) = — G,(t) dx(z); t=0,1,2,...,T-—1 

where G,(t) is a sequence of m x n control gain matrices, t = 0,1,...,T — 1; 

the value of G,(t) is given by 

(3.41) Go(t) = [Bo(t)Ko(t + 1)Bo(t) + Ro(t))~ *Bo(t)Ko(t + 1)Ao(t) 

where the n x n matrix K,(t) is the solution of the matrix difference equation 

(3.42)  — Ko(t) = Qolt) + Ao(t)Ko(t + 1)Ao(t) 

— Ao(t)Ko(t + 1)Bo(t)[Bo(t)Ko(t + 1)Bo(t) + Ro(t))~’ 

x Bo(t)Ko(t + 1)Ao(t) 

* The notation A > B means that A — B is positive semidefinite; A > B means that A — B is 
positive definite. 
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subject to the boundary condition at the terminal time T 

(3.43) K,(T) = Q,(T). 

3.7.3. Methods of proof. There are several ways of proving the above result. 

One way is using the discrete minimum principle and by subsequent manipulation 

of the necessary conditions (see, for example, [15]). Another way is through the 

use of the dynamic programming (see, for example, references [16], [9], [17] to [20)). 

3.8. Discussion 

The solution of the deterministic linear-quadratic problem provides us with 

a deterministic feedback design that attempts to null out deviations of the true 

state x(t) from its ideal response x,(t). From a practical viewpoint this deter- 

ministic design is appealing because the sequence of the control gain matrices 

G,(t) can be completely precomputed. 

The only practical deficiency of this scheme is associated with the fact that 

we cannot measure the true state vector x(t) so as to construct 6x(t). This fact 

alone provides us with sufficient motivation to examine the stochastic aspects of 

the problem in Section 4. 

3.9. Selection of the Weighting Matrices Q,(t), Ro(t) 

The selection of the weighting matrices in the quadratic criterion (3.37) is 

not a simple matter. Usually, they are selected by the designer on the basis of 

experience coupled with alternate simulation runs for different trial values. There 

is no universal agreement on precisely how these are to be selected for any given 

application; in the design of classes of aerospace systems several workers have 

developed rules of thumb on the relative values of the elements of these weighting 

matrices. 

In most practical applications, {Q,(t)}, and {R,(t)} are selected to be diagonal. 

In this manner, specific components of the state perturbation vector 6x(t) and of 

the control perturbation vector du(t) can be penalized individually; it helps to 

have a “physical” set of state variables and control variables so that relative 

weightings can be rationally assigned. 

For economic applications, and the effects of changing the weights the work 

of Pindyck (in this volume and in References [21] and [22]) has shed valuable 

insight. Needless to say, the book of Holt et al., (reference 23) contains specific 

suggestions for problems in management science. 

From a pragmatic viewpoint one can develop certain qualitative properties 

which can help the designer in the choice of these important design parameters 

(these properties are decided from the dependence of equation (3.42) upon Q,(t), 

and R,(t)). 

1. The larger ||Q,(T)||, the “larger”’ the control gain matrix G,(t) for values 

of time near the terminal time. 

2. The larger ||Qo(t)||, the “larger” the gain matrix G,(t) and the “faster”’ the 

time during which state perturbations are reduced to small values. 

3. The larger ||Ro(t)||, the “smaller” the gain matrix G,(t) and the “slower” 

the system. 

464 



From the point of view of the justification of quadratic criteria and honesty 

of linearization the size of the state weighting matrix Q,(t) should somehow be 

proportional to estimates of the second derivative matrices 67f,/@x?(t)—see 

eq. (3.31)}—while the control weighting matrix R,(t) should be related in a propor- 

tional manner to the second derivative matrices 67f,/du*(t). Estimates of these 

second derivative matrices can often be obtained by evaluating them at the 

“nominal” values up(t) and x(t). ’ 

An alternate procedure has been suggested in the context of perturbation 

guidance or neighboring optimal control ({9], pp. 177-197). This approach is 

motivated by the fact that one can use the solution of an optimal control problem 

to determine the optimal control u,(t) and the optimal state x,(t) as outlined in 

Section 3.3.1 of this paper. The basic idea uses the Hamiltonian function given 

by eq. (3.6). 

Let us suppose then that we use the discrete minimum principle to deduce 

the necessary conditions for optimality, and then apply an iterative algorithm 

to solve the nonlinear two point boundary value problem. As we remarked in 

Section 3.3.1, this procedure will yield the optimal control sequence {u,(t)} and 

optimal state sequence {x,(t)}. However, as a by-product, we also obtain the 

associated costate sequence {po(t)}. 

The key idea behind the neighboring optimal control is to assume that the 

actual controls and states are somewhat different than the optimal ones. One 

then can substitute eqs. (3.6) and (3.7) into (3.4) and obtain the increase in the 

cost which is approximately measured by the second variation, 5’J, and given by 

3.44) iJ =6 nt. 6x(T) 
©. = UTP |, 

67H | | 0?H 

en a Ox(t)? |) | Ax(Dault) |, | FSx(e) 
+ py [Sx'() duo) “OH || @H| Su(t) A 

du(t)Ox(t) |o' du(t) | 5 

One then seeks the control $u(t) which minimizes the second variation 67J subject 

to the linear difference equation constraints relating 5x(t) to du(t). This leads to a 

deterministic linear-quadratic optimal control problem and can be viewed as 

another justification for quadratic criteria ((9], p. 193). 

In the above the second-derivative matrices of the Hamiltonian H 

07H | eH | 0?H oH 

Ox(t)?| Ox(t)Ou(t) |) du(t)Ox(t)| 9 du(t)”| 9 

and 

07 

x(t)? |, 

are all evaluated along the sequences {x,(t)}, {po(t)}, {uo(¢)}. 
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Intuitively speaking, this approach attempts to minimize (to second order 

only!) increases in the cost functional. If we neglect the cross coupling terms one 

could then make the association 

ao 
(3.45) Q(T) ~ ax(TP| o 

07H 
(3.46) Qo(t) ~ axt0? | 

07H 
(3.47) Ro(t) ~ duit)" |o 

However, there is no guarantee that these matrices enjoy any of the definiteness 

properties required for global existence and uniqueness of solutions to the linear 

quadratic problem; if these definiteness assumptions are violated, then one may 

have to deal with singular problems. Also, note that this philosophy neglects the 

contribution of the third, fourth, etc. variations in the cost ; if these were going to 

be taken into account, then the partial derivatives of the Hamiltonian would 

have to be evaluated not at Xo(t), po(t), uo(t), but at some other time sequences 

that are not known (as it was the case with the approach of keeping the lineariza- 

tions honest). Nonetheless, this approach can often give the designer some clue 

as to the way these weighting matrices should be selected. 

4. STOCHASTIC ESTIMATION ANALYSIS AND DESIGN (STEP 2) 

4.1. Introduction 

We have seen that even under the deterministic assumption we require a 

feedback controller to take care of errors in modelling. The main practical 

disadvantage of the deterministic design step was that exact measurement of all 

state variables was necessary. This is seldom the case in practical applications. 

Even if one could measure all of the state variables, one has to use physical 

devices (sensors) to carry out these measurements. Physical sensors yield (more 

or less) inaccurate measurements. Thus, this uncertainty in measurement must 

somehow be taken into account. 

In addition, although the deterministic approach admitted errors in modelling 

(necessitating feedback) it did not explicitly take into account errors introduced 

by the actuators ; furthermore, it did not take into account that in many practical 

applications there are disturbance inputs acting upon the physical process, which 

are not generated by the control system (e.g., exogeneous stochastic variables). 

In this section we shall present the common means by which such “input” 

and “sensor” errors are introduced in the design process, and how they affect 

the generation of an estimate &(t) of the true state vector x(t), through the use of 

the Kalman-Bucy filter. Towards this goal we present in Section 4.2. some 

philosophical remarks pertaining to the use of white noise to model uncertainties 

in the design process. In Section 4.3 we formulate the combined modelling problem 

of using linearized dynamics and white Gaussian noise. In Section 4.4 we discuss 
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the linear-gaussian estimation problem and state its solution via the Kalman 

filter. 

4.2. The Use of White Noise 

It is common engineering practice to use a probabilistic approach to the 

modelling and implications of physical uncertainty. The reason is that a prob- 

abilistic approach is characterized by the existence of an extensive mathematical 

theory which has been already developed. Alternate approaches to uncertainty 

(e.g., via fuzzy sets, bounded but unknown uncertainty) have not as yet reached, 

from a mathematical viewpoint, the theoretical sophistication of the probabilistic 

approach. 

In the design of dynamical systems the existence in time of plant disturbance 

sequences and sensor errors is modelled by representing these uncertain time 

functions by means of random sequences. For example, suppose that n(t) is a 

random sequence which represents the “‘noise’’ that is introduced by a sensor at 

any time t. Hence, we can model sensor uncertainty by 

(4.1) z(t) = s(t) + n(t) 

where at time t 

@ z(t) is the actual sensor measurement 

@ s(t) is the actual variable to be measured 

@ n(t) is additive measurement noise. 

The statistical properties of n(t) in essence define the accuracy of the sensor 

at time ¢. At any time f¢,, the scalar n(t,) is viewed as a random variable. Its 

probability density function p(n(t ,)) summarizes the statistical knowledge at time fr, . 

However, since n(t) is associated with a particular sensor, one must also specify 

any statistical properties of the random variables n(t,) and n(t,) at any two distinct 

instants of time t, and t,. Such statistical information is specified by the joint 

probability density function p(n(t,), n(t2)) of the random variables n(t,) and n(t,). 

If n(t,) and n(t,) are dependent, then from Bayes rule we have 

P(n(t ,), n(t2)) 
(4.2) Pin(ts)/n(t,)) = 

which loosely implies that if we have observed n(t,) then we can say something 

about n(t,)—e.g., estimate its average value—before we actually measure n(t,). 

If on the other hand n(t,) and n(t,) are independent (uncorrelated in the 

Gaussian case), then 

(4.3) P(n(t,), n(t2)) = p(n(t,))p(n(t2)) 

and Bayes rule yields 

(4.4) p(n(t)/n(t,)) = p(n(t2)) 

which means that the fact that we have already observed n({t ,) does not help us at all 

to improve our knowledge about n(t). 
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These properties have significant implications from the point of view of the 

software that we have to utilize in our control system. If a sensor noise is modelled 

as a correlated random process, then we must expect some sort of estimation 

algorithm (based on eq. (4.2)) which attempts to guess properties of future values 

of sensor noise based upon past measurements. If this can be done (at the expense of, 

perhaps excessive, on-line computation) one can expect an improved “noise 

removing filter.” 

If on the other hand, we model the noise n(t) as “uncorrelated,” then past 

measurements do not help us at all in future guessing. In this case, the noise is 

unpredictable and no estimation algorithm that attempts to guess future values 

of the noise is required (and no on-line computations are required in this respect). 

The above discussion dealt with time-structure of the noise n(t). Let us return 

to the statistical properties of the noise at any instant of time t, . As we mentioned 

before, this statistical information is contained in the probability density function 

p(n(t,)). It is well known that two important statistical parameters (from an 

applications viewpoint) are the mean 

(4.5) E{n(t,)} = ni(t,) 

and the variance 

(4.6) var [n(t,)] = E{n(t,) — n(t,))*}. 

The mean f(t,) is what we would expect io see on the average. The variance helps 

us understand how much this average 7i(t,) is to be believed. A large variance 

means that the actual value n(t,) (in any given experiment) may be way-off (with 

a large probability) from its mean value. A small variance means that the mean 

is a pretty good guess. 

It is the opinion of the author that the use of white noise in control system 

design is primarily a modelling issue. The designer has to make a judgement on 

how to model uncertainties via white noise. There are no available cook-book 

procedures for doing this ; the success of the design depends on the ability of the 

designer to know the physics of his problem and to subjectively translate this into 

mathematical probabilistic models. We shall comment on these problems in 

Section 4.7 in some more detail. 

4.2.1. Mathematicai description of white noise. The mathematical specification 

of white noise is as follows. 

Let n(t) be a vector valued Gaussian white noise process with mean 

(4.7) E{n(t)} = 0 for allt = 0,1,2,...,T 

and covariance matrix 

(4.8) cov [n(t); n(z)] = E{n(t)n'(z)} = N(t) 6,, 

where 

(4.9) N(t) = N(t) > 0 

and 6,, is the Kroenecker delta. If N(t) = N = constant for all t, then we deal 

with stationary white noise. 
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4.3. Stochastic Modelling for Control System Design 

Let us now return to the modelling issues associated with the control system 

design problem. 

4.3.1. Actuator-plant-input disturbance models. Recall that in the deterministic 

version the relation of the true commanded input to the actuator, u(t), and that 

the true plant state, x(t), were related by the deterministic model (see eq. (3.1)) 

(4.10) x(t + 1) = f(x(r), u(t), t). 

In the stochastic case we can model* the actuator-plant-input disturbance part 

of our physical process by the stochastic difference equation 

(4.11) x(t + 1) = f(x(0), u(t), t) + E(t) 

where &(t) is a white noise process. The addition of E(t) to the otherwise deter- 

ministic model (4.10) implies that the designer is communicating to the mathe- 

matics one >r more of the following “facts of life”’: 

(1) That there are additional stochastic disturbances that drive the system 

(2) That the deterministic equations may be in error due to over-simplifica- 

tion 

(3) That some of the parameters in f( - , - , -) may not be exact (true parameters 

may vary slightly from their nominal values) 

(4) That the actuators introduce errors. 

If we examine eq. (4.11) we can see that since E(t) is white, then x(t + 1) can change, 

in part, in an unpredictable way. The deterministic part of the equation, 

f(x(t), u(t), t), represents the contribution of our completely predictable model; 

the stochastic part of the equation, &(t), stresses the unpredictable element of the 

real world. Loosely speaking, the use of eq. (4.11) is a way of saying to the mathe- 

matics “‘watch out! The deterministic equation is in error, but I will not tell you 

the structure of the error, so that you will not try to second-guess it in the future.” 

4.3.2. Sensor and measurement error modelling. Recall that in the deterministic 

case the type of sensors that could be used led to the definition of the output 

vector y(t) whose components were the variables that could be measured by the 

available sensors. The deterministic model was—see eq. (3.2)— 

(4.12) y(t) = g(x(o), £). 

The simplest way of modelling sensor errors is to assume that the sensor that 

measures the output variable y(t) yields the measurement (data) signal z(t) 

which equals y(t) and additive white noise 6,(t) 

(4.13) zAt) = yAt) + Oft) 

or, in vector notation, 

(4.14) z(t) = y(t) + O(t) = g(x(t), t) + Of) 

where @(t) is vector-valued white noise. , 

* This is the simplest possible model; more complex models can be considered, ¢.g., 

x(t + 1) = f(x(), u(t), (0), 0) 
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4.3.3. Initial uncertainty. In the deterministic context we assume that the 

initial state of the plant x(0) + xy was known. Since the state variables cannot be 

measured, we can no longer make this assumption. The simplest way of modelling 

this is to view the initial state x, as a vector-valued Gaussian random variable. 

Its mean and covariance matrix represent our a priori information about the 

initial conditions of our system. 

4.3.4. Statistical description. We can see that the uncertainty in the overall 

physical process has been modelled in three separate parts 

(1) Initial uncertainty: The initial state x. is viewed as a random variable 

(2) Plant uncertainty: The system is driven by the white noise &(t) which 

implies that the next state x(t + 1) has an unpredictable component 

(3) Measurement uncertainty : The output vector is corrupted by the additive 

white noise @(t), so that the measurement vector z(t) has an unpredictable 

component. : 

The quantitative description of this uncertainty is as follows. 

The initial state vector is Gaussian with known mean and covariance matrix, 

i.e., 

(4.15) E{x,} * &, (assumed known) 

(4.16) cov [X9;Xo] + E{(xg — X)(Xp — Xo)’} = Lp (assumed known); 

Xo => Xo > 0. 

The plant driving noise &(t) is discrete-time white, Gaussian, with zero mean 

and known covariance matrix for all t, i.e., 

(4.17) E{&(t)} = 0 for all t 

(4.18 cov (E(t); &(x)] + E{E(0E(x)} 

4 E(t) 6,,3; at) = E(t) > 0 for all t (assumed known). 

The measurement noise @(t) is white, Gaussian, with zero mean and known 

covariance matrix for all t > to, Le., 

(4.19) E{@(t)}} =0 = forallt 

(4.20) cov [0(t); O(c)]  E{0(t)6'(z)} 

= O(t) 6,,; Of) = Ot) > 0 for all t (known). 

Furthermore, one usually assumes that xy, &(t), and 0(t) are mutually independent, 

i.e., 

(4.21) cov [x,; &(t)] = 0 for all t 

(4.22) cov [X9; O(t)] = 0 for all t 

(4.23) cov [E(t}; &(z)] = 0 for all t, t. 

This assumption is reasonable in most physical applications. 

We shall discuss later the selection of the covariance matrices E(t) and @(t), 

which govern the “strength”’ of the white noise sequences &(t) and @(t), respectively, 

as well as of the initial covariance matrix Xo. 
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4.3.5. Linearized dynamics. Let us recall that one of the byproducts of the 

deterministic analysis was to specify an ideal deterministic time sequence, {u,(t)} 

an ideal deterministic state sequence, {x,(t)}, and an ideal output sequence 

{yo(t)}. Our control system objective was to augment u,(t) by the control correction 

vector du(t) so that the commanded control u(t) = uo(t) + du(t) had the property 

that the state deviation vector 5x(t) = x(t) — x,t) was “small” for all future 

values of t. 

Our control objective has not changed except that x(t), u(t), 5x(t), and d5u(t) 

are now random sequences (rather than deterministic). We still would expect to 

generate du(t) by means of some feedback arrangement which is based on the 

actual sensor measurements 2(f). 

Let us also recall that associated with the ideal state response x,(t) we had 

an ideal measurement vector yo(t) (see eq. (3.4)) and an output perturbation vector 

dy(t) = y(t) — yol(t) (see eq. (3.7). 
Since our measurement vector is given by z(t) = y(t) + O(t), then 

(4.24) At) = yo(t) + dy(t) + A(t). 

Arbitrarily we define 

(4.25) z(t) + z(t) + S2(t) 

where 

(4.26) Zo(t) & Yolt) = g(Xo(t), t) 

and 

(4.27) dz(t) = dy(t) + O(t). 

Note that z,(t) is a deterministic precomputable quantity. Hence 62(t) can be 

evaluated. 

A repeat of the development of the Taylor series expansions (see Section 

3.6.1) about x(t), up(t), yo(t), using the stochastic models leads to the following 

set of equations: 

(4.28) dx(t + 1) = Ap(t) dx(t) + Bo(t) du(t) + E(t) + a _(Sx(t), du(r) 

(4.29) dy(t) = Co(t) dx(t) + Bo(Sx(t)) 

(4.30) d2z(t) = Co(t) x(t) + O(t) + Bo(Sx(t)). 

In the above 

(a) The matrices A,(t), B,(t), Co(t) are still given by eqs. (3.26), (3.27), and 

(3.28) respectively. They are deterministic and precomputable. 

(b) The vectors a {-,-) and Bo(- ) represent the effects of the quadratic and 

higher order terms; they are stochastic sequences, since at least {8x(t)} 

is a stochastic sequence. 

Once more we define the linearized stochastic (approximate) model by: 

(4.31) x(t + 1) = Ao(t) x(t) + Bo(t) du(t) + Ee) 

(4.32) 5z(t) = C(t) dx(t) + O(t) 

simply by ignoring a,(- ) and B,(-) in eqs. (4.28) and (4.30) respectively. 
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To be sure eqs. (4.31) and (4.32) represent only approximations to eqs. (4.28) 

and (4.30). However, both equations contain the white noise driving term which 

at least is a “flag’’ to the mathematics that the linearized equations are “‘in error.” 

We can now see even more clearly the role of the white noises in modelling. 

Up to this point, the noise E(t) could be used to model input uncertainties and 

deterministic modelling errors. Now we see that it can also be used to model the 

fact that the higher order terms have been neglected in the use of eq. (4.31) instead 

of (4.28). Thus, the choice of the covariance matrix for E(t) 

(4.33) cov [E(t); E(t)] = S(t) 6,, 

i.e., the value of E(t) selected by the designer, should incorporate his judgment 

on the importance of the higher order terms in the validity of the linearized model. 

Thus, the “more nonlinear” the system dynamics, the “larger’’ E(t) should be used. 

The white noise @(t) (assumed independent of E(t)) in the observation equation 

(4.32) plays a similar role. Not only should it reflect the inherent uncertainty of 

the measurements due to sensor inaccuracies, but it should also be used to model 

the implications of neglecting Bo( - ) in eq. (4.30) to obtain the linear equation (4.32). 

Since 

(4.34) cov [O(t); O(t)] = Ot) d,, 

then the “more nonlinear” the output nonlinearity g(x(t), t) is, the “larger” O(t) 

should be selected. 

Admittedly, we are cheating in our quest for linear models. However, the 

use of white noises allows us to communicate to the mathematics our estimate of 

the “degree of cheating.’’ This is extremely important because as we shall see in 

the next section we shall ask some very precise questions of the mathematics. 

If we ask precise but stupid questions, we shall get precise but stupid answers! 

4.4. The Estimation (Filtering) Problem 

We have seen in eq. (4.25) that we can construct the signal 5x(t) from the 

actual sensor measurement z(t). The state perturbation 8x(f) is still the deviation 

of the actual state x(t) from the desired ideal state response x(t). However, 5x(t) 

cannot be measured directly; it is related, however, to the available signal 5z(t) by 

eq. (4.31). The future evolution of 5x(t) can be influenced by the control correction 

vector $u(t) according to eq. (4.31). 

We still want to keep 6x(t) small by selecting du(t). We have seen how this 

can be done in the deterministic case if 6x(t) were known. Since in this case 5x(t) 

is not directly available, then we can ask the following question: 

Is it possible to generate a “‘good”’ estimate 5X(t) of 6x(t), based on the measure- 

ments made up to time t, for any given time function du(t)? 

The Kalman filter presents a precise way of obtaining such an estimate. 

4.4.1. Statement of the filtering problem. Given the linear dynamic stochastic 

system 

(4.35) dx(t + 1) = Ao(t) dx(t) + Bo(t) du(t) + S(t) 
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and the linear stochastic measurement equation 

(4.36) 52z(t) = C,(t) dx(t) + O(¢). 

It is assumed that A(t), Bo(t), Co(t), du(t) are deterministic and known. It is 

assumed that the white noise &(t) has the statistics specified by eqs. (4.17) and 

(4.18). It is also assumed that the white noise @(t) has the statistics specified by 

eqs. (4.19) and (4.20). It can also be shown that 5x(t,) is a Gaussian random vector 

with mean (see eq. (4.15)). 

(4.37) E{8x(to)} = 5X&, = KX. — xo(0) (known) 

and covariance matrix Ly (see eq. (4.16)). 

Given the measured signal* 6z(t), for all t = 1,2,..., t. 

Find a vector 65X(t), an estimate of the true 6x(t) which is “optimal” in a 

well defined statistical sense. 

We remark that the linear-gaussian nature of the hypotheses allows us to 

define a variety of optimization criteria (least-squares, minimum variance, maxi- 

mum likelihood, etc.). They all lead to the same answer. For example, one can show 

that the above assumptions imply that the a posteriori density function of 6x(t) 

(4.38) p(dx(0)\Sz(t): t = 1,2,..., 2) 

is Gaussian and 6X(t), as generated by the Kalman filter, is the conditional mean 

(see [9] and [18}). 

4.4.2. The discrete Kalman filter. The easiest way of writing the equations of 

the discrete-time Kalman filter is to divide the calculations into two cycles 

(a) a predict cycle, and 

(b) an update cycle. 

This subdivision motivates us to a somewhat different notation. 

We let t denote the present value of time. We assume that we have available 

(a) the past measurements up to and including the current measurement 

6z(1), 6z(2),... , z(t) 

(b) The past control corrections 

du(0), du(1),..., du(t — 1). 

It is convenient to summarize this information set at time t by S(t); thus S(t) is 

the set 

(4.39) S(t) = {82z(1), 6z(2), . . -  b2(t), Su(0),..., du(t — 1)}. 

Now we define the following: 

(a) 5X(t\t) is called the updated estimate of 5x(t) given the information set 

S(t); under the linearity and Gaussian assumptions 6X(¢\t) is the condi- 

tional mean of x(t), i.e., 

(4.40) SR(t\t) = E{Sx(0)|S(0)}. 

* Here we assume that if the initial time is t = 0, the first measurement is taken at time ¢ = 1. 
This assumption is by no means crucial and it can be replaced by assuming that the first measurement 
occurs at t = 0. 
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(b) Xo(t\t) is the updated covariance matrix of 5x(t) given the information set 

S(t); under the linearity and Gaussian assumptions X(t|t) is the condi- 

tional covariance of 6x(t), i.e., 

(4.41) X(¢\t) = cov [6x(t); 5x(2)|S(2)) 

= E{(éx(t) — 5X(t\t))(Sx(t) — SX(t\2))'|S(0)}. 

(c) 5X(t + I]t) is called the one-step predicted estimate of 5x(t + 1) given the 

information set S(t), i.e., before the measurement 6z(t + 1) at time t + 1 

is obtained ; under the linearity and Gaussian assumptions 

(4.42) ‘ SR(t + 1\t) = E{Sx(t + 1)|S(0), du(e)}. 

(d) Xo(t + i|t) is the one-step predicted covariance matrix of 5x(t + 1) given 

the information set S(t); under the linearity and Gaussian assumptions 

(4.43) X(t + It) = cov [Sx(t + 1); dx(t + 1)|S(t), Su(t)] 

= E{(8x(t + 1) — Sxle + 12) (x(t + 1) 

— x(t + 1|2)|S(0), Su()}. 

Thus in the expressions for 6x(-|-) and 2,(-|-) the first symbol denotes the 

actual value of time while the second time denotes the last value of time at which 

the information was utilized. 

Under the linear-Gaussian assumptions the Kalman filter generates the 

above conditional means. Its detailed description is as follows: 

Initialization: At t = 0 

(4.44) 5x(0|0) = 5X, = E{Sx(0)} = prior mean 

(4.45) X,(0|/0) = X_y = cov [6x(0); 6x(0)] = prior covariance. 

One now proceeds in a recursive manner: for any t = 0,1,2,... assume that 

dx(t\t) and £,(t\t) are available. One then needs an algorithm that is based upon 

(1) the value of du(t) 

(2) the measurement 62(t + 1) 

one generates 

(1) Sx(¢ + Ile + 1) = EfSx(e + 1/S(¢ + 1)} 

(2) Xo(t + It + 1) = cov [Sx(t + 1); dx(t + 1)S(t + 1)). 

The predict cycle 

First one generates the one-step predicted estimate Ex(t + 1|t) by 

(4.46) Ex(t + 1)t) = Ao(t) Sx(e\e) + Bo(t) Su(t). 

Next, one generates the one step predicted covariance matrix L(t + 1|t) by 

(4.47) Lo(t + Alt) = Ap(t)/Xo(t|t\Ao(t) + Ee). 

The update cycle 

At time t + 1 one makes the measurement 62(t + 1). This can be used to 

improve the estimates obtained in the predict cycle. First one computes the 
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updated covariance Z(t + 1|t + 1) from the matrix difference equation 

(4.48) Zo(t + ijt + 1) = Loft + ifn) 

— X(t + IyColt + I[Colt + NXo(t + iHCo(t + 1) 

+ Ot + 1))-'C,(t + YXy(t + 10). 
A . “~~ “~™ 

Next one obtains the updated estimate 5x(t + 1|t + 1) ofSx(t + 1) from the vector 

difference equation 

(4.49) x(t + It + 1) = Sx(t + It) + L(t + It + ICL(t + 1I)O~ (et + 1) 

x [62(t + 1) — Colt + 1) Sx(e + 10). 

Remarks 

1. Note that the equations that propagate the covariance matrices, (4.47) 

and (4.48), are independent of 

(a) the actual applied du(t) 

(b) the actual measurement 6z(t + 1) 

i.e., independent of the information set. Hence the sequence of £,(t\t), 

t = 0,1,2,... can be computed off-line. The only on-line computations 

are those specified by (4.46) and (4.49), ie., the propagation of the estimates. 

2. If the Gaussian assumption is removed, the Kalman filter does no longer 

generate the conditional mean. However, among the class of linear 

estimators, the estimate-x(t|t) is optimal in a least squares sense. 

3. The quantity 

(4.50) Sr(t + 1) 4 Salt + 1) — Colt + 1) x(t + 12) 

is often called the residual or innovations sequence. This is the difference 

between the actual measurement, 6z(t + 1), and what we expected the 

measurement to be, C,(t + k) 5x(t + 1\t). If the linearity assumptions are 

valid, then the residual sequence is white with zero mean and covariance 

matrix 

(4.51) cov [Sr(t); Sr(z)] = [Co(t)Zo(t|)Co(t) + O(0)) 6,,. 

We remark that on-line test for the whiteness of the residual sequence are 

often used to calculate the degree of modelling error (see [30)). 

4. By defining the so-called Kalman filter gain matrix Ho(t + 1) by 

(4.52) H(t + 1) = Xolt + lle + YCot + O@-"t + 1). 

which can be computed off-line, and by substituting eqs. (4.46), (4.50), and 

(4.52) into eq. (4.49) we obtain 

(4.53) x(t + Alt + 1) = Ao(t) dx(¢|z) + Bo Sule) + Holt + 1) dr(t + 1). 

5x(t + ‘1|¢) 

This shows that the “larger” the filter gain matrix H,(t + 1) the more the 

residual is used (and hence the actual measurement) to correct the predicted 
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estimate 5x(t + i|t). The factors that contribute to a “large” gain matrix 

H,(t + 1) are (see eq. (4.52)). 

(a) large current uncertainty, i.e., large Xo(t + 1|t + 1) 

(b) large signal to noise ratio, i.e., large C(t + 1) 

(c) small measurement noise, i.e., small @(t + 1) and hence large @~ *(t + 1). 

Thus, the Kalman filter combines in a systematic way the state of knowledge 

about the system uncertainty, so as to decide each time that a noisy measurement 

is made, its relative value in correcting the available estimates. 

4.4.3. Derivations of the Kalman—Bucy filter. Since the original publication of 

Kalman [24] there have been many different derivations of these results each 

contributing to enhanced understanding to the advantages and shortcomings of 

these techniques (see references 9, 12, 18, 25 to 29) as well as extensions to the 

nonlinear case (see references 9, 25). 

4.5. Discussion 

Most of the difficulties that are encountered with the Kalman—Bucy filter 

are primarily related to 

(a) model mismatching (i.e., the model used in the implementation of the 

Kalman-Bucy filter is different than the physical process), and 

(b) correct selection of £,, and of the white noise covariance matrices &(t) 

and O(t). 

In pure filtering situations these contribute to the so called divergence of the 

Kalman filter. There are several analyses that have been carried out that considered 

the effects and implications of selecting the wrong covariance matrices (see, for 

example, [33] pp. 376-419). 

The existence of unknown biases in the noises E(t) and @(t) are not as 

troublesome since they can be estimated by an augmented Kaiman filter, at the 

expense of introducing additional state variables. Some research efforts have 

been directed toward simultaneous estimation of the state variables and the 

covariance matrices (see [30)). 

The sensitivity. and possible divergence, of the Kalman—Bucy filter is then 

intimately related to the modelling issues. If we view the (wrong) linearized model 

as a constraint, then the designer can attempt to minimize the filter sensitivity by 

judicious choice of the covariance matrices E(t) and @(t). Considerable success 
has been obtained in certain classes of application problems (re-entry vehicle 

tracking, orbit determination) by increasing the covariance matrix E(t) to com- 

pensate for modelling errors, which arise primarily in the dynamical equations. 

However, these techniques were developed only after excessive Monte-Carlo 

simulations and trial-and-error approaches. There is need for systematic 

approaches to this most important problem of selecting E(t) and @(t), and this 

represents an exciting research area. 

Loosely speaking, the effect of increasing the magnitude of the covariance 

matrix &(t) (fake plant noise) results in larger values of the covariance matrix . 

X(t|t)—-see eqs. (4.47) and (4.48)-—and this leads to an increase in the filter gain 

matrix Ho(t + 1)—see eq. (4.52). Qualitatively speaking, the residuals are then 

weighted more (the filter is paying more attention to the actual measurements to 

compensate for errors in the a priori values of A,(t), Bo(t), E(t), @(t) and £,) and 
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one obtains a high-gain filter. Thus, an increase in E(t) causes the filter to have a 

wider “bandwidth.” This bandwidth interpretation is useful since an increased 

&(t) means that the plant white noise E(t) has more power and, hence, causes more 

“wiggles” in the actual state x(t); the filter must estimate these “wiggles” in x(t) 

and this requires higher “bandwidth.”” Of course, a higher “bandwidth’’ passes 

more of the measurement noise @(t) and this is the price that one must pay. Hence, 

the choice of distinct pairs of Bt) and @(t) by the designer can be interpreted as 

one way of controlling the filter bandwidth. In fact, it appears that the class of 

applications in which increased values of E(t) “cured” the sensitivity of the 

Kalman-Bucy filter were characterized by relatively accurate measurements (low 

values of @(t)). 

The above discussions point out the relative effects of using white vs. colored 

noise in the modelling stage. if we model the plant uncertainties as colored noise 

(which may be more realistic since modelling errors are certainly not white), 

then we may get a better filter but at the expense of adding extra state variables 

in the dynamics. The issue of using colored measurement noise has been investi- 

gated (see, for example, [9] and [27]); its accurate modelling will certainly yield 

better results than its replacement with white noise. However, in the majority of 

applications, measurement noise is relatively white. Hence, in such applications, 

one would not expect too much improvement by the more accurate modelling 

of the measurement noise. 

In short, there are no general techniques currently available that can be 

applied with confidence by the designer when he has to select the noise covariance 

matrices E(t) and @(t). Nonetheless, physical intuition, common sense, and off-line 

simulations represent effective tools that have been used to obtain excellent 

designs. 

This brings us to a final word of caution. The ad-hoc techniques that have 

been developed for decreasing the sensitivity of Kalman filters do not necessarily 

carry over when the problem is one of stochastic control (in which the Kalman 

filter is a subsystem in the compensator). Many of the sensitivity problems that 

arise in filtering can be traced to the lack of a valid trajectory for linearization 

purposes. In the control problem, one does have a much more valid trajectory 

—1ip(t), Xo(t), Yo(t)—on which to base the linearizations. The reason is that one 

would select the control to keep the system near its desired precomputed 

trajectory. Hence, even if a Kalman filter is “by itself” relatively sensitive, this 

does not necessarily imply that, when it is used in the control problem (as part of the 

compensator), the closed-loop control system will be as sensitive. Intuitively speaking, 

in the latter problem there are many more feedback loops that help to reduce 

sensitivity. Thus, the selection of the matrices X,, S(t) and @(t) by the designer, 

should depend on whether or not the problem is that of state estimation or 

stochastic control. Additional discussion on this point will be presented in the 

sequel. 

5. STOCHASTIC CONTROL SYSTEM DesiGN (STEP 3) 

5.1. Introduction 

We have seen how the linearized Kalman—Bucy filter can be designed so as 

to generate in real time the estimated deviation 6X(t\t) of the actual plant state x(t) 
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from its ideal deterministic response x(t). Of course 6x(t) also depends on the 

control correction vector du(t). Hence, one can now think of the final step of the 

design process as the techniques necessary for generating on-line the control 

correction vector du(t) as a function of the measurements so as to keep 6x(t) small. 

The remarkable property of the “‘linear-quadratic-gaussian”’ control problem 

is that the optimal control correction du(t) is generated from the estimated state 

deviation 5x(t|t) generated by the Kalman filter by means of the relationship 

(5.1) du(t) = —G,(t) dx(t\t) 

where the gain matrix G,(t) is precisely the one determined in the solution of the 

deterministic linear-quadratic problem (see Section 3.7 and eq. (3.40)). Recall 

that the deterministic solution was 

(5.2) du(t) = — Go(t) dx(0) 

under the assumption that the complete state perturbation vector 5x(t) is measured 

exactly. Furthermore, recall that in the statement and solution of the filtering 

problem (see Section 4.4) the control correction vector du(t) was assumed 

deterministic. Clearly, from eq. (5.1), du(t) is not deterministic (since 6x(t) is a 

random process). Thus, it is neither apparent nor intuitively obvious why the 

generation of the control correction vector according to eq. (5.1) should be 

“optimal” since in the true stochastic problem 

(a) The deterministic assumptions on 5x(t) that led to the generation of uo(t) 

are violated, and 

(b) The deterministic assumptions on du(t) that led to the generation of 

SX(t\t) are also violated. 

Thus, the purpose of this section is to precisely state how the overall “‘linear- 

quadratic-gaussian”’ problem solution separates into the solution of a “linear- 

quadratic”’ deterministic problem and the solution of a “linear-gaussian” 

estimation problem. The key theorem that shows this property is often called the 

separation theorem (see references [9], [26], and [31] to [36)). 

We remark that what is referred to as the “separation theorem”’ in the control 

literature and the “certainty equivalence principle” in the economic literature 

(see [23], [37], [38]) are essentially the same thing ; there are structural differences 

because in the “certainty equivalence”’ principle one needs the conditional mean ; 

in the “separation theorem”’ the conditional mean is explicitly generated by the 

Kalman filter; because of this fact one can explicitly obtain many interesting 

properties of the overall stochastic control system. 

5.2. The Linear-Quadratic-Gaussian Problem 

We have seen in Section 4.3.5 that the (approximate) linearized relation 

between the actual state deviation vector 5x(t) and the control correction vector 

du(t) is 

(5.3) dx(t + 1) = Ao(t) dx(t) + Bp(t) du(t) + E(t) 

while the true relation was that of eq. (4.28) which includes the effects of the higher 

order terms in the function a,(6x(t), du(z), t). 
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Similarly, we have seen that the (approximate) linearized measurement 

relation between 6z(t) and x(t) is 

(5.4) 5z(t) = C(t) dx(t) + O(t) 

while the true relation was that of eq. (4.30) which includes the effects of the higher 

order terms in the function B,(6x(t), t). 

We can motivate the use of quadratic criteria by mimicking the development 

of 3.6.2 in the deterministic case ; there we remarked that use of Taylor’s theorem 

can be used to justify the fact that the control correction vector du(t) could be 

selected so as to “maximize the validity of the linearized model”’ by minimizing 

the quadratic cost given by eq. (3.37), i.e., 

T-1 
(5.5) Jo = 6x'(T)Q,(T)x(T) + yi [8x'(t)Qo(t) x(t) + Su'(t)Ro(t) Su(zt)). 

However, in our case J, is a scalar-valued randoim variable, because both 6x(t) 

and éu(t) are random sequences. 

Great care must be exercised in order to arrive at a well-formulated stochastic 

optimal control problem. There are two issues that demand precision 

(a) Precisely what type of an expectation should be used in the cost functional? 

(b) Precisely what is the admissible class of control that will be allowed in 

the optimization? 

Such issues have often been slurred over in the literature; hence, there have been 

many derivations of the right result using erroneous formulations (see [34] and 

[391 for a critical discussion). 

For the correct formulation of the cost functional to be minimized, consider 

the situation at any time (the present time). In addition to any a priori information, 

the following information set S(t) is available 

(5.6) S(t) = {82(1),..., z(t), 5u(O),..., u(t — 1)}- 

Then it makes sense to minimize the conditional expectation of the cost-to-go, 

denoted by 
+ Co | 

(5.7) Jo(t) = E{Sx'(T)Qo(T) &x(T) + }) [6x'(t)Qolt) x(t) + Su‘(e)Ro(t) Su(e))|S(z)}. 
t=t 

The way that the minimization is to be carried out is by the judicious choice of 

the control corrections from now on 

du(t), du(t + 1),...,5u(T - 1). 

However, we must be careful in communicating to the mathematics what we are 

allowing the control corrections to depend upon. 

To obtain realizable controls, that utilize the maximum information, we can 

specify that the du(t) at any time t, now and in the future, should depend on all 

information available up to time t, namely S(t). Mathematically then we demand 

(5.8) Su(t) = H(S(2), t) 

where (-,-) is a deterministic map of all past measurements and controls, and 

perhaps of the time t. It should be noted that the structure (5.8) communicates 
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to the mathematics that we expect to make future observations (from time t on) 

and that future controls will be functions of these measurements. 

The use of the cost functional (5.6) implies also that we wish to “maximize 

on the average, the validity of our linearized stochastic models.” Since E(t) and 

Q(t) are white, and hence unpredictable, in individual experiments they may cause 

the system to deviate significantly from the region in which the linearization is 

more-or-less valid. Since we have no control over the specific outcome of the 

white noise processes, we cannot guarantee the validity of the linearization for 

any specific experiment. However, we can attempt to design the control system 

so as to optimize its average behavior. 

5.2.1. Formal statement of the linear-quadratic-gaussian stochastic control 

problem. Given the linearized dynamical system (5.3) and the linearized observa- 

tion equation (eq. (5.4). Given the information set S(t). Find a system that generates 

the control correction vector du(z), according to (5.8) such that the “average cost 

to go” given by (5.7) is minimum. The weighting matrices Q,(t), Rp(t) are those 

defined in Section 3.7.1, while the statistical properties of the noises are those given 

in Section 4.3.4. 

5.2.2. The separation theorem: Solution of the linear-quadratic-gaussian 

stochastic control problem. The optimal control correction vector $u(t) is generated 

by 

(5.9) du(t) = — Go(t) 5X(¢\0). 

Specification of Go(t): 

The control gain matrix G,(t) is obtained by the solution of the deterministic 

linear quadratic problem (see Section 3.7.2) forgetting completely the stochastic 

aspects. Thus G,(t) is given by eqs. (3.41), (3.42), and (3.43). 

Specification of dx(t\t): 

The vector 8x(t|t) is generated by the Kalman—Bucy filter (see Section 4.4) 

under the assumption that du(t) is deterministic and forgetting completely the 

control problem. Thus, 5x(t\t) is specified by eqs. (4.44) to (4.49). 

5.2.3. The minimum value of the cost to go. It is also possible to evaluate the 

minimum value, J%(t), of the cost-to-go ; the formula is 

(5.10) T#(t) = 5x'(tq|t)Ko(t) 5x(z|7) 

T-1 

+ tr [Ko(t)Z(z\)] + » tr (Ko(t + 1)&(t)) 

z=8 

+ > tr[Kol(t + IBo(t)Go()Zo(t\t)Ao(t)] 

where (see eq. (3.41)) 

(5.11) G,(t) = [Bo()Ko(t + 1)Bo(t) + Ro(t)]~ *Bo(t)Ko(t + 1)Ao(t). 

Equation (5.10) has important interpretations and is extremely valuable in 

assessing the effects of uncertainties coupled with the control doctrine. Each of 
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the four terms in eq. (5.10) has a special significance, and for this reason we shall 

discuss them separately. 

1. The first term 

(5.12) 5x’(c/t)Ko(t)5x(t|7) 

in (5.10) represents the effect of the current estimate 5x(t|r) of the deviation 6x(t) 

of the actual state x(t) from the desired one x,(t). Note that this term cannot be 

ev.luated off-line, because 5x(t|t) depends on the actual measurements, although 

the matrix K,(t) can be computed off-line by eqs. (3.42) and (3.43). 

2. The second term 

(5.13) tr (K,(t)Z_(t|t)] 

in eq. (5.10) represents the increase in the cost due to the current uncertainty in 

5x(t); recall that under the linearity and Gaussian assumptions £,(t|t) is the 

conditional covariance matrix of 6x(t). This term can be computed off-line since 

both K,(t) and £,(t/t) can be calculated before the actual system actually is 

placed in operation. Note that this term couples the effects of the control cost 

functional—via K,(t}—and the current accuracy of estimation—via £,(t|r). 

3. The third term 

z.~§ 
(5.14) > tr [Kot + )E(0)) 

summarizes the contributions of the future plant white noise sequence ; the more 

noisy the system, the larger the covariance matrix E(t) and the larger the stochastic 

cost. Once more this term can be calculated off-line since it does not depend upon 

the actual measurements. 

4. The last term 

T-1 
(5.15) tr [Ko(t + 1)B(t)G()Zp(¢\)Ap(0)] 

t= 

in eqs. (5.10) summarizes the contributions of future uncertainties in the estimate 

of 5x(t), which are reflected by the values of the covariance matrix £,(t\t). Once 

more this quantity can be computed off-line. Note that the effects of future 

measurement accuracy are reflected in this term since X(¢|t),t =1t,t+1,..., T-1 

depends on the measurement noise covariance matrix @(t) (see eqs. (4.47) and 

(4.48)). Once more the future accuracy of estimation, dictated by the Kalman 

filter and quantified by £,(¢\t), couples to the control objectives, which are 

quantified by the values of K,(t + 1) and G,(t). 

5.3. The Special Case of Noiseless Measurements 

In many economic problems the assumption is made that all state variables 

can be measured exactly; in our terminology this means that 6x(t) is known 

exactly. Under this assumption the “conditional mean” is the measurement 

itself, i.e., 

(5.16) 5x(t\t) = 5x(t) 
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and the conditional covariance is zero, i.e., 

(5.17) X(t\t) = 0. 

For such problems, one of course does not need the Kalman filter, even if the 

system is still stochastic (E(t) # 0). The optimal control is still generated by (5.9) 

with the constraint (5.16). 

The noiseless measurements naturally decrease the minimum value of the 

cost. In view of (5.16) we see that the second and fourth terms in eq. (5.10) vanish ; 

the stochastic aspects of the problem are reflected in the third term (5.14) of the 

cost function. For additional remarks on this problem see ref [40]. 

5.4. Methods of Proof 

The most fail-safe method of deriving the separation theorem is via dynamic 
programming; references [9], [18] to [20], [28], [32] to [40] contain such derivations 

although the methods of proof can be quite different, and the level of rigour quite 

variable. It is worthwhile to note that [32] employs a clever transformation of the 

noisy measurement problem to an equivalent noiseless measurement problem, 

using the whiteness of the residual or innovations sequence. The appropriate way 

of using deterministic optimization techniques, i.e., the discrete minimum prin- 

ciple, to solve this stochastic optimal control problem can be found in [39] and [41]. 

5.5. Discussion 

We shall now make some brief remarks regarding the interpretation that 

should be attached to the formal solution to the linear-quadratic-gaussian 

problem. First, we shall discuss how trade-off studies regarding the accuracy 

as well as the type of sensors and actuators to be used affect the solution to the 

control problem as a whole. Let us suppose that the weighting matrices Q,(t), 

and R,(t) have been somehow selected. In this context, the solution Ko(t) of the 

control equation (3.42) is available. 

5.5.1. Sensor selection. Let us suppose that we are faced with the problem of 

selecting between two types of measurement devices which, except for accuracy, 

perform otherwise the same tasks. Suppose that the more accurate sensor(s) is 

characterized by a measurement noise covariance matrix @,(t} while the less 

accurate by @,(t), such that ©,(t) < ©,(t). On the other hand, the more accurate 

sensor(s) cost more money. For each sensor, we can solve the filter problem 

equations {4.47}{4.48) and obtain the corresponding error covariance matrices, 

say X,(t\t) and L,(¢|r); it turns out that 2,(t) < L,(¢), ie., use of the more accurate 

sensor improves the estimation accuracy. In fact, from the filtering viewpoint the 

increase in state estimation accuracy may justify the increase in monetary cost. 

However, it does not necessarily follow that the expected improvement in the 

control system performance will necessarily justify the monetary cost. The reason 

is that only the last term (5.15) in the minimum cost functional (5.10) will decrease 

(since X,(t\t) < £,(t\t)) from the use of the more accurate sensor. However, the 

relative percentage in increased performance is also governed by the first three 

terms in (5.10). It may turn out that for a doubling of invested money we may 
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double estimation accuracy, but only buy a few percent in improving the control 

system performance as measured by (5.10). In particular, if we assume that at the 

initial time the state deviations are small, then we can carry out off-line (non- 

Monte-Carlo) studies by examining essentially percentage changes in the last 

three terms of (5.10). 

Similar remarks can be made regarding the selection of the number of sensors. 

In our context, this would change the C,(t) matrix (both dimensionwise and 

numerically) in eq. (4.48); this in turn will change the value of the £,(¢|t) matrix 

that affects only the last term in eq. (5.10). 

5.5.2. Actuator and model accuracy tradeoffs. In a similar vein we can carry 

out tradeoff studies which involve the selection of the plant noise covariance 

matrix =(t). As we have remarked before, this models the total uncertainty in the 

dynamics (due to actuator errors as well as modelling errors). Let us suppose that 

we can “buy” two sets of actuators characterized by ©,(t) < &,(t) so that the 

first are more accurate (and more costly) than the second. Once more, from 

eqs. (4.47){4.48) we can deduce that Z,(t\t) < £,(t\t); ie., more money busy in- 

crrased state estimation accuracy (one can make a similar argument that more 

accurate modelling requires more engineering and experimentation time). As far 

as the effects of less plant uncertainty on the control system performance is con- 

cerned, different values of =(t) affect the last two terms in the cost (5.10)—directly 

in the third term (5.14) and indirectly via £,(¢|t) in the fourth term, (5.15). 

Even more interesting (off-line and non-Monte-Carlo!) tradeoffs can be 

carried out in the wisest allocation of funds partly to buy some better sensors, 

partly to buy some better actuators, and partly to invest in additional engineering 

time for better modelling. 

5.6. On The Selection of Weighting and Covariance Matrices 

We conclude this section with some remarks pertaining to the selection of 

the control weighting matrices and the noise covariance matrices. 

The fact that from a mathematical point of view the separation theorem allows 

us to solve the control and filter problems separately, does not imply that these 

two problems should be solved separately by two distinct design groups and 

‘hooked together’’ by the supervisor. Unfortunately, this is how the theorems 

have been used in many engineering designs leading to unsuccessful results. For 

this reason, we shall briefly elaborate on the proper usage of this theorem. 

In general, if we could solve the overall nonlinear nonquadratic stochastic 

control problem, the optimal design would not obey this nice separation property. 

Since we cannot solve the true problem, we employ the linear-quadratic-gaussian 

approach to arrive at a set of problems that we can solve. The key question is then: 

What is available to the designer to control the goodness of the overall design so 

that he can obtain a satisfactory system? The answer to this question is the selection 

of the four matrix sequences {Q,(t)}, {Ro(¢)}, {E(f)} and {@(¢)}. For any arbitrary 

selection, the mathematical problem separates. However, this does not mean that 

Q,(t), Ro(t), and E(t), O(t) should be selected independently of each other. The 

discussion of section 5.3 points this out to a certain degree since the changes in 
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uncertainty by changes in E(t) and @(t) are modulated by the values of R,(t) and 

Q,(t) (via Ko(t)) in the cost (5.10). 

Unfortunately, there seems to be no published literature on the above point. 

We have already commented that Q,(t) and R,(t) can be used in the quadratic 

criterion to maximize linearization validity (see section 3.6). We have also 

commented that E(t) and @(t) can be used to communicate to the mathematics 

the existence of modelling errors due to linearization (see section 4.3.5). Clearly 

both sets of matrices are partly used for the same purpose: hence, their selection 

should not be done independently. Unfortunately, as we have stressed throughout 

this paper, there are no systematic procedures available for the specification of 

Q(t), Ro(t), S(t), and O(t). Additional theoretical research and applications studies 

are necessary. 

6. SUMMARY OF THE L-Q-G APPROACH TO DESIGN 

We have outlined the philosophy, assumptions, formulation, and mathe- 

matical characterization of a design process for controlling a nonlinear uncertain 

system about a desired trajectory, through the use of the so-called linear-quadratic- 

gaussian problem. This design process represents a relatively well understood 

by-product of modern control theory. Of course, successful control systems have 

been designed using alternate approaches. However, this design process is charac- 

terized by a clear cut division of responsibilities between the modelling and the 

calculation aspects of the problem. 

We outline below, for the sake of completeness, the thirteen key steps in the 

design process. All of these are carried out off-line; the on-line computational 

requirements are minimal. 

PART A: DETERMINISTIC MODELLING 

Step 1: Determine a deterministic model of the plant; this yields 

x(t + 1) = f(x(t), u(t), £). 

Step 2: Determine a deterministic model of the sensors; this yields 

y(t) = g(x(0), ¢). 

Step 3: Determine ideal input-state-output sequences (perhaps using the 

discrete minimum principle) 

{uo(t)} :ideal input sequence 

{xo(t)} :ideal state sequence 

{yo(t)} :ideal output sequence 

for all t = 0,1,2,..., T. 

PART B: STOCHASTIC MODELLING 

Step 4: Model uncertainty in initial plant state 

Select mean: x) = E(x(0)}. 

Select covariance: £, = cov [x(0); x(0)]. 
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Step 5: Model input uncertainty 

Select covariance: E(t) 6,. = cov [E(t); E(r)]. 

Step 6: Model sensor uncertainty 

Select covariance O(t) 6,, = cov [O(t) ; O(z)). 

PART C: LINEARIZATION 

Step 7: Establish matrices A,(t), By(t), and C,(t) from information in Steps 1, 

23 

of | | ef | dg 
Baan Fe 

ox lo Bol) = 3, ‘ole Colt) Ax(t) |, 
A(t) = 

Step 8: Depending on “degree of nonlinearity’ select weighting matrices 

Q,(t), Ro(t) with due consideration of the values of Xo, E(t), and O(t). 

PART D: CONTROL PROBLEM CALCULATIONS (OFF-LINE) 

Step 9: Using the weighting matrices Q,(t), Rp(t) of Step 8 and the matrices 

Ao(t), Bo(t) of Step 7 solve backward in time the matrix difference equation 

K,(t) = Qo(t) + Ap(t)Kol(t + L)Apo(t) — Ap(t)Ko(t + 1)Bo(t) 

x [Bo(t)Ko(t + 1)Bo(t) + Ro(t)]~ "Bolt)Ko(t + 1)Ao(t) 

with K,(T) = Q,(T). 

Step 10: Compute the control gain matrix G,(t) 

G,(t) = [Bo(t)Ko(t + 1)Bo(t) + Ro(t)]~ *Bo(t)Ko(t + 1)Ao(t). 

PART E: FILTER PROBLEM CALCULATIONS (OFF-LINE) 

Step 11: Using the covariance matrices Lp, E(t), and O(t), established in 

Steps 4-6, and the matrices Ao(t), Co(t) of Step 7 solve forward in time the matrix 

difference equations 

Lo(t + I]t) = Ap(t)Xo(t\t)Ag(t) + S(t) 

Lo(t + It + 1) = Loft + Alt) + Volt + Aft + Cyt + 1) 

x [Colt + E(t + UdCo(t + 1) + Ot + I)-'Co(t + HX o(t + 10) 

with £,(0|0) = & 

Step 12: Compute the filter gain matrix 

H(t + 1) = Lo(t + Ae + Colt + NO '(t + 1). 

PART F: ON-LINE CALCULATIONS 

From the actual measurements 2(1), z(2),.. .’ 

(a) Compute 62(1), 5z(2),..., by 

6z(t) = A(t) — g(Xo(t), t). 
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(b) Compute estimated deviations 5x(t|t) and control correction du(t) by: 

5x(t + 1|t) = Ao(t) dx(t\t) + Bo(t) Su(t) 

Sr(t + 1) = Sz(t + 1) — Colt + 1) Sx(t + 1d) 

Sx(t + It + 1) = Sx(t + 1d) + Holt + 1) Se(t + 1) 

Su(t) = —Go(t) x(¢ | 1) 

5x(0|0) = E{x(0)} — xo(0). 

(c) Compute actual control u(t) by: 

u(t) = u(t) + dur). 

The step-by-step development should convince the reader of the crucial 

importance of the modelling issue in this design process. The ability of the designer 

to translate physical quantities- into their mathematical counterparts in Steps 

1,2, 3,4, 5, 6 and 8 is absolutely essential. Once the modelling has been carried out, 

the remaining steps 7, 9, 10, 11, 12, and 13 are purely mechanical. 

7. TRENDS IN ADAPTIVE CONTROL 

As remarked before, the use of the linear-quadratic-Gaussian problem for 

feedback control system design for nonlinear stochastic systems, represents the 

simplest possible approach. It hinges on the assumption that the feedback control 

system can do a good job of returning the state of the system to its desired nominal 

trajectory. From an engineering viewpoint, the major advantage of this approach 

is that most of the complex calculations can be carried out prior to the actual 

system operation, and the on-line calculations are minimal. 

One of the most important problems in engineering, economics, management 

science, and urban systems arises when certain of the parameters of the dynamical 

system are not known exactly. These parameters may be constant or time-varying 

(in a deterministic or stochastic manner). Thus, such systems may be described 

by the difference equation 

(7.1) x(t + 1) = f(x(0), pd), ud), 2) + E(0) 

where x(t) is the state, u(t) is the control, p(t) is the parameter vector and &(t) is 

the additive plant white noise. 

If the parameters are constant, then 

p(t + 1) = p(t) 

and p(t) can be viewed as a random vector. At the opposite extreme, the parameters 

may change in a stochastic manner 

(7.2) p(t + 1) = h(p(e), t) + y(0) 

where h(-,-) summarizes the deterministic variation, and y(t) is another white 

noise. 

As we have remarked before, the use of feedback does tend to compensate 

to a certain extent the effects of parameter variations. Thus, if we have a nominal 
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sequence of parameters, denoted by p(t), then we can use the suggested approach 

with some degree of confidence provided that we are sure from the start that the 

parameter variation vector 

(7.3) Sp(t) = p(t) — pol?) 

is “‘small.”’ 

We emphasize that there is a distinct difference between having 5x(t) “‘small,” 

and dp(t) “‘small.”’ In the case of the state, the control can influence x(t), and hence 

5x(t); it was this fact that was crucial in the use of linearization. On the other 

hand, as it can be evidenced by eqs. (7.2) and (7.3), the control u(t) cannot influence 

the dynamic evolution of the parameter vector p(t); thus, there is no way of using 

the control to maximize the honesty of any linearizations about the nominal parameter 

sequence p(t). 

For this reason, if one suspects that dp(t) can become large, then the approach 

described in this paper may not lead to a satisfactory design. 

There are techniques available that can incorporate the effects of unknown 

parameters. It should be stressed right at the start that these techniques require 

much more on-line computation than the procedure described. For many 

engineering applications, the extra on-line computational requirements makes 

such techniques impractical. However, there are some engineering applications, 

and certainly economic applications, which are characterized by sufficient time 

between measurements and decisions so that the increased on-line computations 

become feasible. 

In the remainder of this section we shall present a very brief review of the 

engineering literature on this problem. We remark that this is called the adaptive 

control problem; the references [42]-[58] contain a (non-exhaustive) sample of 

pertinent works. 

It should be self-evident that since the actual parameter sequence p(t) may 

differ from the a priori nominal parameter sequence p(t), then on the basis of 

measurements (noisy or not) one needs to construct a parameter estimate sequence 

(7.4) p(c|t) 

in addition to a state estimate sequence 

(7.5) R(t). 

Depending on the structure of the equations this estimation problem (even for 

linear systems!) may be a nonlinear one. In this case, one employs an extended 

Kalman filter or more complex estimation algorithm (see reference [25]) to generate 

the estimates p(t|t) and &(¢\t). It is beyond the scope of this paper to delve in detail 

on the detailed structure of these nonlinear estimation algorithms. However, it is 

worthwhile to remark that the propagation of the covariance matrices essentially 

the equivalent to (4.47) and (4.48) cannot be done off-line, because at each step 

one has to do the linearizations about the current estimate. 

The interesting aspects of the adaptive control problem pertain to the role 

of the control. In essence, there is a dual nature (see reference [42]}) to the control; 

one for ordinary control, and another for helping us estimate more accurately the 

parameters. Thus, although the control cannot be used to change the time-evolution 
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of the parameters, it can control the conditional covariance matrix of p(t), which 

reflects the accuracy of parameter estimation. 

Progress in this area, in the engineering literature, has been almost totally 

devoted to the linear case, i.e., where the state dynamics have the form 

(7.6) x(t + 1) = A(p(e), t)x(t) + B(p(e), tu(t) + Efe) 

the parameter dynamics have the form 

(7.7) p(t + 1) = H(e)p(e) + y(¢) 

and the measurement equations have the form 

(7.8) ut) = C(p(t), t)x(t) + O(0) 

where the matrices A(-), B(-), C(-) depend upon the parameter vector, and 

E(t), y(t), and @(t) are white noise sequences. 

The criterion used is quadratic. Thus, if p(t) were known exactly for all t 

the separation theorem would yield the optimal stochastic control. 

One technique that can be used given X(¢\t) and p(t\t) is that of enforced 

separation. In this case one predicts the future values of the parameter vector 

from (7.7) to obtain 

(7.9) p(t + 1\t) = H(x)p(rie); «= t = 0,t + 1,...,T. 

This predicted sequence of parameter vectors fixes the future values of A(-) and 

B(-) and one can now calculate the control gain (by an equation like (3.41)), 

by solving on-line a difference equation like (3.42)}{3.43). Note that this process 

must be repeated when the next observation is made, since, in general, 

(7.10) p(t + It + 1) ¥ P(e). 

Thus, in the enforced separation adaptive control scheme, for linear-quadratic- 

Gaussian problems, the structure of the separation theorem is preserved ; however, 

‘the corresponding covariance matrices and control gains must be computed 

on-line each and every time a new measurement has been made. 

Another technique (that does not lead to a separation type result) is that of 

open-loop feedback optimal (OLFO) control (see [45]). This technique once more 

requires that X(t|t) and p(t|t) be generated. Next, the assumption is made that no 

more measurements will be made; hence the deterministic open-loop optimal 

control can be found that minimizes the conditional expectation of the quadratic 

cost functional. This open-loop control is applied only at the current time period ; 

when a new measurement is made, one repeats the entire set of computation (see 

references [52] to [56] for details). The OLFO approach yields a design that has 

the properties 

(a) the control gain matrix not only depends upon the predicted average 

values of the unknon parameters, but also upon the predicted parameter 

covariance matrix 

(b) the computations are far more complex than in the enforced separation 

scheme. 

In the economic literature it appears that reference [58] is essentially an OLFO 

approach. 
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A somewhat different approach to adaptive control, yet consistent with an 

OLFO viewpoint, is to assume that the actual parameters of the system are one 

out of N possible sets. Each one of the N possibilities forms a hypothesis; N 

Kalman filters in parallel generate the state estimate under each hypothesis. 

One can then construct, from the residuals and state estimates of the Kalman 

filters, in real time the conditional probability that each hypothesis is correct, 

and these can be used to construct the adaptive control (see reference [57] for 

details). 

There is little doubt that in the next five years the adaptive contro! problem 

will receive more and more attention in the stochastic control literature. At the 

present time there are several approaches, but with little cross-evaluation. A unified 

treatment of this important class of problems is still lacking. 

Department of Electrical Engineering 

Massachusetts Institute of Technology 
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