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10 Index Hedge Performance: 
Insurer Market Penetration 
and Basis Risk 
John A. Major 

Index-based financial instruments bring transparency and efficiency to both 
sides of risk transfer, to investor and hedger alike. Unfortunately, to the extent 
that an index is anonymous and commoditized, it cannot correlate perfectly 
with a specific portfolio. Thus, hedging with index-based financial instruments 
brings with it basis risk. The result is “significant practical and philosophical 
barriers” to the financing of propertykasualty catastrophe risks by means of 
catastrophe derivatives (Foppert 1993). This study explores the basis risk be- 
tween catastrophe futures and portfolios of insured homeowners’ building risks 
subject to the hurricane peril.’ 

A concrete example of the influence of market penetration on basis risk can 
be seen in figures 10.1-10.3. Figure 10.1 is a map of the Miami, Florida, vicin- 
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Fig. 10.1 Miami, Florida, vicinity zip codes 
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Fig. 10.2 Effect of Hurricane Andrew on the homeowner's-insurance industry 
Nore: Each dot represents $1 million of losses to the insurance industry. 
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Fig. 10.3 Market penetration vs. damage rate 

ity, from just south of Ft. Lauderdale to just north of Key Largo. The polygons 
depict zip codes, with the bolder lines marking the boundaries of zip sectional 
centers.* Figures 10.2 and 10.3 register to the same scale and placement as 
figure 10.1. 

Figure 10.2 shows the effect of Hurricane Andrew on the homeowner’s- 
insurance industry in Florida. Three levels of contours represent the damage 
rate (losses divided by exposed value) caused by the hurricane. Near the center 
of the contours, the damage rate approached 50 percent. Each dot represents $1 
million of losses to the industry. The densest portion of losses is not centered in 
the damage-rate contours because of the population-density gradient. The 
highest concentration of exposed value, the center of the Hialeah-Miami- 
Miami Beach metropolitan area, is to the north of the 5 percent contour line. 
The population density decreases steadily as one moves south. Had the hurri- 
cane made landfall ten miles north or south of where it did, there could have 
been a factor-of-two change in the industry outcome. 

Figure 10.3 shows the market penetration of a particular homeowner’s in- 
surer at the time of the hurricane. Imagine that this company had held a com- 
moditized cat contract instead of reinsurance, a contract that would reimburse 
it a share of the industry losses from a natural disaster equal to its share of 

2. A zip (zone improvement plan) code is a unit of geography defined by the U.S. Postal Service 
and designated by a five-digit number. On average, residential zip codes contain about two thou- 
sand households. Sectional centers are administrative units composed of all zips with the same 
first three digits. 
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Fig. 10.4 Influences on hedge performance 

exposures in southeastern Florida. Basis risk emerges in the mismatch between 
expectations and outcomes: its share of exposures is not uniform across the 
area. This company had the misfortune to have its peak market penetration 
almost coincide with the peak damage rates. Its actual damages were about 
25 percent higher than its expected industry share, so the hedge would have 
underperformed, leaving the company with 20 percent of its losses not covered. 
On the other hand, if the hurricane had come in just ten miles south of where 
it did, the hedge would have netted the company a profit. 

The influences on both the losses experienced by a portfolio of insured risks 
and the recoveries available from an index-based hedge, as illustrated in figure 
10.4, can be classified as follows: 

The catastrophic event itself This is the industrywide pattern of losses ar- 
rayed in space. 

The market penetration of the subject portfolio. Multiplying this pattern by 
industry losses produces an estimate of the subject company’s losses. 

Underwriting p a l @  This includes nonspatial characteristics of the subject 
portfolio, such as deductibles, policy forms, risk-selection standards, 
and claim-settlement practices. These characteristics contribute to loss 
variation, even after the event and market penetration have been taken 
into account. To the extent that they are understood, a hedge can be 
adjusted for them. 

Process risk. This is the ultimately unpredictable component of loss varia- 
tion. 

Basis risk is the random variation of the difference between the hedge- 
contract payout and the actual loss experience of the subject portfolio. Two 
types of basis risk are considered. Conditional basis risk refers to the variation 
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due to the influence of factors other than the events. It addresses such questions 
as, How would the hedge perform if an event like Andrew were to occur? 
Given an implicit class of events-“like Andrew”-the relation between the 
portfolio’s loss and the contractual recovery has a random character. For some 
events in the class, the insurer is “lucky” in that, say, its penetration is low in 
the most heavily damaged areas. This variation is termed conditional basis 
risk. Considering all sources of variation, that is, allowing varying events to 
influence outcomes as well, yields the more familiar definition of basis risk. 
Here, the term unconditional basis risk is used to emphasize the distinction. 

To operationalize the notion of conditional basis risk, this study uses an 
equivalence principle: the subject portfolio is a random draw from a class of 
portfolios sharing the same market characteristics. Conditional basis risk can 
then be treated as the sampling behavior of hedge outcomes in a specific event 
when portfolios are drawn from the market-characteristics equivalence class. 
The motivation for this definition is that, ex ante, the hedger posing the ques- 
tion about conditional performance has an event firmly in mind but does not 
know where it will strike the portfolio. Intuitively, the idea is to “shift the 
event” to different parts of the subject portfolio yet maintain all industry- 
specific attributes of the event. The equivalence principle does this by exchang- 
ing the portfolio for an equivalent version. Section 10.1 defines the market- 
characteristics equivalence class by showing how to characterize a portfolio in 
a small number of parameters, the market-characteristics vector. It also devel- 
ops a model of the distribution of this vector as well as a model of process risk. 

This study models catastrophe indices built up from the insurance industry’s 
catastrophe losses from an event, along with corresponding exposures, by zip 
code. A hedging instrument is some linear combination of the zip-by-zip losses 
reported by the index. For a futures contract based on a single-valued statewide 
index (e.g., the Property Claim Services [PCS] cat index), that linear combina- 
tion consists of a single constant applied to all zip codes in a state. 

Section 10.2 shows the use of these models in a Monte Car10 simulation 
(Metropolis and Ulam 1949; Rubinstein 198 1) of catastrophe-index hedging. 
It explores the influence of insurer market penetration on basis risk by con- 
trasting the performance of statewide and zip-based contracts. Conditional and 
unconditional measures of basis risk, correlation coefficients, and optimal 
hedge ratios are presented. 

This study assumes no underwriting-quality influence. The boundary be- 
tween underwriting quality and process risk is indistinct; it is determined by 
the extent to which risk characteristics can be taken into account. If an insurer 
kept and made use of detailed records concerning the construction and materi- 
als of each house in its portfolio, these factors would be considered part of 
underwriting quality. If not, they would be considered part of process risk. To 
the extent that a hedger understands its own practices and portfolio character- 
istics vis-h-vis the industry and their implications for loss experience, it can 
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adjust its use of index contracts a~cordingly.~ In this sense, the study assumes 
perfect self-knowledge; hedge-performance estimates reported here should 
therefore be considered upper bounds. 

Section 10.3 discusses related work. Section 10.4 makes concluding re- 
marks. The appendix discusses the modeling of insurer market penetration in 
detail. 

10.1 A Model of the Underlying 

10.1.1 Introduction 

Consider a state consisting of a set of zip codes symbolized by z. The com- 
panies doing business in the state are symbolized by c. Let R,., denote the risk 
count (number of insured homes) that company c has in zip code z .  Let R, 
denote the sum across all companies, that is, the total market, in zip code z. 
Let R, and R be the respective sums over all the zips in the state. M, = RJR, 
the risk-count share of company c, is a key parameter throughout this study.4 
Let vz,c,i be the insured value of the ith risk and ijz,c, ij,, and V the average values 
for the respective groups. 

The objective of sections 10.1.2-10.1.4 below is to characterize the pattern 
of penetration and values for company c in a small number of parameters, 
the market-characteristics vector In section 10.1.5 below, a second level of 
modeling considers the distribution of the market-characteristics vector itself. 

A catastrophic event is represented as a schedule of damage rate (expected 
loss-to-value ratio) by zip code. Section 10.1.6 below factors damage rate into 
its frequency and severity components. Loss can then be modeled as a com- 
pound Poisson process (Beard, Pentikainen, and Pesonen 1984). 

10.1.2 The Market Characteristics of One Company 

The simplest model of risk count is to assume that R , ,  follows a Poisson 
di~tribution.~ Since zip codes vary in population, it makes sense to represent 
the Poisson mean as Az., = rc + RZ. However, constant penetration rc  is implau- 
sible because realized penetration varies much more than Poisson. This leads 
to a two-stage hierarchical model A , ,  = T, .~ * R,, where T,,, is itself a random 
variable. A logical choice would be lognormal, yielding A,, = exp( F~ + tZJ * 

R,, where IJ., is constant, and t,, - Normal(0, cf). Even this is inadequate be- 

3. Underwriting quality also influences the reported index values. If less than the full industry 
is incorporated into an index, there is sampling error. Careful index construction and the central 
limit theorem can assure that this error remains small relative to the hedger’s variation. 
4. While market share is usually defined as the share of premiums received by the company, it 

will be convenient to deal with shares of risk count and shares of total insured value. 
5 .  Since market share rarely exceeds 20 percent, the Poisson process can be used rather than the 

more technically correct but cumbersome binomial process. 
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cause penetration is spatially autoconelated.6 A case study illustrating spatial 
autocorrelation is presented in the appendix. 

There are two fundamental approaches to the analysis of spatial structure.' 
Metric methods (Whittle 1954) deal with distance relations between observa- 
tions. Occurrence methods (Grieg-Smith 1964; Kershaw 1964) count observa- 
tions in quadrats (random samples of areas). This study treats zip codes as 
quadrats at one level of scale and zip sectional centers (three-digit zip codes) 
as quadrats at a larger scale. This leads to a model of the form 

RZ.= - Poisson ( hzC), 

with IJ., constant, e,,, - Normal(0, uf), 23 symbolizing three-digit zips, and 
CZ3,= - NormaKO, .,'I. 

The selection of risks within a zip is not homogeneous either. Another two- 
level hierarchical component of the model accounts for differential selection 
of homes by value: 

- 

v . = v  z.c.1 z.c exP (+ z , c , i )  1 

where E,, - Normal(a,, uf), and c$z,c,i - Normal( - ?h * w3, ~ f ) . ~  
The pattern of risk count and values for a particular company in a particular 

state is thus abstracted as being the result of a random process characterized 
by a market-characteristics vector of seven parameters, 6 = <p, u, T, a, 
P, Y w>. 

10.1.3 Market-Characteristics Data 

As part of its risk-management consulting, Guy Carpenter has acquired port- 
folio descriptions of many property-casualty insurers. Ten companies were 
chosen at random from the database. Property-exposure data, dating from 1988 
to 1995, were extracted for nine states to obtain a total of twenty-four 
company-state combinations. States were chosen by importance sampling 
(Kahn 1950), where the weighting was proportional to the PCS historical ca- 
tastrophe loss totals, with some concession to the presence of data exhibited 
by the companies. A Latin Square protocol (Cochran and Cox 1957) was fol- 

6. Zip codes near one another have more similar penetration rates than widely separated zip 
codes. 

7. 'Qpically, the first step in analyzing spatial autocorrelation is to consider exogenous charac- 
teristics of the geographic areas, themselves spatially autocorrelated, as potential regressors. For 
example, one might test whether penetration is a function of median housing value. Company- 
independent factors are unavailable for this purpose because the study adopts the stance that 100 
percent of the market is penetrated by 100 percent of the companies. 

8. The choice of - % . for the mean of $,,, enforces E [ v , , , ]  = Gz,c. 
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Table 10.1 Penetration Study Data 

Zip Codes Company 

State All >50OOHU A B C D E F G H I J 

FL 
MA 
MD 
MN 
MT 
NC 
NJ 
NY 
TX 

94 1 
564 
484 
946 
375 
859 
626 

1,890 
1,968 

907 
545 
449 
895 
296 
819 
610 

1,750 
1,804 

J J J  
J J J  

J J J  
J J  

J J  
J J  J 

J J J  
J J  

J J J 

Nore: OOHU = owner-occupied housing units. 

Table 10.2 Distribution of Risk-Count Share M, = RJR 

Risk-Count Number of 
Size Class Share (%) Company-States 

1 .2-.5 5 
2 51.0 3 
3 1.0-2.0 7 
4 2.0-5.0 5 
5 5.0-10.0 4 
Total 24 

lowed so that every state could be paired with at least two companies and 
every company with at least two ~ t a t e s . ~  Zip codes where the 1990 Census of 
Population and Housing reported at least fifty owner-occupied housing units 
were kept.I0 This typically retained 99.9 percent of the housing units in the 
state. Tables 10.1 and 10.2 summarize. 

10.1.4 Fitting the Market Characteristics 

Maximum-likelihood estimation of hierarchical models is notoriously dif- 
ficult, involving high-dimensional integration of analytically intractable integ- 
rands (Hill 1965; Tiao and Tan 1965). Modem methods to solve these problems 
include integral approximations (Tiemey and Kadane 1986), the EM algorithm 
(Dempster, Laird, and Rubin 1977), and Gibbs sampling (Gelfand and Smith 
1990). Computational efficiency is important in this study because of the num- 
ber of observations (sometimes over fifteen hundred zip codes) and the need 
to make estimates for each of the twenty-four cases.I' 

9. There was a failure to meet the criterion; one company had usable data in only one state. 
1O.Zip-code tabulations of census data were obtained from Claritas, Inc. 
11. In addition, ninety-six estimation cycles were executed in bootstrap replications. 
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Table 10.3 Occurrence of Zero Risk Count among Zips 

Risk-Count Frequency 
Size Class Share (%) of RL,(. = 0 (%) 

1 .2-.5 42.4 
2 .5-1.0 44.0 
3 1 .o-2.0 12.6 
4 2.0-5.0 8.0 
5 5.0-10.0 6.6 

Could one substitute observed risk count R,, for the Poisson parameter Xz,, 
and estimate kc, uc, and T, by performing analysis of variance (ANOVA) 
(Fisher 1942) directly on ln(RZ,c/R,)? This has some justification; variation 
among the RL,C is much greater than Poisson. However, it fails because RZ,, is 
very often zero. Table 10.3 summarizes, pooling cases in each size class. 

Therefore, a more sophisticated approach to estimating the Xz,, is used: an 
empirical Bayes technique (Robbins 195 1, 1955) treats the “true” unobserv- 
able penetration rates rT,c as parameters that underlie the observed Poisson risk 
counts. These parameters, as random variables in their own right, follow a prior 
distribution driven by hyperparameters estimated from the “crude” observed 
penetration rates. The estimated prior allows a Bayes posterior point estimate 
of the realized-penetration-rate parameters rZc This procedure is detailed in 
the appendix. 

The next step in the analysis is to conduct a random-effects ANOVA with 
the following model: 

1n(rz.,) = ln(XZ,JRZ) = FJ., + !IZ& + 5 z 3 , c ?  

where k, is constant, e,, - Normal(0, uf), and I& - Normal(0, T:). 
Henderson’s Method I (Henderson 1953) is used to estimate kc and the vari- 

ance components uf and ~ f .  While not the most sophisticated approach, it has 
the advantage of being very fast computationally because it relies on sums-of- 
squares equations and uses no iteration. 

The final step is to develop the distribution of insured property values. The 
model l 2  

ln(CZc/C) = aC + p, . In(Vz/C) + E ~ , ~ ,  

where E , , ~  - Normal(0, $), is fitted by weighted least squares, with weights 
proportional to Rzc. 

Unfortunately, the data consist of aggregates by zip code and so are insuffi- 
cient to fit 

ln(vac,,) = ln(C,,) + 4)z,c,,9 

12. Median housing values in the census data were used in preference to means. 
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where +z,c.j - Normal( - Y2 . wf, w:). To estimate wc, detailed risk-by-risk data 
are needed. Fortunately, such detail was available from another study of one 
company in one state, and the estimated value there was wc = 0.5 1. 

By the above process, the twenty-four cases were abstracted to points 6, in 
a seven-dimensional parameter space. Since there is only the single fixed value 
for w, it is not useful to include it in the parameter space. It is, however, useful 
to augment the parameterization by the new variable K, = ln(Mc) = ln(RJR), 
representing the observed risk-count share of the company. Given such a point 

= <K, k, cr, T, a, 6, u>, simulation can construct a pattern of risk count 
and aggregate value with the specified spatial characteristics according to the 
hierarchical model 

5, - Normal(0, a2), 

C 2 3  - Normd(O, T 2 ) ,  

A z  = exP(k + 5, + 5,) ' Rz? 

R,,, - Poisson(Az), 

E, - Normal(O,uZ), 

vz ,c  = exp(a + E,) . V('-p) . i j ! ,  

w = 0.51, 

- 

10.1.5 The Distribution of Market Characteristics 

The next step is to investigate the multivariate distribution of 6. Table 10.4, 
above the diagonal, shows the correlations of the 6 parameters. (The lower- 
left triangle is discussed below.) For N = 24 cases, the two-tail 5 percent criti- 
cal value is Ipl > 0.4043; six pairs show significant correlations. That K and p 
show a high correlation is not surprising: the expected value of M according 
to the model is exp[p + 95 (az + T~)]. 

Other correlations suggest that companies of different overall penetration 
behave differently in the details of their penetration. For example, negative 
correlation of cr and T with K and p. suggests that higher penetrations are more 
uniformly achieved. Figure 10.5 shows this relation in more detail. There was 
no apparent distinction between agency companies and direct writers. 

Following this lead, cr, T, and a were regressed against K. For cr and a, 
simple least squares was used. Because the standard errors of the T estimates 
were relatively high, weighted least squares was used with weights propor- 
tional to the inverse of the standard errors for T values fitted in section 10.1.4 
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0.2 

Table 10.4 Correlation Coefficients between Penetration Model Parameters 

, 

K .94 -.32 -.59 
-.51 -.I2 

.5 1 
7* - .40 
a* .21 -.I5 
P - .23 .oo 
U - .06 ~ .24 

U* 7* 

- .38 - .24 .13 K 

-.50 -.i9 .12 P 
.3 1 -.i4 - .09 0 

.34 .09 .15 7 

.21 .o 1 a 
. I 3  -.36 P 
.06 
a* 

Nore: See text for key. 

1.4 

1.2 

1 

0.8 

0.4 
5 1  

4 

0 1  1 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

0 

Fig. 10.5 Sigma vs. tau by risk-count share class 

above. Table 10.4, below the diagonal, shows correlations where the (starred) 
K-modeled parameters have been replaced by their residuals. No remaining 
correlation is significant. 

The conditional distribution of 6 on K is therefore represented as 

1 
2 

IJ. = K - - . (U2 -k T2), 

IJ - Normal(rn = 0.6674 - 0.0649 . K, s = 0.21461, 

T - Normal(m = 0.2783 - 0.0913 . K, s = 0.2327), 

a - Normal(m = -0.2569 - 0.1387 . K, s = 0.3851), 
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p - Normal(m = 0.5497, s = 0.1514), 

u - Normal(m = 0.4303, s = 0.0852). 

10.1.6 Process Risk 

The total insured value that company c has exposed to catastrophe risk in 
zip code z is given by vZ,= = X i  v , , ~ , ~  = R,., V,.c. Given a particular catastrophic 
event in the state, let the random variable representing the loss incurred by the 
ith risk be Lz,c,i. The damage rate (loss-to-value ratio) is d,,c,i = Lz,c,,/vs,c.i. Let 
dZ,=, d,, and dc be damage rates for the aggregates. In particular, note that d, 
represents the aggregate industry damage rate in zip code z. 

Assume that d,,c,i are conditionally independent and identically distributed 
given z and c.13 Let A,= be the probability that the ith risk incurs a loss L,,c,i > 
0. This is the damage-rate frequency. Let WZ,,~ and 5 tc be the mean and vari- 
ance of dz,c,J(Lz,,i > 0), the damage-rate severity. Because Lz,c,i = d,,c,i . v, ,=,, and 
d and v are assumed independent, treat L,,c as a compound Poisson process 
with rate 4,c = R,.c * expected severity E[LZ,c,i ILz,c,i > 01 = m,,, v,,~, and 
variance of severity V~I-[L,,,~ lL,,c.i > 01 = ij:,c * & + ( m:,c + &) . Var[vJ. 

Event descriptions specify values ford,, but the equation E[d,,J = A,c . m,,c 
needs to be factored, and & needs to be estimated. First assume that process 
risk in zip code z operates on all companies homogeneously: drop the subscript 
c, and reduce the problems to factoring E[d,,J = d, = / . mz and estimating 
5:. This assumes away company-specific differences in the expected damage 
rate in a given zip code, the “underwriting-quality effects” mentioned above. 

Friedman (1984) offers a solution to the factoring and estimating problems. 
To separate frequency from severity, refer to his table 2. His columns 2, 3, and 
4 correspond to this study’s /, m,, and d,, re~pective1y.l~ He shows an almost 
perfect loglinear relation between / and d,, namely, /e = 2.155 - (d)0.6132. 
Adopt that, cap 

For &:, refer to Friedman’s figure 14. This graph shows selected percentage 
points of the distribution of severity as a function of wind speed. Beta distribu- 
tions with coefficients of variation of 1.0 fit this reasonably well; therefore, 
5: = m: can be assumed. 

In summary, given a zip code z with company exposure specified by R , ,  and 
5z,c and an event specified by a damage rate d,, model the losses, Lz.c, as a 
compound Poisson process with Poisson rate 4,c and severity parameters m,,c 
(mean) and t:,< (variance), where 

a = 2.155, 6 = 0.6132, 

at one, and derive mz = d , / A .  

13. Studies at Guy Carpenter have found only a mild dependence of d on v. 
14. Friedman uses counties, not zip codes, as the unit of geography. 
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10.2 Simulating Hedge Performance 

10.2.1 Introduction 

This section uses the model of the underlying to analyze an insurer hedging 
its portfolio. Section 10.2.2 below describes three nested cycles of the simula- 
tion. The innermost cycle, starting with a specific event and company, simu- 
lates conditional basis risk. The intermediate cycle, starting with a specific 
company, iterates events through the innermost cycle to simulate unconditional 
basis risk. The outermost cycle samples market characteristics across a spec- 
trum of companies. How events and companies are sampled is discussed in 
section 10.2.3 below. 

There are several statistics of hedge performance available. The correlation 
coefficient p(L, G) between the risk being hedged L and the hedge instrument 
G is most often quoted. The optimal hedge ratio, that is, the value of a min- 
imizing the variance of outcomes Var[L - a GI, is also frequently used.I5 
The minimum variance is a true measure of performance. 

Standard deviation, the square root of variance, is more easily intuited than 
variance because it is expressed in the same units as the hedge. This study 
therefore represents basis risk in terms of the volatility of the hedge, defined 
here as s ( a ,  G )  = (Var[Lc - a . G])’VE[L]. In particular, s(0, G),  the “un- 
hedged volatility,” is the coefficient of variation of L; s(aop,, G) ,  the “attained 
volatility,” is the minimum standard deviation of the hedge, expressed relative 
to E[L]. Hedge-performance results are presented in sections 10.2.4-10.2.6 
below. 

10.2.2 Theory 

Consider a group of reporting companies g = 1,2, . . . , N, and let U, = & 
v , , ~  and Kz = C&.,,, represent the group’s total exposed values and losses in- 
curred from the event in zip code z ,  respectively. 

Consider two loss indices tailored to company c. First is the statewide ver- 
sion: 

15. These are related by ao0, = p(L, G) . (Var[L]Nar[G])”*. 
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This corresponds to a situation where only the statewide aggregate losses and 
values are reported. The company's hedge can only be a simple proportion of 
the reported losses. 

Second is the ZIP-based index: 

This corresponds to a situation where individual zip-code losses and values are 
reported. The hedge reflects the company's specific pattern of zip-by-zip pene- 
tration. 

Assume that the index reporting group consists of the entire industry, U, = 

v,. This permits the following simplifications: d = (&I, * V ~ ) / ( ~ ~ V ~ ) ,  H, = d * 

C,V~,~, and I ,  = C,(d, v,,), where vz is the aggregate industry value insured in 
zip code z. 

Because of the way it was defined (see sec. 10.1.6 above), E[LJ = ZZ,=; 
therefore, a zip-based hedge, as modeled, is able to reflect the loss experience 
of the subject company, except for the effects of process risk. A hedge based 
on the statewide index, on the other hand, is also subject to market-penetration 
heterogeneity effects. 

The objective is, then, to evaluate Var[Lc - a . Hc] and Var[Lc - (Y * I,] for 
arbitrary hedge ratios a.I6 The accumulation of sufficient statistics proceeds 
via Monte Car10 simulation. 

The inner loop of the simulation takes as input the specification of a corn- 
pany, a,, and the specification of an event q = {d,} as it affects a state { i j ,  

{< RZ, i jz >}}.I7 Fifty realizations of a pattern of market penetration {< Rg:, 
v:: >} ,=I , ,  , . corresponding to 6, are drawn by simple random sampling ac- 
cording to the models of section 10.1.4 above. Hedge results HP) and Zf) are 
computed according to the preceding discussion. Process risk in each zip code, 
Var[L:Jq], is computed according to section 10.1.6 above and totaled across 
zips for Var[L%)lq]. Then the (event-conditional) expectations and variance- 
covariance matrix of L, H, and I ,  are tabulated. Since process risk is uncorre- 
lated with anything else, the only moment affected by process risk is Var[Lc I 
q ]  = Var,[E[L$)lq]] + E,TIVar[L$)lq]] = Var,r[If)lq] + Es[Var[L~)lq]]. Optimal 
hedge ratios, correlation coefficients, and conditional basis-risk measures are 
then computed. Note that the optimal hedge ratio for the zip-based index, con- 
ditional on event, is one.18 

The intermediate loop of the simulation takes as input the specification of a 

- 

16. While it may be possible to improve the zip-based hedge by allowing 01 to vary between zip 

17. For events that cross state lines, the state components are simulated individually, and the 

18. This is because the covariance between I and L is equal to the variance of I :  Covar[Lc, I ,  

codes, this refinement will not be considered here. 

appropriate moments are summed together. 

IT] = Covar,[E[LF)l-q]. lq] + E,[Covar[Lj", I:)lq]] = C~var~[Ii.~. 1:) lq] + 0 = Vars[F;l Iq]. 
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company, a,, and produces as output the unconditional moments, hedge ratios, 
correlations, and basis-risk measures. This requires sampling events in a 
framework of possible hedge contracts. 

Two common types of catastrophe reinsurance contracts are annual aggre- 
gate and per occurrence contracts. The former type responds to the total catas- 
trophe losses experienced by an insured portfolio during a year. The latter, 
more common, type responds to the losses caused by a single event. Per occur- 
rence contracts also usually have reinstatement provisions that allow the con- 
tract to be renewed (for a price) after a claim has been submitted. 

In this study, index hedging emulates the per occurrence type of contract. 
An event is therefore defined as one of the following: (1) a hurricane with a 
minimum specified damageI9 to the industry or (2) an entire year without such 
a hurricane. 

Conditional hedge statistics are combined across events, taking event proba- 
bility into account, to obtain unconditional hedge statistics.20 For example, the 
calculation of covariance between L and H proceeds as 

where P,, represents the sampling probability of event q. Note that the optimal 
unconditional hedge ratio for the zip-based index is also one.21 

Analysis across the spectrum of insurers occurs in the outer layer of simula- 
tion, where a random sample of market-characteristics vectors, is drawn 
according to section 10.1.5 above. 

10.2.3 Sampling Issues 

Historical damages2* from catastrophes since 1949 were obtained from PCS 
and adjusted for socioeconomic growth by Guy Carpenter actuarial staff (Ma- 
hon 1995) to restate them as contemporaneous events. Hurricanes were iso- 
lated from other types of events. The threshold hurricane selected was Hurri- 
cane Allen, which struck Texas on 4 August 1980 and inflicted $58 million 
(1980 dollars) in insured damages. Since 1949, there were thirty-seven hurri- 

19. The effect of a threshold level of damage is to approximate smaller events by zero. 
20. It might be argued that the proper way to compute unconditional results is to compute 

variances conditional on particular realizations of market penetration < R;:, i:: > and then to 
take expectation with respect to all the realizations in a market-characteristics class This ap- 
proach makes it difficult to assess conditional hedge performance and raises issues of possible 
"overfitting" of hedge ratios to the limited number of events in the simulation. Numerical studies 
found that this alternative approach produced state-based hedge-volatility estimates approximately 
10-12 percent lower than the estimates shown later in this paper. 

21. Again, this is because the covariance between I and L is equal to the variance of I: Cov[L, 
rl = C,P, ' c o w ,  I lql + I$, . lql ' ELI lql - (X.,P, . E [ L  Iql) . (qP, . E[I Id) = C P 
. V a r p  1.11 + C,P, . E,[PI~I* ~ CC,,P, . E J P I ~ I ) ~  = E , [ v ~ ~ [ A ~ I I  + v ~ ~ , , [ E [ A ~ I I  = var[~." 'I 

22. Historical damages included all lines and coverages. 
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Table 10.5 Simulated Hurricanes 

- 

Debra Erin 

Elena 
Connie Alicia 

Donna Carla 

Betsy ~ 

Andrew 

Hurricane Date States Used 

Connie 
Debra 
Donna 
Carla 
Betsy 
Alicia 
Elena 
Andrew 
Erin 

11 August I955 
24 July 1959 
9 September 1960 
9 September 1961 
7 September 1965 
16 August 1983 
30 August 1985 
24 August 1992 
1 August 1995 

Virginia, North Carolina, Delaware, Maryland 
Texas 
Florida, Massachusetts, New York, Rhode Island 
Texas 
Florida, Louisiana 
Texas 
Florida, Alabama, Mississippi 
Florida 
Florida 

0.001 I 
1 E+07 1 E+O8 1 E+09 1E 

Damage Amount 
.10 

Fig. 10.6 Simulated hurricanes 

canes causing at least as much (contemporary-equivalent) damage and eigh- 
teen years without such a hurricane. 

Nine hurricanes were chosen as an importance sample of the thirty-seven 
candidates, where the importance weight was proportional to the adjusted dam- 
age estimate. They are listed in table 10.5. Their patterns,23 that is, homeown- 
er’s-building-coverage damage rates Idz} ,  were obtained from USWIND.24 
Figure 10.6 shows the hurricane simulated industry damage versus sampling 
weight P,. The nonevent, a year with no hurricane, is not shown. It has a sam- 
pling weight of 18/55 = 0.327. 

For the outer simulation loop, six values of risk-count share (M or, equiva- 
lently, K) were selected. For each value, Latin Hypercube stratified sampling 
(McKay, Conover, and Beckman 1979) was used to draw a sample of twenty 

23. In cases where a hurricane caused damage to several states, not all states were used for 
detailed simulation. The worst-hit states were selected so as to account for at least 90 percent of 
all the simulated damages. 

24. USWIND is a humcane catastrophe model developed by EQECAT Inc. 
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Table 10.6 Simulated Market-Share Classes ( W )  

Risk-Count Average Minimum Maximum 
Share TIV Share TIV Share TIV Share 

.20 .43 .18 .85 

.50 .95 .40 1.76 
1 .00 1.72 .78 3.21 
2.00 3.20 1.24 1.52 
5.00 6.88 2.56 13.80 
10.00 12.51 5.85 23.30 
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Fig. 10.7 Simulated loss and index outcomes, 1 percent company in 
Hurricane Alicia 

values from the distribution of 61~. The values are presented in table 10.6. 
Note that the share of total insured value (TIV) varies within risk-count share 
classes. This is visible in figure 10.12 below. 

10.2.4 Example 

Figure 10.7 shows the simulation of a 1 percent risk-count share company in 
Hurricane Alicia. The simulated outcomes occur in fifty sets of three vertically 
collinear symbols. The horizontal axis represents the total (statewide) exposed 
value. Vertically, the crosses represent the value of the statewide index; it is 
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Fig. 10.8 Correlation coefficients between loss experience and indices, 
conditional on Hurricane Alicia 

1.000 

proportional to exposed value, at the 0.3 percent statewide damage rate. The 
diamonds represent the value of the zip-based index. The bars span the fifth to 
the ninety-fifth percentile values for the actual 

The correlation between the statewide index and the losses is 0.661; between 
the zip-based index and the losses it is 0.996. The optimal hedge ratio for the 
statewide index is 2.17. These outcomes correspond to an unhedged volatility 
of 0.627, attained volatility of 0.471 for the statewide hedge, and attained vola- 
tility of 0.056 for the zip-based hedge. 

10.2.5 Conditional Basis-Risk Results 

Figure 10.8 shows the correlation coefficients, conditional on Hurricane Ali- 
cia, between loss experience and both the statewide index H and the zip-based 
index I for all simulated companies. Figure 10.9 shows the associated optimal 
hedge ratios for the statewide hedge.26 Figures 10.10, 10.11, and 10.12 show 
basis risk as attained volatilities. Figure 10.12 repeats the information in figure 
10.1 1 with the vertical axis rendered on a logarithmic scale. Table 10.7 summa- 
rizes for the six risk-count share classes. Conditionally, the statewide hedge 
reduces the volatility of results by a modest amount, whereas the zip-based 
hedge achieves a dramatic reduction. 

Figure 10.13 shows attained volatility, relative to unhedged volatility, for all 
events. The vertical bars represent the mean, plus or minus one standard devia- 

25. Recall that actual losses are not simulated in detail; rather, the expected value of losses and 
process risk variance are simulated. A normal distribution is assumed in locating the percentage 
points on this graph. 

26. Recall that the optimal hedge ratio for the zip-based hedge, conditional on event, is always 
one. 
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Fig. 10.11 Attained conditional volatility by TIV share 

tion, of this ratio across all simulated companies. Hurricane Alicia is fairly 
typical of the simulated events. Only in Hurricane Donna does the statewide 
hedge achieve results consistently better than a 25 percent reduction in condi- 
tional volatility. The zip-based hedge typically achieves over a 70 percent re- 
duction in volatility. Figure 10.14 shows the mean unhedged volatilities them- 
selves. Again, Alicia is typical, and Donna exhibits an unusually low value. 

10.2.6 Unconditional Basis-Risk Results 

This section addresses unconditional hedge performance across all events, 
including the nonevent (a year without a severe hurricane). 

Figure 10.15 shows the correlation coefficients between loss experience and 
both the statewide index H and the zip-based index I for all simulated compa- 
nies. Figure 10.16 shows the associated optimal hedge ratios for the statewide 
hedge.27 Figures 10.17 and 10.18 show basis risk as attained volatilities. The 
two figures differ in that, in figure 10.18, the vertical axis is logarithmic. Table 

27. Recall that the optimal unconditional hedge ratio for the zip-based hedge is always one. 
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Fig. 10.12 Attained conditional volatility by TIV Share, logarithmic scale 

Table 10.7 Average Performance Statistics, Conditional on Hurricane Alicia 

Optimal Correlation Coefficient Attained Volatility 
Risk-Count Hedge Ratio 
Share (%) Statewide Statewide Zip Based No Hedge Statewide Zip Based 

.2 

.5 
1 .o 
2.0 
5 .O 
10.0 

1.57 ,530 ,973 ,711 .582 ,124 
1.25 so0 ,986 ,555 ,466 .081 
1.44 ,522 ,991 ,503 .426 .056 
1.40 ,496 ,993 ,483 ,409 ,040 
1.53 ,543 ,996 ,424 .339 ,025 
1.58 .545 ,998 ,371 ,299 ,018 

10.8 summarizes for the six risk-count share classes. Figure 10.19 shows at- 
tained volatilities expressed as a fraction of unhedged volatility. Table 10.9 
summarizes. 

On an unconditional basis, both hedges achieve meaningful reductions in 
volatility. However, whereas the statewide index typically reduces volatility 
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Fig. 10.17 Attained unconditional volatility by TIV share 

50-75 percent, the zip-based hedge reduces it 90-99 percent. The reason for 
this is the conditional volatility, which is nearly unaffected by the statewide 
hedge but is reduced 70 percent or more by the zip-based hedge. 

Differences in hedge performance among the simulated companies appear 
in both conditional and unconditional analyses. The attained volatility of the 
zip-based hedge shows clear “banding” by risk-count share, with no evidence 
of trending with TIV or even much variation within risk-count share class. The 
statewide hedge attained volatilities show a generally decreasing trend with 
TIV share and considerable variation, which can be interpreted as sensitivity 
to the details of the market-characteristics parameters. The unhedged volatility 
shows a less pronounced downward trend with increasing TIV share and per- 
haps a bit less sensitivity to market characteristics. 

10.3 Related Work 

The theory of hedging with financial futures and other derivatives is well 
established in the finance literature. More recent work in applying this theory 
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Fig. 10.18 Attained unconditional volatility by TIV share, logarithmic scale 

Table 10.8 Average Performance Statistics, across All Events, for Hedges Based on a 
Hurricane Futures Index 

Optimal Correlation Coefficient Attained Volatility 
Risk-Count Hedge Ratio 
Share (%) Statewide Statewide Zip Based No Hedge Statewide Zip Based 

.2 ,955 ,886 ,996 2.842 1.295 ,245 

.5 ,938 ,921 ,998 2.722 1.045 ,158 
1 .0 .927 ,929 ,999 2.626 ,955 .112 
2.0 ,934 ,942 1 .Ooo 2.612 ,850 ,078 
5 .0 .941 ,954 1 .Ooo 2.568 ,744 ,050 
10.0 ,939 ,960 1 .Ooo 2.540 ,682 ,035 

to the case of property-casualty insurance exposures and catastrophe instru- 
ments includes Buhlmann (1996) and Meyers (1996). In both of these, the 
parameter of interest is the correlation coefficient between the experience of 
the subject portfolio and that of the catastrophe instrument being purchased. 

For both the subject portfolio and the hedging instrument, Buhlmann as- 
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Table 10.9 Mean Reduction in Volatility for Hedges Based on a Hurricane 
Futures Index (%) 

1 .ooo 

sumes a mixture of catastrophe and noncatastrophe risk. Meyers models a fu- 
tures contract based on the (catastrophe-only) PCS index but, like Buhlmann, 
considers a mixed-subject portfolio. Generally, catastrophe experience is as- 
sumed independent of noncatastrophe experience, and all noncatastrophe ex- 
perience is assumed mutually independent. Correlation coefficients between 
mixed portfolios can therefore be easily derived from those of the correspond- 
ing pure catastrophe components. In both papers, the authors use artificial ex- 
amples to motivate the discussion. 

There have been numerous empirical assessments of hedge performance. 
D'Arcy and France (1992) correlate underwriting profits with national PCS 
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losses. Hoyt and Williams (1995) and Harrington, Mann, and Niehaus (1995) 
analyze loss ratios hedged against national or broad regional industry indices. 
Weber and Belonsky (1996) correlate company losses with national and re- 
gional PCS indices. Correlations between large company experience and re- 
gional indices in hurricane-prone areas were found to be typically in the 0.6- 
0.7 range. More recently, Harrington and Niehaus (1997) compare hedge 
performance of regional indices to tailored state-level indices. They find a 
state-based PCS hedge to attain correlations typically in the 0.75-0.8 range. 

The use of empirical Bayes methods in the actuarial literature is not new. 
Lamm-Tennant, Starks, and Stokes (1992) use an empirical Bayes technique 
to assess the profitability of insurers. Major and Riedinger (1992, 1995) use 
empirical Bayes estimates in a computerized search for insurance-claim fraud. 
The implicit connections with Bayesian credibility theory (Herzog 1990; Klug- 
man 1992) point to a large body of literature. 

The use of simulation in the analysis of catastrophe risk is certainly not 
new. Friedman’s pioneering work (Friedman 1969, 1972, 1975, 1979, 1984; 
Friedman and Mangano 1983) is the template from which subsequent analysts 
have started. Recently, Insurance Services Office (1996) made use of simula- 
tion to assess the volatility of catastrophe losses relative to surplus. In particu- 
lar, they found coefficients of variation of 2.8 for earthquakes in the industry 
as a whole and 1.8-7.4 for all perils combined in selected insurer groups. 

Analysis of the occurrence of hurricanes spans a considerable segment of 
the literature, including Friedman’s work, Ho et al. (1987), Ho, Schwerdt, and 
Goodyear (1973, Schwerdt, Ho, and Watkins (l979), Georgiou, Davenport, 
and Vickery (1983), Twisdale, Vickery, and Hardy (1994), and Major and Man- 
gano (1995). 

10.4 Concluding Remarks 

Within the context and limitations of the study, hedging with a statewide 
catastrophe index was shown to be afflicted by substantial basis risk caused by 
the variation in market penetration of insured portfolios. This analysis was 
limited in a number of dimensions, however. In particular, it explored only one 
type of peril (hurricane) and one type of insured risk (residential buildings). 
Drawing inferences to the general case of all lines requires projecting the be- 
havior of the components of basis risk to other structures and coverages. 

Drawing inferences to the general case of all perils requires dealing with 
other damage-generating mechanisms. Among 2 13 PCS-recorded events with 
contemporary severity to the industry at least as great as Hurricane Allen, only 
thirty-seven were hurricanes. Only three were earthquakes. While representing 
only 19 percent of the events, these two types accounted for roughly half the 
loss dollars. Nonhurricane wind events (tornadoes, thunderstorms, winter 
storms, tropical storms, etc.) accounted for most of the remaining events and 
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Fig. 10.20 Attained relative volatility by event, including Northridge 

loss dollars.28 The largest 14 of these 213 events, at least fifteen times as severe 
as Humcane Allen,29 accounted for half the losses. Of those, ten were hurri- 
canes (65 percent of the losses), and one was an earthquake (12 percent of 
the losses). 

The largest earthquake was that in Northridge on 17 January 1994, causing 
$12.5 billion in insured damages. Figures 10.20 and 10.21 reproduce the infor- 
mation in figures 10.13 and 10.14 above, with simulated Northridge results 
superimp~sed.~~ 

Northridge does not appear strikingly different from the simulated hum- 
canes.31 If Northridge is typical of large earthquakes in this regard, then the 
conclusions of the study would not change significantly by extending the scope 
of the perils because the dominant events are hurricanes and earthquakes. On 
the other hand, if earthquakes are subject to larger variation of market penetra- 
tion and process risk, then hedge performance would be worse than reported 
here. However, the overall conclusion, that market-penetration variation causes 
substantial basis risk, seems irrefutable. 

28. But most of the total damage to portfolios was located away from hurricane- and earthquake- 

29. This cutoff is roughly the median of the nine events simulated here. 
30. A uniform earthquake-insurance coverage factor of approximately 20 percent was assumed, 

whereas 100 percent of homes were assumed covered for hurricane losses. 
31. Of course, the simulation is based on the underlying model fitted to homeowner’s penetra- 

tion, not earthquake-insurance penetration. Nonetheless, the spatial scale of damages turns out to 
be typical of hurricanes. 

prone areas. 
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Fig. 10.21 Unhedged conditional volatility by event, including Northridge 

Underwriting quality is also not dealt with in this study. No hedgers will 
have perfect knowledge of the effects of their portfolios’ physical and financial 
characteristics or their own underwriting risk-selection standards and claim- 
settlement practices. Unhedged variation may be substantially understated in 
this study. The performance results shown here must be regarded as best case. 

Appendix 
An Empirical Bayes Approach to Imputing 
Penetration Rates 

Methodology 

Searle, Casella, and McCulloch (1992) define empirical Bayes estimation as 
“using a marginal distribution to estimate parameters in a hierarchical model, 
and substituting these estimates for their corresponding parameters in a formal 
Bayes estimator.” This section describes such an approach to estimating rZ,=, 
the underlying (unobservable) risk-count penetration rate in zip code z for 
company c. 

The estimate is based on the posterior modal value for +,, = 1n(r2,J, given 
the observed risk count RZ,= and total industry risk count RZ, that RZ,, is Poisson 
distributed with expectation A,, = exp(Q2,,) . R,, and a normal prior distribution 
for *,,. 
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To obtain the prior, values of 1n(RZ,JRZ) are first examined across all zips 
where R,, > 0. This subset is treated as a left-censored sample from a normal 
distribution. The rate of censoring, along with the twenty-fifth and seventy- 
fifth percentiles of the sample, allows the estimation of the mean and standard 
deviation of the full, uncensored dis t r ibut i~n.~~ The same procedure is applied 
to subsamples grouped by zip sectional center (zip3). The prior for +z.c is then 
taken to be a normal with standard deviation equal to that estimated from the 
statewide sample and mean equal to a weighted average of the statewide and 
zip3 estimates. The statewide weight is the observed rate of censoring in the 
zip3. 

Given the prior mean p and standard deviation u from the previous calcula- 
tion, the posterior modal +z,c is the solution to the equation 

a u w ,  R z , p Z ) l ~ a w  = 0 ,  

where the joint likelihood of the data and the parameter is proportional to 

. exp[-exp(yr). R E ] .  [exp(y) . RZ]Rz~C. 

Since A = exp(+) RZ, solving for the zero derivative reduces to solving 

ln(A) + U’ . A = + a2 . RE,C + ln(RZ). 

As RZ,c gets large, the estimated value for AZ,, converges to RE,,. When R,, is 
zero, the estimated penetration rate Az,,/RZ decreases as RZ increases. 

A Market-Penetration Case Study 

Consider a case from the data presented in section 10.1.3 above. The subject 
company has a risk-count share of 1-2 percent in the state of Maryland, and 
12.9 percent of the zips have a zero risk count. The observed penetration rates, 
R,,/RZ are shown in figure 10A.1. Each symbol in the charts represents one zip 
code. The points were randomly perturbed horizontally for better visibility. 

The presence of spatial autocorrelation can be seen by means of analysis of 
variance where zip sectional center (zip3) is taken as the treatment effect in 
table 10A.l. 

which is highly significant. However, the 
significance test is predicated on normally distributed errors, which is clearly 
not the case. 

The next step is to impute the underlying penetration rates, filtering out, as 
it were, the variation arising from Poisson sampling, Figures lOA.2 and 10A.3 

The F-statistic hasp = 2.2 

32. Using the interquartile range improves robustness of the estimates. Also, the entire sample 
cannot be used because the censoring has an element of randomness to it. 
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Fig. 10A.l Example of observed penetration rates by zip sectional center 

Table 10A.l Analysis of Variance of Penetration Rate 

Source of Variation df ss MS F 

Zip3 
Error 
Total 

12 .0192 .00160 8.42 
435 .0828 .OOO19 
447 .I020 

Note: SS = sum of squares; MS = mean square. 

show the results. Each symbol represents one zip code. Figure 10A.3 zooms 
in on those zips with an estimated penetration rate less than half a percent. No 
zip code is (ever) estimated to have a zero penetration rate. 

Figure 10A.4 shows the resulting estimated penetration rates (TJ by three- 
digit zip. The vertical axis is logarithmic. This figure makes spatial autocorrela- 
tion visually apparent. For example, penetration rates in zips 208xx (Bethesda) 

221 
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Fig. 10A.2 Estimated vs. observed penetration rates 

tend to be above 1 percent, while those in zips 217xx (Frederick) are almost 
all below 1 percent. 

Analysis of variance of the logs of T ~ . ~  results are given in table 10A.2. 
This hasp = 7.7 . Figure 10A.4 suggests that normality assumptions 

are reasonable in the logarithmic domain. Therefore, zip3 has an effect; there- 
fore, spatial autocorrelation is present. All twenty-four cases had zip3 effects 
significant at the 1 percent level or better. 

For the risk-count penetration parameters of 6, the variance components are 
computed by 

zip (error) effect: u* = SS(ERROR)/df(ERROR) = 0.544, 

zip3effect: T* = [SS(ZIP3) - df(ZIP3) . a2]/[N - ( C . N : ) / N ]  = 0.337, 

which correspond to a, = 0.74 (.03) and T, = 0.58 (.24), where standard errors 
(Searle 1956) are expressed as coefficients of variation. 
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Thousandths 
Estimated Penetration Rate 

Fig. 10A.3 Estimated vs. observed penetration rates, close up 

Table 10A.2 Analysis of Variance of Log Imputed Penetration Rate 

Source of Variation df ss MS F 

Zip3 12 142.93 11.9112 21.9 
Error 435 236.56 ,5443 
Total 447 319.49 

Nore: SS = sum of squares; MS = mean square. 

The Question of Bias 

To assess the estimation procedure, twelve of the twenty-four cases were 
replicated eight times each by parametric bootstrap (Efron and Tibshirani 
1993) and reestimated. The median bias among the cases was -2.75 percent 
for the zip effect and -8.0 percent for the zip3 effect. While the former was 
statistically significant, it was judged small enough to ignore. The latter was 
not statistically significant. 
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Comment AndrC E Perold 

Basis risk has been a central issue in many of the papers and discussions at 
this conference. For example, we have heard claims that basis risk is a main 
source of insurer profitability but that it is also the risk that limits capacity; 
that broad-market hedging instruments are too coarse to effectively reduce ba- 
sis risk and that finer hedges such as ones based on zip-code-level indices are 
needed; that large insurers can manage basis risk through broader distribution 
but that small insurers will require intermediation of basis risk; that reinsurers 
will earn spreads by buying and packaging idiosyncratic risks and hedge them- 
selves by selling standardized, broad-market risks; and that the creation of re- 
insurance contracts, written on standardized zip-code-level indices, is neces- 
sary for the development of a deep and liquid market for contracts written on 
marketwide indices. 

John Major’s paper seeks to inform this discussion by empirically estimating 
basis risk. The paper estimates insurer-specific deviations from statewide indi- 
ces and then examines the hedging effectiveness of contracts based on zip- 
code-level indices. Being the first study of its kind, the paper makes an impor- 
tant contribution to our understanding of basis risk. 

In Major’s model, firms are homogeneous with respect to underwriting qual- 
ity, and their exposures within a zip code are near homogeneous in that they 
exhibit only small deviations from the index (“process risk”). Except for pro- 
cess risk, a firm’s exposure within a zip code is thus proportional to its penetra- 
tion of that zip code, and its statewide exposure is determined by its vector of 
zip-code-level penetrations. For example, if firm A writes insurance only in 
zip code 1, and if firm B writes insurance only in zip code 2, firm A’s exposure 
will differ from firm B’s to the extent that the losses in zip codes 1 and 2 are 
unrelated. A statewide hedge based on the sum of losses in zip codes 1 and 2 
might therefore be quite ineffective. On the other hand, hedging instruments 
based on zip-code-level indices will allow firms A and B to hedge all but pro- 
cess risk. 

The paper provides conditional as well as unconditional estimates of basis 
risk. Conditional refers to losses in a specific hurricane, while unconditional 
refers to losses simulated over multiple hurricanes. The difficult part is to 
model the variation in loss exposures for a given event. That is, different hurri- 
cane paths may result in the same total statewide damage, and the distribution 
of damage across these paths must be estimated. The paper does so by assum- 
ing that this distribution is the same as the distribution of market penetration 
across firms. In the example given above, this corresponds to assuming that a 
hurricane would hit zip code 1 or zip code 2 but not both. 

Andri F. Perold is the Sylvan C. Coleman Professor of Financial Management at Harvard Busi- 

The author thanks John Major and Peter Tufano for helpful comments. 
ness School. 
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To clarify, let v2 be the industry coverage of zip code z ,  let d, be the indus- 
trywide loss, and let p ,  be the penetration of a given firm. Ignoring process 
risk, the firm’s losses are given by Czvzpzdz, while the industry’s losses are given 
by Czv,d,. The firm’s basis-if using a hedging instrument based on the state- 
wide index-is given by 

B = C,VzP,dz - hC,V,d:(C.,V,P,/C,V,), 

where h is the hedge ratio, and the term in parentheses is the ratio of the firm’s 
statewide exposure to the industry’s statewide exposure. The firm’s uncondi- 
tional basis risk is given by the variation in B as a function of the vector {d,}. 
The firm’s conditional basis risk is determined by the variation in B as a func- 
tion of {d,}, holding fixed industry statewide losses C,v,dz. 

The key to understanding the paper’s results is to note that basis risk is a 
symmetrical function of the vector of losses {d,} and the vector of market 
penetrations (pc,}; that is, interchanging {d,} and (p,} leaves B unaffected. 
Thus, the variation in basis across firms (i.e., across realizations of market 
penetration) will be the same as the variation in basis across hurricane paths if 
the market-penetration vector (p,} is sampled from the same distribution from 
which the loss vector {d,} is drawn. 

For reasons presumably of data availability, the paper simulates variation in 
basis risk by sampling from the distribution of market penetrations across 
firms. While this is a clever idea, my intuition is that the approach understates 
true basis risk. I suspect that firms are relatively more homogeneous with re- 
spect to market penetration than are the hurricane paths that result in a given 
amount of statewide damage. 

The basic results of the paper are that unhedged losses have an unconditional 
coefficient of variation in the range 2.5-2.8. With the use of statewide hedging 
instruments, unconditional coefficients of variation are in the range 0.7-1.3; 
and, with the use of zip-code-level hedging instruments, the range is only 
0.04-0.2. That these last numbers are not zero reflects the fact that the only 
risk remaining-process risk-is modeled as being very small. 

In Major’s simulations, the correlation between individual firm exposures 
and the statewide index is very high, ranging from 89 to 96 percent, while the 
correlation between individual firm exposures and the zip-code-level indices 
is extremely high, in excess of 99.5 percent. The extremely high zip-code- 
level correlation simply reflects the low level of process risk, while the high 
correlation with the statewide index might be the result of relatively low varia- 
tion among firm market penetrations, as discussed above. 

A Simple Model of Insurance Origination and Hedging 

The results of the paper raise the important question of how the correlation 
between the insurer’s portfolio and the hedging instrument might affect the 
optimal hedge ratio. The paper presents minimum-variance hedge ratios, 
which are independent of the cost of hedging. Quite possibly, however, instru- 
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ments based on zip-code-level indices might be considerably less liquid than 
instruments based on statewide-level indices. For example, adverse selection 
likely will become more significant for finer hedges-especially if these 
hedges are used by firms with significant market penetration-resulting in 
these instruments having greater bid-offer spreads.’ Thus, even though zip- 
code-level instruments might be better hedges because of higher correlations, 
the demand for these instruments might be dampened by higher transaction 
costs. In what follows, I attempt to model the trade-off between higher hedging 
costs and higher correlations in a simple way. 

Consider a one-period model in which the firm originates q units of cover- 
age, with expected profits P(q) before hedging costs and deadweight capital 
costs. The firm hedges a fraction h (or hq units) of the risks that it has insured 
with an instrument that has correlation R with these risks. The hedging instru- 
ment is denominated so that its per unit variance, u2, is the same as the per 
unit variance of the risk being hedged. Absent hedging costs, the minimum- 
variance hedge ratio is optimal and is equal to R. 

The per unit cost of hedging is S, which includes normal transaction costs 
such as the bid-ask spread as well as any “abnormal premium” in the pricing 
of the instrument. The abnormal premium is the instrument’s expected return 
in excess of the risk-free rate, before transaction costs. There should be no 
abnormal premium in an efficient capital market if catastrophe risk is uncorre- 
lated with priced factors. However, as discussed in Froot and O’Connell (chap. 
5 in this volume), the pricing of catastrophe hedging instruments may presently 
contain significant abnormal premiums. The cost S is assumed here to be in- 
variant to the quantity hedged, h. 

The firm’s demand for hedging stems from the deadweight cost of risk capi- 
tal that the firm bears because of agency and information costs (see Merton 
and Perold 1993; Merton 1993; and Froot and Stein 1998). Applying the model 
developed in Perold (1998), these deadweight costs are proportional to the 
total risk of the firm. The functional form is 

Deadweight cost of risk capital = kuF, 

where k is a constant, and u, is the standard deviation of the firm’s end-of- 
period cash flows. uF is given by 

U’, = u2q2{l + h2 - 2Rh}. 

The value of the firm2 is P ( q )  - hqS - ku,, which can be expressed as 

Firmvalue = P ( q )  - q{hS + ka(1 + h2 - 2Rh)%}. 

1. For a discussion of the analogous problem in the stock market, see Gammill and Perold 

2. Here,$m value refers to expected excess profits after deadweight costs of hedging and of 
(1989). 

risk capital. It represents the premium over book value, or invested capital, of the firm. 
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Maximizing over h yields the optimal hedge ratio 

h* = R - S((1 - R Z ) / ( k 2 u 2  - S 2 ) ) ' l 2 .  

At the optimal hedge ratio, the value of the firm is 

Firmvalue = P ( q )  - q ( S R  + [(l - R 2 ) ( k 2 u 2  - S2)]''2}.  

These results relate the optimal hedge ratio and firm value to the correlation 
and cost of the hedging instrument as follows. First, the firm hedges less as the 
cost of hedging rises; that is, h* is decreasing in S. In addition, no hedging 
occurs if the cost of hedging is large relative to the firm's deadweight cost of 
risk capital, that is, if S > kuR. Full hedging occurs when R = 1 even if S > 
0, provided that S < kuR. Firm value is increasing in R and decreasing in S. 

This model can now be tied to the empirical findings of the paper. If the 
results are correct that the statewide index and zip-code-level index correla- 
tions differ by only 4-1 1 percent, then it may easily be that the benefits of the 
finer zip-code-based hedges are offset by higher costs of hedging. A numerical 
example illustrates the trade-off. 

Let P ( q )  = $100, q = 100, and k u  = $1.00. With these values, if R = 0 so 
that the firm does no hedging, its deadweight cost of risk capital evaluates to 
q k u  = $100, with the result that the value of the firm is zero. At the other 
extreme, if S = 0 and R = 1 ,  all risk can be fully and costlessly hedged, and 
the firm therefore bears no deadweight cost of risk capital. The value of the 
firm then is $100. 

Tables 10C.l and 10C.2 calculate the optimal hedge ratio and firm value, 
respectively, for various values of S and R.  The tables show that the hedging 
costs need to be significant if these costs are to negate the benefits of higher 
correlations. For example, suppose that a costless broad-market hedging in- 
strument is available and that its correlation with the firm's risks is R = 0.7. 

Table 10C.l Optimal Hedge Ratio 

Cost of Hedging ( S )  

R 0 . I  .s .7 .3 

1 .O 1 .oo 1 .oo 1 .oo 1 .oo 1 .oo 
.9 .90 .86 .76 .65 .47 
.8 .80 .74 .61 .4s .21 
.7 .70 .63 .48 .29 .oo 
.6 .60 .52 .35 .14 .oo 
.5 s o  .41 .23 .oo .oo 
.4 .40 .3 1 .ll .oo .oo 
.3 .30 .20 .oo .oo .oo 
.2 .20 .10 .oo .oo .oo 
. I  .I0 .oo .oo .oo .oo 
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Table 10C.2 Firm Value with Optimal Hedging 

Cost of Hedging (S) ($) 

R 0 .1 .3 .5 .7 

1 .o 
.9 
.8 
.7 
.6 
.5 
.4 
.3 
.2 
.1 

100.0 90.0 70.0 
56.4 47.6 31.4 
40.0 32.3 18.8 
28.6 21.9 10.9 
20.0 14.4 5.7 
13.4 8.8 2.4 
8.3 4.8 .6 
4.6 2.1 .O 
2.0 .5 .G 

.5 .o .O 

50.0 
17.3 
8.0 
3.2 
.7 
.o 
.o 
.O 
.O 
.o 

30.0 
5.9 
1.2 
.o 
.o 
.O 
.o 
.O 
.o 
.o 

The optimal hedge ratio for this instrument is 0.7, and the value of the firm is 
$28.60. If a finer instrument is available with correlation R = 0.9 and the cost 
of hedging is S = 0.3, the optimal hedge ratio is 0.76. The firm hedges qh = 

76 units and incurs a hedging-related cost of qhS = $22.80. Moreover, hedging 
reduces the firm’s deadweight cost of risk capital from $100 to $45.80, and the 
value of the firm is therefore $100 - $45.80 - $22.80 = $31.40. Thus, im- 
proving the correlation from 0.7 to 0.9 has economic significance even if the 
cost of hedging is large. At an even larger cost of hedging, say, S = 0.5, the 
hedge ratio is still high, at 0.65, but the value of the firm is much lower, at 
$17.30. 

These results are obviously most sensitive to the magnitude of the dead- 
weight capital costs-which drive the demand for hedging in the first place. 
For example, if ka  is small (e.g., ka  = 0. l), then the cost of hedging must only 
exceed 0.1 for no hedging to occur. 

Conclusion 

John Major’s paper estimates the potentially significant increase in correla- 
tion, and consequent reduction in basis risk, that might be achieved with the 
use of hedging instruments based on zip-code-level indices. The paper does so 
by devising a simulation technique based principally on variation in market 
penetration across firms and the assumption that this variation is a good proxy 
for the distribution of damage across hurricane paths. The implications of the 
results for the demand for hedging with zip-code-level instruments are not ob- 
vious, however. There almost certainly will be greater costs associated with 
the use of these instruments. Depending on the reasons that firms hedge in the 
first place, these greater costs may offset the superior covariance properties of 
zip-code-level instruments. 
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