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10 The Deflation of 
Military Aircraft 
Richard C. Ziemer and Pamela A. Kelly 

10.1 Introduction 

The Bureau of Economic Analysis (BEA) entered into an agreement with 
the Department of Defense (DOD) in 1975 to develop a measure of defense 
purchases in constant prices and an official defense deflator. Prior to this ef- 
fort, no official measures of price change for purchases of military-specific 
goods and services had been developed. Initial results of the study and the 
methodology were published in the report Price Changes in Defense Pur- 
chases of the United States (U.S. Department of Commerce 1979). Current- 
and constant-dollar estimates of defense purchases were incorporated into the 
national income and product accounts (NIPA) with the 1972 benchmark pub- 
lished in December 1980. Quarterly and annual series are available for the 
period 1972 to date and are published in the Survey of Current Business. 

This paper may be considered a sequel to the general overview of the defla- 
tion of defense purchases found in an earlier work (Ziemer and Galbraith 
1983). Although the paper focuses on aircraft, the techniques described apply 
to most other purchases of weapons systems by DOD. Defense purchases in 
constant dollars, other than weapons systems and compensation, are generally 
derived by deflation. Specification pricing, the same technique as employed 
by the Bureau of Labor Statistics (BLS), is used to develop price indexes from 
data on prices paid by DOD. These indexes are used to deflate current-dollar 
defense purchases. Categories of purchases for which price data are not avail- 
able from DOD are deflated using proxy price indexes such as the producer 
price index (PPI). Constant-dollar purchases of military compensation are de- 
rived by extrapolating base year compensation by the number of active duty 
personnel by rank. Constant-dollar purchases of civilian compensation are de- 
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rived by extrapolating base year compensation by the number of hours worked 
by employees by grade and step. A more detailed description of the method- 
ology used in estimating the full range of national defense purchases may be 
found in U.S. Department of Commerce (1988). 

The purpose of the paper is to describe in some detail the types of data that 
are available to BEA and the techniques used to transform these data into 
current- and constant-dollar defense purchases of aircraft. The paper is di- 
vided into three sections. The first section briefly reviews the general pricing 
techniques used in the development of prices for military equipment. The de- 
scription focuses primarily on the way in which certain price-determining 
characteristics are treated and how this may differ from other price indexes 
such as the PPI and the consumer price index (CPI). 

The second section, which contains the bulk of the paper, gives a detailed 
look at these techniques using a case study approach. We have devised price 
and quantity data for two hypothetical fighter aircraft. These data are used to 
portray many of the situations that we observe in the actual data. We hope that 
this detailed methodology will shed some light on what the published defense 
purchases series does and does not show. 

The third section contains a brief summary of defense purchases of aircraft. 
These data illustrate the effect of these techniques on actual data. 

10.1.1 Background 
The goal of the defense price work was to develop measures of constant- 

dollar defense purchases within the framework of the NIPAs (U.S. Depart- 
ment of Commerce 1979, 21). This goal, coupled with the procedures used 
by DOD for purchasing weapons systems, dictated many of the procedures 
used in constructing the measures of price change. Following is a brief review 
of some of these procedures. 

Defense purchases in the NIPAs are recorded on a delivery basis. This 
means that during the period that a given aircraft is being manufactured and 
DOD is making progress payments to the producer, BEA does not record a 
defense purchase. The progress payments appear as additions to business in- 
ventories. The purchase is recorded only when DOD takes delivery of the 
completed unit; at that time, there is also recorded a reduction in business 
inventories. The time lag between initiating production and the delivery of a 
completed unit can be as much as four years for some aircraft. 

Most weapons systems are purchased by DOD as components of a system 
rather than as a single item. An aircraft, for example, usually has four major 
component contracts: engines, avionics (i.e., electronic devices for use in 
aviation), armament, and the airframe and assembly. In addition, there may 
be many smaller components that are purchased separately, such as tires and 
ejection seats. The engines, avionics, etc., appear as a defense purchase in the 
GNP when DOD accepts the item from the contractor, and at that time the 
price for these components will appear in the defense price index. These com- 
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ponents are then furnished to the airframe and assembly contractor. When 
DOD accepts the completed aircraft, only the delivery of the airframe and 
assembly operation is recorded as a defense purchase in the GNP-the other 
components having been accepted earlier-and only then do the airframe and 
assembly price appear in the defense purchases price index. 

Defense purchases of weapons systems in the NIPAs are derived primarily 
from data on quantities and prices of components delivered in each time pe- 
riod. The basic series are calculated as follows: 

(4) 

where C = deliveries in current dollars, D = implicit price deflator, 
P = price of item at delivery, t = time period of delivery, i = ith compo- 
nent (i = 1, n) ,  K = deliveries in constant dollars, I = fixed-weighted price 
index, Q = quantity of item delivered, and b = base period. 

While price and quantity estimates are collected and processed for many 
series, there are some items for which data are not readily available. For these 
items, an alternative measure for the purchase is used. Data on disbursements 
for a class of weapons systems (e.g., Air Force combat aircraft) are available 
from DOD. These data are adjusted to exclude progress payments on items 
for which price and quantity data are processed. The remaining disbursements 
are assumed to be for items that are paid for at the time of delivery and repre- 
sent current-dollar purchases of unpriced items. Constant-dollar purchases are 
the value of the unpriced items deflated by the price index for priced items. 
Total purchases of weapons systems are the sum of the priced and unpriced 
items. 

10.1.2 Measurement of Quality Change 
The technique used to construct the detailed price series is of critical impor- 

tance in the development of any measure of quality (or price) change. A tech- 
nique known as specification pricing is used to develop the price measures for 
defense purchases. This is the same technique that is used by BLS in the PPI 
and CPI. Specification pricing consists of defining the price-determining char- 
acteristics for a given item that is to be priced and pricing items with identical 
characteristics over time. Price-determining characteristics for defense pur- 
chases are the physical characteristics of an item that influence its price. In 
addition to the physical configuration (e.g., number of engines, number 
of seats, etc.), price-determining characteristics for an aircraft would include 
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(1) materials or design that affect the aircraft’s length of service, need for or 
ease of repairs, weight, speed, or maneuverability; ( 2 )  mechanical features 
that affect overall operation, efficiency, or the ability of a component to per- 
form its function; and (3) safety features such as ejection seats. Price- 
determining characteristics would not include features of style, appearance, 
comfort, convenience, or design solely to make the aircraft appear different. 
Nonphysical criteria that affect the purchase price, such as the number of units 
purchased on a given contract or the rate at which the aircraft are to be pro- 
duced, are not included as part of the specification to be priced. 

Items being purchased, however, do not usually maintain the same specifi- 
cations for long periods of time. Products are continually being modified, 
which can result in changes to the price-determining characteristics. When a 
change occurs in the price-determining characteristics of an item being priced, 
the change is evaluated to determine if it is a quality change. For defense 
purchases, the criteria for quality change are (a)  that there is a physical change 
to the item and (b) that the change enhances the ability of the item to perform 
its mission. Each weapons system is designed for a particular mission within 
the overall defense program. A wide variety of missions are performed by 
various aircraft, from the delivery of nuclear bombs by the B-52, to long- 
range reconnaissance by the SR-71. Each of these missions requires an air- 
craft with somewhat different characteristics. The Navy’s F-14 fighter aircraft, 
for example, has as its mission to protect a fleet of ships from enemy aircraft. 
This requires that it be fast, be maneuverable, have sophisticated electronics 
for detecting enemy aircraft at great distances, and be able to destroy the 
enemy aircraft before they reach the fleet. The Air Force’s A-10 attack air- 
craft, on the other hand, has as its mission to supply close air support of 
ground troops. This mission requires less speed than a fighter aircraft, but the 
A-10 must be able to fly close to the ground, have some protective armor, and 
be able to destroy enemy tanks. Each physical change to an aircraft is exam- 
ined to determine if it improves that aircraft’s ability to perform its mission. If 
it does, the cost of producing that physical change is taken as the value of the 
quality change, and the price is adjusted accordingly. Any other change in the 
price paid by DOD for that item is defined as a price change. 

This procedure is known as the “performancekost-of-production” method 
of adjusting for quality change. Changes in performance are not used to value 
the quality of an item; they are used only to determine whether there has been 
a quality change. The value of the quality change is determined by the cost of 
producing the change. The following example may help clarify this tech- 
nique. Assume a fighter aircraft that flies at Mach 1 with a price of $1,000 in 
period T In period T + 1 ,  a physical change is made to the aircraft that al- 
lows it to fly at Mach 2 .  An increase in speed helps a fighter aircraft perform 
its mission. The price of the aircraft increases to $1,500, but the cost of mak- 
ing the change was $300. These data yield a quality change of $300 and a 
price change of $200. Therefore, there is a price increase of 20 percent and a 
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quality increase of 30 percent even though the speed of the aircraft has 
doubled. 

Methods of adjusting for quality change other than the performancelcost- 
of-production method have been proposed. An alternative method of adjusting 
for quality change was presented in Gordon (1990). In the case of commercial 
aircraft, Gordon adjusted prices of identical models by a quality factor based 
on changes in net revenue relative to changes in the prices of aircraft pur- 
chased. Gordon found that, in the period 1965-82, net revenue rose much 
faster than price because jet technology brought about declining real costs for 
fuel, maintenance, and crew per unit of output (Gordon 1990, chap. 4). (For 
a discussion of the concepts of quality adjustment, see Triplett [ 19831). 

The procedures described above may yield somewhat different measures of 
price change than price indexes such as the CPI and PPI (U.S. Department of 
Labor 1988). The primary cause of this is the treatment of certain price- 
influencing characteristics. Listed below are four characteristics that are 
treated as price changes in defense purchases but not in the calculation of the 
PPI or CPI: 

Buy size: Differences in price due to a difference in the number of units 

Production rate: Differences in price due to changes requested by DOD in 

Learning curve: Differences in price due to differences in position on the 

Producer: Differences in price due to different producers for the same item. 

ordered on one contract. 

the production rate, such as for stretch-outs due to budget constraints. 

learning curve (see below). 

In addition, any changes to a weapons system that are for the remedy of de- 
fects are defined as not being quality changes. It is assumed that, when a 
weapons system enters into production, it fits together and works. 

10.1.3 Splicing Price Series 
A major problem is encountered in the development of any quantity or price 

series when a product disappears and is replaced by a new product. The new 
product will not match the specifications of the old product; therefore, the 
price of the new product may not be directly comparable to the price of the 
old product. The old and new price or quantity series must be spliced together 
to form a continuous measure over time. There exist several procedures that 
can be used to handle this problem. 

The first procedure is called a direct link procedure. The price of the new 
product is linked to the level of the price index for the old product. This pro- 
cedure assumes that the entire difference in price level between the old product 
and the new, at the time of the introduction of the new product, is due to a 
difference in quality. 

The second procedure is called a direct comparison. The price of the new 
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item is directly compared to the price of the old item. This method assumes 
that there is no difference in quality between the two items and that any differ- 
ence in the price paid is a price change. 

The third procedure, and the one used for most new weapons systems, is to 
treat the new product as a quality adjustment to the old product. This is done 
by evaluating the physical differences between the old and the new products 
to determine whether there has been a quality change. If it is determined that 
there are quality differences, the cost of producing those physical changes is 
defined as the value of the changes, and the price is adjusted accordingly. Any 
other change in the price paid by DOD for the new item is a price change. 
However, when this procedure is used for introducing a new weapons system, 
the price of the new system must also be adjusted for learning-curve effects. 

The learning curve represents the reduction in labor hours required for pro- 
ducing successive units of a new weapons system of a given technology. The 
new system may be superior to the system it replaces. However, the price of 
early units of the new system will be overstated relative to the old system, 
which has already experienced significant learning. In keeping with the cost 
analysis community, BEA assumes that, by the hundredth unit of production 
of a new fighter aircraft, additional learning is relatively minor. The price of 
the hundredth unit of the new system is compared with the price of the old 
system at the link point to yield the best estimate of the actual resource cost 
difference between the two systems. BLS waits to introduce a new product 
into its price index until that product has established a market share-at which 
time most learning has already occurred. BEA treats the higher prices for the 
first ninety-nine units over the hundredth unit of the new system as price in- 
creases relative to the old system. Each of these units is included in the price 
index as it is delivered. A more detailed discussion of learning curves and the 
technique for introducing new models is contained in appendix A. 

10.2 Case Study 

The case study uses two hypothetical aircraft to illustrate many of the data 
sources and procedures used in the preparation of defense purchases in the 
NIPAs. The case study highlights military aircraft, but the procedures are typ- 
ical for most military equipment purchases. The case study begins with price 
derivation and continues through index creation. In the process, quality ad- 
justments, learning curves, and splicing techniques are examined. 

A new fighter aircraft, the F4.56, replaces an older fighter aircraft, the F123. 
Both aircraft include the same general component systems, but the F456 in- 
corporates quality improvements in all components except engines. For this 
example, the aircraft are produced simultaneously for two years. Table 10.1 
shows the price and quantity information for the last four contracts of the older 
aircraft, the F123. Table 10.2 shows the entire contract history for the newer 
aircraft, the F456. An addendum containing information pertaining to quality 
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Table 10.1 F123 Unit Prices by Contract ($thousands) 

Contract number 
Contract quantity (units) 
Delivery year 

Contractor-furnished equipment (CFE) 
Airframe 
Flight controls 
Penetration aids 
Communications equipment 
Radar equipment 
Fire control equipment 
Weapons and armament systems 

Navigation equipment (CFE) 
Navigation equipment (GFE) 

Engines (2 per aircraft) 
Other GFE 

Navigation equipment 

Government-furnished equipment (GFE) 

Total 

8 
70 

1975 

2,205.8 
1,359.4 

194.7 
10.1 
8.9 

273.3 
111.8 
247.6 

97.9 
89.8 

8.1 

2,097.3 
1,459.7 

631.6 

4,400.9 

9 
75 

1976 

2,463.6 
1,506.2 

218.0 
11.8 
10.2 

305.9 
127.1 
284.5 

113.5 
104.5 

9.0 

2,335.1 
1,601 .O 

134.1 

4,912.2 

10 
75 

1977 

2,741 .O 
1,652.8 

246.7 
12.8 
12.0 

353.8 
140.9 
322.0 

133.4 
123.5 
10.0 

2,489.6 
1,640.6 

848.9 

5,364.0 

~~~ ~ 

11 
15 

1978 

2,876.2 
1,737.9 

257.0 
13.5 
12.5 

372.4 
147.5 
335.4 

140.3 
129.8 
10.5 

2,594.4 
1,705.4 

888.9 

5,610.9 

change between contracts appears at the bottom of table 10.2. Notes providing 
additional information about the F456 also appear at the bottom of table 10.2. 

To facilitate the presentation of this case study, we have made some simpli- 
fying assumptions: 

1. Typically, aircraft deliveries for a given contract year begin a year or 
more after the contract year. In addition, deliveries for that contract can extend 
over more than one year. In the case study, only one contract is delivered in a 
year for each aircraft system. For example, all fifty-five F456 aircraft in con- 
tract 5 are delivered in 1981; therefore, we will refer to contract 5 as the 1981 
F456. 

2. The estimates will be shown annually; however, BEA produces quarterly 
estimates in current and constant dollars for the national income and product 
accounts. 

3. Typically, the component prices developed for the estimation of defense 
purchases evolve from different sources. To start, prices are derived from bud- 
get estimates that contain a minimum of detail. Later, detailed contractor cost 
reports become available as the contract goes into production. At the comple- 
tion of the contract, a final contractor cost report shows the final costs. As 
shown, the F123 and F456 prices represent estimates based on final contractor 
cost information, The data used for quality adjustment come from engineering 
change orders, which are DOD-approved engineering changes in the design 
or production of the weapon system. 

4. The F123 contract history includes information for contracts 8-1 1. We 
excluded a substantial portion of the history for this aircraft; however, this 



Table 10.2 F456 Unit Prices by Contract ($thousands) 

Contract number 
Contract quantity (units) 
Delivery year 

Contractor-furnished equipment (CFE) 12,932.9 
Airframe 8,321.5 
Flight controls 652.4 
Penetration aids 43.2 
Communications equipment 86.8 
Radar equipment 2,880.9 
Fire control equipment 436. I 
Weapons and armament systems 512.0 

1 2 3 4 5 6 7 8 9 10 11 12 
10 30 40 40 55 55 55 60 60 60 60 65 

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 
7,817.6 
4,895.0 

567.3 
34.6 
44.5 

1,371.8 
335.5 
568.9 

6,390.8 5,528.7 
3,965.3 3,407.7 

521.2 494.3 
31.8 25.4 
35.6 23.1 

932.1 677.0 
298.5 268.3 
606.3 632.9 

6,114.8 
3,696.3 

687.0 
26.3 
23.6 

749.3 
280.5 
651.7 

6,824.1 
4,057.5 

682.3 
26.9 
25.1 

1,048.5 
301.3 
682.5 

7,210.8 10,995.6 9,366.4 
4,306.9 5,733.2 5,204.6 

725.2 764.3 815.1 
27.2 27.1 27.3 
28.0 29.6 30.1 

1,102.3 3,113.0 2,096.6 
329.4 585.2 457.0 
691.8 743.1 735.8 

9,418.3 10,184.3 10,402.6 
5,507.5 5,775.2 5,889.0 

840.4 873.2 897.8 
28.0 28.1 28.9 
31.4 33.7 38.0 

1,771.7 1,802.3 1,844.1 
485.5 894.7 903.1 
753.9 777.1 801.8 

Navigation equipment 569.1 376.6 312.3 249.8 257.1 279.0 302.2 534.6 458.5 469.9 474.6 500.2 
Navigation equipment (CFE) 523.8 349.2 289.9 230.4 2.1 2.2 2.8 10.8 3.2 3.3 3.7 3.9 
Navigation equipment (GFE) 45.3 27.4 22.4 19.4 255.0 276.8 299.4 523.8 455.3 466.6 470.9 496.3 

Government-furnished equipment (GFE) 3,675.0 3,554.8 3,723.3 3,835.2 4,949.0 5,103.9 5,690.7 6,793.6 6,900.3 8,004.1 7,694.8 8,172.0 
Engines (2 per aircraft) 1,640.6 1,705.4 1,925.2 2,125.7 3,059.8 3,353.2 3,532.8 3,692.4 3,806.4 4,658.9 4,702.8 4,911.6 
Other GFE 2,034.3 1,849.4 1,798.1 1,709.5 1,889.2 1,750.7 2,157.9 3,101.2 3,093.9 3,345.2 2,992.0 3,260.4 

Total 17,176.9 11,749.0 10,426.4 9,613.6 11,320.9 12,207.0 13,203.8 18,323.7 16,725.2 17,892.3 18,353.6 19,074.9 

Addendum: Quality issues: contract 3 = fire control software update, price declines; contract 5 = engine upgrade; contract 10 = engine upgrade; contract 5 = CFE 
navigation equipment to GFE; contract 6 = radar enhancement to offset advances in enemy missile technology; contract 6 = GFE mix of equipment changes, less 
quality; contract 7 = GFE mix of equipment changes, more quality; contract 8 = model B introduced; contract 9 = correction of minor deficiency in flight controls; 
contract I 1  = GFE fire control to CFE. 
Nore: contract 1 = existing engine used for new aircraft; contract 3 = buy size fcw engines falls as older system disappears; contract 4 = bottom of learning curve (no 
learning for weapons systems); contract 9 = bottom of learning curve for new model except radar (10). 
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was done so as to highlight the F456 and to avoid duplication of examples. 
For the same reasons, we have made the unlikely assumption that no quality 
adjustments were needed for the F123. 

Because of the nature of this case study, many of the complexities of the 
work to develop current- and constant-dollar defense purchases are obscured. 
The estimates are required long before good information becomes available. 
For example, learning curves must be determined with the first production 
contract, and the percentage changes in the level of quality for a product must 
be estimated before prices can be calculated. 

10.2.1 Price Derivation 
BEA uses many different data sources for price derivation, but the best 

source is the contractor cost report. An example of this type of report for the 
fifth F456 contract appears in figure 10.1. The report shows recurring and 
nonrecurring costs by element code, or system component, as of the date on 
the report. Estimates of these costs at the completion of the contract are also 
displayed. Additional sections provide information on the type or terms of the 
contract (sec. 5, Contract Type), the total value of the contract (sec. 6, Con- 
tract Price), and any cost-sharing arrangements that prove applicable (sec. 7, 
Contract Ceiling). Many editions of these reports exist for a single contract 
because of reporting requirements; however, the report where the “To Date” 
section equals the “At Completion” section, such as found in this example, is 
the final source of price information available to BEA. 

The report indicates that the total of nonrecurring and recurring costs for 
the fifty-five F456 airframes (element code Al )  is $246.8 million. When de- 
veloping a time series for a chosen pricing component, BEA must attempt to 
maintain the composition of that item over time. As such, the costs described 
as nonrecurring, by definition, must be excluded from the price-estimating 
procedure. Given recurring costs of $181.4 million and a contract quantity of 
fifty-five airframes, the per-unit cost of the airframe is $3.299 million. To 
obtain the per-unit price, BEA multiplies the per-unit cost by a profit (or loss) 
factor that allocates a proportional value of total profit and general and admin- 
istrative (G&A) costs to the individual components. 

Generally, the profit factor equals the total contract price divided by the 
total manufacturing cost. For a firm-fixed-price contract as shown in the ex- 
ample, no adjustments need to be made to this formula. As a result, the profit 
factor for this contract is 1.120393, or 570,000/508,750. The estimated price 
for the airframe is $3.696 million, or $3.299 million X 1.120393. Cost- 
sharing agreements typical of many types of contracts complicate this proce- 
dure because of the additional elements of target and ceiling prices. Whatever 
the procedure, the final goal is to obtain the actual value of contractor profit 
given the negotiated terms of the contract. 

The detail at which BEA derives prices often depends solely on the amount 
of data provided in the contractor reports. Most of the prices derived for the 



COST DATA REPORT 
Do l l a rs  i n  000's 

1. Program 
Buy 5 - f456 

- - 3. Contractor 
1-1 ROTBE 1-1 Procurement 

ABC Aerospace, I N .  

System A / I  Weapons System De l i ve ry  6 IF Armament 

4 .  Report as o f  

31 Dec 1982 

SYSTEMS TEST 1 EVALUATION 

SYSTEM PROJECT MANAGEMENT 
Engineer ing Management 
SuppOrt P ro jec t  Management 
Other System Project  Management 

Technical Publ icat ions 
Engineer ing Data 
Management Data 
Other 

DATA 

K I T S  

OTHER PROGRAM SUPPORT 

TOTAL MANUFACTURING COST 
General 8 Adn in i r t ra t i ve  

TOTAL COST 
P r o f i t  

TOTAL PRICE 

5. Contract Type 

FFP 

6. Contract P r i c e  

570000 N/A I 
To Date 

Costs Incurred 

. Contract Ce i l i ng  

Non- 
l e c u r r i  M) 

REMARKS 

65394 
65394 

A 
A1 
A2 
A3 
A4 
A5 
A6 
A61 
A62 
A7 

- 
: e c u r r i w  

A I R  VEHICLE - F456 
Ai r f rame 
F l i g h t  con t ro l s  
Pene t ra t i on  Aids 
Cmmmicat iOn Equipnent 
Radar 
F i r e  Control  

Sof tuare 
Other f i r e  con t ro l  

Navigat ion Equipnent 

300277 
181453 
33726 
1291 
1159 
36783 
13770 
634 2 
7428 
103 
103 

0 
23994 
ma 

TOTAL 

M5671 
246847 
33726 
1291 
1159 
36783 
13770 
6342 
7428 
103 
103 
0 

23994 
7998 

A t  C n p l e t i o n  

cos ts  Incurred 

U n i t s  

55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 

NOn- 
R e c u r r i w  

65394 
65394 

- 

300277 
181453 
33726 
1291 
1159 
36783 
13770 
6342 

103 
103 
0 

23994 

71.28 

ma 

TOTAL 

365671 
246847 
33726 
1291 
1159 
36703 
13770 
6342 
7428 
103 
103 
0 

23994 
7998 

11862 

595% 
23495 
27393 
8496 

38579 
29391 
2345 
102 
6741 

5902 

27352 

508750 
40000 

548750 
21250 
570000 

Fig. 10.1 F456 cost report 
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F456 were calculated at the second level of element code detail (Al, A2), 
which is the lowest level of information shown for most elements. Although 
more detail exists for fire control and navigation equipment, inconsistencies 
between the reports for different contract years create difficulties. 

For example, early contract years for the F456 display the cost information 
in the same format as shown in figure 10.1. Later years show fire control 
equipment without the added breakdown. If we had priced fire control equip- 
ment in two sections (software and other), then an adjustment would be 
needed when the detailed information is no longer available. We can avoid the 
need for an adjustment without losing much accuracy by pricing these com- 
ponents at a higher level of detail. 

Another situation involves the weapons delivery and armament elements. 
Table 10.2 shows a price for the combination of these two components. The 
F456 reports (fig. 10.1) show them as separate items; however, the F123 re- 
ports exhibit them as a single element without additional detail. Because of 
this, we have chosen to combine the F456 elements to resemble the compo- 
nent classifications used for the F123 more closely. A more consistent time 
series for the weapons/armament component results. The prices displayed in 
table 10.2 represent the data included under the Air Vehicle element code. 

As seen in tables 10.1 and 10.2, the navigation equipment components pro- 
cured under both contractor-furnished equipment (CFE) and government- 
furnished equipment (GFE) are combined to make a single pricing series. In 
1981, the majority of the CFE navigation equipment switched to GFE navi- 
gation equipment; however, the total composition of navigation equipment 
remains the same. Owing to the method by which BEA processes quality ad- 
justments, switches between priced series can cause some calculation prob- 
lems. To avoid these problems, we combine these two very similar series and 
process at the total navigation equipment level. A detailed discussion of price 
series switches appears later in this paper. 

Problems arise when attempting to develop consistent price series for the 
remaining elements, such as project management or technical publications. 
No quantities are associated with these elements, thus making it difficult to 
develop per-unit prices. The contract quantity for the air vehicle could be used 
as a proxy quantity; however, the composition of these elements changes, so 
any series developed in this manner would be inconsistent over time. For ex- 
ample, both the 1981 and the 1982 F456 contracts have air vehicle quantities 
of fifty-five; however, more than fifty-five technical publications were bought 
in the 1982 contract. Using air vehicles as a proxy quantity in this case causes 
an apparent price increase for technical publications when in fact the price 
might be stable. Also, because the share of these items to the total value of the 
contract varies over time, we cannot allocate them over the Air Vehicle ele- 
ments. 

As mentioned earlier, current dollars equal the sum of the products of prices 
and quantities delivered in a given time period. Constant dollars equal the sum 
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of the products of the quantities delivered in the given time period and the 
corresponding base prices. Any adjustments needed for differences in quality 
over time for a given product are made in the base price. As a result, constant 
dollars reflect purchases of a varying mix of consistent product series. 

Although BEA maintains price and quantity estimates for a large number 
of defense purchases, insufficient data on prices, quantities, or both require us 
to use an alternative approach when developing current and constant dollars 
for some items. The unpriced items such as data and project management, as 
well as the costs classified as nonrecurring, must be included in current- and 
constant-dollar defense purchases. As mentioned earlier, data are available for 
disbursements by class of aircraft. Progress payments, however, are not avail- 
able. The method by which estimated progress payments are removed from 
disbursements is referred to as the “ratio method .” 

The “ratio method” uses disbursements data from financial reports to ap- 
proximate purchases, in any given time period, for those items not specifically 
priced. For example, an aircraft contract represents purchases of $1,000 over 
a five-year period. Of the $1,000, only $750 appears in the data base of priced 
items. The remaining $250 is spread over the five years of the program by 
assigning 25 percent of all disbursements to current dollars in the time period 
when the disbursement is made. If disbursements in the first year are $200, 
the current-dollar unpriced items are $50 ($200 X .25). To calculate pur- 
chases, the $50 is then added to any current dollars that result from deliveries 
of aircraft in that year. This procedure assures that all appropriate DOD ex- 
penditures appear as defense purchases. To obtain constant dollars, the current 
dollars for unpriced items are deflated using the priced items as a proxy. 
Constant-dollar purchases then equal the sum of constant dollars for priced 
and unpriced items. 

10.2.2 Price Series Splicing 
A common problem in developing current- and constant-dollar defense pur- 

chases occurs with the introduction of new products. The case study example 
illustrates this problem with the F123 that ends in 1978 and the F456 that 
begins in 1977. A common method used to deal with this problem is to treat 
the new product as a quality adjustment to the old product. An evaluation of 
the physical differences between the old and the new systems in this case 
shows that quality improved for all components except engines. (The previ- 
ously upgraded engines for the F123 are used without modification for the 
first four contracts of the F456.) 

The procedure to calculate the quality adjustment for the new product is 
similar to the method used to calculate the value of quality change for a model 
change in a single system. Prices at comparable levels of production efficiency 
for both systems are estimated in prices of a single time period. The technique 
for choosing a comparison time period varies with the circumstances of the 
product series. 
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In the case study example, both the F123 and the F456 were produced in 
1977. We need to estimate the value of quality change in 1977 dollars, so it is 
logical to choose 1977 as the comparison time period. This eliminates the 
need to adjust the calculated value of quality change to dollars of another time 
period and, therefore, reduces the amount of the estimation error in the cal- 
culations. 

Although prices already exist for the F456 in 1977 dollars, they reflect costs 
at the top of the learning curve and represent an inefficient level of production. 
If the actual 1977 F456 prices are used in the quality-adjustment calculations, 
the value of quality change between the two aircraft would be grossly over- 
stated. To eliminate this problem, prices at the bottom of the learning curve 
for the new system are chosen-1980 F456-as the starting point for the 
estimation procedure. These prices represent the point where labor efficiency 
in the new system is comparable to that in the old system. Once the new 1977 
prices for the 1980 F456 have been estimated by removing a value for price 
change between these two time periods, they can be directly compared with 
the prices for the F123. The difference between the adjusted F456 prices and 
the F123 prices equals the value of quality change for the new system in 1977 
dollars. 

For example, the price of the F123 airframe in 1977 (contract 10 in table 
10.1) is 1,652.8. The price of the F456 airframe at the bottom of the learning 
curve is 3,407.7 (contract 4 in table 10.2). Estimating and removing price 
change between 1977 and 1980 gives a price for the F456 airframe in 1977 
dollars. The value of the price change must be based on a relevant price series 
that reflects a pure price change. The BEA has a limited choice of proxies for 
this purpose. The price series for another aircraft can provide a good source 
of price change if production of the other aircraft remains steady in the rele- 
vant time period. If such a source is unavailable, then we have to use a general 
price index for aircraft or aircraft components to estimate price change. For 
the purposes of this case study, a historical DOD procurement index series 
was used to estimate price change between contracts. In this case, the value 
of price change between 1977 and 1980 for the airframe is 888.7, and the 
resulting price estimate for the airframe in 1977 dollars is 2,519.0. Taking the 
difference between the prices for the two systems gives a quality adjustment 
of 866.2 (2,519.0 - 1,652.8) in 1977 dollars. 

Often, the time period chosen for the splice represents the time when the 
decision was made to proceed with the procurement of the new product. This 
is generally the case when the two products do not have an actual overlap time 
period. For example, the government decides to procure the F456 in 1976 and 
deliveries start in 1977. If we assume that the F123 was last delivered in 1975, 
then we would estimate the F123 in 1976 prices and compare it with the esti- 
mates for an efficiently produced F456 in 1976 prices. The resulting values of 
quality change must then be adjusted to reflect prices comparable to the first 
delivery prices of the F456. 
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As the table 10.2 notes to contract 4 mention, the 1980 F456 represents the 
bottom of the learning curve for all components except the weapons and ar- 
mament systems, which have no apparent learning curve. Because there is no 
need to adjust the 1977 F456 price for weapons and armament systems in 
order to derive a comparable level of production efficiency with the F123, the 
two systems can be linked without adjustments. The price of the F456 weap- 
ons and armament systems is 512.0 in 1977, and the price for similar F123 
systems is 322.0 in 1977. If we assume that the entire difference in price is 
due to quality improvement, then the value of the quality change is 190.0 
(512.0 - 322.0). Table 10.3 displays the quality adjustments by component 
for the entire F456 program. 

A splicing technique must also be used when data sources for a single sys- 
tem change to the extent that the component prices no longer represent the 
same items. For example, contractor data exist for a substantial portion of a 
program, but budget documents provide the only available information for 
current and future contracts. The contractor information details cost data by 
component. The budget documents provide a single price for the combination 
of airframe and all other contractor-furnished equipment. Obviously, the 
contractor-furnished airframe price and the budget document airframe price 
represent different levels of detail and cannot be used in the same price series 
without adjustments. 

One way in which we can handle this situation is to make a quality adjust- 
ment to the existing series. For example, on the basis of the last available 
contractor information, the price of the airframe could be quality adjusted 
using the sum of the prices of the other components as the value of the quality 
improvement. This estimate could then be used with the price derived from 
the budget documents. This procedure may sound acceptable, but it has many 
problems in practical application. For example, the budget documents include 
not only the same components extracted from contractor reports but also an 
unspecified and variable mix of other items. An estimate could be developed 
to account for this problem; however, the value developed for the quality ad- 
justment in such a case becomes very judgmental. 

The preferred way in which to handle the problems associated with chang- 
ing data sources is to develop an alternative price series composed strictly of 
budget data. This series would then be used to move the primary pricing com- 
ponents, which are derived from contractor reports, in the relevant time peri- 
ods. For those time periods in which the contractor data are available, the 
budget data series remains inactive and does not influence the derivation of 
current- and constant-dollar defense purchases. This procedure holds an ad- 
vantage because it requires no arbitrary decisions about the composition of the 
budget aggregation. 

10.2.3 Quality Valuation 
Once component prices have been established for the systems and the two 

weapons systems have been spliced, the next major step in constructing a 



Table 10.3 Value of Quality Adjustments for the F456 ($thousands) 

Contract number 
Contract quantity (units) 
Delivery year 

Contractor-furnished equipment (CFE) 
Airframe 
Flight controls 
Penetration aids 
Communications equipment 
Radar equipment 
Fire control equipment 
Weapons and armament systems 

Navigation equipment (CFE) 
Navigation equipment (GFE) 

Engines (2 per aircraft) 
Other GFE 

Navigation equipment 

Government-furnished equipment (GFE) 

Total 

1 2 3 4 
10 30 40 40 

1977 1978 1979 1980 

866.2 
118.6 

6.0 
5.0 

146.7 
57.4 

190.0 
0.0 

51.2 
46.9 - 

4.4 

414.7 

5 
55 

1981 

6 7 8 9 10 
55 55 60 60 60 

1982 1983 1984 1985 1986 

11 12 
60 65 

1987 1988 

0.0 
235.0 
235.0 

710.5 
- 

530.2 
17.3 0.0 

235.1 511.3 
91.6 

127.5 
.2 

127.3 

640.1 
-300.0 319.0 736.1 - 

400.0 

-444.9 
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current- and constant-dollar series is the valuation of quality change within a 
particular system. For simplicity, we assume that the quality for each of the 
components of the F123 remains the same for the four contracts shown. We 
can then concentrate on the quality adjustments needed for the F456. 

The first quality issue listed in the addendum to table 10.2 appears in 1979 
(contract 3) when the contractor updates the fire control software. In the F456 
program, the fire control software update incorporates new processing tech- 
nology that increases the speed of calculations. The important point in this 
case is that the price of the improved software is less than the price of the 
original software-335.5 in 1978 and 298.5 in 1979. Given the performance/ 
cost-of-production method of adjusting for quality change and the rule that 
the cost of producing the physical change is the value of the quality improve- 
ment, we would not make any adjustments for the software update (see sec. 
10.1.2 above). 

The next quality issue appears in 1981 (contract 5) when the government 
purchases upgraded engines. The new engines increase the performance of 
the aircraft and, therefore, qualify as a quality adjustment. The value of the 
quality change equals the difference in prices between 1980 and 1981 less an 
adjustment for price change. In the example, quality change is 710.5 
(3,059.8 - 2,125.7 - 223.6), where 223.6 is the estimate of price change 
based on a relevant price indicator series. The engine upgrade shown in 1986 
(contract 10) is processed in the same manner. 

The 1981 contract also includes another type of quality adjustment. In the 
example, contractor-furnished equipment and government-furnished equip- 
ment both include purchases of navigation equipment. In this contract year, 
the majority of the navigation equipment formerly procured from the prime 
contractor switched from CFE to GFE. The price for this equipment in 1981 
is 235; therefore, the value of quality change for CFE navigation equipment is 
- 235, and the value of quality change for GFE navigation equipment is 235. 
As mentioned earlier, switches such as this can cause problems in later calcu- 
lations. In this case study, these two subcomponents never influence the final 
results. All processing is done at the level of total navigation equipment, 
where the quality-adjustment effect is zero. 

The next quality adjustment occurs in 1982 (contract 6 )  when the radar is 
improved to offset advances in enemy missile technology. This quality adjust- 
ment is similar to the engine upgrade mentioned before. In this case, the value 
of the quality change is 235.1 (1,048.5 - 749.3 - 64. l) ,  where 64.1 is the 
estimate of price change between 1981 and 1982. 

The contracts for 1982 and 1983 (contracts 6 and 7) show the effects of 
changes in the mix of equipment for other GFE. For simplicity in this case 
study, we assume that the other GFE component contains a consistent mix of 
equipment in most contracts. Typically, the other GFE components of an air- 
craft system can vary substantially from one contract to the next. In these two 
contracts, the number of repair kits purchased falls in 1982 and resumes in 
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1983. The value of the repair kits not purchased in 1982 is 300, so the value 
of the quality adjustment for this component is -300. In 1983, we assume 
that the price of repair kits has increased by the same amount as the remaining 
components within other GFE; therefore, the value of the repair kits pur- 
chased and, thus, the quality adjustment is 319.0. 

A model change usually requires some additional considerations when cal- 
culating the value of quality adjustment. In many instances, the price series 
will exhibit learning-curve characteristics, and additional steps must be taken 
so as not to overstate the value of the quality adjustment. 

In 1984 (contract 8), deliveries for the new B model of the F456 begin. The 
data show evidence of a learning curve for some components of the new 
model, including the airframe, radar equipment, fire control equipment, nav- 
igation equipment, and other GFE. Quality improves for flight controls, but 
no learning curve is evident. The remaining components (penetration aids, 
communications equipment, weapons, and engines) do not have significant 
quality changes. In the example, the bottom of the learning curve for the new 
model is reached in 1985 for all components except radar equipment. The 
bottom of the learning curve for the radar equipment appears in 1986. 

To calculate the correct value of the quality adjustment, we estimate the 
price of the A model in 1984 prices. Then we estimate the price of the B 
model at the bottom of the learning curve (1985 for all items except radar) in 
1984 prices. The difference between the estimated prices for the B model and 
the estimated prices for the A model equals the value of quality adjustment for 
the new model. 

For example, we estimate the price of the airframe for the A model in 1984 
dollars as 4,507.2 (4,306.9 X 1.0465), where 1.0465 is the factor used to 
adjust for price change between 1983 and 1984. As mentioned earlier, for the 
case study, the value or factor used to adjust for price change between two 
time periods comes from a DOD procurement price indicator series. The price 
of the B model in 1984 dollars, derived from prices at the bottom of the learn- 
ing curve, is 5,037.4 (5,204.6/1.0332), where 1.0332 is the factor used to 
adjust for price change between 1984 and 1985. The value of the quality ad- 
justment for the new model airframe equals the difference between 5,037.4 
and 4,507.2, or 530.2. The same procedure is used for all components; how- 
ever, for radar equipment, the factor accounts for price change between 1984 
and 1986. Also, because flight controls do not have a learning curve, no ad- 
justment was necessary. The calculation of the quality adjustment for this 
component is identical to that for the engine upgrades explained earlier. 

The next quality issue appears in 1985 (contract 9). A minor problem was 
discovered in the flight controls for the new B model. An engineering change 
order was instituted to correct the production deficiency responsible for the 
flaw in the flight controls, and the cost of the correction is $7,000 per aircraft. 
Although such a case, by its very nature, indicates a quality improvement, 
BEA would not make any adjustment in the constant-dollar purchases series. 
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In other words, the cost of the correction of a deficiency on a production 
aircraft will appear as a price change. As mentioned earlier, it is assumed that, 
when a system starts into production, it fits together and works. 

The last quality-adjustment issue mentioned in the notes to table 10.2 con- 
cerns a GFE-CFE switch in 1987 (contract 11). Some fire control equipment 
previously included in the other GFE component is now being purchased as 
CFE. This case shows the opposite of the situation explained earlier for navi- 
gation equipment, but, in this situation, the two pricing series remain sepa- 
rate. On the basis of contractor cost information, the price of the fire control 
equipment is 400.0. Thus, the value of quality improvement for CFE radar 
equipment is 400. 

Previously, we alluded to calculation problems when making quality adjust- 
ments for switches between pricing series. Assuming no other quality adjust- 
ments, the net effect on the total quality for the aircraft after a price series 
switch should be zero. In order to achieve this result, the quality adjustment 
for one series must equal a value that will offset the constant-dollar implica- 
tions of the quality adjustment in the other series. The technique by which this 
is done involves some concepts not yet discussed in this case study; therefore, 
at this time, we will say only that the value of the quality adjustment for other 
GFE is - 444.9. Appendix B discusses the problems of switches and quality 
valuation in detail. 

10.2.4 Quality Factors 
To account for quality adjustment in constant-dollar defense purchases, 

BEA adjusts the base price of a series to reflect the change in quality. Each 
current price reflects a certain level of quality in the product series, so we 
derive a quality-adjusted base price for every current price. The technique by 
which this is done involves the derivation of quality factors and cumulative 
quality factors. Quality factors are a way of expressing the value of quality 
change as a percentage change. Cumulative quality factors allow us to com- 
pare levels of quality over a sequence of contracts. Each current or contract 
price in a price series has a quality factor and a cumulative quality factor. 

For example, a product originally costs $500 and a quality improvement 
occurs that is valued at $50. Quality improves by 10 percent; therefore, the 
quality factor is I.  100. Subsequently, the price of the product rises to $700, 
and another quality adjustment occurs that is valued at $35. This new quality 
adjustment is a 5 percent improvement over the already improved product, 
and the quality factor is 1.050. The two values of quality improvement are not 
comparable, given the price changes, and cannot be added; however, using 
quality factors, the difference in the levels of quality between the first and the 
latest observations can be expressed as another percentage change. This cu- 
mulative quality factor for the newest version of the product equals the prod- 
uct of the quality factors, or 1.155 (1.100 X 1.050). 

In general, the quality factor equals a quality-adjusted price divided by a 
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non-quality-adjusted price. In practice, we use two variations of this equation 
to derive quality factors. The method used depends on the situation and the 
assumptions made about the price and quality values available for use in the 
equation. The two methods are shown below (U.S. Department of Commerce 
1975, 65). Equation (5) shows method 1, the adjusted current price link 
method, and equation (6) shows method 2, the back link method: 

where F = quality factor, V = value of quality change, P = price, and 
s = contract sequence. 

Although the above equations can be expressed in notations indicating 
time, quality factors really represent changes in quality over a sequence of 
contracts or purchases. Often, this loosely corresponds to time; however, that 
is not always the case. Because contracts may overlap in a real time series, 
the boundaries of time with regard to quality are not clear. Also, a quality 
factor may represent the change in quality between two different systems in 
the same time period. In that case, s represents the new system and s - 1 
represents the previous or older system. For example, to splice the F456 to 
the F123, we develop a quality adjustment in 1977 based on prices for each 
system in 1977. 

The adjusted current price link method, which is the most commonly used 
technique, uses the current product price as the quality-adjusted price in the 
numerator. The denominator is an estimate of the non-quality-adjusted price, 
which is derived by subtracting the value of quality change from the current 
price. This equation generates a legitimate quality factor only when the price 
and quality values are expressed in terms of the same level of production effi- 
ciency. 

The back link method uses product prices from the previous contract in the 
equation. The quality-adjusted price in the numerator is the price of the pre- 
vious contract plus the value of the quality adjustment between the two con- 
tracts in question. The denominator is the price of the previous contract. The 
implications of this technique require that the price and quality values used in 
the equation are expressed in terms of the same price level as well as the same 
level of production efficiency. 

For example, if P,-  I and Q, are expressed in dollars of different time pe- 
riods, then a quality adjustment based on the sum of these two values ( P s - l  
and V,) ignores any price change evident between the two time periods repre- 
sented by the contracts s - 1 and s. If P s - l  is $100, P, is $200, and V, is 
$90, then, using the back link method, the resulting quality factor is 1.9, or 
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(100 + 90)/100. Prices between contract s - 1 and contract s increase 10 
percent, so s - 1 and s dollars are not equivalent. But, by using the back link 
method to calculate the quality factor, an assumption of equivalence is made. 
As a result, the quality factor in this example would be overstated. 

We generally use the back link method when the value of the quality change 
and the two prices are all expressed in comparable dollars but the levels of 
production efficiency differ. This is the case when splicing two price series or 
when changing models. The value of quality change incorporated in the new 
product is based on an estimate of an efficiently produced item in that time 
period. In other words, the price is adjusted for the learning curve before the 
quality calculation is done. During the procedure, a price for the older product 
is also generated for that time period if a price does not already exist. The 
back link method allows us to estimate a meaningful value in the numerator, 
namely, the price of the previous product if a quality adjustment had occurred. 
For example, the 1977 F123 airframe price of 1,652.8 plus the value of qual- 
ity change of 866.2 for the 1977 F456 airframe is a realistic estimate of a 
quality-improved airframe in 1977 dollars. 

On the other hand, in a case where the learning curve is a factor, the ad- 
justed current price link method generates a meaningless denominator because 
the price and quality values represent different levels of production efficiency. 
For example, in 1977, the price of the F456 airframe is 8,321.5, and the value 
of the quality change is again 866.2. Using the adjusted current price link 
method, the quality factor is 1.1 16, or 8,321.5/(8,321.5 - 866.2). The qual- 
ity factor is meaningless because the denominator has no economic meaning. 
The price of 8,321.5 is abnormally high because of the learning-curve consid- 
erations, but the quality change value of 866.2 already includes adjustments 
to remove the learning-curve effect. Therefore, using this method to calculate 
the quality factor understates the value of quality change. It should be noted 
that, if a price that had been adjusted for the learning curve were used in place 
of 8,321.5, then this equation would generate a legitimate quality factor equal 
to that generated by the back link method. 

Given comparable prices and quality values, either the back link or the ad- 
justed current price link technique can be used to obtain the correct quality 
factor. In practice, we find it easier to calculate quality factors by making a 
distinction between these two methods. In the case study, the back link 
method was used to calculate component quality factors in those time periods 
when prices are at the top of the learning curve-1977 and 1984. The adjusted 
current price link method was used in all other time periods. 

For example, for the 1977 (contract 1) F456 airframe, the price is 8,321.5, 
and the value of quality change is 866.2. The price for the previous observa- 
tion is 1,652.8, or the price of the F123 in 1977. Using the back link method, 
the quality factor is 1.5241, or (1,652.8 + 866.2)/1,652.8. In 1986, the 
quality factor for the engines using the adjusted current price link method is 
1.1593, or4,658.9/(4,658.9 - 640.1). 
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Once the quality factors have been calculated, cumulative quality factors 
for the product series must be derived. The cumulative quality factor is 1.000 
for the first observation of a pricing component, and subsequent cumulative 
quality factors accumulate multiplicatively from this point. The choice of the 
base year has no relevance in the equation. As in equations ( 5 )  and (6), the 
cumulative quality factor is derived for each product series by contract se- 
quence: 

(7) 
where M = cumulative quality factor, F = component quality factor, and 
s = contract sequence. 

In the case example, as mentioned earlier, we are assuming that quality is 
unchanged for the F123. As a result of this assumption, the quality factors for 
each of the F123 components for contracts 8-1 1 must equal 1.000. The cu- 
mulative quality factors for these contracts also equal 1 .000. 

Cumulative quality factors change when the new system is introduced. For 
the 1977 F456 airframe, the quality factor is 1.5241. When multiplied by the 
cumulative quality factor for the previous contract (1 .OOO), the cumulative 
quality factor for the airframe in 1977 is also 1.5241. The next available air- 
frame quality adjustment occurs in 1984 when the B model is introduced. The 
quality factor for the 1984 airframe is 1.1176, and, when multiplied by the 
cumulative quality factor for 1983, the cumulative quality factor for 1984 is 
1.7034, or (1.5241 X 1.1176). In other words, the quality of the B model of 
the F456 is 70.3 percent greater than that of the F123. 

Tables 10.4 and 10.5 show the component quality factors and cumulative 
quality factors for each contract. 

10.2.5 Base Price Derivation 
Cumulative quality factors allow us to calculate base prices for any base 

year with little difficulty. We do this by calculating what we call a non-quality- 
adjusted base price for each component series for the base year in question. 
The non-quality-adjusted base price equals the base period current dollars di- 
vided by the product of the base period quantity and base period cumulative 
quality factor. In other words, for a given base year, the non-quality-adjusted 
base price is the base price for the first observation of a component series. 

where N = non-quality-adjusted base price, M = cumulative quality factor, 
P = price, and b = base period. 

This simple equation illustrates the procedure when only one contract is 
delivered in the base year. If different contract values exist in the base period, 
then each of the contract quantities must be multiplied by its respective price 
in the numerator and its cumulative quality factor in the denominator. 



Table 10.4 F456 Quality Factors by Contract 

Contract number 
Contract quantity (units) 
Delivery year 

Contractor-furnished equipment (CFE) 
Airframe 
Flight controls 
Penetration aids 
Communications equipment 
Radar equipment 
Fire control equipment 
Weapons and armament systems 

Navigation equipment (CFE) 
Navigation equipment (GFE) 

Engines (2 per aircraft) 
Other GFE 

Navigation equipment 

Government-furnished equipment (GFE) 

1 
10 

1977 

2 
30 

1978 

1.5241 
1.4808 
1.4681 
1.4186 
1.4148 
1.4073 
1.5899 

1.3838 
1.3795 
1.4368 

1 .m 
1.4885 

1 .OoOo 
1 .OoOo 
1 .m 
1 .woo 
1 .OoOo 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 

1 .m 
1 .m 

3 
40 

1979 

4 
40 

1980 

5 
55 

1981 

6 
55 

1982 

7 
55 

1983 

8 
60 

1984 

9 
60 

1985 

10 
60 

1986 

11 
60 

1987 

12 
65 

1988 

1 .OoOo 
1 .m 
1 .m 
1 .oooo 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 

1 .m 
1 .m 

1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .oooo 

1 .oooo 
I .oooo 

1 .oooo 
I .m 
1 .m 
1 .m 
1 .m 
I .m 
1 .m 
1 .m 
0.0089 

12.7500 

1.3025 
1 .m 

1 .0000 
1 .woo 
1 .m 
1 .OoOo 
1.2891 
1 .oooo 
1 .m 
1 .m 
1 .m 
1 .m 

1 .m 
0.8537 

1 .oooo 
1 .OoOo 
1 .OoOo 
1 .OoOo 
1 .OoOo 
1 .OoOo 
1 .OoOo 
1 .OoOo 
1 .m 
1 .OoOo 

1 .m 
1.1735 

1.1176 
1.0232 
1 .OoOo 
1 .m 
1.4432 
1.2830 
1 .m 
1.4030 
1.0636 
1.4062 

1 .m 
1.3260 

1 .OoOo 
1 .OoOo 
1 .OoOo 
1 .oOoO 
1 .m 
1 .m 
1 .OoOo 
1 .m 
1 .m 
1 .m 

1 .m 
1 .oOOo 

1 .woo 
1 .OoOo 
1 .m 
1 .m 
1 .oooo 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 

1.1593 
1 .m 

1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1.8085 
1 .m 
1 .m 
1 .m 
1 .m 

1 .m 
0.8706 

I .oooo 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .oooo 
1 .oooo 

1 .m 
1 .m 



Table 10.5 F456 Cumulative Quality Factors by Contract 

Contract number 1 2 3 4 5 
Contract quantity (units) 10 30 40 40 55 
Delivery year 1977 1978 1979 1980 1981 

Contractor-furnished equipment (CFE) 
Airframe 1.5241 1.5241 1.5241 1.5241 1.5241 
Flight controls 1.4808 1.4808 1.4808 1.4808 1.4808 
Penetration aids 1.4681 1.4681 1.4681 1.4681 1.4681 
Communications equipment 1.4186 1.4186 1.4186 1.4186 1.4186 
Radar equipment 1.4148 1.4148 1.4148 1.4148 1.4148 
Fire control equipment 1.4073 1.4073 1.4073 1.4073 1.4073 
Weapons and armament systems 1.5899 1.5899 1.5899 1.5899 1.5899 

Navigation equipment 1.3838 1.3838 1.3838 1.3838 1.3838 

Navigation equipment (GFE) 1.4368 1.4368 1.4368 1.4368 18.3197 
Navigation equipment (CFE) 1.3795 1.3795 1.3795 1.3795 0.0122 

Government-furnished equipment (GFE) 
Engines (2 per aircraft) 1.oooO 1.M)o 1.M)o 1.oooO 1.3025 
Other GFE 1.4885 1.4885 1.4885 1.4885 1.4885 

6 7 8 
55 55 60 

1982 1983 1984 

1.5241 1.5241 1.7034 
1.4808 1.4808 1.5151 
1.4681 1.4681 1.4681 
1.4186 1.4186 1.4186 
1.8238 1.8238 2.6321 
1.4073 1.4073 1.8056 
1.5899 1.5899 1.5899 

1.3838 1.3838 1.9415 
0.0122 0.0122 0.0130 

18.3197 18.3197 25.7612 

1.3025 1.3025 1.3025 
1.2708 1.4912 1.9773 

9 10 11 
60 60 60 

1985 1986 1987 

1.7034 1.7034 1.7034 
1.5151 1.5151 1.5151 
1.4681 1.4681 1.4681 
1.4186 1.4186 1.4186 
2.6321 2.6321 2.6321 
1.8056 1.8056 3.2655 
1.5899 1.5899 1.5899 

1.9415 1.9415 1.9415 
0.0130 0.0130 0.0130 

25.7612 25.7612 25.7612 

1.3025 1.5099 1.5099 
1.9773 1.9773 1.7214 

12 
65 

1988 

1.7034 
1.5151 
1.468 I 
1.4186 
2.6321 
3.2655 
1.5899 

1.9415 
0.0130 

25.7612 

1.5099 
1.7214 
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Once the non-quality-adjusted base price has been derived, the base price 
for any individual contract within the component series can be calculated. The 
base price equals the non-quality-adjusted base price multiplied by the cumu- 
lative quality factor: 

(9) Bs = N X Ms, 

where N = non-quality-adjusted base price, M = cumulative quality factor, 
B = base price, and s = contract sequence. 

For example, the base year for consideration is 1975 = 100. The F123 
engines have a price of 1,459.7, a quantity of 70, and a cumulative quality 
factor of 1 .OOO in the base year. Using equation 8, the non-quality-adjusted 
base price for engines is 1,459.7, or (1,459.7 X 70)/(70 X 1 .OW). 

The cumulative quality factor for engines changes for the 1981 contract of 
the F456. Using equation (9), the base price for the 1981 engines is 1,901.2, 
or (1,459.7 X 1.3025). 

Table 10.6 displays the 1975 = 100 base prices for each of the component 
contract values. Table 10.7 displays the resulting price indexes using the 
price, quantity, and base price information. Table 10.8 shows purchases in 
constant 1975 prices. 

10.3 Conclusions 

This case study has examined many issues and procedures common to the 
work done at the Bureau of Economic Analysis for the derivation of the 
constant-dollar defense purchases series for military equipment. Aircraft, 
which is the largest of the durable goods aggregations, accounted for 8.7 per- 
cent of defense purchases in 1982. Since 1982, the portion of defense pur- 
chases attributable to aircraft has fluctuated between 8.3 and 11.9 percent. 
Since the 1987 high of 11.9 percent of defense purchases, aircraft’s share of 
the total has gradually declined to 10.5 percent in 1989. The aircraft series 
detailed in this case study is typical of most of the major equipment purchases 
included in defense current and constant dollars. Some additional observa- 
tions might prove useful. 

10.3.1 Highlights 
The base year presented in the case study is 1975. During that time, the 

F123 is a mature program with efficient production quantities, and the F456 
has not yet appeared. Base prices represent prices at efficient production lev- 
els. Consider another base year. In 1984, the deliveries of a new model F456 
begin, and, as explained earlier, many of the components such as the airframe 
and radar equipment have learning curves. As a result, a time series using 
1984 base prices would reflect inefficient production levels for many of the 
components. Given multiple aircraft series in a 1984 = 100 base, the case 
study aircraft will have a relatively higher importance solely because of the 
location of the base period in relation to this aircraft’s learning curve. 



Table 10.6 Base Prices, CY 1975 = 100 ($thousands) 

Non-Quality- 
Adjusted 

Base Price 

Contract number 
Contract quantity (units) 
Delivery year 

Contractor-furnished equipment (CFE) 
Airframe 
Flight controls 
Penetration aids 
Communications equipment 
Radar equipment 
Fire control equipment 
Weapons and armament systems 

Navigation equipment (CFE) 
Navigation equipment (GFE) 

Engines (2 per aircraft) 
Other GFE 

Navigation equipment 

Government-furnished equipment (GFE) 

Total 

12 
10 30 40 40 55 55 55 60 60 60 60 65 

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 

3,325.3 3,325.3 3,325.3 3,325.3 3,325.3 3,437.0 3,437.0 3,952.9 3,952.9 3,952.9 4,116.1 4,116.1 
2,071.9 2,071.9 2,071.9 2,071.9 2,071.9 2,071.9 2,071.9 2,315.6 2,315.6 2,315.6 2,315.6 2,315.6 

288.3 288.3 288.3 288.3 288.3 288.3 288.3 295.0 295.0 295.0 295.0 295.0 
14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 
12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 

386.6 386.6 386.6 386.6 386.6 498.4 498.4 719.3 719.3 719.3 719.3 719.3 
157.3 157.3 157.3 157.3 157.3 157.3 157.3 201.8 201.8 201.8 365.0 365.0 
393.6 393.6 393.6 393.6 393.6 393.6 393.6 393.6 393.6 393.6 393.6 393.6 

9 10 11  1 2 3 4 5 6 7 8 

2,205.8 
1,359.4 

194.7 
10.1 
8.9 

273.3 
111.8 
247.6 

135.4 135.4 135.4 135.4 135.4 135.4 135.4 190.0 190.0 190.0 190.0 190.0 97.9 

2,408.8 2,408.8 2,408.8 2,408.8 2,850.3 2,711.5 2,852.0 3,162.0 3,162.0 3,464.8 3,301.6 3,301.6 2,097.3 
1,459.7 1,459.7 1,459.7 1,459.7 1,901.2 1,901.2 1,901.2 1,901.2 1,901.2 2,204.0 2,204.0 2,204.0 1,459.7 

949.1 949.1 949.1 949.1 949.1 810.2 950.8 1,260.7 1,260.7 1,260.7 1,097.5 1,097.5 637.6 

5,869.5 5,869.5 5,869.5 5,869.5 6,311.0 6,283.9 6,424.5 7,304.8 7,304.8 7,607.6 7.607.6 7.607.6 4.400.9 



Table 10.7 Implicit Price Deflators (CY 1975 = 100) 

Delivery Year 

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 

Contractor-furnished 
equipment (CFE) 
Airframe 
Flight controls 
Penetration aids 
Communications 

equipment 
Radar equipment 
Fire control equipment 
Weapons and armament 

systems 

Navigation equipment 
Navigation equipment 

Navigation equipment 
( C E )  

(GFE) 

Government-furnished 
equipment (GFE) 
Engines (2 per aircraft) 
Other GFE 

Total 

100.000 1 1  1.688 168.561 169.782 192. I90 166.264 183.889 198.546 209.797 278.167 236.952 238.266 247.428 252.733 
100.000 110.797 168.882 168.908 191.387 164.476 178.405 195.837 207.872 247.592 224.763 237.843 249.402 254.318 
100.000 111.939 143.126 156.078 180.753 171.419 238.258 236.619 251.514 259.050 276.268 284.835 295.960 304.281 
1OO.OOO 116.754 153.853 170.513 214.798 171.568 177.647 181.700 183.726 183.051 184.402 189.130 189.806 195.209 

100.000 114.296 222.983 216.984 282.126 182.721 187.176 198.823 221.897 234.577 238.539 248.842 267.069 301.146 
100.000 111.939 227.142 215.235 241.072 175.105 193.794 210.362 221.156 432.766 291.457 246.291 250.551 256.362 
100.000 113.698 149.933 161.252 189.743 170.522 178.301 191.523 209.385 289.936 226.398 240.540 245.120 247.409 

100.000 114.901 130.067 138.998 154.026 160.784 165.560 173.385 175.747 188.780 186.925 191.523 197.417 203.692 

100.000 115.936 180.560 191.371 230.601 184.435 189.851 206.023 223.190 281.346 241.325 247.326 249.769 263.270 

100.000 1 11.340 123.199 131.216 154.571 159.215 173.629 188.235 199.533 214.854 218.227 231.014 233.064 247.520 
100.000 109.678 112.393 116.833 131.888 145.623 160.935 176.369 185.816 194.210 200.206 211.381 213.372 222.846 
100.000 115.144 146.593 160.1 I 1  189.458 180.119 199.058 216.077 226.962 245.986 245.404 265.339 272.607 297.069 

100.000 I 1  1.617 147.665 152.777 177.637 163.790 179.383 194.258 205.523 250.844 228.961 235.189 241.253 250.734 



Table 10.8 Constant Dollars (CY 1975 = 100) 

Delivery Year 

1975 1976 1977 1978 1979 I980 1981 1982 1983 1984 1985 1986 1987 1988 

Contractor-furnished 
equipment (CFE) 
Airframe 
Flight controls 
Penetration aids 
Communications 

equipment 
Radar equipment 
Fire control equipment 
Weapons and armament 

systems 

Navigation equipment 
Navigation equipment 

Navigation equipment 
( C W  

(GFE) 
Government-furnished 

equipment (GFE) 
Engines (2 per aircraft) 
Other GFE 

Total 

154,404 165,432 198,685 265,190 133,010 133,010 182,889 189,037 189,037 237,172 237,172 237,172 246,963 267,544 
95,158 101,955 122,674 164,111 82,875 82,875 113,953 113,953 113,953 138,936 138,936 138,936 138,936 150,514 
13,631 14,605 17,488 23,255 11,534 11,534 15,859 15,859 15,859 17,702 17,702 17,702 17,702 19,178 

706 756 904 1,200 592 592 814 814 814 888 888 888 888 962 

623 667 793 1,046 505 505 694 694 694 757 757 757 757 820 
19,131 20,497 24,364 32,097 15,466 15,466 21,266 27,413 27,413 43,160 43,160 43,160 43,160 46,757 
7,825 8,384 9,957 13,103 6,293 6,293 8,652 8,652 8,652 12,110 12,110 12,110 21,901 23,727 

17,331 18,568 22,505 30,378 15,745 15,745 21,650 21,650 21,650 23,618 23,618 23,618 23,618 25,586 

6,850 7,340 8,694 11,402 5,417 5,417 7,448 7,448 7,448 11,400 11,400 11,400 11,400 12,350 

146,812 157,299 181,387 229,563 96,352 96,352 156,767 149,131 156,861 189,717 189,717 207,885 198,094 214,602 
102,181 109,480 124,077 153,271 58,389 58,389 104,568 104,568 104,568 114,074 114,074 132,242 132,242 143,262 
44,631 47,819 57,310 76,291 37,963 37,963 52,199 44,563 52,293 75,643 75,643 75,643 65,852 71,340 

308,066 330,071 388,765 506,155 234,779 234,779 347,104 345,616 353,346 438,290 438,290 456,458 456,458 494,496 
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In both 1985 and 1986, the actual number of F456 aircraft remains the 
same; however, purchases measured in constant dollars change because the 
engine was upgraded in 1986. 

In the notes to table 10.2, the second item indicates that the buy size, or the 
contracted quantity, for the engines falls because of the discontinued produc- 
tion of the F123. This issue raises an important point that has not yet been 
addressed in the case study. Buy size does not affect the definition of a speci- 
fication. When the engine quantities fall from 210 (105 aircraft X 2 engines 
each) in 1978 to 80 in 1979, the price for a set of engines increases from 
1,705.4 to 1,925.2. This translates to a substantial increase in the implicit 
price deflator for engines. 

The base price derivation and quality-adjustment methods described in the 
case study offer us considerable flexibility. BEA can easily calculate defense 
purchases on any base because much of the preliminary work done for the 
published series need not be repeated for another base. Given prices, quanti- 
ties, and quality factors, the derivation of base prices for any year can be 
completely automated. 

10.3.2 Actual Data 
Table 10.9 displays the implicit price deflators (IPD) and fixed-weighted 

price indexes for new aircraft implicit in the published defense purchases se- 
ries. Table 10.10 shows the price indexes for various aircraft from which the 
published fixed-weighted index was calculated. 

The differences between the two published series in table 10.9 indicate the 
effects of quantity shifts. For example, in 1986, the fixed index declines 7.4 
percent, while the IPD increases 4.5 percent. Much of the difference can be 
attributed to the B-1. The B-1 price declines because of the learning curve, so 
the fixed-weighted index falls. The B-1 quantities increase 800 percent be- 
tween 1985 and 1986. The large shift in the relative importance of the B-1 
causes the IPD to increase. In addition, higher deliveries of C-5 aircraft in 
1986 also help increase the IPD; the C-5 has no effect on the fixed-weighted 
index because it was not delivered in the base year. 

The price indexes shown in table 10.10 exhibit many of the qualities high- 
lighted earlier in this paper. For example, learning curves can be seen for 
many of these systems. The B-1 has a short life in which the prices drop 
dramatically as the buy sizes increase. The TR- 1 prices drop steadily for many 
years because of the relatively small quantities purchased in each contract. In 
1988, the F-14 index rises dramatically owing to deliveries of a new model 
that is moving down a learning curve. 

Generally, when a learning curve is evident, indexes start very high and 
drop to a level similar to the other systems in that time period. The B-1 starts 
above 300 and drops to almost 130 at the bottom of its learning curve. The 
exception to this is when a system is high on its learning curve in the base 
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Table 10.9 Implicit Price Deflator and Fixed- Weighted Price Indexes for Defense 
Purchases (CY 1982 = 100) 

% Change Difference 
in Change, 

Fixed IPD Fixed IPD Fixed - IPD 

1972 
I973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
I989 

39.1 
43.2 
46.4 
52.5 
53.5 
57.1 
64.4 
75.1 
79.8 
89.3 

100.0 
110.8 
129.8 
131.3 
121.6 
113.4 
110.5 
112.7 

46.7 
48.7 
54. I 
55.7 
58.4 
62.5 
67.9 
73.2 
78.8 
87.2 

100.0 
108.6 
125.6 
117.8 
123.1 
108.5 
99.9 
99.5 

10.3 
7.5 

13.1 
2.0 
6.8 

12.7 
16.6 
6.3 

11.8 
12.0 
10.8 
17.2 

1 . 1  
-7.4 
-6.7 
- 2.5 

2.0 

4.2 
11.2 
2.9 
4.8 
7.1 
8.6 
7.9 
7.6 

10.7 
14.6 
8.6 

15.6 
- 6.2 

4.5 
-11.9 

-7.9 
-0.4 

6.0 
-3.7 
10.1 
- 2.7 
-0.4 

4.1 
8.8 

- 1.3 
1.1 

-2.6 
2.2 
I .6 
7.3 

-11.9 
5.2 
5.4 
2.4 

year. By rule, the index in the base year must be 100; therefore, these systems 
usually have very low indexes; the TR- 1 is an example. 

Changes in buy size produce interesting results in the price indexes for in- 
dividual systems. The stretch-out in the A-10 program best illustrates the ef- 
fect of buy size on prices. The price index increases 34.8 percent in 1982, 
48.2 percent in 1983, and 8.5 percent in 1984. Four contracts were delivered 
during that time period, during which quantities fell from 142 to 60 to 20 in 
each of the last two buys. 



Table 10.10 System-Level Price Indexes for Military Aircraft (CY 1982 = 100) 

A-7 A-I0 C-130 KC-10 E-3 TR-1 F-15 F-16 B-I F-14 F-18 A-6 E-2 EA-6 P-3 CH-53 AH-I C-12 UH-60 

1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 

19.5 31.2 26.5 16.4 40.1 16.9 45.6 
20.4 32.6 28.6 17.9 46.1 18.2 54.4 
23.8 38.6 32.3 20.7 47.0 19.8 64.0 
24.8 49.6 37.5 23.7 62.4 23.5 76.0 
27.8 80.3 38.5 24.8 62.4 23.5 61.2 
31.3 74.4 46.8 29.8 64.9 28.7 62.9 
43.7 69.6 49.8 31.8 64.3 28.7 64.4 
54.0 66.6 62.2 39.4 78.2 30.5 70.5 
55.9 67.0 80.7 51.0 95.6 37.6 77.7 
65.4 74.2 91.0 103.5 98.3 63.6 85.0 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 
126.7 148.2 106.5 110.4 102.4 100.2 116.4 
118.5 160.8 118.2 114.1 102.3 87.1 121.5 

0.0 0.0 125.9 119.2 104.7 59.2 136.5 
0.0 0.0 122.6 116.5 98.8 54.0 146.6 
0.0 0.0 113.1 106.3 104.2 50.7 140.6 
0.0 0.0 120.0 114.4 123.5 51.7 144.1 
0.0 0.0 120.0 114.4 128.7 54.9 140.7 

34.8 0.0 
44.3 0.0 
56.8 0.0 
64.9 0.0 
50.4 0.0 
54.2 0.0 
77.8 0.0 

102.2 0.0 
87.7 0.0 
90.9 0.0 

100.0 0.0 
108.2 360.5 
126.0 331.7 
117.0 349.7 
116.4 190.8 
105.4 133.6 
100.8 131.9 
103.9 135.8 

57.3 0.0 
57.6 0.0 
51.4 0.0 
55.6 0.0 
58.4 0.0 
58.9 0.0 
64.1 0.0 
68.3 0.0 
74.2 75.1 
87.6 101.3 

100.0 100.0 
96.6 103.1 
99.3 111.0 

104.3 107.5 
106.1 118.2 
103.6 117.3 
161.7 114.8 
159.3 116.0 

36.2 59.5 49.1 43.5 30.2 29.3 
37.5 59.4 41.8 42.5 37.3 35.1 
41.3 56.2 41.4 41.5 37.1 36.9 
49.9 51.8 42.1 47.3 35.2 37.1 
55.9 59.9 52.5 57.2 47.6 47.2 
50.9 73.5 61.4 72.9 49.7 52.9 
57.1 70.0 60.7 70.4 57.2 49.3 
69.8 87.5 65.4 70.9 65.2 51.3 
78.6 92.4 75.4 87.2 79.1 59.0 
82.0 98.9 85.0 90.6 94.3 71.0 

100.0 100.0 100.0 100.0 100.0 100.0 
81.3 103.6 100.2 108.4 125.0 126.9 
98.1 104.3 97.3 117.7 120.6 168.4 

116.9 106.3 92.7 118.3 108.7 109.2 
147.1 115.7 86.0 120.4 116.5 103.0 
136.7 118.4 91.9 121.5 114.6 95.9 
151.9 115.7 101.6 121.3 111.2 93.5 
148.6 118.4 117.7 121.5 117.9 96.2 

23.5 
28.9 
30.7 
33.0 
39.8 
44.3 
53.4 
58.3 
77.4 
86.7 

100.0 
104.4 
104.4 
104.4 
104.4 
104.4 
105.4 
106.4 

19.6 
23.3 
25.1 
26.9 
35.2 
53.5 
67.1 
90.7 
77.7 
83.8 

100.0 
101.1 
98.7 
98.3 

100.8 
105.1 
110.2 
114.1 
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Appendix A 
Learning Curves 

Cost analysts have observed that, as more units of a complex item are pro- 
duced, the labor hours required for producing successive units falls. This re- 
lation is called the organizational learning (or progress) curve. The earliest 
publication on a learning curve for aircraft was Wright (1936). Since that 
time, a considerable amount of research on this phenomenon has been under- 
taken by cost analysts and economists. A recent nonmathematical review of 
learning-curve research is contained in Argote and Epple (1990). 

Most common forms of the learning curve are represented by a smoothly 
decreasing function for labor hours per unit of output as the number of units 
produced increases. The simple form of the curve is the “unit” or “Boeing” 
curve, in which the learning rate is defined as the percentage that labor hours 
decline as the quantities produced double. The following example depicts a 
learning rate of 10 percent: 

Unit No. Labor Hours 

4 100 
8 90 

16 81 
32 73 

The labor hours saved per unit decrease by 10 percent as the number of units 
produced doubles. Learning curves are usually expressed in terms of the 
slope, which is 100 minus the learning rate. The example above represents a 
90 percent learning curve. 

The learning curve is important in deriving the appropriate price for splic- 
ing in a new weapons system. The splice price should represent the quality 
difference between the two systems at a comparable phase in the production 
cycle. Because of learning, prices of initial units of the new system will be 
overstated relative to the old weapons system where significant learning has 
already taken place. Splicing with the price for the first unit would result in 
the value of the resources saved in learning being treated as additional quality 
in the new system. The initial splice price would be very high, prices would 
drop after the splice period, and overall price change for the new system 
would be understated. 

It is assumed that, by the hundredth unit of production of a new fighter 
aircraft, additional learning is relatively minor. Therefore, the price of the 
hundredth unit, expressed in dollars of the time period when the first produc- 
tion contract is signed, represents the best estimate of the actual resource cost 
difference between the two systems. Note that this estimate does not account 
for changed technologies between the two aircraft. 
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Table 10A.1 Alternative Splicing for Price Indexes 

Price Per Unit Price Indexes 

F-I1 Combined 
Time 
Period F- I $of T Actual F-l F-I1 P1 P2 P3 

Base = - I  2,000 3,200 3,200 

- I  
0 
I 
2 
3 
4 
5 
6 

2,000 
2,500 
3,000 
3,000 8,500 

6,500 
5 ,000 
4,000 
3,500 

100.0 
125.0 
150.0 

9,000 150.0 281.3 
8,OOO 250.0 
7,000 218.8 
7,500 234.4 
8,000 250.0 

100.0 
125.0 
150.0 
230.8 
250.0 
218.8 
234.4 
250.0 

100.0 
125.0 
150.0 
150.0 
133.3 
116.7 
125.0 
133.3 

100.0 
125.0 
150.0 
450.0 
400.0 
350.0 
375.0 
400.0 
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Figure 10A. 1 illustrates the procedure. Point A represents the price of the 
old system at time period 2, when the decision is made to purchase a new 
system. The curve BC represents the estimated resources needed to produce 
the new system in factor prices of time period 2. Point C is the hundredth unit 
of the new system. The difference in price of this unit, when compared to the 
old system, represents the difference in quality between the two systems 
( D  - A ) .  The remaining difference in the expected price of the new system 
( E  - D )  is recorded as a change in price. 

A numerical example of how the learning curve is used to create an adjusted 
price and splice two series together may help clarify the procedure. Figure 
10A.2 and table 10A. 1 present data to splice the aircraft F-I1 to the aircraft 
F-I. In order to simplify the illustration, we have assumed that there are no 
quality changes to the aircraft during this period. 

The initial production contract for the F-I1 was signed in time period 0, 
when the F-I was being delivered at a price of $2,500 (A on fig. 10A.2). In 
dollars of time period 0, the F-I1 is expected to have a price of $8,500 ( B )  for 
the first lot purchased and drop to $3,500 (C) for the fifth lot. These prices are 
derived by estimating the unit resource requirements (labor, materials, etc.) 
and expressing them in terms of time period 0 dollars. These estimates repre- 
sent the expected savings in resources due to learning. Adjusting these prices 
for expected price change yields the price to be paid. 

The hundredth F-I1 will be delivered from the fourth lot at a price of $4,000 
( D )  in time period 0 dollars. When compared to the F-I price of $2,500 (A) in 
time period 0, this price yields a quality difference (or, more specifically, a 
resource cost difference) of $1,500 (D’ - A).  In short, one F-I1 is the equiv- 
alent of 1.6 F-Is in period 0 dollars. The F-I, however, has increased in price 
by 25 percent from the base period price of $2,000 ( E ) .  Therefore, the base 
price for the F-I1 must be adjusted to maintain the ratio of 1: 1.6. This yields a 
F-I1 base price of $3,200 ( F ) .  

Using the derived base price for the F-11, a price index can be constructed 
for the spliced series (table IOA. 1). The actual prices paid for the F-I1 are used 
to calculate the index; the quality link is carried in the new base price. The 
constant period 0 estimates are used only to estimate the resource-cost differ- 
ence between the two systems. This procedure yields a high splice price for 
the F-11, thereby causing the price index to jump dramatically and then decline 
(index Pl) .  

P2 shows the price index that would result if the same price data were used 
for the two aircraft, but the direct link procedure was used to splice the price 
series. This assumes that the entire difference in price between the two aircraft 
is due to a difference in quality. P3 shows the price index that would result if 
the direct comparison method were used to splice the two series. This method 
assumes that there is no difference in quality between the two aircraft. 
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Appendix B 
Analysis of Price Series Switches 

Quality factors and the level of detail at which BEA derives prices lead to 
some problems for a few situations. Although the pricing series appear fairly 
detailed, they generally refer to a group of items. At times, BEA has sufficient 
information to subdivide these groups; however, details for many groups re- 
main vague. A problem arises when an element of one pricing group shifts to 
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another pricing group. In the case study, this situation can be observed in 1981 
when some contractor-furnished (CFE) navigation equipment shifts to 
government-furnished (GFE) navigation equipment. Also, in 1987, some fire 
control equipment embedded in the other GFE series shifts to the CFE fire 
control series. Because the quality implied by the sum of these components 
remains the same, the sum of the base prices should also remain unchanged. 

The way in which we derive quality factors implies that the percentage 
change in the price due to a quality adjustment translates to the same percent- 
age change in the base price. But the relative importance of a product in the 
shift time period seldom equates to the same relative importance in constant 
prices. As a result, in most product shift cases, the quality factor technique 
produces a discrepancy between the changes in value of the two base prices in 
question. 

For example, in 1987 some fire control equipment previously bought as 
GFE is now bought as CFE. Based on the contractor cost report, the value of 
this equipment equals 400. Using the adjusted current price link method, the 
quality factor for the CFE component is 1.8085, or 894.7/(894.7 - 400). 
Using the same technique and - 400 as the value of the quality change for the 
GFE equipment, the quality factor is 0.8821, or 2,992/[2,992 - (-400)]. On 
a 1975 = 100 base, the effect on the CFE fire control base price is + 163.2, 
and the effect on the other GFE base price is - 148.7. The technique calcu- 
lates a discrepancy in the base price in this example because prices have 
changed by different amounts in the two series. In other words, the relative 
importance of the two series has not remained constant. 

When attempting to solve this problem, the detail contained in the price 
source documents often prohibits a simple solution. For example, the best 
way in which to solve the product switch problem is to group together over 
the life of the series those products that are involved in the switch. This, in 
fact, was done for the CFE-GFE switch of navigation equipment in 198 1. 

Unfortunately, switches usually involve nonspecific GFE data and more de- 
tailed CFE data such as the fire control equipment switch mentioned above. 
In the case study, the 1987 switch is valued at 400. This value most likely was 
obvious from the contractor price report. Assuming no quality adjustments 
due to a shift in contractor, we then estimate the current effect on the GFE 
series as being - 400. In other words, no information was actually available 
about the price of the product when it was procured under GFE. In fact, it is 
only an assumption based on an odd GFE price change that the newly ob- 
served fire control product on the contractor cost report was once included 
under the GFE series. Therefore, it would be impossible to group the GFE fire 
control equipment with the CFE fire control equipment over the life of the 
aircraft. 

The only way to solve the base price discrepancy problem in this case is to 
calculate a quality-adjustment value that will force the changes in the two base 
prices to offset. The calculation of the quality adjustment is explained best as 
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a two-step procedure. First, the desired quality factor is derived by setting the 
base prices prior to the product switch equal to the base prices after the prod- 
uct switch. The quality valuation for one of the products must be available in 
order to solve the equation. 

The following list defines the variables used in the subsequent equations: 
a = first product; 
b = second product; 
M = cumulative quality factor before the switch; 
F = quality factor for the switch; 
N = non-quality-adjusted base price; 
B = current price of product, in the base year; 
R = product of any quality factors after the switch year up to and including 

P = price of product, at the time of the switch; and 
V = value of quality for product,. 

031) 

or, solving for F,, 

the base year; 

MoNa + MbN, = MaF,N, f M,F,N,, 

MaNa + MbNb - MaFoNa 
F ,  = 

Mb N b  

Fa is known because the quality valuation for producta was determined be- 
forehand. N ,  is also known for the same reason. If the product switch happens 
after the base year, then N ,  is known. If the product switch happens before the 
base year, then the following should be substituted for Nb in the above equa- 
tion: 

B 
N ,  = ~ 

MbFbRb' 

Solving for F,, the equation becomes 

(B4) 
B 

MaNaF,R, -t B - MaNaR,' 
F ,  = 

Then, for the second step, the quality factor equation is solved for the value 
of the quality change. In this case, the adjusted current price link equation is 
used: 

035) 

or, solving for Y 

(B6) 

P 
P - v' F,  = ~ 

- P  + PF, 
V =  

Fb 
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Comment Arthur J .  Alexander 

The goal of defense price estimates, according to Ziemer and Kelly, is to de- 
velop measures of constant-dollar defense purchases within the framework of 
the national income and product accounts. What is not stated is that constant- 
dollar purchases are proxies for physical items and quantities: a fundamental 
principle governing the conceptual basis for estimating constant-dollar pur- 
chases is that, if the number of identical items purchzsed in two periods does 
not change, then the index of constant-dollar purchases should not change. 
This principle provides the rationale for many of the assumptions and proce- 
dures described in the paper. 

Defense deflators and price indexes for individual products, while useful 
for many purposes in their own right, are produced here as means to achieve 
the main goal. However, it is in the calculation of the price indexes that the 
central problem arises. This problem is the “performance/cost-of-production” 
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method of quality adjustment. According to this method, products are exam- 
ined to determine whether they have changed from one period to another; if a 
change is determined to be associated with an increase in quality, “the cost of 
producing that physical change is taken as the value of the quality change, and 
the price is adjusted accordingly” (Ziemer and Kelly, chap. 10 in this volume, 
p. 310). Product characteristics and performance are used only to determine 
if there has been a quality improvement; they are not used to evaluate the size 
of the improvement. 

The use of cost as a measure of quality change ignores the possibility of 
improvements in technology and productivity and can severely overestimate 
price changes and underestimate output. Productivity in the design and pro- 
duction of military products can be substantial. Because of such productivity 
gains, newer and better products can actually be less costly to produce than 
older products. Under such conditions, the “performancekost-of-production” 
method would measure no change in quality. 

One example of an improved product costing less to produce was the FlOO 
turbojet engine used in the F-16 and F-15 aircraft. More than eighty design 
changes were incorporated in this engine over the four-year period 1984-87, 
resulting in significant improvements in reliability and maintainability: main- 
tenance manhours per flight hour were cut by 15 percent; unscheduled engine 
removals were reduced by 43 percent; support costs fell by one-third (Alex- 
ander 1988, 68). Yet the cost of these changes when introduced into produc- 
tion was actually negative-the engine was less costly to produce. Indeed, in 
six case studies of reliability improvement, there were no examples of cost 
increases. According to the Bureau of Economic Analysis (BEA) approach, 
these improvements in quality would not have been captured. 

The reason that the FlOO engine could be improved and quality increased 
with no increase in production cost was that the manufacturer, Pratt and Whit- 
ney, had become smarter over the years-smarter because of additional ex- 
perience and because of the $120 million in design and test expenditures that 
the U.S. Air Force invested in these design changes. These payoffs to research 
and development (R&D) are biased downward by the BEA approach. 

The problem faced by defense product price estimators is that price changes 
can arise from three sources: (1) changes in input factor costs; ( 2 )  changes in 
the productivity of producing goods of a given quality; and (3) changes in the 
quality of the good. These changes are illustrated in figure 1OC. 1, where the 
solid lines represent time period 1 input factor costs (Wl) and the dashed lines 
are for period 2 factor costs (W2). The observed points are A and B; A is on 
the line showing the nominal cost-quality relation at period 1 values of factor 
costs and productivity levels. In period 2, the whole curve shifts downward 
because of productivity improvements. The distance C4-C 1 represents the 
shift in productivity; inflation in factor costs is captured by C2-Cl or C 5 X 3  
(these need not be the same); the cost of quality improvement is C5-C2 or 
C3-C1. Note that the BEA would measure the value of quality change as C4- 
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t l /W2 t l / W l  t2/W2 t2/Wl 

Nominal 
cost 

c4 

c1 

Quality 

Fig. 1OC. 1 
input factor costs 

Cost-quality relations with changing levels of productivity and 

C3;  if this value were negative because of strong productivity growth, it would 
record no quality change at all. The approach therefore generates the paradox- 
ical outcome that, the larger the amount of productivity growth, the smaller 
the measured value of quality improvement. Price deflators are therefore too 
high and the estimated quality of output and calculated productivity growth 
too low. 

Does this actually occur? In order to test the possibility of biased estimates, 
I calculated the productivity change implicit in the fixed-weighted price index 
for aircraft (Ziemer and Kelly, chap. 10 in this volume, table 10.9); productiv- 
ity change was estimated by dividing an input factor cost index for aircraft by 
the fixed-weighted price index. From 1972 to 1982 (the years for which I 
happened to have a common set of data), input costs rose by 8.5 percent an- 
nually, while the aircraft price index (presumably, holding quality constant) 
increased at a 9.9 percent rate-implying that military aircraft production 
productivity actually fell by about 1.3 percent per year. Given the billions of 
R&D dollars devoted to military aircraft in each year’s defense budget, this 
outcome is unlikely. Indeed, independent estimates of productivity for trans- 
port aircraft and jet engines showed annual productivity increases of 5.0 and 
2.0 percent (Alexander and Mitchell 1985, 186, 190). 

Unfortunately, dealing with the problem of measuring quality change is far 
more difficult than simply describing it. Hedonic price indexes are probably 
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not feasible because of the sparse time series of most types of military equip- 
ment and because of the restricted market for defense equipment, where out- 
liers may persist for longer periods than in more competitive markets. Some 
practitioners have used combat models to evaluate quality-quantity trade-offs 
for military aircraft, but these are applicable only to the gross characteristics 
of equipment. One technique that may be useful has been adopted in price 
surveys for the producer price index; this method requires manufacturers to 
estimate what it would have cost to produce the last-period model in the cur- 
rent period. The answer to this question is a measure of the distance C4-C2 
in figure 1OC. I .  Equivalently, the producer could also be asked what it would 
have cost to produce the current model in the last period; this question, how- 
ever, is more problematic since often a change is feasible only because of new 
technological knowledge-it could not have been produced earlier. These 
kinds of questions are feasible for small product improvements of a basic 
model. They become hypothetical when making comparisons across models, 
for example, from the F-4 to the F-16. 

For nonincremental changes in military products, it may be necessary to 
look at their several missions. For a highly simplified example, if one mission 
of an attack aircraft is to drop bombs on targets, its effectiveness could be 
evaluated as the number of bombs on target per day, at a given range, per 
dollar of aircraft capital cost and support cost. Calculation of this measure 
would draw on such characteristics as payload, sensors, flight control sys- 
tems, ordnance delivery computers, reliability, maintainability, and all the 
other design features and components that enable the aircraft to perform this 
mission. A weighted sum of all the missions would yield a quality index for 
the aircraft. Just setting out such a simplified approach to mission analysis 
gives a sense of the difficulty in implementing it, but it is the performance of 
the mission that ultimately lends value to the military equipment and to the 
notion of quality. Ultimately, analysts will ignore mission performance only 
at their peril. 

Introducing the concept of mission in evaluating the quality of military 
products forces one to consider the existence of enemies. If an enemy devel- 
ops a better air-defense system that reduces the effectiveness of an aircraft 
system, the quality of the aircraft declines; it becomes economically obsolete. 
If sold on secondhand markets, the price of the aircraft would fall to reflect its 
lower mission effectiveness. A similar effect would also be found for an anti- 
biotic whose quality is measured as the lethality against a certain strain of 
bacteria; if a resistant strain evolved, the measured quality of the antibiotic 
would fall, as would its price. 

It would be theoretically correct to show that military products have value 
only in performing specified missions and that we may be spending more but 
getting less because of enemy reaction. In a broader sense, the value of de- 
fense is a matter not only of constant-dollar purchases and productivity but 
also of the reactions of others. Correct and accurate measures of defense ex- 



347 Comment (chap. 10) 

penditures that properly account for such reactions may reveal surprising pic- 
tures of the value of defense. 
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