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Annals of Economic and Social Measurement, 1/4, 1972 

STOCHASTIC OPTIMIZATION IN RECURSIVE EQUATION 

SYSTEMS WITH RANDOM PARAMETERS WITH AN APPLICATION 

TO CONTROL OF THE MONEY SUPPLY* 

BY H. Woops BOWMAN AND ANNE MARIE LAPORTET 

In this paper the coefficients of a stochastic linear recursive model are presumed random. Using an 
expected loss (Bayesian) approach, the exact one-period solution for a singie control variable, quadratic 
criterion function, and any number of criteria variables is derived. An application to the recursive St. Louis 
model indicates that a Bayesian approach leads to smaller losses and, generally, a more conservative 
policy than a certainty equivalence approach where the coefficients of the model are assumed known. 

A promising approach to decision making with econometric models has been 

developed by Holt and Theil who postulate a quadratic utility (or loss) function 

in the criteria variables. Provided the model is linear with known coefficients, 

the optimal policy is found to be one for which the criterion function is an 

extremum.’ Since, in practice, the coefficients of a model are not known the 

technique utilizes the mean values of the coefficient estimators and for this reason 

it is known as the certainty equivalence approach. 

Unfortunately this approach does not take account of the variance of the 

population parameters. An alternative, not yet popular, utilizes an explicit criterion 

function, but presumes that the population parameters are unknown. In this case, 

the criterion function is a function of random variables and, hence, an extremum 

does not exist. If the function is quadratic, however, its mathematical expectation 

is sometimes tractable and an extremum can be located for the expectation of the 

function. 

This technique, known as the Bayesian or expected loss technique, has been 

explored by Fisher and Zel!ner, among others, and recently an application was 

made to a money multiplier model at the Federal Reserve Bank of St. Louis.* 

Fisher and Zellner derive exact results for single equation models and indicate 

* Most of the work on this paper was done while Dr. Bowman was affiliated with the Federal 
Reserve Bank of Chicago. The authors would like to express their appreciation to Karl A. Scheld of 
the Federal Reserve Bank of Chicago and Arnold Zeilner of the University of Chicago for their guidance 
and encouragement throughout the project. Calculations were performed using computer facilities 
at the Federal Reserve Bank of Chicago. 

+ Ms. Laporte is primarily responsible for: the final section which treats the application. Dr. 
Bowman is primarily responsible for the remainder of the paper. 

'C.C. Holt, “Linear Decision Rules for Economic Stabilization and Growth,” Quarterly Journal 
of Economics, 67 (1962) and Henri Theil, Optimal Decision Rules for Government and Industry (Amster- 
dam: North-Holland, 1964), Ch. 6. 

? Among their other virtues, quadratic functions possess unique extrema, so that a single “best” 
policy will always exist. 

3 Walter Fisher, “Estimation in the Linear Decision Model,” International Economic Review, 
3 (1962); Arnold Zellner, An Introduction to Bayesian Inference in Econometrics (New York: John 
Wiley, 1971), Ch. 11; Albert E. Burger, Lionel Kalish III, and Christopher T. Babb, “Money Stock 
Control and Its Implications for Monetary Policy,’ Federal Reserve Bank of St. Louis Review, 53 
(October, 1971), pp. 6—22. 
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that the difference in control settings and expected loss arising from using the 

certainty equivalence solution instead of the Bayesian solution is rather small. 

In multi-equation models, the difference can be magnified by the particular 

shape of the quadratic criterion function employed and ty the relationships © 

among the endogenous variables. Research in this area had been held up because 

exact solutions are difficult to find for multi-equation systems. One type of multi- 

equation system for which exact solutions can be easily found is the recursive 

system. This paper develops the exact form for the one period solution in the 

case of (1) a quadratic criterion function, (2) a single policy instrument, (3) any 

number of equations which are linear in the parameters and recursive in structure, 

and (4) any number of criteria variables. 

An application of the solution is then made to a model of the U.S. economy 

developed at the Federal Reserve Bank of St. Louis.* The results indicate that the 

difference in expected loss can be extremely large. The magnitude of the difference 

is significantly affected by information contained in the data (for a given model) 

over which the policymaker has no control. However, if more than one criterion 

variable is used, the policymaker employing a certainty equivalence solution can 

minimize the difference by emphasizing in the criterion function the variable 

about which he or she is more certain. 

CONTROL IN GENERAL RECURSIVE SYSTEMS 

The problem is to 

(1) minimize: EL = E(y — a)'Q(y — a), expected loss 

(2) subject to: Y= YI + XB+U 

where these quantities are defined as follows: 

y is an m-element column vector of “future’’ observations (that is, the 

T + 1 observations) on the endogenous variables of the system, having 

unconditional mean value 7; 

a is an m-element column vector of targets corresponding to these variables ; 

Q isan m x m positive definite symmetric matrix of constants—the param- 

eters of the loss function ;° 

Y is a T x m matrix of observations on the endogenous variables in the 

system ; 

I is an m x m upper triangular matrix of random coefficient parameters 

with zeros along the diagonal ; 

X is a T x n matrix of observations on the predetermined variables of the 

system ; 

B is ann x m matrix of random coefficient parameters ; 

U isa T x m matrix of unobserved random error terms. 

Furthermore, it is assumed that the columns of U are normally and independently 

distributed, such that letting 

v = (u,,@2,..., U),), 

* Leonall C. Andersen and Keith M. Carlson, ““A Monetarist Model for Economic Stabilization,” 
Federal Reserve Bank of St. Louis Review, 52 (April, 1970), pp. 7-25. Hereafter referred to as the St. 
Louis model. 

*Q may be of rank k < m, where k is the number of criteria variables in the control problem. 
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Ev’ =0 

Ew’ = D(a?) @ I, i=1,2,...,m 

where u, represents the ith column of U and D(a?) is a diagonal matrix with 

diagonal elements given by a?. The recursive nature of the system is evident from 

two conditions: (1) the I matrix is upper triangular and (2) the error terms of 

different equations are independently distributed. 

The same model is assumed to generate “future”’ observations, that is 

(3) y =yl+xB+w 

where y’ is an m-element row vector and x’ is an n-element row vector representing 

observations on the endogenous and predetermined variables respectively in the 

T + 1 period. The m elements of the row vector u’ are unobserved error terms in 

the T + 1 period, independently and normally distributed such that 

Eu = 0, 

Euu' = Dio?) ~—i = 1,2,...,m, 

Euu, = [0] oy > Vee 

where u, is the kth row of U. 

Having defined these new quantities and placed the appropriate restrictions 

on the error terms, we are now in a position to consider the loss function® 

(4) EL = Ely — a)Qly — a) = Ely — y Oly — y) + (¥ — a Oy — a). 

Note that the second term is the loss function associated with the certainty 

equivalence solution (CEL) to the control problem. It is simply a weighted sum 

of the deviations of the mean values of the criteria variables about their respective 

targets. The Bayesian approach, which is the sum of the two terms, takes into 

account additional loss arising from the possible failure to predict the mean 

values of the criteria variables accurately. The first term clearly expands into a 

linear combination of variances and covariances of the multivariate predictive 

probability density function (pdf) for y, which are easily derivable because the 

form of the distribution is known. 

Consider a single element of the vector y, say y;. The posterior pdf for this 

element conditional upon the other elements of y can be set up using a non- 

informative prior on the appropriate elements of B, T and D(a,), and then inte- 

grating over these unknown quantities, thusly 

(5) PAYi-1.4#) = J Po. 1Bis ays #) dB; dy; do; 

= { pouB..7. ;,¥i-1> #)P(B;, ¥;:, 0) 4B; dy; do; 

® Alternatively the problem could be expressed in a utility maximizing format. If so, completing 
the square on y yields a declining monotonic function of (4). Maximizing utility and minimizing loss 
are therefore equivalent statements of the problem. 
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where y;_, represents the vector of endogenous variables appearing in the ith 

equation of the system, B; is the ith column of B (the coefficients of the predeter- 

mined variables in the ith equation), y; represents the ith column of I and # 

represents observed data (X, Y, and x). The first pdf in the second line above is 

univariate normal because of the normality assumption concerning the error 

terms and the second pdf is proportional to 1/o; because we are using non- 

informative prior pdf’s. When the indicated integration is performed the resulting 

conditional predictive pdf for y; is Student-t with mean and variance given by’ 

6 vi _ " 
(6) i= yy + xB, 

and 

(7) vf = §7(1 + z,M 2) 

respectively, where the bars in (6) represent the means of the corresponding 

quantities and 

Z; = (y;-1,%;) 

5? = [v/(v; — 2)]s?, 

she pee me 

= Re fe 

v, being the degrees of freedom in the ith equation, s? being the estimated OLS 

residual variance for the ith equation, and where the subscripts on the X and Y 

quantities indicate that only the variables in the ith equation are to be considered. 

We may now use these quantities to find the mean and variance of the 

corresponding marginal distribution of y;. 

First, the mean 

(8) i [ 00 #) dy; 

= [ yooriy-s, # \plyi-1, #) dy; 

2 | Fir... #) dy;_, 

= yy, + xB;. 

By induction, therefore, 

(9) T + x’B, =7J 

and since it is easily seen that (J,, — T) is non-singular, 

(10) y = x'BU,, —T)-' =x. 

7 The integration is performed in Zellner, op. cit., pp. 72-74. 
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The mean of the marginal predictive pdf for an arbitrary element of y is therefore 

given by 

(10a) 

where 7; is the ith column of [. 

The variance of the marginal pdf is more difficult to find but the same 

technique of integrating unwanted variables out of the joint distribution can 

still be used: 

(11) vo, = fo. = yp’ Pv #) dy; 

a= Jo. — Fi)? + 2yAFi - y+ Hi - i lydyi-1. # )P(yi-1| #) dy;. 

All terms in the brackets wili cancel except for (y; — j,)*. The others were 

added in order to make use of the expression for the variance of the conditional 

predictive pdf, thusly 

v4 = | + (¥§ — J) Iply;- 11 #) dyi-1, 

- [ssa + (y;-,,%)'MAdy;-,,x)] + [(¥i-1 - Vi- 1) ¥d7 }Plyi- i| #) dy,_,. 

The first term in brackets is a quadratic form in the elements of y;_,. The 

indicated integration transforms these random variables into their respective 

means. Using the well-known relation Ey? = vy, + y7, this term becomes a 

quadratic form in the elements of ¥;_, plus a weighted sum of variances, that is 

i-$% 

1 + (¥;- 1.) MA¥i-1,%i) + y Mev, 
j=1 

ame P| j= 

i-1 
1+2%Mz2Z,+ > Mv; 

j=i1 

where M// is the jth diagonal element of M;. 

The second term in brackets is also a quadratic function and performing 

the indicated integration transforms it into a weighted sum of variances and 

covariances thusly 

i-1 i-1j-1 

d ryt 2D y VisPei? jn 
j=1 j=2k= 
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The covariance terms can be evaluated as follows for j > k 

(12) ay = | (, — 5) — FP) #) dy, 

- fo, — Vi (Ve Y)P(VAY;-1; # ply j-1| #) dy;, 

za { (vn. — FY, + XB, — 5) ply, a #) dy, 

= | (vn — Vedly'Y; — VV) + Ox — WIT; + xB; — y)) 

x ply;-1| #) dy;-1- 

The first term in the brackets becomes a weighted surn of other covariance terms 

while the second vanishes when integration is carried out over y,. Therefore we 

can simplify the above to an element of V, an upper triangular m x m matrix of 

covariances with variances along the diagonal. If v; is a row vector from this 

matrix and i’ is the ith row vector of I,,, then 

(13) v,=vI + »;,,i’. 

And further letting D be anm x m diagonal matrix of variances, this generalizes to 

(14) V=VI +D. 

Since (I,, — T) is non-singular, 

(15) V = DiI, — T)7?. 

Thus, a covariance relation between any two endogenous variable can be expressed 

as a multiple of the variance associated with the variable having the lower index 

number. For example, OF is some multiple of v;; if i < j, and Vj; ifj <i. 

Returning to the second term in brackets in the expression for the variance, 

(11), we can now see that it will be a linear combination of variances of endogenous 

variables occurring in preceding equations. In particular, if we consider the 

complete variance-covariance matrix (V + V’ — D), then the second term in 

brackets becomes, after integration, 

7a0U,, —4) * +, — T)*D — Dh.. 

This cumbersome expression is of the form 

i-1 

y 8ij?jj- 
j=1 

Finally, the complete expression for the variance of the endogenous variable . 

of the ith equation is 

i-1 

(16) vy = 571 + ZMzZ) + Y (57MP + g,)0,;. 
yee 
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Before proceeding to evaluate the expected loss function, it is instructive to pause 

and study this expression. The first part is the variance of the ith endogenous 

variable conditional upon the other variables in the system being equal to their 

mean values. This will tend to understate the true variance, however, insofar as 

the mean of the conditional distribution of the ith endogenous variable is not 

equal to the mean of its marginal distribution. Any difference between these 

quantities will serve to increase the variance. Moreover, the effect upon the 

variance will be magnified by the variance of the other endogenous variables 

appearing in the ith equation, hence the terms in g,,. The remaining terms 57 M// 

will be recognized as the variance of the parameter estimates of the jth endo- 

genous variable appearing in the ith equation. This indicates that any uncertainty 

introduced by random variables appearing in the ith equation is also magnified 

by the uncertainty associated with the corresponding coefficients. 

To adapt this expression for a matrix format we let d be an m-element column 

vector consisting of the diagonal elements of D, the ith element of which is »;;. 

Then, 

(17) d’'=¥+dG 

where we have defined the ith element of ¥ to be 5?7[1 + Z;M,Z,] and the i, jth 

element of the m x m matrix G to be (M// + g;,). Therefore, 

(18) .@ =V(I, — G7. 

Finally, we are ready to evaluate the loss function and to find its extremum. 

Recall that the loss function was given by 

(4) EL = Ely — yYQly — y) + (y — aVQOLy — a). 

The expectation operator applied to the first term merely yields a weighted sum 

of variances and covariances. That is, ; 

(19) trace (Q(V + V’ — D)}. 

But the covariances are themselves functions of the variances, 

trace {Q[D(,, —T)~' + U,, — T’)"'D — D}} 

= trace {DQ((I,, —T)~' + U,, - T)~* — I,J} 

=d'q. 

Upon substituting for d we have 

(20) d’q = V(I,, — G)‘q = ¥w, where w = (I,, — G)~ ‘q. 

So we see that the first term of the loss function is a weighted sum of variances 

of conditional pdf’s given that other variables are equal to their mean values. 

The weights are given by the corresponding elements of the vector (I,, — G)~ ‘q, 

that is w;. 

From this point it is a straightforward, but tedious, task to differentiate the 

loss function with respect to the policy instrument (control variable) and then 
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solve for the loss minimizing setting for that variable, so we simply state the 

result without proof. However, some new quantities need to be defined: 

x, is the control variable; 

n; is the number of predetermined variables in the ith equation; 

p; is an n; + i — 1 element vector equal to u([l;_,, P,) where 

t isan n-element vector consisting of zeros and ones, such thatt = dx/dx, 

and 

Il;_, is a matrix consisting of the first i — 1 columns of I and 

P; isann x n,; matrix consisting of zeros and ones such that uP, = dx;,/dx, 

where x; is a vector of predetermined variables entering in the ith 

equation; 

X, is an n-element vector of “‘future’’ values of all predetermined variables 

in the system with the exception of x, , the value of which is set equal 

to zero; . 

Xo; is an n,-element vector of all predetermined variables in the ith 

equation with the exception of x,, the value of which is set equal to 

zero; 

P¥ is ann x n; matrix consisting of zeros and ones such that xp; = xpP*¥; 

p?’ is an n; + i — 1 element vector equal to x,(f1;_,, P*). 

Using these quantities, the optimal setting for the control variable is given by 

ne bs w,5; piM pt = vTIQ(IT’x, — a) 

(21) xt = —— 

Ms w,s-p;Mp; + vTIOM' 
" ~ 

The other quantities, such as w;, §?, M;, Q and a, are defined elsewhere above. 

We are assured that x* minimizes the expected loss function because the matrix Q 

was assumed to be positive definite symmetric. 

Had we elected to merely minimize certainty equivalence loss the terms 

involving sums of squares and cross-products (M;) would not appear in the 

solution: 

(22) Ga 
vigils 

Clearly, x‘ is a linear function of xf. A sufficient condition for x{° to exceed x* 

is that the indicated summation in the numerator of (21) be non-negative, which 

is always the case when there are no other predetermined variables in the system 

except the control variable. 

THE Loss FUNCTION 

In the experimental example which follows, we employ two criteria variables 

—price changes and the unemployment rate—-so it is useful at this point to 

consider some of the properties of a two-variable loss function. Specializing (4) 
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we have: 

(23) CEL = q,(¥ — a,)? + 2419 — a,)(2 — a,) + q3(2 — a,)’. 

(24) EL = q,V(y) + 2q2 Cov(y, z) + q3V(z) + CEL. 

A regular minimum exists for these functions if and only if q, > 0 and q,q, — 

q3 > 0. 

These second order conditions imply elliptical iso-loss contours for both 

(23) and (24). One senses immediately, however, that only a portion of the ellipse 

would be economically relevant. To make the discussion concrete, consider 

Figure 1 and suppose that z measures the rate of change in prices and y measures 

the unemployment rate. 

If one were to begin at point B and move clockwise, one would be trading 

more inflation for more unemployment. This bizarre implication is, of course, due 

to the symmetric nature of the quadratic function: undershooting a target is as 

undesirable as overshooting by the same amount. Those who find this symmetry 

unappealing may be tempted to abandon the quadratic function and search for a 

nonsymmetric one. But one may retain the quadratic function if one is satisfied 

with being confined to a limited region of the ellipse between A and A’. Within 

this region one always trades more inflation for less unemployment, or vice versa. 

Moreover, one experiences an increasing marginal rate of substitution—which is 

as it should be since deviations from either target are undesirable. 

A set of necessary and sufficient conditions for operating in the relevant range 

of the ellipse are (1) the implied Phillips’ curve of the system must be negatively 

sloped, and (2) the targets must be chosen to be below and to the left of the implied 

Phillips’ curve. The reason for these conditions is clear when one considers that 

the system of regression equations acts as a constraint to minimizing expected loss 

<! 

ma X 

Figure 1 Elliptical iso-loss function 
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The optimal solution x* is that one for which the implied Phillips’ curve is tangent 

to the lowest possible iso-loss contour projected onto its plane. When operating 

with an optimal policy the policymaker’s marginal rate of substitution will be 

equal to the slope of the implied Phillips’ curve of the system. 

Bearing these things in mind, we seek to reparameterize the loss function in 

terms of easily interpretable quantities with geometric significance. Consider first 

the certainty equivalence loss (23). The center of each elliptical iso-loss curve will ; 

be at the point (a,, a,). From analytic geometry we recognize that the loss function 

parameters q, and q,; represent simple transformations of the projections of the 

elliptical axes upon the axes of the reference system, and if we rotate the ellipse 

about the point (a,, a) until its axes are parallel to those of the reference system, 

qz vanishes and q, becomes qf, q, becomes q3, y becomes y* and Z becomes 2Z*. 

A rotation of the elliptical axes through an angle « can be expressed as 

re ee 

(25) y*. = Poosa — Zsina, 

(26) z* = ysina + Zcosa. 

Substituting these transformations into the certainty equivalence loss function and 

using the following trigonometric identities : 

1 
(27) cos? a = os agree 

(28) sin? a = a 

(29) sin a COS a = eat 

we have 

(30) CEL = Rest rer ak a
 

(y — a,)(Z — a.) + Ric ~a,? 

where r = qt/q3. This quantity is also by definition equal to 1 — e? where e is the 

eccentricity of the ellipse, and measures the departure of the ellipse from circularity. 

For acircle e = Oand as the ellipse becomes “tighter” e > 1. Notice, however, that 

e = 1 is not possible if the loss function is to remain an ellipse. t 

The coefficient of (j — a,)? is evidently q, , the coefficient of (j — a,)(Z — a,) is 

2q2, and the coefficient of (z — a,)” is q3. All q’s are expressed in terms of two simple 

quantities—the slope of the major axis of the ellipse and the : atio of the elliptica! 

axes. Although tan 7/2 is infinite, the elements of the loss function possess finite 

limits as tan a — oo. Systematic variation of the parameters is facilitated by this 

particular parameterization because tana is a periodic function of a, and the 

eccentricity is bounded by zero and one. 

We are now in a position to consider the effect of taking the mathematical 

expectation of the loss function instead of simply replacing the random variables 
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with their respective means. To make the discussion concrete, let us consider a 

simple two equation system: 

(31) y; = bx; + u, fe > ae u; are NID(O, o2) 

(32) z,=cy, +0, i=1,2,...,T — v,; are NID(O,o2) and E(u) = 0 

For simplicity, consider a circular loss function where q, = 0. In this case 

(33) EL = [V(y) + (¥ — a,)”] + (Viz) + @ — a,)’). 

Note that the difference between this result and the certainty equivalence loss is the 

addition of a weighted sum of variances which are themselves expressible in terms 

of the variable means jy and Z and other quantities calculated from the data: 

(34) V(z) = 52 + [V(c) +é7][Viy) + 97] + 22 — 229) 

(35) Vy) = 52 + y?V(b)/B?. 

However, we do not make use of the system constraint Z =Zy. 

Upon inserting these quantities into (33) and completing the square on j and 

Z we have: 

(36) EL = m(y — a¥) — 2c(y — af)(z — a¥) + 2(2 — af) + constants 

where m = (1 +27)/t? +27/t2? +27/t?2 + @? + 1 and the new, or virtual, targets 

are given by ay} = a,/m and a} = a,/2. Thus, the new iso-loss contour will be 

elliptically shaped, rotated with respect to the coordinate axes and centered closer 

to the origin. The angle of rotation and eccentricity are given by: 

(37) cot 2a = (2 — m)/2¢ and 

(38a) e=1-(2-—@)(m+@), ifm+@>2-2@, otherwise 

(38b) e? = 1 — (m+ 2/2 — @). 

If (38a) holds, the major axis of the ellipse corresponds to the Z dimension in an 

unrotated system, while if (38b) holds, the major axis of the ellipse corresponds 

to the y dimension in an unrotated system. 

To illustrate this example, consider Figure 2. The system constraint Z7 =2j is 

a straight line passing through the crigin which is associated with a zero setting for 

the control variable. The certainty equivalence loss function is a circle with center at 

(a,, a,). The certainty equivalence solution is the point of tangency of the certainty 

equivalence loss function and the system constraint, and is denoted by CEL. 

The expected loss function, on the other hand, is an ellipse centered at (a,/m, a,/2). 

Its tangency with the system constraint, denoted by EL, represents the solution 

to the Bayesian control problem. 

The EL solution is a more conservative solution than the CEL solution 

because it moves the policymaker in the direction of a zero setting for the policy 

instrument (i.e., towards the origin).* The conservativeness of the policy is a func- 

tion of the certainty with which the coefficients b and c are known. For example, 

suppose that there were a great d-al of uncertainty about either b or c or both, such 

that m » 2, then the major axis of the ellipse would be the Z axis and the angle of 

® This conclusion may not be true if there are exogenous variables in the system which are not 
under control. 
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Figure 2 Comparison of certainty equivalence loss and expected loss functions 

rotation would be close to zero or z. As uncertainty increases, m increases and the 

ellipse becomes “tighter” as the control solution assigns increasing weight to 

deviations of j about its virtual target. 

APPLICATION OF CONTROL SOLUTION 

In the final section of this paper we apply the Bayesian control solution to 

variations of the St. Louis model of the U.S. economy. The model’s structure can be 

easily seen from the flow chart on the following page. The model is fully recursive — 

unemployment is influenced by prices and nominal spending through a real out- 

put identity ; prices, in turn, are influenced by nominal spending ; nominal spending 

depends only upon exogenous variables, including a money variable.’ 

While this form of the model was satisfactory for estimating parameters and 

performing simulation experiments, it could not be used for computing the 

optimal value of the instrument variable. A problem arises because the identities 

operate on the endogenous variables of the system before they enter subsequent 

equations. The unemployment equation was respecified in terms of a new depen- 

dent variable, U.XFP,_,, because the real income identity and the gap identity 

caused AY, and AP* to be multiplied by (X/P,_ ,)~' in the original unemployment 

equation. This new unemployment variable is an approximate value of foregone 

production: (in period t — 1 prices) due to underutilized resources. The measure is 

° In addition, the necessary assumption about the error terms are made. The original St. Louis 
model contained additional equations for long- and short-term interest rates, but these are not 
considered here since the criteria variables of interest are prices and unemployment and the recursive 
nature of the system does not require their inclusion for either estimation or computation of the optimal 
solution. 
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Spending equation | AY, = f,(AM, ...M,-4; AE,...AE,—.4) -——- 

Demand pressure identity | D, = AY, — (XF — X,_,) | 

Price equation AP = f{D,...D,25;AP¢) 

| AP; = (P, — 1-1)Xy~4 

Real output identity | X, = (AY, — APS)/P,_,] + X,-, 

Real output gap identity | G, = ((XF — X,/X?]- 100 | 

Unemployment equation U, = f,(G,, G,- » | 

Exogenous variables : 

AM,, change in currency plus demand deposits ; 
AE,, change in high employment government expenditures ; 
X¥ , full employment level of real cutput; 

Endogeneous variables : 

AY,, change in nominal spending; 
D,, demand pressure ; 

APS, dollar change in nominal spending due to change in price deflator ; 
AP*, anticipated change in prices; 

X,, real output: 
G,, gap in real output ; 
U,, unemployment rate; 

Figure 3 Flow Chart of the St. Louis Model 

not exact, however, because the elasticity of output with respect to labor input may 

not be unity. 

Since the Bayesian formulation of the control problem differs from the cer- 

tainty equivalence formulation by taking account of the uncertainty in the model’s 

parameters, information can be gained by comparing models with differing degrees 

of uncertainty in the parameters. To this end an alternative unemployment 

equation was selected. It is the same as the revised unernployment equation with- 

out the term introduced by the lagged real output gap. As can be seen in Table I, 

however, the properties of the two resulting models differ in that the mode! with the 

lagged gap term (Model-I) has much less precise coefficient estimates for the con- 

temporaneous endogenous variables in the unemployment equation than does the 

model without the lagged gap term (Model-II). 

To study the differences between the solutions, the targets in the criteria 

function were set at zero price change and zero unemployment while the shape and 

orientation of the quadratic criteria function were systematically varied. The two 

solutions were compared (1) in terms of the ratio of the expected losses generated 

for each particular choice of criteria function parameters and (2) in ierms of the 

ratio of the corresponding settings for the control variable. Although the choice of 
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TABLE | 

COEFFICIENT ESTIMATES 

A. Spending Equation 
a 4 

AY, = 2.74+ ¥ m,AM,_,+ ¥ e,AE,-; 
(3.56) i=0 sie 

mo = 1.259 (286) e,= 0.569 (2.66) 
m,= 1.755 (7.21) e,= 0.504 (3.91) 
m,= 1485 (3.90) e,= 0.061 (0.32) 
m,= 0.711 (3.02) e, = —0.440(—3.31) 
m, = —0.045(—0.10)  e, = —0.611 (—2.79) 

B. Price Equation 
5 

APS = 2.60 + 0.941 AP4 + >. d,D,_; 
(6.62) (8.78) i=0 

dy = 0.0222 (2.32)  d = 0.0146-(3.12) 
d, = 0.0205 (5.95)  d, = 0.0105 (2.06) 
d, = 0.0179 (6.82) ds = 0.0056 (1.59) 

C. Unemployment Equation 
1. Lagged gap term included 

" (7.34) 

2. No lagged gap term 

Uxr.. 

100 (221) 

(t-values in parentheses) 

100 (19.2) 

U.XFP._ x?P.. Ux Paa ass “FF ] — 0.0066(AY, — AP + Y,_,) 100 (1.05) (—0.15) 

+ 0.315G Ea ; "1 100 

F 
= 353 ea — 0.314AY, — APS + ¥_,;) 

( 

Sample Period : 1953/1 to 1969/IV 
Constraints : 4th degree polynomial 
(m_, =m, = 0;e_, =e, = 0) 

R? = 0.656 
S.E. = 3.844 

Sample Period : 1955/I to 1969/IV 
Constraints : 2nd degree polynomial 
(d_, #0;d,; = 0) 

R? = 0.865 
S.E. = 1.134 

Sample Period: 1955/I to 1969/IV 

R? = 0.915 
S.E. = 1.817 

Sample Period: 1955/1 to 1969/IV 

R? = 0.838 
S.E. = 2.511 

other issues which are beyond the scope of this paper. 
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targets is arbitrary, zero values represent the most extreme values which satisfy the 

necessary and sufficient conditions for a relevant economic solution.'° 

Because the variances of the coefficients associated with contemporaneous 

endogenous variables are much larger in Model-I than in Model-II, we expect that 

the relative differences in expected loss between the certainty equivalence solution 

and the Bayesian solution for Model-I would be greater than the relative difference 

for Model-II. Further, since the control setting in the Bayesian solution tends 

toward zero as one becomes more uncertain, we expect the relative difference in the 

control settings between the certainty equivalence solution and the Bayesian 

solution to be greater for Model-I than for Model-II. 

The results of the experiments in terms of expected loss are given in Table II. 

In general, they are in accord with expectations. In the case of Model-II the relative 

difference between the two solutions is rarely very great. In the case of Model-I the 

relative difference between the solutions is more sensitive to the parameters of 

the loss function, often increasing by an order of magnitude or more as the eccen- 

tricity of the function approaches unity. The greatest differences occur when the 

‘0 Friedman has suggested that the optimal rate of price change is actually negative, but this raises 



TABLE II 

RATIO OF EXPECTED CERTAINTY EQUIVALENCE Loss TO EXPECTED BAYESIAN Loss 
IN 1970/1 FOR ALTERNATIVE Loss FUNCTION PARAMETERIZATIONS ASSUMING ZERO 

TARGETS FOR RATE OF PRICE CHANGE AND UNEMPLOYMENT RATE 

A. Model-I 

Angle of Eccentricity 
Rotation 
(radians) 0.0 (circle) 0.75 0.87 0.97 

n/12 1.001 1.000 1.000 1.000 
7/6 1.001 1.092 1.188 1.512 
n/4 1.001 1.354 1.815 2.925 
n/3 1.001 1.672 2.752 5.288 

Sx/12 1.001 1.769 3.515 9.652 
n/2 1.001 1.404 2.802 15.705 

Tn/12 1.001 1.007 1.024 1.402 
2n/3 1.001 1.210 2.087 12.304 
32/4 1.001 1.469 2.569 6.599 
52/6 1.001 1.400 1.946 2.993 

lin/12 1.001 1.206 1.389 1.609 
nm =0) 1.001 1.055 1.100 1.150 

B. Model-II 

Angle of Eccentricity 
Rotation 
(radians) 0.0 (circle) - 0.75 0.87 0.97 0.99 

n/12 1.067 1.035 1.018 1.002 1.000 
n/6 1.067 i.040 1.028 1.019 1.041 
n/4 1.067 1.052 1.049 1.056 1.073 
n/3 1.067 1.067 1.071 1.085 1.093 

Sx/12 1.067 1.081 1.090 1.104 1.110 
n/2 1.067 1.091 1.104 1.120 1.126 

Tn/12 1.067 1.098 1.115 1.135 - 1.143 
2n/3 1.067 1.101 1.122 1.151 1.164 
32/4 1.067 1.096 1.121 1.169 1.197 
5/6 1.067 1.082 1.104 1.182 1.266 

1in/12 1.067 1.061 1.063 1.125 1.573 
a( =0) 1.067 1.042 1.027 1.005 1.327 

angle of rotation is in the vicinity of 2/2 and the eccentricity approaches unity. 

This particular parameterization of the criteria function puts the maximum weight 

on the unemployment target. Since we are very uncertain about the unemployment 

equation parameters in Model-I (relative to Model-II) the loss associated with 

using the certainty equivalence approach is much larger than the Bayesian 

approach which takes this uncertainty into account. However, if the loss function is 

circular, the certainty equivalence solution and the Bayesian solution generate 

very similar expected losses, regardless of the model employed. 

On the basis of these results one may be tempted to conclude that the certainty 

equivalence solution could be used with impunity as a suitable approximation to 

the Bayesian solution if the loss function did not depart significantly from cir- 

cularity.'’ But, according to Table III which reports the relative difference in 

'! This conclusion is, however, conditional upon the particular set of criteria variable targets 
chosen. 
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TABLE III 

RATIO OF CERTAINTY EQUIVALENCE CONTROL VARIABLE SETTING TO BAYESIAN 
CONTROL VARIABLE SETTING IN 1970/I FOR ALTERNATIVE Loss FUNCTION PARA- 
METERIZATIONS ASSUMING ZERO TARGETS FOR RATE OF PRICE CHANGE AND UN- 

EMPLOYMENT RATE 

A. Modei-I 
Angle of Eccentricity 
Rotation 
(radians) 0.0 (circle) 0.75 0.87 0.97 0.99 

n/12 2.705 1.670 1.312 0.979 0.876 
n/6 2.705 3.356 2.914 2.413 2.181 
n/4 2.705 4.267 4.059 3.785 3.680 
n/3 2.705 5.537 5.964 6.449 6.639 
5/6 2.705 7.105 9.012 12.373 14.239 
n/2 2.705 8.274 12.785 28.088 48.253 

Tn/12 2.705 . 5.045 8.317 30.653 4328.440 
2n/3 2.705 10.377 14.138 30.686 59.371 
3/4 2.705 6.970 7.733 9.503 10.616 
5/6 2.705 4.934 4.432 3.873 3.650 

1in/12 2.705 3.826 2.959 2.096 1.792 
mm =0) 2.705 3.506 2.497 1.634 1.354 

B. Model-II 
Angle of Eccentricity 
Rotation 
(radians) 0.0 (circle) 0.75 0.87 0.97 0.99 

n/12 1.130 1.114 1.098 1.048 0.987 
n/6 1.130 1.107 1.091 1.063 1.049 
n/4 1.130 1.108 1.097 1.083 1.078 
n/3 1.130 1.114 1.107 1.100 1.097 
5/6 1.130 1.121 1.118 1.115 1.114 
n/2 1.130 1.129 1.129 1.129 1.129 

Tn/12 1.130 1.138 1.142 1.145 1.146 
2n/3 1.130 1.147 1.155 1.164 1.167 
3n/4 1.130 1.154 1.169 1.191 1.200 
5/6 1.130 1.157 1.180 1.233 1.269 

11n/12 1.130 1.149 1.173 1.285 1.577 
t(=0) 1.130 1.131 1.133 1.111 1.354 

control settings, the certainty equivalence solution typically calls for much larger 

settings for the control variable than the Bayesian solution in Model-I. Again, the 

largest differences occur for the loss function parameterizations emphasizing the 

unemployment target. Only in Model-II does there seem to be little difference in the 

control settings. Thus, if there is a cost to changing the control variable which has 

not been taken into account in formulating the control problem, use of the cer- 

tainty equivalence solution instead of the Bayesian solution may impose a severe 

penalty upon the policymaker. 

CONCLUDING REMARKS 

In this paper we have found the exact setting for a single control variable in 

the case where the control variable is linked to several criteria variables by a 

stochastic linear recursive equation system and the criterion function is quadratic. 
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By taking the uncertainty in system parameters into account the solution differs 

from the certainty equivalence approach developed by other authors. By being 

applicable to recursive systems the solution represents an extension of the single 

equation solution already known. In the application developed here, the optimal 

setting provided a rule for the conduct of monetary policy one period at a time. 

The results of the application were sensitive to the manner in which the 

equations were specified in each of two models. The two models, which had 

identical specifications of the price equation but different specifications of the 

unemployment rate equation, had vastly different control properties. The relative 

differences between the certainty equivalence approach and the Bayesian approach 

were generally greater for that model specification having the less precise con- 

temporaneous coefficient estimates but better overall predictive properties. For 

judicious choices of loss function parameters the relative differences for expected 

losses were modest, but the relative differences in control settings remained large. 
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