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Annals of Economic and Social Measurement, 1/3, 1972 

CRITERIA FOR EVALUATION OF ECONOMETRIC MODELS* 

BY PHOEBUS J. DHRYMES, E. PHILIP Howrey, SAUL H. HyMANs, JAN KMENTA, 

EDWARD E. LEAMER, RICHARD E. QUANDT, JAMES B. RAMSEY, HAROLD T. 

SHAPIRO AND VICTOR ZARNOWITZ 

This multi-authored article develops a framework for systematically evaluating large scale econometric 
models. Reasonably self-contained aspects of model evaluation include parametric evaluation prior to 
the “release” of the model (model selection, parameter estimation, and pseudo-forecasts and structural 
stability tests) and evaluation after “release” of the model. Many operational procedures for parametric 
evaluation are noted ; alternative, ad hoc procedures are necessary in some cases, given the present state 
of the art. Non-parametric “validation” procedures are then outlined. These include single-variable 
measures, tracking measures, error decomposition, and cyclical and dynamic properties. A statistical 
appendix sketches some of the theoretical results used in the paper. 

I. INTRODUCTION 

For purposes of this paper an econometric model is considered to be an analytical 

representation of one or more statements about economic behavior, which repre- 

sentation relies upon statistical implementation for the purposes of hypothesis 

testing, parameter estimation, or use in prediction or simulation circumstances. 

A model in this sense may be anything from a single linear equation to a compli- 

cated set of simultaneous, non-linear equations. The term “model evaluation’”’ is 

here used to encompass a broad set of tests to which a model can and should be 

subjected at many different stages during the process of construction and sub- 

sequent use. 

During the past decade econometric models have come in for increasingly 

widespread use by government (for policy analysis and forecasting), by industry 

(largely as a forecasting tool), and by universities (for instructional use and a wide 

variety of research purposes). Despite the growing importance of such models in 

various decision-making situations, the process of systematic model evaluation 

has—with some noteworthy exceptions—lagged seriously behind the process of 

multi-model proliferation. Within the past few years, however, a handful of 

significant attempts have been made—with respect to large scale econometric 

models—to conduct serious cross-model comparisons. Building on a series of 

pioneering efforts by Carl Christ [10], Irma Adelman [1], Henri Theil [50], and 

others, the studies of Zarnowitz, Boschan and Moore [57], and Evans, Haitovsky 

and Treyz [21] are examples of current research work in this area. Particular model 

builders, of course, have also subjected their own models to careful “audits” both 

on sample and post-sample data. At the level of subsector and single equation 

* This paper is a joint effort of the authors listed and was undertaken as a project of the Seminar 
on Criteria for the Evaluation of Econometric Models (S. H. Hymans and H. T. Shapiro, co-chairmen) 
of the Conference on Econometrics and Mathematical Economics, sponsored by the National Bureau 
of Economic Research and the National Science Foundation. An earlier version of this paper was 
presented at the Brookings Model Conference, Washington, D.C. February 11-12, 1972. The authors 
are grateful to Professors C. Christ, R. A. Gordon, L. R. Klein and L. D. Taylor for their continuing 
help during many stages of the writing of this paper. 
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models recent work by Bischoff [7], Hymans [37], [38], and Jorgenson, Hunter, 

and Nadiri [39] may be cited as examples of cross-model evaluations. What stands 

out most clearly from all these evaluation exercises is that, aside from the simplest 

single-equation cases we suffer the lack of a clear and accepted analytical basis 

for the selection of proper criteria for model evaluation. This is true with respect 

to the criteria by which a single model should be evaluated and holds a-fortiori 

in the case of cross-model evaluations. This state of affairs has been the motivation 

for several recent papers, [21] [36], and is the raison-d’etre for the NBER-NSF 

sponsored seminar which has led to this paper. 

In the next section of this paper, we shall outline a framework which de- 

composes the evaluation set into fairly natural subsets, and thus permits the 

orderly discussion of reasonably self-contained aspects of model evaluation. 

These are discussed in turn in succeeding sections of the paper. 

It has been our aim to suggest operational procedures for evaluation when- 

ever possible, and to compare alternative procedures whenever our knowledge 

permits. To this end, a number of statistical derivations and proofs have been 

relegated to an appendix in order that the flow of discussion in the body of the 

paper may be more easily digested. While we have succeeded in arriving at some 

useful “‘recipes’’ for particular evaluation circumstances, there are still gaping 

holes in our knowledge. For some evaluation problems we simply have nothing 

to suggest for a “‘best practice” procedure, and we have had to be content with a 

brief and general enumeration of the alternative, often ad hoc, procedures which 

are in current use or under current study. Most of what we have to say is in direct 

reference to time series econometric models, but much of what follows applies 

to cross-section models with perhaps minor rephrasing. 

II. ASPECTS OF MODEL EVALUATION 

What we (as builders, users or judges of models) choose to do in the process 

of evaluating an econometric model is heavily dependent on what we have chosen 

to axiomatize. At an early stage in the life of a model we may regard its functional 

form as “up for grabs,” as something yet to be determined. At a later stage, after 

the model has already been “‘certified’’ with respect to functional form, we may 

choose to test hypotheses about parameter values within the confines of the 

functional form already settled upon or axiomated.' Alternatively, we may take 

the approach which one of the authors has called “Sherlock Holmes inference,” 

a process of data analysis in which Sherlock the econometrician weaves together 

all the bits of evidence into a plausible story. In this view, it is taken as axiomatic 

that the process being modeled is far too complicated and the data available far 

too weak to be able to specify and implement a structurally and behaviorally 

sound representation. Such notions as parametric hypothesis testing, best linear 

unbiased estimators, and the like are then wholly irrelevant, if not dangerously 

misleading. Nearly all that remains is a series of evaluative measurements specified 

in the light of the particular uses to which it is desired to put the model. At best, 

' This is the basic set-up in the classical statistical procedures based on the work of Fisher, Neyman, 
Pearson and others. 
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the model can tentatively be certified as a reasonable tool for specific uses until 

it errs seriously and is found to have a fatal uncorrectable flaw, or until it is replaced 

by a better “untrue” model.? Sherlock Holmes’ inference leads naturally to 

evaluation procedures heavily ‘ cared to the specific potential uses of the model, 

that is, to the calculation of performance statistics with generally unknown prob- 

ability characteristics (and a strong presumption of stochastic dependence which 

even eliminates the possibility of conducting distribution-free statistical tests). 

Procedures of this kind have also had to be employed in the evaluation of models 

originally constructed under a strong stochastic axiomatization. This has been 

necessitated, for example, by the fact that we have not yet succeeded in identifying 

a uniquely proper way to evaluate a matrix of dynamically generated time series 

forecasts of all the endogenous variables in a macroeconometric model. Nor do we 

fully understand the stochastic properties of such a matrix,’ a necessary first step 

in the generation of any statistically valid inference procedure. 

To break this formidable evaluation process down into a series of manage- 

able problems, we propose first a binary split into categories which we shall 

refer to as parametric and non-parametric evaluation. An evaluation procedure is 

said to be parametric if it relies on a formal statistical test based on the stochastic 

specification assumed to apply to the econometric model. Non-parametric evalua- 

tion is concerned with specialized and descriptive procedures such as those 

mentioned in the previous paragraph. Such procedures are not derived from the 

stochastic assumptions of the model, and they rarely depend on formal tests of 

significance. It is our view that non-parametric evaluation can be important and 

valid under many different axiomatizations, and we shall discuss this matter more 

fully in section V below. Our discussion of parametric evaluation will proceed 

according to the following outline: 

Parametric Evaluation 

1. Prior to “release” of the model 

(a) Model selection 

(b) Hypothesis tests and parameter estimation 

(c) Pseudo-forecasts and structural stability tests 

2. Subsequent to “‘release”’ of the model 

(a) Availability of a small post-sample data set : predictive testing, pooling 

of sample and post-sample data. 

(b) Availability of a large post-sample data set. 

III. PARAMETRIC EVALUATION: PRIOR TO MODEL RELEASE 

In this section we discuss a number of aspects of evaluation which are con- 

sidered as taking place during the process of model construction and continuing 

through to the first time the model builder actually “‘puts his money” on the 

results generated by the model. 

? This is not the first time that economists have heard such arguments. 
3 Except possibly for some very simple cases. 
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(a) Model Selection 

The term “‘model selection” here refers to the problem of choosing between 

alternative functional representations of an economic relation. The classical 

statistical procedures which most economics graduate students are required to 

internalize depend very heavily on a specification axiom. These procedures yield 

likelihood ratio tests, minimum variance estimators and predictors, and other 

such munificent benefits all under the assumption that Y = XB + « and its 

familiar accompanying probability statements accurately reflect the true state of 

affairs. As practicing economists we are well aware that a logically prior problem 

exists. Economic theory gives preciously few clues as to the functional forms 

appropriate to the specification of economic relationships, and the presence of 

random error terms in stochastically specified equations adds an additional 

element of functional ambiguity. In certain cases, known in the literature as 

situations of “nested hypotheses,” classical statistical techniques provide sound 

discriminating procedures limited in power “only” by the quantity and richness 

of the sample evidence. Classical techniques are woefully silent in the case of non- 

nested hypotheses, or disparate families of hypotheses, but research is being done 

in this area and there is also the possibility of a useful Bayesian approach to such 

problems. 

Techniques for the handling of pairs of nested hypotheses in a linear econo- 

metric model are by now second nature in the profession. They are well-docu- 

mented in our standard textbooks and there is little to be gained by any review 

here. Let us turn directly to the less understood problem of selecting among 

alternative model specifications which cannot be represented in the framework 

of nested hypotheses. 

Ramsey has made an interesting beginning in the analysis of non-nested 

linear models [46]. Suppose we consider two alternative specifications of a linear- 

in-the-parameters model to explain the dependent variable Y: 

H,: E{Y X] = XB 

H,: E[Y|Z) = Zy, 

where Z = g(X), and the function g represents a non-stochastic, non-linear trans- 

formation. Hy is the maintained hypothesis, while H , is the alternative hypothesis. 

If H, is true, then the regression calculated under H, has used an incorrect 

functional form for the regressors. Letting u denote the vector of residuals from 

the least squares regression of Y on X, it is easily shown [46; pp. 353-354] that 

E{u|X, H,] = 0, 

and 

E{u|X, H4) = MZy 

where M = [I — X(X’X)~'X’]. Using Z = g(X), the second relation can be 

written as 

E{u|X, H4) = Mg(X)y = h(X)y, 

where h(X) = Mg(X). 
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Ramsey reasons* that 

(i) h(X) can be approximated as a multivariate power series in the X vari- 

ables, 

(ii) The predicted values of Y from the regression of Y on X, say Y, are 

linear functions of X, and therefore, 

(iii) It should be possible to approximate h(X) by a power series in Y. It is 

therefore approximately true that 

J 
E[u|X,H,)= ¥ Pa, 

j=2 

where 

(i) the number J represents a Jth degree power series approximation 

to h(X), 

(ii) the index j begins with j = 2 since the least squares residuals are un- 

correlated with Y, and 

(iii) ¥/ refers to the jth power of Y, element by element. 

Under Ho, all the a; should be zero; under H, at least some of the «; should be 

non-zero. Ramsey’s idea, then, is to regress the residuals on powers of Y and test 

the hypothesis that the vector « = (a,,a3;,...,a,) is null. Rejecting the null 

hypothesis on « is equivalent to rejecting H, in favor of some hypothesis of the 

form H,.° In point of fact, Ramsey carries out the above test, not on the least 

squares residvals, but on Theil’s BLUS residuals [51 ; chapter 5]. The idea is the 

same, but the BLUS residuals yield more convenient stochastic properties which 

permit the test on the vector « to be carried out by the usual multiple regression 

F-test, provided one begins with the assumption of (conditional) normality of 

the vector Y.® 

An alternative approach to the problem, one not limited to the linear model 

framework and not requiring any condition analogous to the Z = g(X) require- 

ment in the Ramsey approach, may be formulated as follows. Let two alternative 

specifications of an economic relation be represented by the hypotheses H, and 

H,. According to H, the random variable Y has probability density function 

(p.d.f.) f(y; «), with the parameter « specified to be an element of the space Q,. 

According to H,, Y has p..f. g(y; B) with B e Q,, and furthermore 

2,0 Q, # Q,, 

Q,0Q, # Qs. 

In such a case the usual (variants of) likelihood ratio tests are not available and 

the asymptotic chi-square test on —2 In A (where A is the likelihood ratio) cannot 

* The reader is referred to the Ramsey paper [46] for a more rigorous discussion. 
5 Note that the test depends only on the alternative hypothesis that the X variables should have 

been transformed via some g(X) before running the regression. The function g is not used specifically 
in carrying out the test. The test is therefore quite general, byt probably sacrifices power relative to a 
test which might have been constructed for a specific alternative such as Z; = In X;. 

® In [46] Ramsey reports the results of several applications of his test procedure. An entirely similar 
procedure can be used to obtain tests for heteroskedasticity, omitted variables, and simultaneity, as 
Ramsey indicates, but such tests do not necessarily pinpoint the cause of rejection of the maintained 
hypothesis. 
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be performed. Problems of this type have been studied by D. R. Cox [14] [15] 

who has suggested various procedures—within the framework of classical 

statistics—for testing H, against H,. 

One possibility is to transform the problem into a more familiar framework 

by introducing a new parameter y. The probability density function of the random 

variable can then be written as 

h(y; «, B) = kL f(y; «Let; B))'~’, 

where the factor of proportionality required for h to be a p.df. is given by 

1 i 9] 

c= J _ 0. Ptev, A" dy. 

Employing h(y; «, 8) one can, at least in principle, obtain maximum likelihood 

estimators for «a, 8 and y. Because of the presence of the factor k, the maximization 

of the likelihood function may pose considerable numerical problems. It appears 

possible to use the asymptotic theory of likelihood ratio tests for testing hypo- 

theses about y. Clearly, confirmation that y is (close to) zero or unity supports 

one hypothesis and tends to discredit the other; intermediate values of y are 

ambiguous and awkward in economics since the two hypotheses may be in- 

compatible. Perhaps such an outcome suggests the interpretation that both 

hypotheses are suspect.’ 

Cox’s main procedure is based on the (generalized) likelihood ratio 

sup L*(«) 
elfs — ae, 

sup L3(B) 
BeQs 

where L#(«) and L#(f) are the sample likelihoods under H, and H, respectively. 

Since it is not true in the present case that Q, c Qa, it is not true in general that 

I, < 0; hence standard procedures cannot be applied. Let @ and B be the maximum 

likelihood estimators under H, and H, respectively. The natural logarithm of the 

generalized likelihood ratio is 

l,, = In L#(8) — In L#(B) 

= L,(@) — L,(B) 

= {La) — L,(B,)} + {L,(8) — L(a)} — {L,(B) — L(B,)} 

where 

B, = plim f, 

the probability limit taken on the assertion that H, is true. That a large value for 

l,, constitutes evidence against H, may be seen as follows. Under H, and the 

usual regularity conditions, 

plim [L,(2) — L«)] = plim [L,(6) — L,(B,)) = 9, 

7 Recent work by Atkinson [5], elaborates the results given by Cox. Moreover, it shows that in 
instances where multiple hypotheses (exceeding two) are employed, or when the exponential combina- 
tion of the distributions involves two parameters, y,, 72 (instead of y, 1 — y) it may not be possible to 
identify the “mixing” parameters. 
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while 

plim (L(x) — L,(6,)] > 0,8 

and therefore a “‘large”’ /,, renders evidence against H,. 

The test statistic considered by Cox is a variant of I,,, namely 

S, = |, — E,{LAa) — L,(B)} 

= {La — L,(B)} — E,{LAa) — L,(B)}, 

where E, denotes the expectation operator conditional on the hypothesis H,. 

It is shown by Cox that S, is asymptotically normally distributed and its 

variance is obtained. Clearly the test is not symmetric and the roles of H, and H, 

can be interchanged. The results of the test on S, may indicate consistency with 

H,, departure from H, in the direction of H, or departure away from H,. If the 

test is performed on both S, and S, (obtained by interchanging the roles of H, 

and H,), there are nine possible outcomes and care must be taken to employ the 

correct qualitative interpretation. In appendix section A.1 we give an example of 

an application of this procedure. Unfortunately, the test cannot be performed 

routinely since, as we show in the appendix, the form of the test statistic depends 

crucially on the nature of the hypotheses to be tested and can easily involve 

nuisance parameters. Further, carrying out the test requires computations of 

substantial analytical difficulty. 

Finally, we turn to a Bayesian approach to the problem of model selection. 

While the classical approach of Cox uses the generalized likelihood ratio 

sup L}(a) 
oe aeQ, 

~ sup L*(p) 
BEN, 

as a measure of whether the data generally favor hypothesis f relative to hypo- 

thesis g, the Bayesian approach considers, instead, a weighted likelihood ratio 

of the form 

R= | L709), f)da/ j Lt; B)W(B, 8) dB, 

where W(a, f) and W(B,g) are “‘appropriately’’ defined weights relating to the 

parameters (x, #) and hypotheses (H,,H,) under consideration. It is perhaps 

simplest to illustrate the meaning of such weights in the likelihood function in the 

following way. 

Let @, and &,{=1 — @,;) represent the model builder’s “prior probabilities” 

attaching to (initial degrees of belief in) H, and H, respectively. Let pa) be the 

prior density on a, given that H, is true; similarly let p,(f) be the prior density 

on f given that H, is true. Let w,(a) be the “cost” of rejecting H, when true and 

w,() the “cost”’ of rejecting H, when it (H,) is true. The (expected) cost of rejecting 

H,, on the basis of information y, when in fact H, is true, is 

0, { LPC; a)pfaw (a) do 

® Recall that the probability limits are taken conditional on H,. 
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Similarly the (expected) cost of rejecting H, when it is, in fact, true is 

@, j L3(y; B)p(B)w{B) 4B. 

In this context the weight W(a,f) is given by @,pAa)w,(a), and similarly for 

W(B, g). The usual rule derived from minimizing expected loss is: 

Accept H, if a, { L(y; a)pAla)w,(a) da > a, { L(y; B)p,(B)w,(B) 4B, 
a B 

otherwise reject. 

Now if w,(«) = w,(B) = c, a constant independent of « and 8, then the rule 

reduces to: 

Accept H, (on the basis of information y) if: 

@, §, L7(y; apa) da 

®,§, Liv; B)p(B) dp 

The left-hand quantity, of course, is the usual definition of posterior odds. 

Current activity in this area of Bayesian research, e.g., Geisel [24], Zellner [58], 

Leamer [41], Dickey [19], is aimed at exploring the implications of alternative 

weighting functions (prior densities). There are several important substantive 

implications of the Bayesian literature on this topic, including (a) Minor differences 

in R?’s among the competing models allow considerable discriminatory power 

depending on the degrees-of-freedom, (b) An appropriate criterion statistic for 

choice among models is (roughly) an average of the sample R? and an “a priori” 

R? computed using a priori likely values of the parameters. (That is, it does not 

matter if an R? is high if it implies absurd values of the parameters.) 

Economic model builders rarely view themselves in the role of decision 

maker. Generally, the model builder concentrates on the estimation of many 

parameters and the pure testing of relatively few hypotheses.’ But here, in the 

crucial area of model selection, is a circumstance clearly defined as a decision 

problem, whether to select H, or H, as the axiom on which to proceed in sub- 

sequent analysis.'° And this clearly represents an area for which Bayesian analysis 

° In current practice, most of the pure statistical tests carried out by model builders involve either 
the omitted variables specification analysis of Theil [50], or the test for structural change discussed 
by Chow [9], or various tests for the presence of autocorrelation. These major exceptions aside, it seems 
clear that far more time and attention is given to estimation than to the statistical testing of hypotheses. 

'° We recognize a logical problem here; having chosen H, on the basis of the data available, 
subsequent estimates of parameters, tests of hypotheses etc. are to be understood as conditional on 
the “truth” of H,. But given that the choice of H, is itself the outcome of a statistical test the prob- 
abilistic properties of the subsequent estimators, the levels of significance, are not the stated (nominal) 
ones. The latter would hold only if H, were in fact true, and would be valid in the present case condi- 
tionally on H,. Indeed, empirical research ought to differentiate sharply between the test and “discovery” 
of hypotheses. Thus, if after a long “data mining” process one decides that a given model fits the data 
well, this exercise ought not to be understood as a test of the hypothesis that the world is described by 
sucha model; at least not at the stated level of significance. It may, however, and indeed ought to be 
thought of as tie discovery or the formulation of a hypothesis to be subsequently tested on an independ- 
ent body of data. An early reference to this problem is T. A. Bancroft [6]. 
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is tailor-made. After all, we do approach model selection with strong prior attach- 

ments even now. Only we tend—as a group—to apply these attachments in rather 

ad hoc, if not haphazard, and surely not reproducible ways. There may be a great 

deal to be gained by formalizing these procedures along Bayesian lines. 

(b) Estimation and Testing 

At this point we assume that some model selection procedure has gotten the 

researcher to the point at which it is appropriate to seek optimal parameter 

estimates (or to test hypotheses) under the usual specification axiom regarding 

appropriateness of the form of the model being analyzed. The existing econo- 

metric literature is more explicit in this area and in recent years econometricians 

have begun to pay increasing attention to the estimation of parameters which 

are subject to constraints [33] [52] and to various problems involving non-linear 

estimation [18] [26]. There would seem to be little purpose in our reviewing this 

literature which is quite familiar to most of those who engage in the construction 

(and testing) of econometric models. Rather, we have chosen to call attention to 

two strands of thought which exist in the literature of mathematical statistics, 

which seem to us to be potentially useful in economic problems, and which are on 

the whole not at all well-known to econometric model builders. We refer to two 

different situations involving restrictions on parameter values. The first—to 

which we now turn—is a case of intermediate hypotheses involving successively 

more severe restrictions on the admissable parameter space.'' Here the problem 

has not yet been satisfactorily solved and we mention it briefly to draw attention 

to a research area which could yield a substantial payoff for econometric model 

building. 

Suppose it is desired to test 

Hy: dew 

against 

H,:0e&(Q — o) 

where @ is a vector of parameters, Q is the admissable parameter space, and 

w < Q. It may be meaningful to conduct a sequence of tests on the intermediate 

hypotheses w,,@ ,...,@,, where 

Q = W > @, > @2 D,z..., > W, = , 

in order to be able to pinpoint the reason, say, for the failure of hypothesis H, 

above.'? , 

Suppose, in other words, that we employ the following procedure: Test w, 

against w, — w,. If w, is not rejected, text w, against w, — w2. If w, is not 

'! Economists are familiar with a special case of this problem involving a single subset hypothesis, 
and Chow [9] has provided a useful method for dealing with a two-sample problem within the subset 
hypothesis framework. : 

12 Thus, a Chow test [9] may lead to the inference of structural change either because the coefficient 
vector, 8, in the model Y = Xf + « differs between the two sample periods under investigation, or 
because the variance of e has changed (or both). It would therefore be desirable to be able to handle 
an intermediate hypothesis regarding the stability of the variance of «. 
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rejected, test w, against w,—@,, and so on. If no rejections occur, then 

H,(0ew = w,), is accepted. If, however, some subhypothesis is rejected, say we 

reject ew, and thus accept Oe(w@,_, — @,),0 < k < n, we know that 0¢\L)?_, @; 

and (wm, ,; © @,), &, being the complement of «, (in Q). Since the sequence of 

intermediate hypotheses represents successively more severe restrictions upon 

the parameter space, the test tells us at what point the severity of the restriction 

becomes incompatible with the sample and, consequently, we know “why” Hg is 

rejected. 

Problems of this type have been discussed extensively by, among others, 

Darroch and Silvey [16], Hogg [31], Larson and Bancroft [40], and Seber [47]. 

To this point no easy solutions have yet been identified, a principal stumbling 

block involving the problem of statistical dependence of the successive hypothesis 

tests. 

A more satisfactory result can be displayed in the case, to which we now turn, 

involving a Lagrange multiplier Approach to the testing of a set of restrictions on 

the parameters being estimated. In general terms, the problem can be stated as 

follows. Let Y be a random variable (or vector) with p.d.f. f(y; 0) depending on a 

k-dimensional vector of parameters denoted by @. It is asserted that certain 

restrictions hold, say h(@) = 0, where A(@) is an r-dimensional vector valued 

function with r < k. The parameters can, in general, be estimated by first imposing 

the restrictions on the vector @ or, alternatively, by maximizing the expression 

L(0, A) = L(y; 8) + Vh(O) 

with respect to 0 and A, where L(y; @) is the log likelihood corresponding to a 

sample on Y and 4 is an r-dimensional vector of Lagrange multipliers. 

The latter approach can be shown to yield a test of the validity of the restric- 

tions, while the former does not. One could, of course, estimate unrestricted 

parameters and then derive statistics appropriate to testing the restrictions. If the 

restrictions are thereby rejected, then the unrestricted parameter estimates are 

the appropriate ones. On the other hand, if the hypothesis h(@) = 0 is accepted 

one would want to have the estimates obtained from a procedure which observes 

the restrictions—presumably on grounds of efficiency. The Lagrangian procedure 

yields both restricted parameters and the estimated Lagrange multipliers. In this 

case the test on the validity of the restrictions may be carried out on the Lagrange 

multipliers. If the restrictions are, in fact, valid the Lagrange multipliers should 

be zero since the restrictions imposed on the procedure are not binding—the 

data already incorporate such restrictions. Thus, a test on the estimated multi- 

pliers should lead to acceptance of the hypothesis that they are “insignificantly 

different from zero.” 

On the other hand, if the restrictions are invalid then the restrictions imposed 

by the procedure are, in fact, binding and a test based on the estimates of the 

Lagrange multipliers should yield the conclusion that they are “significantly 

different from zero.” Thus, insignificance of Lagrange multipliers leads to accept- 

ance of the restricted model, while significance leads to rejection of the restricted 

model and thus acceptance of the unrestricted model. If the unrestricted model is 

accepted, however, the restricted estimates are no longer appropriate—-on grounds 

of possible inconsistency due to misspecification. 
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Such problems have been investigated by Aitchison and Silvey [2], [3}, [48], 

who have shown that under the usual regularity conditions underlying maximum 

likelihood estimation, the appropriate test statistic for the hypothesis 

H,:A=0 

, 
eo -Lip j= (240: 0)'y ; 0)", te ;0) 

where T is the sample size, 

D~' = —(RV™'R’) 

, _ [ah) 

. - || 

and V is the so-called “information matrix,” 

2 ° 
v= -z4° Bim 

T 0000 

In the test statistic A all unknown parameters have been replaced by their restricted 

maximum likelihood estimates. If the statistic is ““small’’ we accept the restricted 

model ; if “large” we reject. Notice that if the restricted model were, in fact, valid 

then we would expect the restricted estimates to be “‘close”’ to the unrestricted ones. 

But the unrestricted estimates imply 0L/00 = 0; thus, if both are close then for 

the restricted estimates we would have 0L/00 = 0. Such considerations make this 

test intuitively quite attractive. Aitchison and Silvey have shown that the statistic A 

is, asymptotically, distributed as Chi-square with r degrees-of-freedom under the 

hypothesis A = 0. 

It is instructive to specialize the Aitchison—Silvey test to the linear model 

framework and compare it with the more familiar F-test based on the unrestricted 

estimates. Suppose 

Y=Xp+e, 

where Y is (T x 1); X is (T x K), nonstochastic, and of rank K; B is (K x 1); 

and ¢ is a (T x 1) multivariate normal vector with mean zero and covariance 

matrix 07]. The log-likelihood function is 

‘i z. 1 
L= —z In (2z) ~ zin o? — F2°® 2 2 

and, for subsequent reference, we note that 0*L/df0p’ = —(1/o7)(S), where 

= (X’X). The restrictions on f are given by 

RB =r, 

where r is a J x 1 vector of known constants; 'R is a (J x K) matrix of known 

constants with the rank of R equal to J < K. We then form the Lagrangean function, 

LH =L + A(RB — rv). 
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Maximizing Y with respect to B, o”, and A yields the estimators (see [25, pp. 256— 

258): 

(1) B = b + S~'R(RS~'R’)‘(r — Rb) 

(2) A= s(RS-*R')- \(r — Rb) 

and 

a2 _ &€ 
(3) o 7 -? 

where b is the unrestricted Least Squares estimator, b = S~'X'Y; and @ is the 

(restricted estimator) residual vector, @ = (Y — Xf). 

The Aitchison-Silvey test-statistic, A, is 

oe ae 
4 = ~—2'D~*}. (4) A= -= j 

In this case D~' is given by — To?(RS~'R’), since R’ is itself the derivative of the 

constraint function with respect to the parameter vector f, and the information 

matrix is given by 

ee 1 1 
V= —-—E| ——| = -= --—|S 

T 4 T | a | 

l 
= —,E(S To2 ES) 

S 

re 

since S is a non-stochastic matrix. Thus, 

D~' = —(RV~'R’) 

[oté) 

= —To*(RS~'R’). 

Substituting the latter into A in equation (4) yields: 

(5) A = 07A(RS"'R’)A. 

This statistic is asymptotically distributed as (central) chi-square with J degrees- 

of-freedom under the hypothesis 4 = 0, as shown in [48]. With o? unknown, 

6? can be substituted, yielding the observable test-statistic 

(6) A = 67i(RS"'RA 

which converges in distribution to the asymptotic distribution of A (since 6? is 

consistent for o) and is therefore also asymptotically chi-square with J degrees- 

of-freedom, if A = 0. 
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The common test of the hypothesis RB = r is based on an F-distributed 

statistic the derivation of which may be motivated as follows. The specification 

of the model implies that the unrestricted Least Squares estimator, b, is distributed 

multivariate (B, o?S~'), so that 

R(b — B) = (Rb — RB) ~ NV (0, 0*RS~'R’). 

But if RB = r, it follows that 

(Rb — r) ~ NV (0,07RS~'R’), 

and therefore the st2‘istic 

(7) C = (Rb — r)(o?RS~'R’}" ‘(Rb — r) 

= + (Rb — r)(RS-'R’)- (Rb — 1) 
o 

is distributed as (central) chi-square with J degrees-of-freedom. The statistic C 

contains the nuisance parameter o?, but 

e’e_ (Y — Xb)(Y — Xb) | TH? 

a? o? o? 

is independent of the estimator b and is distributed as (central) chi-square with 

(T — K) degrees-of-freedom. Thus, 

s C/J _ (Rb — r)(RS~'R')” (Rb — r)(T — K) 

~ TH*/o(T — K) — Sf? TJ 
(8) F 

is distributed as (central) F with J and (T — K) degrees-of-freedom, if Rf = r. 

To compare the latter with the Aitchison-Silvey test, substitute the ex- 

pression for A from (2) into the expression for A given in (5) to yield 

2 1 
A =<, —(r — Rb)(RS~'R’) (r — Rb). 

6° 6 

Suppose now that o? is known and does not have to be estimated, then A becomes 

(9) A =s — Rb)(RS~'R’)~ ‘(r — Rb) 

= + (Rb — r)(RS~'R’)” (Rb — r), 
o 

which is precisely the statistic C given in (7). Thus, if o* were known, the 

Aitchison-Silvey test would coincide with the usual test on the unrestricted 

estimators, for the latter would then be based on the statistic C, there being no 

need to employ T.7?/a? to get rid of any nuisance parameter. From this we obtain 

the conclusions that, within the linear model framework as specified 
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(i) the two tests are (mathematically) equivalent if o? is known, 

and 

(ii) the Aitchison—Silvey test is a valid small sample test under the normality 

assumption on ¢, provided o? is known. 

If o? is unknown, we then have the choice between the small sample F-test and 

the asymptotic chi-square test. Two additional results can be proven for the case 

of unknown o?: 

(iii) the two tests are asymptotically equivalent in the sense that JF and A 

have the same asymptotic distribution (see appendix section A.2), 

(iv) If ¢ is normally distributed, then the usual F-test is the appropriate test 

because the other is only asymptotically valid, while the F-test is valid 

for any sample size, enjoys the properties of a ““Neyman-Structure” 

test [42 ; chapter 4] and so on. Furthermore, although 

Té? 
o2 

is distributed as chi-square with (T — K + J) degrees-of-freedom, it is 

not independent of the estimator b, and thus cannot be used to convert A 

into an F-statistic with more denominator degrees-of-freedom (hence 

higher power) than F (see appendix section A.2). 

Finally, and probably most important from an econometric model point of 

view, it appears that in the absence of a normality assumption on «¢ the Aitchison— 

Silvey test based on A is preferable to the test based on F for the following con- 

siderations. If ¢ is not normally distributed, the statistic C given in equation (7) 

will be distributed as chi-square with J degrees-of-freedom asymptotically, since 

it is mathematically equivalent to A.'* Further the asymptotic distribution of C 

will be unaffected if the ? in (7) is replaced by any consistent estimator. In effect, 

the standard statistic F results from replacing o? by ”, a consistent estimator 

derived from b, while the Aitchison-Silvey statistic A results from replacing o? 

by 67, a consistent estimator derived from § which contains the restrictions RB = r. 

If the restrictions are valid then 6? should be preferable to Y? (on grounds of 

efficiency), in the same way that any full information estimator is to be preferred 

to its corresponding limited information estimator. Although it does not matter 

asymptotically, for any finite sample size the estimator 7? can be considered to 

be based on a sample of size (T — K) while é? can be considered to be based on a 

sample of size (T — K + J) > (T — K).'* 

‘3 This could be proven directly without appealing to the equivalence of C and A. If ¢ is not 
normally distributed, we can consider a quasi-maximum likelihood estimation problem, as though e 
were normally distributed, or simply minimize the residual sum of squares subject to Rf = r and still 
obtain the same results including asymptotic normality. 

'* If the test is to be based on asymptotic principles, there is no purpose to running the test on 
in any case. One should use either 

1 
C= palRb — r)(RS~'R’)(Rb — r) 

or 
* 1 
A= gilRb — r)(RS~'R’)~ (Rb — r), 

each of which is asymptotically 3 if RB = r. We are arguing that A is preferable because 67 isa“‘better” 
fixed sample estimator of o? by virtue of its using more information about the struc! model. 
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The reader will have noted that the discussion in this section has been predi- 

cated on a single-equation approach with non-stochastic regressors. In the case of 

stochastic regressors little difficulty is introduced if the regressors are fully inde- 

pendent of the error term e. The small-sample F-test based on equation (8) would 

become a conditional F-test (conditional on the observed X’s). In the Aitchison— 

Silvey test, the information matrix would be given by 

ES E(T~'S) 
V =o Os —————-——__. 

To? o? 
This results in 

* ae - 
A= Zo A R{E(T” *S)}-IR'Y, 

which can be consistently estimated by 

A= =672(R(T- ‘sy 'RY 

(10) = 67)'[RS~'R'V, 

precisely as in equation (6). The Aitchison—Silvey Test is thus completely un- 

affected by the presence of random regressors if they are independent of «.'* If the 

regressors include a lagged dependent variable (and we maintain the assumption 

of independent error terms) it becomes necessary to rely on a central limit theorem 

for dependent random variables to establish the asymptotic distribution of the 

Aitchison-Silvey statistic. Theil-[51 ; p. 487] refers to one such central limit theorem 

which would apparently justify use of the Aitchison—Silvey test in the case of a 

lagged dependent variable. 

Finally, suppose we are dealing with a simultaneous-equations model. If f is 

a vector of reduced-form parameters, then all of the foregoing applies. We are more 

apt, however, to be concerned about restrictions applying to behavioral (structural) 

parameters of the model. In that case, suppose the regressors in the equation for 

Y contain predicted values of some endogenous variables obtained from a directly 

estimated reduced form, so that b and B become, respectively, unrestricted and 

restricted 2SLS estimators of the structural parameters f. If the structural error 

terms are serially independent and the predetermined variables are either non- 

stochastic or fully independent of the structural error terms, then the Aitchison 

Silvey test can be performed on the 2SLS estimators with unchanged asymptotic 

justification, precisely as discussed in the immediately preceding paragraph.'® 

's /T(4/T) would still be asymptotically normally distributed, or—equivalently—,/T(b — f) 
would be asymptotically normally distributed with zero mean and covariance matrix 
o? Plim (T~'X’X)~*, which would again result in the statistic C in (7) being asymptotically wifRp=r. 

‘© The Aitchison-Silvey test-statistic would still be consistently estimated by the A of equation (10), 
which would still yield the statistic 

1 
gilRb — r)(RS~'R')" (Rb — r) 

upon substitution for 1, though b is now the unrestricted 2SLS estimator. It is shown in [14; pp. 190-191] 
that under the conditions stated above, 

. ea" 
./T(b — B) is asymptotically #0, o? plim (>) } 

where X contains “predicted’’ endogenous variables. This is all that is needed to establish that the 
above statistic is asymptotically 3 (if RB = r), with 6? being the variance estimator based upon B 
(the restricted 2SLS estimator of £). 
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The presence of lagged endogenous variables would again lead to the need for a 

central limit theorem for dependent variables. 

(c) Pseudo-Forecasts and Structural Stability Tests 

We assume now that an econometric model has been estimated and is ready 

for a “forecasting” evaluation prior to actual use as an operating model. A num- 

ber of evaluation methods are available and several will be discussed in section V 

below. Here we should like to concentrate on the use of a data set which could 

have been pooled with the sample used to estimate the model, but was instead 

“saved’’ for a post-construction test of the model. We are well aware that under 

strong specification axioms it makes more sense to use all the available data in 

estimation, than to save some of it for later testing. This view is argued per- 

suasively by Christ [11 ; pp. 546-548]. But in a realistic situation in which model 

selection procedures, hypothesis tests of various kinds, and a number of other 

“experiments” all amount to considerable data-mining, it would seem wise to 

have saved some data on which to evaluate the resulting model.'’ 

Suppose, then, that the model-builder has available a set of m observations 

on each of the independent and dependent variables of the model. These data are 

assumed to lie outside the sample used to estimate the model, and it is further 

assumed that the m observations are too few in number to permit re-estimation 

of the model.'*® The model is to be used along with the m observations on the 

independent variables to generate m forecasts of the dependent variable(s) which 

can then be compared with the m known values of the dependent variable(s). For 

the case of a single equation and m = 1, a normality assumption on the error term 

(plus serial independence of the error term) permits the familiar t-test which can be 

considered equivalently either as a predictive test of the model or as a test of 

structural stability. For the single equation case with m > |, it is possible to 

calculate a root mean squared error of forecast (the square root of the average of 

the squared forecasting errors) and it is tempting to think that such a statistic 

should be approximately the same as the standard error of estimate of the fitted 

equation if the structure has not changed. That this is not so, is alluded to in a 

recent paper by Jorgenson, Hunter and Nadiri [39]. 

Suppose the relation Y = XB + «, with the same assumptions as previously 

given (including normality), is estimated by Least-Squares. The residual vector, 

say e, is given by 

e= Me, 

where 

M=I1- XS" 'X’, 

and e’e/(T — K) has expectation o?. The standard error of estimate is, of course, 

the square root of e’e/(T — K). Now suppose that Xq is the (m x K) matrix of 

‘7 Obviously if the model builder “knows” the data set which has been saved, he may find ii 
impossible to prevent it from influencing his specification of the model. To that extent, a test on saved 
data is biased in favor of the model being tested. Subsequent testing on data which could not have 
been known at the time of model construction is clearly more desirable. 

*8 In section IV we discuss the case in which there are enough new data to re-estimate the model 
on the new data set. 
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observations to be used in the predictive test of the model. If the structure of the 

model is correct, then 

Y = X of + Eo 

and the vector of forecast errors, say é,, is given by 

eo = Y = X ob, 

where b = S~'X’Y. It is weil known that under the stated assumptions ey is 

distributed as multivariate Normal with mean zero and covariance matrix 

o7(I,, + XoS~'X 6), where I,, is an (m x m) identity matrix. Denoting the matrix 

(Im + XoS~ 'X 6) by Q, it follows that 

Colm + XoS~'Xo)~'ep QD 'eo 
s _ o2 

is distributed as (central) chi-square with m degrees-of-freedom. Thus 

E[eoQ~ ‘eo/m] = o?. 

The mean squared error of forecast, however, is given by eje,/m, not e)Q~ 'e,/m, 

and the difference between these two measures is 

Coeo/m —(€oQ~ ‘eo/m = e,(/, — Q- ")eo/m. 

It can be shown (see appendix section A.3) that (/,, — Q~') is a positive definite 

matrix. Thus e,(/,, — Q~ ')e,/m is always positive which implies that 

E(eyéo/m) > E(e,Q~ ‘eo/m) = o?. 

The root mean squared error of forecast, which is the square root of eje,/m, 

should thus be expected to exceed the standard error of estimate of the fitted 

equation. Intuitively, this result is due to the fact that the variance of the forecast 

error arises not only from the residual variance, a”, but also from the discrepancy 

between b and f. The proper predictive test involves the ratio 

€oQ- "€o/m Lim €/0(Im + XoS~ "Xo)" “€o/m 

e’e/(T — K) — e’e/(T — K) 
(11) 

which “corrects” for the component of the prediction error due to imprecision ..1 

the estimation of £, and is distributed as (central) F with m and (T — K) degrees- 

of-freedom, if the structure is unchanged [40]. 

It is interesting that this predictive testing procedure can be generalized to the 

situation in which the reduced form of a linear simultaneous equations model is 

used to forecast m new observations on each of G endogenous variables. We make 

the following assumptions : 

(i) the predetermined variables are non-stochastic, 

(ii) the reduced form error terms are Normally distributed, serially inde- 

pendent, but contemporaneously dependent ‘vith contemporaneous co- 

variance matrix denoted by Z. 

(iii) the reduced form parameters are estimated by ordinary least squares. 
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The covariance matrix ZY is estimated by Y with typical element ee ,/(T — K) 

where e; is the vector of residuals from the reduced form equation corresponding 

to the ith endogenous variable, e; is the residual vector corresponding to the 

reduced form equation of the jth endogenous variable, and K is the number of 

predetermined variables (the same, of course, in all G reduced form equations). 

Now define e§ as an(mG x 1) vector of forecast errors, where the first m elements 

correspond to the first endogenous variable, the second m elements correspond to 

the second endogenous variable, and so on. We show in appendix section A.3 that 

the statistic 
as 3 (T-K-G+1) 

(12) (eS) (Z~* @ Um + XoS~ Xo)" *](eS) 
mG(T — K) 

> 

where @ represents the Kronecker product, is distributed as (central) F with mG 

and (T — K — G + 1) degrees-of-freedom if the structure is unchanged. It is 

obvious that for G = | the expression in (12) collapses to the single equation statis- 

tic given in (11).'° 

The assumption of non-stochastic predetermined variables can be relaxed in 

two ways. If the predetermined variables are stochastic but fully independent of 

the reduced form error terms, then the test-statistic given in (12) is appropriate 

for an F-test conditional on both X and X,. More interesting is the case of pre- 

determined variables which include lagged endogenous variables. Suppose we 

make a series of m one-period forecasts, that is, always using actual values for the 

lagged endogenous variables. It is then possible to consider the forecasts to be 

conditional on the observed matrix X,, even though X, contains lagged endo- 

genous variables. In this case, if T is large (the size of m does not matter) 

(13) (e$)[Z~! @ (Uy + XoS~'Xo)~ '}(e8) 

can be considered to have an approximate chi-square distribution with mG 

degrees-of-freedom if the structure is unchanged (see Appendix section A.3).?° 

Unfortunately, we do not at this time know of any analogous statistical test for a 

sequence of dynamic forecasts in which the model generates its own lagged 

endogenous variables. We conclude this section by observing that if the model 

passes its predictive test evaluation, the m saved observations should then pre- 

sumably (but see footnote 10) be incorporated into the data set to reestimate the 

model on all (T + m) observations. If the mode! fails, then, of course, it’s ““back to 

the drawing board.” 

'? Except for a recursive model, it makes little sense to assume that ZY is diagonal, for each reduced 
form error term is, in general, a linear combination of all the structural error terms. On the other hand, 
if we consider the set of G equations to be “‘seemingly unrelated regressions,” Z might be diagonal 
in which case (12) can be simplified to 

. {4 + XoS~'X%)"! sednh aK ~ hs i 

2 ee,/T — K G(T — K) i=1 
where ép ; is the set of m forecast errors corresponding to the ith dependent variable. In this case, the 
test-statistic is proportional to the sum of the single-equation test-statistics as given in (11). 

20 The statistic in (12) yields a small sample test and would be proportional to a x’ if Z were known. 
The F distribution arises because Y has been used as a Wishart-distributed estimator of Z. In equation 
(13), which is only approximately valid for large samples, no such correction is appropriate. If Z 
itself were in (13) the statistic would still be only an approximate 77, and since Z is a consistent estimator 
of Z, the same should hold for the statistic containing Z. 
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IV. PARAMETRIC EVALUATION: SUBSEQUENT TO MODEL RELEASE 

In this section we present a brief set of comments related to the evaluation of 

econometric models which are already at an operating stage. This section is quite 

brief for two primary reasons. First, the procedures discussed in this section depend 

on a sufficiently strong axiomatization to permit statistical testing in the familiar 

classical sense; there is not a great deal of scope for discussion here because our 

current knowledge is not terribly extensive. Secondly, much of what there is to say 

can be said by referring the reader back to discussions already presented in the 

previous section. 

(a) Availability of a Small Data Set 

Here we have reference to the continual flow of new data which, in the case 

of time series models, accrues a point at a time. Existing models can be checked 

against small sets of new data very frequently. Indeed, most of the operating macro 

forecasting models are subjected to a “residual analysis” check at least once per 

calendar quarter as new national income account data are issued by the govern- 

ment. These and other models, however, could in principle be put through a 

regularly scheduled predictive testing procedure along the lines discussed in 

section III, part (c). The only differences lie in the fact that the test procedure would 

be conducted on a data set which, obviously, could sot have been incorporated 

into the original sample. Such predictive testing is especially valuable because it 

involves data successively further separated from the sample data used in the 

initial specification of the model. 

A clearly useful procedure would be to incorporate each new data set into the 

model’s estimation sample each time a predictive test is passed. Most model- 

builders stop far short of such a procedure and re-estimate, indeed re-build, their 

models on a much looser schedule. It is not quite so obvious whether failure to 

pass a given predictive test, based on a small data set, should be grounds for 

immediate rejection of a model, for a number of reasons. Newly released data are 

frequently subject to substantial subsequent revision; it may be the new data 

which have failed the test, not the model. Small data sets can be heavily dominated 

by unique events which are outside the model’s specified structure. Such circum- 

stances have to be recognized as a limitation of the model, not as an indication that 

those processes which are represented within the model have been proven to be 

inadequately specified. 

(b) Availability of a Large Data Set 

Some econometric models are constructed in order to test hypotheses, not to 

be in continual use as forecasting or policy-analysis models. In such cases, they 

may well lie dormant over periods of time long enough for substantial new bodies 

of data to emerge. In the case of cross-section models, large sets of new data con- 

tinually appear or can be obtained. In these circumstances it is possible to use the 

new data set, by itself, to re-estimate the model. This, of course, puts the model- 

builder (or somecne else, for that matter) into the position of being able to conduct 

2! Ray Fair, for example, is one of the few model operators who actually re-estimates his model 
each quarter. See [22]. 
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a rather powerful test of structural change. Economists are quite familiar with the 

use of the analysis of variance test discussed by Gregory Chow [9] for this situa- 

tion. Here, especially, it would be useful if the series-tests on successively more 

restrictive nested hypotheses?” were to become operational. 

The predictive tests as discussed above are not, of course, limited in applica- 

tion to small data sets and are therefore alternatives to the Chow test. The latter, 

however, is a more powerful test when the new data set is large enough to be used 

by itself to re-estimate the mode!. Indeed, the Chow test is the classical likelihood 

ratio test for this situation.?* 

V. NON-PA.’.AMETRIC EVALUATION 

In view of the nature of the preceding discussion, it is useful to remind the 

reader once again that no pejorative intent is to be inferred from our use of the 

term non-parametric evaluation, or its connection with the process of Sherlock 

Holmes inference which we identified earlier. Indeed, we firmly believe that the 

need for somewhat descriptive kinds of evaluation procedures points as much to 

the richness of the areas of application of econometric models as it does to any 

inability of economists to put forth a strong axiomatization for their models. The 

spirit of our discussion here may be stated as follows. In the current state of our 

knowledge and analytical needs, to concentrate our attention solely on proving or 

disproving the “‘truth’’ of an econometric model is to choose an activity virtually 

guaranteed to suppress the major benefits which can flow from the proper use of 

econometric models. Having con.tructed the best models of which we are capable,’* 

we ought to concern ourselves directly with whether or not particular models can 

be considered to be reliable tools for particular uses, regardless of the strict 

faithfulness of their specification. 

In this context, “validation” becomes a problem-dependent or decision- 

dependent process, differing from case to case as the proposed use of the model 

under consideration changes. Thus a particular model may be validated for one 

purpose and not for another. In each case the process of validation is designed to 

answer the question: Is this model fulfilling the stated purpose? We can then speak 

of the evaluation of these models as the process of attempting to validate them for 

a series of purposes.?° Thus the motivation of model-builders or users becomes 

directly relevant to the evaluation of the models themselves. The “‘success”’ of a 

model can then be measured by the extent to which it enables its user to decrease 

the frequency and consequences of wrong decisions. As Zarnowitz [55] has pointed 

22 See section III, part (b). 
?3 The Chow test is a fixed sample F-test based on the same strict axiomatization as the predictive 

test discussed in section III, part (c). We have not here concerned ourselves with generalizations in the 
direction of lagged dependent variables, reduced-forms vs. structural models, and so on. Presumably 
this could be done along the lines of our previous discussions, with substantial benefits accruing to 
the process of econometric model evaluation. 

24 And while continuing the search for ever closer approximations to economic reality. 
5 Howrey et. al. [36] have pointed out that the method of estimation itself may also be partially 

a function of the use to which the model is to be put. The evaluation of any model should, of course, 
include an evaluation of the estimating procedures used. We do not comment on this aspect of the 
evaluation process here. For an interesting discussion of this issue, see Howrey [36]. 
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out, however, the full application of even this more limited goal still poses very high 

informational requirements, namely: (i) the errors must be identifiable, (ii) the 

preferences of the decision maker and the constraints under which he operates 

must be available, (iii) the cost of providing the model must be ascertained. Large 

macroeconometric models, for example, are frequently used for both forecasting 

and policy analysis. In the role of a forecasting instrument, a model’s usefulness is 

directly related to the accuracy of its ex ante forecasts. In the case of the policy 

analysis role, the main criterion is how well the model performs with respect to 

conditional forecasts based on particular configurations of policy options. In 

this case, especially, the user of the model typically possesses some—at least quali- 

tative—knowledg: about the policy maker’s preferences concerning growth rates, 

inflation, unemployment, and so on. Such knowledge provides a natural set of 

criteria by which to judge the model’s adequacy as a tool of policy analysis.*° 

But even here it is dangerous to polarize the evaluation too strongly onto 

specific use-oriented criteria. Our tests or evaluation procedures should—initially 

at least—center on the ability of the model to generate ‘historical’ simulations 

which conform to the actual data. These simulations might be either deterministic 

or stochastic, and either static (one period) or dynamic (multi-period) in nature. 

A minimal requirement would invoive a broad consistency of the data generated 

by a deterministic single-period simulation with the data from the actual historical 

record (both within and outside the sample period).”’ 

However, even if a model “passed”’ a more demanding test of its ability to 

“track”’ the historical record (e.g., a deterministic multi-period historical simula- 

tion), economists would normally also want to investigate whether or not the 

model responded to various types of stimuli in the fashion anticipated or suggested 

by economic theory or independent empirical observation. Quite aside from the 

individual hypotheses underlying particular equations in the system, economists 

have certain (not entirely independent) ‘‘reduced form” hypotheses to which they 

would demand “acceptable”’ models to conform. That is, as a profession we seem 

to have developed some more or less vague ideas about the magnitudes of various 

impact, dynamic and steady-state multipliers as well as some prior notions about 

other dynamic characteristics that the model “should” exhibit. Despite Haavelmo’s 

early warning [27], however, we have, at least until the recent work of Howrey [34], 

failed to realize just how difficult such tests are to design and carry out. This set 

of issues was finally confronted again at a recent NBER conference concerned with 

whether or not an existing set of models adequately reproduced the cyclical swings 

observed in our economic system.”® It is difficult to catalogue what seems to be a 

26 Thus, a model which accurately predicts the employment effects of alternative tax policies may 
be considered “‘successful”’ even if its prediction of the composition of GNP is poor by the standards 
for other uses of a model. 

27 Especially, perhaps, in the simulation of historical episodes which involve policy changes or 
initial conditions relevant to current interests and decisions. It should be emphasized, however, that 
consistency of the data generated by a deterministic multi-period simulation with historical data is 
in general too strong a requirement. Howrey and Kalejian [35] have shown that under certain cir- 
cumstances the dynamic deterministic simulation path of a correctly specified non-litear model may 
differ substantially from the historical time path. 

28 Conference on Research in Income and Wealth, Harvard University, November 14-15, 1969. 
For a summary introduction to these issues as they arose at this conference see Hickman [30]. 
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minimal set of demands of this sort as needs and requirements vary according to 

the preferences and prejudices of the researcher and the actual needs of the user. 

In any case, the constraints imposed by these demands are, given the current state 

of knowledge, not overly stringent. Even if we consider the case of the government 

expenditure multiplier—where a relatively large amount of evidence has accumu- 

lated, “‘acceptable’’ estimates of its magnitude (both impact and steady state) vary 

widely among different “‘accepted’’ models of the U.S. economy. 

We should also briefly consider whether in all types of experiments the simu- 

lated data should be generated by stochastic or non-stochastic simulation proce- 

dures. Certainly stochastic simulation, if we have the necessary extra information 

(in practice we often ignore the problem of obtaining good estimates of the 

variance-covariance matrix of the disturbance process), will yield a more informa- 

tive characterization of the model being used and thus increase the quality of the 

evaluation procedure. Further, if the model is non-linear, and most macro- 

econometric models are these days, then the reduced form of the model cannot be 

inferred from the results of a non-stochastic solution [35]. That is, the application 

of non-stochastic simulation procedures yields results that should be expected to 

differ from those implied by the properties of the actual reduced form of the model. 

Although some preliminary experiments with the Wharton model suggested that 

the differences were not large, the results of the more extensive multi-model study 

by Haitovsky and Wallace [29] suggest a strong contrary conclusion regarding 

the ability of non-stochastic simulations to represent the reduced form properties 

of existing non-linear models. 

The evaluation of the predictive ability of a model is essentially a goodness- 

of-fit problem. Because the statistical techniques available for this purpose 

normally require a strong axiomatization of the structure, econometric model 

builders have often found themselves restricted to simple graphical techniques (the 

fit “looks good”) or simple summary measures (root mean square error, Theil’s 

U-Statistic ..., etc.),?° of the performance of certain key variables. In a recent 

paper, Haitovsky and Treyz [28] have proposed an interesting descriptive 

decomposition of the forecast error for an endogenous variable in a large econo- 

metric model. The decomposition identifies error components involving: (a) the 

structural equation explaining the variable in question, (b) the rest of the esti- 

mated structural system, (c) incorrect values of lagged endogenous variables 

(in the case of dynamic simulations), (d) incorrect guesses about exogenous 

variables (in the case of an ex ante forecast), and (e) failure to make serial correla- 

tion “‘adjustments”’ for observed errors. Some attention has also been given to the 

development of a statistic analogous to the single-equation R?, to be used to test 

the hypothesis that B = 0, where is the coefficient vector of the system of equa- 

tions under consideration. An interesting and complete discussion of this issue can 

be found in Dhrymes [17; Ch. 5]. Dhrymes defines such a statistic, but finds that 

it is dependent on the unknown covariance parameters of the joint distribution of 

the error terms of the system. Dhrymes [17] also derives an alternate test procedure 

2° Howrey et. al. [36] have recently suggested some difficulty with the root mean square error 
statistic (where small sample properties are unknown), particularly when used to compare structural 
versus autoregressive models, or sample versus post sample performance of a given model. See also 
our section III, part (b), and the discussion of Theil’s U-Statistic in Jorgenson et. al. [39]. 
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regarding the goodness-of-fit of the reduced form model (the fraction of the 

generalized variance of the jointly dependent variables explained by the reduced 

form), but this procedure involves the restriction that the number of variables in 

the model (endogenous plus predetermined) be less than the total number of 

observations—a restriction not generally fulfilled by large econometric models. 

The trace correlation statistic suggested by Hooper (based on the estimates of the 

canonical correlations) is closely related to the statistic discussed by Dhrymes, 

but its distribution seems quite intractable—although Hooper has given an 

approximate expression for the asymptotic variance of the statistic [32]. Perhaps 

this is an area of research that holds some promise. 

Many interesting applications with large econometric models involve what is 

known as a “multiple response problem.”’ That is we are interested in more than 

one characterization of the outcome of the experiment. This raises the question of 

whether to treat the outcome as one of many experiments each with a single 

response, or to combine all the responses (endogenous variables of interest) into a 

single response. This latter procedure, of course, involves the explicit formulation 

of the utility function of the user—a difficult situation.*° 

Other techniques which are in common use in the evaluation of a model’s 

predictive performance are regression analysis and speciral analysis. In the former 

case we simply regress actual values on the predicted values of a series and test 

whether the resulting equations have zero intercepts and slopes not significantly 

different from unity (see Cohen and Cyert [12] and Hymans [37]). This general 

technique has also been used extensively by Theil [50], but as usual he has extended 

it and forced it to yield additional information. By regressing predicted values on 

actual values and actual values lagged one period, Theil is also able to investigate 

whether or not predicted changes tend to be biased toward recent actual changes. 

Theil’s inequality coefficient and its decomposition into elements of bias, variance 

and covariance is very closely related to this type of analysis (although it refers to 

a regression of actual changes on predicted changes) and offers a great deal more 

information including some information on the tendency of the model to make 

turning point errors. Mincer and Zarnowitz [43] have provided some further 

development of Theil’s procedure and have also suggested an additional measure 

of forecast error: the relative mean squared error. The latter is particularly 

interesting by virtue of its attempt to compare the costs and benefits of forecasts 

derived from alternative models of the economic process. 

Spectral (cross-spectral) analysis is a statistical technique that can be used to 

obtain a frequency decomposition of the variance (covariance) of a univariate 

(bivariate) stochastic process. There are several ways in which spectrum analytic 

techniques might be used in the evaluation of econometric models. Naylor et al. 

[44] suggest that the spectra estimated from simulation data be compared with 

the spectra estimated directly from actual data. Howrey [34] has pointed out that 

for linear models the implied spectrum can be derived directly from the model and 

the stochastic simulation of the model is therefore not needed to make this com- 

parison. Another application of spectral techniques is to test estimates of the 

3° For an interesting attempt to solve the multiple response problem see Fromm and Taubman 
[23] and Theil [49], [50]. 
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structural or reduced-form disturbances for serial correlation, an important step 

in the Box—Jenkins modeling procedure [8].°' 

Cross-spectral analysis can also be used to investigate the relationship 

between predicted and actual values. That is, the Theil procedures can be extended 

to the frequency domain using cross-spectral analysis. This permits statistical 

testing of some more general hypotheses about the relationship of actual and 

predicted values. 

An important advantage of spectral analysis is that it is a nonparametric 

approach to daa analysis. Thus it is a particularly useful device in situations 

involving a weak axiomatization of the relationships under investigation. In addi- 

tion, spectral methods do not depend on the statistical independence of the 

generated data points; they require only that the process generating the data be 

stationary to the second order. The significance tests that are available, however, 

depend on the assumption of Normality of the underlying process or on a sample 

size that is large enough that a form of the central limit theorem can be invoked. 

What little empirical experience has been accumulated in connection with the 

use of spectral analysis to investigate econometric models suggests that the tech- 

nique can be used quite effectively to investigate certain dynamic properties of 

econometric models. 

By way of tieing up the strands of this necessarily broad discussion, we should 

like to sketch, in outline form, the range of descriptive measures which have been 

found to yield useful insights into the performance and realiability characteristics 

of large scale econometric models. While some of these measures can be subjected 

to classical statistical tests, many are—at this stage of our knowledge—merely 

descriptive and geared to specialized model uses. A large number of these proce- 

dures can be traced to the writings of Zarnowitz and his co-workers [53], [54], 

[56], [57], Evans, Haitovsky and Treyz [21], Box and Jenkins [8], and Theil [50]. 

An Outline of Non-Parametric Measures 

A. Single-Variable Measures 

1. Mean forecast error (changes and levels) 

2. Mean absolute forecast error (changes and levels) 

3. Mean squared error (changes and levels) 

4. Any of the above relative to 

(a) the level or variability of the variable being predicted 

(b) a measure of “‘acceptable’’ forecast error for alternative forecasting 

needs and horizons 

B. Tracking Measures 

1. Number of turning points missed 

2. Number of turning points falsely predicted 

31 If one is primarily interested in forecasting (as opposed to explaining the behavior of the 
economic system) the conceptual simplicity of the Box-Jenkins procedure (essentially a battery of 
sophisticated smoothing techniques) has some appeal. This is particularly so if there is only one - 
variable of interest as these procedures do not treat the output variables as being “tied” together in 
a system of interdependent relationships. Thus, forecasts of output, employment and prices, for example, 
need have no particular relationship to each other. Further, since the procedures are void of economic 
theory, they cannot, of course, be used to test hypotheses. Currently research is being done on develop- 
ing procedures for building more information and constraints (exogenous and policy variables) into 
these models [8] [20] [45]. These investigations, if successful, may prove fruitful to econometricians. 
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3. Number of under- or overpredictions 

4. Rank correlation of predicted and actual changes (within a subset of 

“important” actual movements) 

5. Various tests of randomness 

(a) of directional predictions 

(b) of predicted turning points 

C. Error Decompositions 

1. Bias and variance of forecast error 

2. Errors in start-up position vs. errors in the predicted changes 

3. Identification of model subsectors transmitting errors to other sectors 

D. Comparative Errors 

1. Comparison with various “‘naive’’ forecasts*? 

2. Comparison with “judgmental,” “‘consensus,” or other non-econometric 

forecasts 

3. Comparison with other econometric forecasts 

E. Cyclical and Dynamic Properties 

1. Impact and dynamic multipliers 

2. Frequency response characteristics 

The measures just outlined have been found to be suitable for a wide variety 

of purposes, and—surely—a user’s confidence in any particular model would 

grow in proportion to the number of positive results yielded by such of these 

measures as seem relevant to the use in question. Several recent studies, [29], [39], 

and especially the Cooper—Jorgenson study [13], have made a valuable contribu- 

tion by standardizing both the period of fit and the technique of estimation across 

alternative models prior to conducting inter-model comparisons. While model 

builders have in some measure tended to resent such activity on the part of “out- 

siders,”’>* the controversy certainly shows signs of producing improved procedures 

on all sides. 

Models will be used for decision making, and their evaluation, therefore, 

ought to be tied to optimization of these decisions. The question we have to ask 

ourselves, then, is what series of tests and/or procedures will be sufficient to achieve 

a particula: level of confidence in the use of a model for a certain specified pur- 

pose? What model builders have done, to date, is to catalogue the properties of 

their models, concentrating on those aspects of the system which seemed useful 

to them. There are two difficulties. First, model users may or may not find these 

properties to be relevant to their decision making. Second, we have not yet 

standardized the “‘list’’ of properties studied. A remedy for the latter situation 

would be most helpful to all users, is certainly feasible, and ought to receive high 

priority. The former issue is much more formidable and requires a greater degree 

of cooperation and candid communication than has to date taken place between 

model builders and the growing population of model users. 

32 The procedures of Box and Jenkins [8] may be particularly powerful in helping to identify the 
autoregressive procedures which would best serve as ““Naive” alternatives to a structural model. 

33 See Howrey, Klein and McCarthy [36] who present arguments regarding the controls needed 
in such standardization attempts. 
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APPENDIX 

This appendix serves to sketch some of the less familiar theoretical results 

which are the basis for statements made in the body of the paper. 

A.l_ An Illustration of the Cox Procedure for Non-Nested Hypotheses 

Hypothesis H,: 

T ee 1 ; 
LAy; a) = — zin(@x)- >lne — 552 — Xayy — Xa), 

where 

, 
y = (\1,2,---s Yr) X = (e, x), X = (X,,X2,...,X7), 

a=(e,,0,), e=(1,1,...,1). 

Hypothesis H,: 

T T 1 
L(y: B) = — =|n(2n) — =Ino? — 5527 — X*BY — X*B) 

| 

| 
2 2 2 ; 

where 
f 

X*=(e,x*), x* = (xt, xf,...,x9), B= (Bo, BY. | 

Define : 

Lene ae | 
67 = pu —N]ly, N=X(X'X)'X 

63 = nyt — N*)y, N* = X*(X*’X*)"'X*. 

Then 

T 
b= —5[In 67 — In 6?) 

x*X*)-1/x*x 
B, = plim (X*’X*)~'X*'[Xa + u] = pli ( | |. 

T T 

on the assumption that H, is true and that accordingly 

y= Xa+u4u, 

U = (U;,,U2,...,Uz), {u,:t = 1,2...} being a sequence of identically and inde- 

pendently distributed random variables with mean zero and variance o?. In the 

preceding it is assumed that the x’s are either a sequence of fixed constants or if 

they are random variables they are distributed independently of u. 
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We observe that, under H,, 

1 
ple) = F{In (2x) + 1] — 4 1n 67 

1 1 uu 
phe) => - +1n (27) _ zIn a —_ Ie? TT’ 

Because 67 is a consistent estimator of o? and so is u'u/T, we conclude that 

5 Fi 

Further, since plim [L,(B)|H 7) = LB.) 

a e 

Moreover, 

| i al 1, 1 @—X*BJU — X*B) 
phdlB.) = — 5In2n) — Ino? — = ; 

But we see that 

1 ; 1 
plim qv — X*B.)(y — X*B,) = o? + plim Fax ~ noxa | 

Thus 

i Sizes Pte . 
plim qed) — L{B,)) = 752 plim 7 X(I-N ms > 0. 

In general we would expect a strict inequality except for special x-sequences. 

Turning now to the test statistic (1/T)S, (as defined in the text, supra), we 

obtain 

=, = — }{In 6} — In 62] + 4E,[In 6} — In 6?). 

Under H,, (Té7/o7) is (central) chi-square with (T — 2) degrees of freedom, and 

(T62/07) is non-central chi-square with (T — 2) degrees of freedom. Thus, in 

principle, this expectation may be carried out. In general, it will involve the un- 

known parameter a and for purposes of the test we would have to insert the 

maximum likeiihood estimate (MLE) @, in its stead. Further, such tests require 

specification of the distribution of the data under consideration and the deriva- 

tion of the MLE under the two alternatives. 

A.2 The Aitchison—Silvey Test 

1. JF and A have the same asymptotic distribution 

_ (Rb — r)(RS~ RY ‘(Rb — r) (T — K) 

ii ,” 
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A= w(Rb — r)(RS~'R’) (Rb — r). 

Since A has an asymptotic distribution, 

,[ 6? K Pg 
a| -7 - 1 = (JF — A) 

will have a zero probability limit if 

? K 
pin [2% (1 -*} —1] =o 

But 

onl) 

since 6? and #7? are both consistent estimators of o?. Hence, plim (JF — A) = 0, 

and since A has an asymptotic distribution this condition implies that JF has the 

same asymptotic distribution as A. Q.E.D. 

we K 
etm 5 tm (1 -5| ~_ 7 

1. Té? is not independent of b 

Té? é. ll om 
a 

Y— Xp 

= ( + N)e, 

é 

where 

(i) M = I — XS~'X’, idempotent of rank (T — K), 

(ii) N = XS~'R(RS~'R’)~'RS~ 'X’, idempotent of rank J, and therefore 

(iii) M + N is idempotent of rank (T — K + J). 

It follows that 

T6? = &(M + Noe. 

b =S"'X'Y = B + S-'X’e, 

hence, b—B=S"'X’'e. 
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Thus (b — f) is a linear form in the Normally distributed vector ¢, and Té? is an — 

idempotent quadratic form in ¢. Independence of the linear and quadratic forms 

requires S~'X'(M + N) = 0. But 

S~'X"(M + N) = S~\(X'M + X'N) 

=S~'[X"(I — XS~'S’) + X(XS~'R(RS~'R’)'RS~'X’)) 

= S-"[0 + R(RS~'R’)-'RS-'X’] 

= S~'R(RS~'R’)” 'RS~'X’ # 0. 

Hence b and Té? are not independent. Q.E.D. 

A.3 Predictive Testing 

1. (I,, — Q~*) is a positive definite matrix 

Pte a) ee 

Clearly, I,,, is positive definite. Q is positive definite if X,S~'X% is positive 

definite. Let z be any nonzero m-dimensional vector, then z’X,S~‘'X oz = 

(z'X)S~ ‘(z'Xo)' > 0, by virtue of S~ ' being positive definite. 

Since Q is positive definite, so is its inverse, thus /,,and Q~ ' are positive definite 

and we can apply the theorem given in [17; pp. 581-583] which implies that 

(I,, — Q~ *) will be positive définite if and only if the roots of Q~ ' are smaller than 

unity. 

But the roots of Q~ ' are the inverses of the roots of Q. Denote a root of Q by 

(1 + «), so that 

0= [Q id (1 + aT JZ 

= [I,, + Xo9S~'Xo — (1 + @)l,,]z 

= [X,S~'X4 — al,,]z. 

Thus « is a root of X,S~'X% and must be positive since X¥)S~'X% is positive 

definite. But « > 0 implies (1 + «) > 1, which implies (1 + a)~* < 1. 

QED. 

2. The Distribution of 

(T-K-G +1) 

mG(T — K) 
(e8)[Z~! @ (In + XoS~'Xo)~ "](e$) 

The vector of forecast errors, say é9,, corresponding to the gth endogenous 

variable is given by 

£0,8 = X o(b, — B,) ~l £0,g> 

where 

(i) B, is the vector of reduced form coefficients corresponding to the gth 

endogenous variable. 

(ii) b, is the Least Squares estimator of B,. 

(iii) 9, is the gth reduced form disturbance vector in the forecast period. 
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(eS) = Zo(b — B) + (¢$). 

Conditional on X and Xo, e§ is clearly normally distributed with mean zero and 

the following covariance matrix. 

E((e$)(e$) 1X, Xo] = Zo[cov (b — B)]Zo + cov (Es), 

where F 

(i) cov (b — B) is the covariance matrix of (b — 8) conditional on X and X,; 

cov(b — Bf) = ZY @S“', 

(ii) cov (eG) is the covariance matrix of (e$); 

cov (eS) = ZX @ I,,, 

and 

(iii) Z is the contemporaneous covariance matrix of «. 

Combining terms above yields 

cov (e§) = El(eg)(e$) |X, Xo] 

= ZZ @S~)Z, + Z @Im 

= ZY @X,S"'X) + Z @In 

= Y @(I, + XoS~'X%). 

Thus, (ef) ~ (0, Z @ (I, + XoS~ 'X5)], 

which implies that 

(e$)[Z~* @ Um + XoS~*Xo)- "VeS) 

is distributed as 72,. 

Now ¥, as defined in the body of the paper, is based only on the residuals 

in the period of fit which, it can be shown, are independent of e§. 

It follows (4; pp. 105-107, 181-183] that 

(i) (T — K)Z is a Wishart distributed matrix, independent of (e§), with 

(T — K) degrees-of-freedom, and 

¢o (T — K — G + 1) 
(ii) (6)[Z~* @ Um + XoS~ Xo)” *H(e§) mG(T — K) 

is distributed as Fig ¢r—K-G+1)- 
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3. The Approximate Distribution of (e§){Z~' @ (Ip, + XoS~'X)~ "](e%) for 

Large T, for Static Forecasting with Lagged Endogenous Variables. 

Again (e§) = Zo(b — B) + (e%), but Z, contains lagged endogenous variables. 

Since b can be written as b = B + (Z’Z)~ 'Z'e%, where e® and Z are the fit 

period analogues of (e§) and Z, respectively, it follows that 

(e§ — &§) = Z,(Z'Z)"'Z'e 

= Z,(T~'Z'Z)"'T-'Z'e. 

assuming that the observed moment matrix of the predetermined variables in the 

fit period converges in probability to their population moments, i.e., plim (T~ 'Z'Z) 

exists and is non-zero, then 

plim [,/T(e§ — ¢§)|Zo] 

= Z, plim(T~'Z’Z)~' plim ./T(T~ 'Z’e). 

But plim JT (T~ ‘Z’e) is asymptotically distributed as Normal with mean zero 

and covariance matrix ZX @ M¥%, where M¢ is the matrix of population moments 

of the predetermined variables. (See [51; p. 487].) Further, by the definition of Z, 

plim (T~'Z'Z)~' = I¢x @ (Mt), 

where Igx is a (GK x GK) identity matrix. Thus, ,/T(e§ — e9), conditional on 

Zo, is asymptotically distributed as (0, H), where 

H = Zflgx @ (M¥) '}(Z@ M¥)ex @ (MZ) *)Zo 

= Z @ Xo(M¥) 'Xo. 

For large T, it should therefore be approximately true that 

(e§ — e&) is approximately (0, T~ 'H).' 

Since e§ and ef are independent (e§ depending only on e’s prior to the fit period), 

e§ is approximately #[0,(T~'H) + (Z @ I,,)], 

for large T. But 

(T~'H) + (Z @I1,,) = (T~'Z @ Xo(M¥)' Xo) + (Z @1,,) 

= Z @[I,, + T~'Xo(M¥)' Xo] 

= ZX @[I,, + Xo(TM%) Xo). 

Hence, for large T, 

(e6Y[Z~* @ Um + Xa TM¥)* XO)" *VleS) 

is approximately 72... 

Since 

plim Z-' = Z-! 

* (e§ — eG) has of course a degencrate limiting distribution. We are arguing here that as T increases 
(e§ — e&) “degenerates” through the normal limiting distribution of \/T(e§ — ¢&). 
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and plim (T~ 'S) = plim(T~ 'X’X) = M#, the above statistic can be consistently 

estimated by 

(e$)[Z~! @ UI, + XoS~'Xo)~ '}(e8) 

which, for large T, is also approximately y2,. 
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