
This PDF is a selection from an out-of-print volume from the National Bureau
of Economic Research

Volume Title: Business Cycles, Indicators and Forecasting

Volume Author/Editor: James H. Stock and Mark W. Watson, editors

Volume Publisher: University of Chicago Press

Volume ISBN: 0-226-77488-0

Volume URL: http://www.nber.org/books/stoc93-1

Conference Date: May 3-4, 1991

Publication Date: January 1993

Chapter Title: A Nine-Variable Probabilistic Macroeconomic Forecasting
Model

Chapter Author: Christopher A. Sims

Chapter URL: http://www.nber.org/chapters/c7192

Chapter pages in book: (p. 179 - 212)



4 A Nine-Variable 
Probabilistic Macroeconomic 
Forecasting Model 
Christopher A. Sims 

Beginning around 1980, Robert Litterman began forecasting aggregate mac- 
roeconomic variables using a small Bayesian vector autoregressive (BVAR) 
model. The model originally used six variables-the Treasury-bill rate, M1, 
the GNP deflator, real GNP, real business fixed investment, and unemploy- 
ment. Litterman ceased forecasting with his model and turned the task over to 
me in 1986. At that time, his model had already changed, and I changed it 
further in 1987. This paper describes the current form of the model, explains 
why it changed as it did, and displays some measures of the model’s perform- 
ance since the major 1987 changes.’ 

The model differs in important respects from previous Bayesian VAR mod- 
els that have been described in the literature (e.g., Litterman 1986, and Doan, 
Litterman, and Sims 1984). It accounts for nonnormality of forecast errors 
and allows for time-varying variances as well as time-varying autoregressive 
coefficients. According to its own likelihood function, it fits much better than 
the simpler earlier models. It implies much more time variation in autoregres- 
sive coefficients than the earlier models. Both within sample and out of sample 
it produces drastically better forecasts of the price level than the simpler mod- 
els. For other variables, its advantages over the simpler models are smaller 
and uncertain. 

Christopher A. Sims is professor of economics at Yale University and a research associate of 
the National Bureau of Economic Research. 

This research was supported in part by the Institute for Empirical Macroeconomics at the Min- 
neapolis Federal Reserve Bank and the University of Minnesota and also by National Science 
Foundation grant SES9 1-22355. 

1. Joint work now under way by Richard Todd and me will provide a much more detailed 
assessment of the model’s forecasting performance and of the contribution of its various compo- 
nents to its behavior. 
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4.1 A Brief History of These Models 

Litterman’s model performed remarkably well relative to forecasts prepared 
by commercial forecasting organizations using much more elaborate models 
(see Litterman 1986). In particular, as documented by McNees (1986), it per- 
formed better than commercial models for real GNP and unemployment but 
worse for the price level. 

The model had not remained static in form from 1980 to 1986. Litterman 
had adapted the time-varying-parameters framework of Doan, Litterman, and 
Sims (1984) to his model. Also, it was easy to see in 1986 from graphs or 
tables of the forecasts that the model was extrapolating inflation at a long-run 
average rate, despite many quarters in a row of same-signed forecast errors. 
Thus, it was not surprising that McNees found other models doing better at 
forecasting inflation. Attempting to rectify this, Litterman added three vari- 
ables to the original six-the trade-weighted value of the dollar, the Standard 
and Poors 500 stock price index, and a commodity price index. 

With the model in this form, I took over preparing forecasts with it, starting 
in the fall of 1986. Litterman regularly evaluated his models by calculating 
measures of their forecast performance based on recursively updating their 
coefficients through the sample period, generating artificial “out-of-sample” 
forecasts. He had noted in these exercises a tendency for improvements in the 
retrospective forecast performance of the BVAR model for inflation to be ac- 
companied by deterioration in its performance for real variables. He had cho- 
sen his additional variables aiming to minimize the real-variable deterioration 
while improving price forecasts. My own analysis suggested, however, that 
this attempt was not entirely successful. Furthermore, as I took over the 
model, it had been making a sequence of same-signed errors in forecasting 
real GNP, which, while not as serious as the earlier sequence of inflation er- 
rors, were disturbingly similar in pattern. I decided, therefore, to complicate 
the specification of the model in several ways, aiming to find a probability 
model that would track the shifts in trend inflation rates and productivity 
growth rates while still performing about as well for real variables as Litter- 
man’s original simple six-variable model. 

1. It allows for conditional heteroskedasticity (time-varying variances of dis- 
turbance terms). 

2 .  It allows for nonnormality of disturbances. Specifically, it allows distur- 
bances to be mixtures of two normal random variables. 

3.  It takes account of the connection of the constant term to the means of the 
explanatory variables using a “dummy initial observation ,” described be- 
low. 

4. It uses the discrete-time process generated by time averaging of a 
continuous-time random walk as a prior mean, rather than using a 
discrete-time random walk. 

The resulting model differs from Litterman’s in several respects: 
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5. Probably mainly as a result of the first three changes, it fits best with a 
great deal more implied time variation of parameters than Litterman found 
optimal with his model. 

Likelihood is dramatically higher for this version of the model than for its 
predecessor. Simulated one- through eight-step-ahead forecasts from the 
sample period are about as good as or a bit better than with the previous model 
for real variables, much better for price variables, and slightly worse for inter- 
est rates. 

4.2 Description of the Model 

P(t ;  i , j ,  s) and an equation disturbance u(t;  i )  according to 

(1) xi(t) = 2 C xj<t - s)P(t; i ,  j ,  s) + P(t; i ,  j + 1, 1) + u(t;  i). 

I treat the P’s and u’s as stochastic processes that generate a distribution, con- 
ditional on initial X’s ,  for the other observed X’s. In principle, inference on all 
equations of the system should proceed jointly, as randomness in one equation 
could be correlated with randomness in other equations.* However, because it 
is computationally convenient, and because some tentative experiments have 
indicated little advantage from full-system estimation, estimation proceeds 
equation by equation. What I discuss below, therefore, although I call it the 
“likelihood,” is usually the component of the likelihood corresponding to one 
equation under the assumption of independence across equations. Likelihood 
for the full system is then taken as the sum of these equation likelihoods and 
is the true full-system likelihood only under an assumption of independence 
of randomness across equations. 

The data are a time series of k X 1 vectors X(t), determined by a state vector 

k r n  

j= 1 s =  I 

4.2 

Conditional on prior information, on data observable through date t - 1, 
and on p(r - 1; *, *, -), the vector [P ( t ;  i, ., a ) ,  u(t; i ) ]  is taken to be a mixture 
of two jointly normally distributed random variables, both with mean [P*( t  - 
1; i ,  * ,  a ) ,  01’ and with variance matrices V(t; i )  and .srt,V(t; i ) ,  respectively; 
that is, the vector has ~ . d . f . ~  

Form of the Distribution of Disturbances 

2. In this model, the algebra of the “seemingly unrelated regressions” of econometric textbooks 
applies. Thus, even if the randomness is related across equations, if the same X’s appear on the 
right-hand side of each equation and the prior has the same form in each equation, then analysis 
of the whole system reduces to equation-by-equation analysis. However, the prior that we consider 
is not symmetrical across equations. 

3. Here and below, I will use the abbreviated notation a(t) for a(?; i, ., .) where there can be no 
ambiguity. 



182 Christopher A. Sims 

where +(u, b) is the p.d.f. of a normal vector with mean a and variance ma- 
trix b. 

Conditional on data and prior information observable through r - 1 alone, 
P*( t  - 1) is taken to be normally distributed with covariance matrix 
W(t - 1) and mean B(t - 1); that is, it is taken to have p.d.f. 

(3) 

If nlo were zero or one, equations (1)-(3) would justify applying the Kalman 
filter to an observation on X,(t)  to obtain a posterior distribution for P and u.  
With other values of nlo, the Kalman filter cannot be applied directly since the 
conditional distribution of X , ( t )  is nonnormal. However, the posterior distri- 
bution is still easily obtained by two applications of the Kalman filter. One 
applies it once conditional on the V(t;  i) covariance matrix, then again condi- 
tional on the n?,V(t; i) covariance matrix. The posterior p.d.f. on [P ( t ) ,  
u(t;  i)] is then a weighted sum of the two resulting normal posterior p.d.f.'s, 
with the weights given by the relative likelihoods of the observed X j ( t )  under 
the two normal prior distributions. 

The posterior distribution on P(t )  generated by this procedure is, of course, 
itself a mixture of normals, not a normal distribution. If P(t  + 1) were related 
to p(t) by a linear equation with normal disturbances, the prior distribution on 
P(t + 1) would itself be nonnormal, and the Kalman filter would not be ap- 
plicable at t + 1. Actually, if the prior at t = 0 is normal, the prior at t = 1 
would be a mixture of two normals, so that by conditioning on each normal 
component of the prior, Kalman filtering twice for each, we could obtain a 
new posterior that was a mixture of four normals, etc. However, with the 
number of normal components involved proliferating exponentially, this exact 
approach would be computationally intractable. A better approximate ap- 
proach might be continually to keep track of the k most likely of the 2' 
branches of the tree of normal components of the mixed posterior distribu- 
tions, with k set at, say, four or sixteen. Or, instead, at each t one could con- 
vert the posterior for P(t - k;  i, ., -) conditional on data through t - k to the 
normal distribution with corresponding mean and variance, treating the dis- 
turbances from t - k + 1 to t exactly. What is actually done for this model is 
this latter approach with k = 1, although a k of two or three would be feasible, 
at least as an experiment to check the sensitivity of results. One hesitates to 
work too hard at this since the mixture-of-normals assumption itself is an 
arbitrary convenience. A matrix t distribution would be more plausible, im- 
plying a continuous mixture of normals in place of a mixture of just two nor- 
mals. 
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To summarize, the model assumes that P*(t  - 1) is a function of P(t - 1) 
such that it has a normal distribution with the same mean and variance as has 
P(t - l), despite the nonnormality of the latter. 

If we could represent this change in distribution by supposing that some 
sort of random noise were added to P(t - l ) ,  it would be natural to think of 
this as simply nonnormal stochastic time variation in a. However, the nature 
of the change in distribution precludes its being characterized this way. The 
assumption is in fact unnatural, justifiable only as a convenient approxima- 
tion. Note, however, that, because our uncertainty about P(t - 1) cumulates 
the effects of disturbances at many dates, our posterior for it is likely to 
be much closer to normality than is the conditional distribution for P(t)  - 
P*(t  - 1). Treating the distribution of the former as approximately normal 
while carefully accounting for nonnormality in the latter is therefore justifia- 
ble as an approximation. 

Note that we are in effect assuming that our posterior mean for P(t - 1) at 
t - 1 is the same as our prior mean for P(t) .  This makes the E[P(t)l t]  sequence 
a martingale. There would be no computational or conceptual difficulty with 
allowing a more general linear dependence of the prior mean for P(t)  on 
P(t - l), and, indeed, in this and other models, Litterman and I have both 
experimented with specifications where 

with 8 a scalar and p the prior mean vector. The best choice of 8 has always 
turned out to be close to one, however, so that, with sample sizes of the length 
actually available, there has seemed little advantage to freeing it to differ from 
one. 

4.2.2 Initial Prior Mean 

In the model discussed here, m, the lag length, is five-slightly over a year 
since I am using quarterly data. The vector B(0; i, j, *), the initial prior mean 
on p( 1; i ,  j ,  .), is set to zero for i f j. The vector B(0; i, i, a )  is given by 

1.2679, - .3397, .09 10, - .0244, .00654. 

These numbers satisfy B(0; i, i, s) = (1 + a)( - a)s, which (if s is allowed to 
run to infinity instead of being truncated at five) defines the autoregressive 
coefficients for an ARIMA(0, 1, 1) process with moving average parameters 
a = 2 - v 3 .  It can be shown that this is the form of a unit-averaged Wie- 
ner process. Thus, the prior mean makes all elements of X behave like 
unit-averaged Wiener processes with no lagged cross-relations among compo- 
nents of X.4 

4. Note that, in previous published work, prior means for BVAR models have generally made 
the components of Xdiscrete-time random walks. The unit-averaged Wiener process prior (at least 
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4.2.3 The Initial Litterman Prior 

The prior covariance matrix is built up by a sequence of modifications of an 
initial prior. The initial prior makes each scalar component of the P*(t;  i, 0 ,  .) 
vector independent of all the others (i.e., it makes the covariance matrix W[O] 
diagonal) and sets the variance according to 

(4) 
j =  1, . . . ,  k +  1. 

Here, u(i) is a parameter measuring the scale of fluctuations in variable i, 
taken in practice as the residual standard error from a univariate frfth-order 
VAR fit to the entire sample for i 5 k .  For j  = k + 1, there is only an s = 1 
term, as the corresponding a is the “constant term” (here actually not a con- 
stant but time varying). For this term, u( j  + 1) = 1h4,  another unknown 
parameter. The function 6 ( i ,  j )  is the Kronecker delta, one for i = j ,  zero 
otherwise. Here, as elsewhere in this paper, the parameters ni are “unknown 
constants.” In principle, we should specify a prior over them to complete a 
Bayesian framework for inference. However, because doing so would be in- 
convenient, and because we expect that our prior on them would be uninfor- 
mative (i.e., we do not know much about them a priori), we integrate over 
these parameters informally. 

4.2.4 The Dummy Initial Observation 

The range of differences in observed dynamic behavior for economic time 
series is fairly large, and, indeed, a reasonable prior specification for the stan- 
dard error of p*(O; i, i, 1) is about 0.16. But then this component of uncer- 
tainty about P* alone accounts for an implied standard error of forecast for 
Xi( 1) amounting to 16 percent of the initial level of Xi. Since the random com- 
ponents in the other elements of p*(O) are all independent of this one, they all 
serve only to increase the implied forecast errors. We are not in fact this un- 
certain about the accuracy of naive random walk forecasts (which is what our 
initial forecasts, based on prior means for p*, will be). We are unsure of 
whether our prior means are exactly right, coefficient by coefficient, but we 
find it much more likely that the best forecasting model will be one that im- 
plies that naive no-change forecasts will be fairly good than that it will be one 
that implies that great improvements on a no-change forecast are possible. If 
coefficients deviate from their prior means, we expect that other coefficients 

where the data have in fact all been collected as unit averages) is a notably more accurate naive 
standard, however. Observe that the Theil Us (for a definition, see the note to table 4 .2  below) 
obtained by using the correct AR in place of a discrete random walk AR for a process that is 
actually a unit-averaged Wiener process would be, at forecast horizons 1-4, ,933, ,9732, .9832, 
and .9878. 
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will deviate in an offsetting way, with the result that naive no-change forecasts 
will still be fairly accurate. 

To capture this aspect of prior beliefs, we need to introduce appropriate off- 
diagonal elements into W(t; i )  while leaving the diagonal elements relatively 
undisturbed. One easy way to do this is to introduce a “dummy observation” 
in which the prior is modified by feeding it into a Kalman filter that takes as 
observed data for X(t - s), s = 1, . . . , m, the actual m initial values of X 
from the sample and for Xi( t ) ,  not the actual Xi(m + l),  but instead the mod- 
el’s own forecast, based on the prior mean for p*, of X,(m). The data in this 
dummy observation are weighted by a parameter  IT^, which can be expected 
to be best taken to be near one if the variances of the u(t; i) disturbances have 
been specified as near to the variance of forecasts from a naive random walk 
model. Because the Kalman filter finds that, with these artificial data, the prior 
mean generates perfect forecasts, the Kalman filter makes the posterior mean 
the prior mean. Only the variance matrix of the prior mean is changed. The 
change is of rank one and in practice turns out to have only modest effects on 
diagonal elements of W. 

In most previous published work with BVARs, there has been a “sum-of- 
coefficients” modification to the prior. That modification can be characterized 
as a sequence of Kalman filtering operations indexed by j = 1 ,  . . . , k, in 
each of which X(t - s) is set to zero for s = 1 ,  . . . , m, except for X,(t - s), 
s = 1, . . . , m, all of which are set to one, while X , ( t ) ,  the dependent vari- 
able, is set to one if and only if j = i. Because most economic time series are 
smooth, X(t - s) and X(t - s - 1) have similar values. Thus, the dummy 
initial observation used here is approximately a linear combination of the 
dummy observations used in imposing the sum-of-coefficients modifications. 
In practice, the dummy initial observation seems to reduce or eliminate the 
usefulness of sum-of-coefficients dummy observations. This point is substan- 
tively important because heavily weighted sum-of-coefficients dummy obser- 
vations push the model toward a limiting form written entirely in terms of 
differences, which eliminates all long-run relations across variables. Putting 
the same point another way, the old sum-of-coefficients dummy observations 
pulled the model toward a form with as many unit roots as variables and no 
cointegration, while the current dummy initial observation pulls the model 
toward a form with unit-root nonstationarity in all variables without down- 
weighting the possibility of cointegration. 

This dummy-initial-observation idea was discovered in the process of 
adapting BVAR methodology to a context where the number of series avail- 
able for a model increases at several dates scattered through a historical 
sample. A natural approach to such a situation is to begin with a prior for a 
model with all the variables that will eventually be available, padding the data 
for variables that are initially unavailable with zeros. Applying the Kalman 
filter to the padded data is equivalent to applying it to a smaller model. The 



186 Christopher A. Sims 

prior means and variance matrix of the coefficients on unavailable variables 
are left unaltered by the Kalman filter when the data for them is set at zero. 
However, at the time when data on a series do become available, the prior 
shows an exaggerated version of the problem described above as motivating 
the dummy initial observation. The new data multiply large prior variances on 
individual coefficients to imply large forecast errors, and the uncertainty about 
coefficients on the newly entering variable shows no correlation with uncer- 
tainty about coefficients on the variables already in the model. We know in 
fact that the small model estimated up to this point is a good forecasting 
model, and the availability of data on a new variable has not made its forecast 
accuracy worse. To make the prior reflect this knowledge, a dummy observa- 
tion, in which the prior mean coefficients at t are presented to the Kalman filter 
as making perfect forecasts for t + 1, is appropriate. The prior mean coeffi- 
cients are all zero for the newly introduced variable, so the dummy observa- 
tion expresses confidence in the small model estimated without the new vari- 
able. Covariances between coefficients are created by the dummy observation, 
so that deviations from zero in coefficients on the new variable imply likely 
offsetting changes in other coefficients to leave forecasts from the previously 
estimated small model fairly close to those of the expanded model. 

4.2.5 

There is an a priori basis for expecting that prices of durable goods fre- 
quently traded in open markets will follow stochastic processes well approxi- 
mated as Wiener processes over short time spans. Thus, our prior mean is 
inherently more attractive for such variables than, for example, for GNP or 
unemployment. I therefore introduce into (4) an additional multiplicative 
factor 

Relative Tightness on Durable Goods Prices 

( 5 )  .rr,IDGP(j), 

where IDGP(j) is zero for variables that are not durable goods prices and one 
for variables that are. The latter are taken to be the value of the dollar, stock 
prices, and commodity prices. A case could be made for including three- 
month Treasury-bill rates and M1 in this list, but they were left out as not 
actually being prices of durable goods. 

4.2.6 Inflation Neutrality 

In theoretical models without money illusion, the price level can change 
without any effect on real variables. If the data show persistent changes in the 
price level, price-level neutrality implies certain restrictions on the coefficients 
of the model. In particular in a log-linear model, coefficients on the right- 
hand-side nominal variables should sum to one in equations with nominal 
dependent variables and to zero in equations with real dependent variables. 
The prior mean for the coefficients in this model already almost satisfies this 
restriction since only coefficients on own lags have nonzero means and these 
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sum almost exactly to one. To pull the prior in the direction of sticking with 
price-level neutrality, we can perturb it with a dummy observation in which 
current values and all lags of nominal variables are set at one while all other 
variables are set at zero. For the nine variables in this model, the nominal 
variables are the money stock, the price level, stock prices, and commodity 
 price^.^ The model uses such a dummy observation, scaled up by a factor of 
2.0. The use of this dummy observation has little effect on the likelihood or 
the estimated coefficients, but, as with 6 in the next section, there has been no 
systematic exploration of the parameter space allowing variation in this pa- 
rameter. 

4.2.7 Covariance Matrix of Disturbances 

The upper-left diagonal component of the matrix V( 1 ; i) corresponding to 
all the p’s is taken to be niW(0; i), that is, just a scaled version of the initial 
prior covariance matrix. However, the scale of this matrix is allowed to adapt 
over time to the observed squared errors in the model. The idea here is very 
close to that of the ARCH models pioneered by Engle (1982), but it differs in 
that, instead of variances being adapted to the sizes of past unobservable true 
disturbances (u and p - p* in our notation), they are adapted to the sizes of 
past actual forecast errors, that is, in our notation to sizes of 

k m  

v(t; i) = xj(t) - C C xj(t - s p ( t  - 1; i, j ,  s) 
j = l  s=l 

+ B( t ;  i, j + 1, 1). 

The specification adopted here has the advantage that it makes the variance 
of disturbances at t + 1 known at t ,  allowing a single pass of the Kalman filter 
through the data to evaluate the sample likelihood function. More specifically, 
the scales of the V(t; i) matrices are adapted to the recent history of forecast 
errors in all equations of the system according to the following scheme. Let 
v*(t; i; 0) be v(t; i) divided by the model’s implied variance for v(t; i) condi- 
tional on the true disturbance matrix being V(t;  i), while v*(t; i; 1) is v(t; i) 
divided by the model’s implied variance for v(t;  i )  conditional on the true 
disturbance matrix being n;,V(t; i). Then let 

(6) v**(t; i)2 = pov*(t; i; 0)2 + pIv*(t; i; 1)*, 

where po is the posterior probability, given data at t ,  of the smaller variance 
normal component of the mixed distribution for the disturbance at t ,  andp, = 

1 - po is the posterior probability of the other component. If the model is 
correct, v** should average out to about one. 

Let 

5. There could be some dispute over whether to treat the value of the dollar also as a nominal 
variable. It could behave either way, depending on how price-level changes are related across 
countries. 
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Then we take 

( 8 )  V(t + 1; i) = T ( t ;  i)V(t; i). 

Thus, P, measures the overall responsiveness of forecast error variance to the 
magnitude of the current errors, and n8 measures the relative weight on own 
errors versus system-wide average errors in making the adjustment. If 6 = 0 
in this specification, each v(t; i)’ is a martingale, but, since these terms are 
necessarily positive, they form martingales bounded below. Thus, with 6 = 

0, the model implies that v(t; i )  converges almost surely to a constant. While 
this implication is perhaps no more unreasonable than the implications of mar- 
tingale behavior for p itself (which we have imposed), experimentation with 
6 nonzero seems warranted. The current version of the model takes 6 = 0.01, 
which slightly improves fit over 6 = 0, but there has been no systematic 
exploration of the likelihood surface in 6 as there has been for the n vector. 

4.3 Model Fitting 

What I have described above is an eleven-parametef probability model for 
the nine quarterly observed time series in the model. A classically oriented 
statistician can ignore the Bayesian jargon in the model description, treat the 
p’s as well as the u’s as unobserved random disturbances, and interpret the n’s 
as the model parameters. From this perspective, our estimation procedure is 
simply maximum likelihood (although, as mentioned above, since we add up 
individual equation log likelihoods to form the system likelihood used as the 
fit criterion, we are in effect assuming independence of all random distur- 
bances across equations, a potentially unrealistic assumption). 

My own view is that maximum likelihood is justifiable only as an approxi- 
mation to a Bayesian procedure or as a device for summarizing a likelihood 
function. The most important single aspect of a likelihood function, at least if 
it has a well-defined peak, is its maximum. Nonetheless, we must bear in 
mind that the peak might not be well defined or that the shape of the likelihood 
may otherwise turn out to differ from the usual Gaussian shape. In practice, 
this means that, if likelihood turns out to be insensitive to some dimension of 
variation in p, we ought to verify that the implications of the model that are 
important to us-forecasts and policy analysis-are also insensitive to this 
dimension of variation. If not, results from several parameter settings should 
be studied. 

6. This counts only the parameters m,-ml,, not 8, the drift in the variance process, or the weight 
on the price-neutrality dummy observation. There has been no systematic exploration of the pa- 
rameter space along these latter two dimensions, so eleven is probably the right measure for 
assessing how much overfitting is likely to have occurred. 
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The derivation and interpretation of the likelihood function for this type of 
model have been described in Doan, Litterman, and Sims (1984). The me- 
chanics of likelihood maximization have been handled with a nonstandard 
hill-climbing routine, described in Sims (1986b). Because each function max- 
imization is relatively expensive (involving a pass through the data with two 
Kalman filter applications at each sample point), it seemed important to use 
global information about the shape of the likelihood in deciding on each func- 
tion evaluation. The program used, BAYESMTH, fits a surface to the ob- 
served likelihood values to generate a guess for the location of the function’s 
peak. It is applied iteratively, with fifty to one hundred function evaluations 
used to obtain very rough convergence.’ An advantage of the Bayesian hill- 
climbing routine is that it can be used at any iteration to generate a best guess 
at the shape of the likelihood, which is more important for inference than the 
precise location of the peak. 

It is worth noting that, in 1986, when this form of the model was arrived 
at, the nine-variable version of the model could not be estimated on a PC. 
Programs were developed on a PC in a six-variable version of the model that 
took forty minutes to complete a single evaluation of the likelihood. Iterative 
maximization of the likelihood was carried out with likelihood evaluations on 
a Cray supercomputer, which could complete a likelihood function evaluation 
for the nine-variable model in about twenty seconds. Now, a 33MHz 486 PC 
can evaluate the likelihood for a full nine-variable version of the model in 
about ninety seconds. 

4.4 Characteristics of the Fitted Model 

In the rows labeled “87,” table 4.1 shows the 7~ vector that achieved the 
highest level of the likelihood function when the model was fit to data for 
1949:111-1987:111 in 1987:IV. (The data used are described in the appendix.) 
Observe that, with n1, = 3.8 and nl0 = 0.31, the mixed distribution is no- 
tably nonnormal, with a fourth moment 2.43 times as large as that of a normal 
distribution with the same variance. This is about the same kurtosis as for a t- 
distribution with five degrees of freedom. Geweke (1992) finds similar kurto- 
sis using a different form of nonnormality in modeling macroeconomic time- 
series data. 

Parameter 7, at 0.25, is small enough to imply significant delay in the re- 
action of forecast error variances to the previous history of errors, but large 
enough to imply substantial adaptation within a year. Parameter 8, at 0.34, 
implies that more weight is given to system-wide average error than to an 
individual equation’s own error in adapting forecast error variances to histori- 
cal experience. 

7. Iteration is ordinarily halted when, say, ten or twelve successive function evaluations pro- 
duce cumulated change in the log likelihood of less than 0.5. 
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Table 4.1 Likelihood-Maximizing n Vectors 
_ _ _ _ ~  ~~ 

7~ Subscript Model Version 7~ Value Description of 7~ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

87 
6 

11 
87 
6 

1 1  
87 
6 

11 
87 
6 

11 
87 
6 

I 1  
87 
6 

I 1  
87 
6 

I 1  
87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

11 

.I7 

.I0 

.24 

.I9 

. I  1 

.I7 

.90 

.I4 

.92 
3.41 
5.31 
1.71 
.89 

3.03 
2.21 

.09 

.oo 

.I0 

.25 

.oo 

.21 

.34 

.oo 

.32 

.27 
1.28 
. I2  
.31 
.oo 
.35 

3.76 
1 .oo 
3.66 

Overall tightness 

Relative tightness on other variables 

Exponent for increase in tightness with lag 

Standard error of constant term relative to IJ (i) 

Weight on initial dummy observation 

Ratio of initial standard error of time variation 
to initial prior standard error 

Overall sensitivity of forecast error variance to 
current error magnitudes 

Relative weight on equation’s own error size 
vs. average of system error sizes in setting 
variance evolution 

goods price equations 
Relative tightness of the prior on durable 

Probability that the disturbance is drawn from 
the normal component with larger variance 

Standard deviation of the more diffuse of the 
two components of the disturbance 
distribution, as a multiple of the standard 
deviation of the less diffuse 

Nore: A vector of 11 hyperparameters is displayed for each of three versions of the model. In 
each group of three numbers, the top one refers to a model fit in 1987:IV to data available then 
for 1949:111-1987:111, and the lower two refer to models fit in 1992:II to data available then for 
1949:111-1992:1, The middle one was fit while parameters 7, 8, 10, and 11 were held fixed at the 
displayed values. 

From parameters 1 and 2 ,  we see that the prior standard deviation of the 
coefficient on the first own lag in each equation is about 0.2 and that coeffi- 
cients on other variables are given prior standard deviations about 20 percent 
of the prior standard deviations on own lags. Parameter 3, close to one, im- 
plies that prior standard deviations on coefficients for lag s decline approxi- 
mately as Us. Parameter 6, at about 0.1, implies that the variance of a one- 
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period change in the coefficient vector is about 1 percent of its initial prior 
variance. The prior uncertainty about the coefficients is thus about the same as 
prior uncertainty about the parameter change over one hundred quarters. 

The parameters that we have discussed to this point are all about the same 
in both the model fit in 1987 and the current update of that model. The re- 
maining ones, parameters 9, 5 ,  and 4, showed substantial changes with the 
update. As it stands, the model simply scales the prior covariance matrix by 
 IT^ to obtain the covariance matrix of coefficient changes. Along these dimen- 
sions in which refitting has resulted in large changes, it is possible that the 
model should allow differences between the prior covariance matrix and the 
coefficient-change covariance matrix. Of course, it is also possible that these 
results simply reflect sample information. Note that, while the October 1987 
stock market crash had occurred at the time of the 1987:IV model fitting, it 
was not in the data set on which the model was fit. 

The biggest change is in parameter 9, which, in going from 0.27 to 0.12, 
implies a much tighter prejudice in favor of the random walk model for the 
durable goods price variables after refitting. This is in line with the fact, doc- 
umented below, that the model’s forecasts for these variables have shown little 
if any margin of superiority over those of a naive continuous-time random 
walk model. Parameters 5 and 6 show increased weight on the initial dummy 
observation and decreased prior variance for the constant term with refitting. 

The differences in parameters between the 1987 version and the updated 
version of the model are enough to make modest but noticeable changes in 
model forecasts. For the 1982:II forecast, for example, the general shape of 
forecast paths for variables is little affected, but the level of long-run growth 
to which the forecast paths gravitate is affected. For variables not hit by pa- 
rameter 9, these differences are on the order of 0.1-0.3 percentage points in 
the forecast annualized growth rates (and about the same magnitude in the 
forecast levels of interest rates). For the value of the dollar, stock prices, and 
commodity prices-the three variables hit by n,-the forecast long-run an- 
nualized growth rates are affected by 1 or 2 percentage points. 

The model with coefficient variation, nonnormality, and time-varying vari- 
ances suppressed, reported in the middle rows of table 4.1, fits best with a 
tighter overall prior, relatively stronger prior restriction on cross-variable re- 
lations, weakly damped prior variances on longer lags, and small weight on 
the durable goods price restriction. The increased tightness in parameters 1 
and 2, pulling all variables closer to the random walk model, roughly offsets 
the increased looseness in parameters 9, 3, and 4. 

Imposition of these simplifying restrictions reduces likelihood for each 
equation, and the sum of the reductions in twice the log likelihood (which can 
be interpreted as measured in “chi-squared” units) is 1,146. This is a very 
large likelihood reduction, corresponding roughly to what would be produced 
by increasing forecast RMSE by 30 percent in every equation: Since the 
RMSE differences between the six-parameter and the eleven-parameter model 
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Table 4.2 Theil U Statistics, 1949:111-1992:1 

Quarters Ahead 

Model Version 1 2 4 8 

Treasury-bill rate 

M1 

GNP deflator 

Real GNP 

Business fixed in- 
vestment 

Unemployment 

Trade-weighted 
value of dollar 

S&P 500 stock 
price index 

Commodity price 
index 

87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

11 
87 
6 

1 1  

,9493 
,9746 
,9682 
,4546 
,4645 
.4489 
,3799 
.4350 
.3787 

.7388 
,7290 
.a686 
,8847 
,8533 
,7936 
,8110 
,7910 

,9126 
,9243 
,9234 
.a517 
,8128 
,8578 

1.0295 
1.0362 
1.0570 
,4354 
,4410 
,4305 
,3169 
,4053 
,3143 
,6857 

,6675 
,8989 
,9165 
,8655 
3510 
3827 
,8443 

1.0203 
1.0185 
.9197 
,9499 
.9444 
,9217 
,895 1 
,9227 

,9786 
1.0002 
,9858 
,4252 
,4178 
,4185 
,2906 
,4184 
,2857 
,6937 
,6557 

,9782 
,923 1 
,9272 
,9238 
,9612 
,9133 

1.0585 
1.0664 
,9217 
,9645 
.9593 

1.0308 
1.0682 
1.0021 

,9845 
,9387 
.9928 
.4265 
,3920 
,4203 
,2737 
,4347 
.2679 
,6693 
,6047 
,6653 

1.1132 
,896 1 

1.0720 
,9835 
.9615 
,9516 

1.2309 
1.1613 
1.1932 
,9470 
,9969 
.9932 

1.2121 
1.2043 
1.0967 

Note: In each group of three numbers, the figures shown correspond to the three parameter 
settings displayed in the corresponding groups of three numbers in table 4.1: an 1 I-hyperpara- 
meter model fit in 1987, a 6-hyperparameter model fit in 1992, and the 11-hyperparameter model 
fit in 1992. The Theil U is the ratio of root mean squared error (RMSE) of model forecasts to the 
RMSE of naive no-change forecasts for the same period. 

shown in table 4.2 are not nearly this large, it is clear that much of the likeli- 
hood improvement comes from more accurate modeling of the evolution of 
forecast error variances in the eleven-parameter model. 

4.5 Measures of Forecasting Performance 

Table 4.2 shows how these differences in parameters affect model forecast 
performance. All the numbers in this table are Theil U statistics, meaning 
ratios of model RMSEs to naive no-change RMSEs. All the errors entering 
into these calculations come from using the model, with VAR coefficients 
recursively updated each quarter, to prepare forecasts through the sample. A 
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single consistent time series, constructed in 1992:II, is used for each variable, 
so that forecast errors measured here do not correspond exactly to the actual 
historical forecast errors. Data for periods after the forecast date affect the 
forecast for that date only insofar as they have influenced selection of param- 
eters. The rows labeled 6 and 11 had parameters (T,’s, not VAR coefficients) 
fit to the full sample through 1992:I, while the rows labeled 87 had parameters 
fit to data through 1987:III only. Forecasts made and circulated regularly from 
this model from 1987:IV through 1992:II have all used the same set of param- 
eter values, that corresponding to the “87” rows of table 4.2. 

The 1987:IV-1992:1 postsample period for the 1987 model is about 10 per- 
cent of the full sample. A 20 percent improvement in forecast accuracy over 
this period, with no deterioration in performance for the sample period, would 
improve the Theil U for the full period by about 2 percent. In column 1 of 
table 4.2, there are no improvements of this magnitude in the Theil U from 
the updated fit. As we move rightward along the columns, the forecasts whose 
accuracy is being measured overlap in time more and more, with the result 
that the sampling variation in the forecast accuracy measure, particularly over 
the short postsample period, increases substantially. The update of parameter 
estimates produces improvements in two-quarter forecasts of 2.7 percent in 
real GDP/GNP and 3.9 percent in investment. At the four-quarter horizon, 
there are improvements of 2 percent or more in these same two variables and 
also in commodity prices. At the eight-quarter horizon, GNP/GDP drops off 
the list, and the GNP/GDP deflator, unemployment, and the trade-weighted 
dollar are added. The only differences of 4 percent or more are for investment 
at the four-quarter horizon (5.5 percent), commodity prices at the eight- 
quarter horizon (10.5 percent), and stock prices at the eight-quarter horizon 
(4.9 percent) in favor of the 1987 version of the model). On the whole, it is 
clear that there is some gain from updating the fit, as would be expected, but 
that the model’s out-of-sample forecast performance does not drastically con- 
tradict the 1987 parameter estimates. 

The U statistics for the simplified six-parameter model show that, for most 
variables and time horizons, the eleven-parameter model performs better, but 
not by very much. The sharpest exception is for the GNP/GDP deflator. The 
smaller model is worse there by a large margin. At the eight-quarter horizon, 
the smaller model is 10 percent better for real GNP/GDP and 20 percent better 
for investment. Since this better performance for the smaller model is not 
matched at the shorter time horizons for these variables, it is hard to know 
what to make of it. It could be sampling variation, but it might also indicate a 
weakness in the larger model at long horizons for these variables. 

Table 4.3 focuses on the performance of the 1987 version of the model for 
the postsample period, again using a single 1982:II data set rather than the 
historical sequence of regularly revised data series. The first three rows in 
each horizontal block of four rows compare the RMSE over 1988:1-1992:1 for 
the 1987 model to the RMSE of alternative forecasting schemes: a naive no- 
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Table 4.3 Performance in 1988:1-1992:1 

Quarters Ahead 

1 2 4 8 

Treasury-bill rate 

MI 

GNP deflator 

Real GNP 

Business fixed 
investment 

Unemployment 

Trade-weighted 
value of dollar 

S&P 500 stock 
price index 

Commodity price 
index 

FIN ,8097 
FIS ,5890 
F16 ,7667 
F 
FIN ,4702 
FIS 1.0676 
F/6 .8387 
F .0077 
FIN ,2246 
FIS ,4532 
F/6 ,3983 
F .0022 
FIN ,7257 
FIS ,4456 
F16 1.0236 
F ,0043 
FIN ,9077 
FIS ,6251 
F16 .8263 
F ,0153 
FIN ,9419 
FIS ,5976 
F16 1.1643 
F ,0364 
FIN 1.0662 
F/S 1.6418 
F/6 1.0154 
F .0473 
FIN 1.0065 
FIS .9319 
F16 ,9958 
F ,0523 
FIN 1.0679 
FIS ,4230 
F16 ,4600 
F .0145 

,9620 
,7660 
.8238 
,9686 
.5165 

1. I407 
,8283 
,0152 
.2140 
,5307 
.3342 
,0042 
,7925 
,5407 

1.0736 
,0087 
,9019 
,5606 
,7197 
,0245 

1.0043 
,5972 

1.2738 
,6099 

1.1994 
1 ,5944 
1.0362 
,0798 

1.0050 
,9321 
.9000 
.0874 

1.2901 
.3700 
.3388 
,0247 

1.0444 
1.0898 
.8826 

.6272 
1.2289 
,8414 
,0306 
,2063 
,5676 
,2793 
,0081 
,7958 
,5065 

1.0230 
,0147 
.9840 
,5374 
,6520 
,0426 

1.0177 
.6121 

1.4563 
.I280 

1.4599 
1.4049 
1.1170 
,1161 
.9396 
.9343 
,7980 
.1366 

1.5340 
,3377 
,2599 
,0428 

1.1633 
1.1497 
,8867 

,6527 
1.1253 
,7093 
.0542 
,1157 
,3448 
,1298 
,0091 
,9917 
,5734 

1.0831 
.0278 

1.5563 
.6133 
,8139 
,0844 
,8768 
.5732 

1.7785 
,1692 

1.8827 
1.0495 
1.3192 
,1570 
,8444 
.8234 
,5859 
,1805 

2.7498 
,4666 
,2875 
,0909 

Nore; In each horizontal block, F/N is the ratio of root mean squared error (RMSE) for the model 
to that for a naive no-change forecast, both for the forecast period 1988:1-1992:1. FIS is the ratio 
of RMSE for the model over 1988:1-1992:1 to that for the model over 1949:111-1992:1. F/6 is the 
ratio of model RMSE to the RMSE for the 6-hyperparameter model displayed as the middle 
numbers in table 4.1. The row labeled F is the RMSE for the model over 1988:1-1992:1. The 
model is the version using hyperparameters chosen in 1987:IV to fit data for 1948:111-1987:111, 
except for the 6-parameter model used for comparison in the third rows. The 6-parameter model 
was fit to 1992:I data. 
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change model over 1988:I-1992:I, the 1987 model over 1949:111-1992:1, and 
the simplified six-parameter model (fit to data through 1992:I) 1988:I-1992:I. 
The fourth row shows the RMSE for the 1987 model over 19883-1992:I. 

In certain senses, this period was unusually easy to forecast. Note that, for 
seven of the nine variables, the F/S rows are uniformly less than one. This 
means that, for these variables, RMSE was smaller in the postsample period 
than in the sample period. Yet, for most variables, comparison of the F/N row 
with the corresponding 87 row in table 4.2 shows little improvement, or even 
deterioration, in the model’s performance relative to that of naive no-change 
forecasts. In other words, forecasting in this period was easy, by historical 
standards, for both the model and the no-change alternative, with the propor- 
tional improvement generally stronger for the naive models. This leaves the 
implications for evaluating the model ambiguous. The model has done “well” 
by historical standards, but such performance in a period when naive models 
are also doing “well” is weak support at best for the model. 

There are two strong exceptions to this general conclusion. The GNP/GDP 
deflator forecasts for this period were better than their historical average, and 
they also improved relative to naive forecasts. This positive picture must be 
qualified by the fact that nothing within the model suggests that such a dra- 
matically good performance is likely to be anything more than a random piece 
of good luck. The value of the dollar, on the other hand, was forecast with 
RMSE 60 percent worse than its historical average, in a period when naive 
forecasts at long horizons were getting better. The six-parameter model per- 
formed much better for this variable and this period. 

For commodity prices, the naive model was much better than the model at 
forecasting horizons beyond one quarter. But this seems likely to reflect an 
unusual spate of good luck for the naive model since the 1987 model had 
better RMSE than its historical average and moving in the direction of the 
naive model by going to the six-parameter model produced drastically worse 
RMSE for this variable. A similar argument suggests that not too much should 
be made of the strong advantage of the naive model over the 1987 model at 
the eight-quarter horizon for investment. 

The substantial advantage of the six-parameter model over the 1987 model 
at all horizons for unemployment is worrisome. The facts that the 87 model 
nonetheless showed substantial absolute improvement in RMSE over the 
sample period and that there is no correspondingly strong advantage of the 
six-parameter over the eleven-parameter model for the full sample in table 4.2 
suggest that this, too, may well be a random fluctuation in the relative per- 
formance of the models. 

4.6 Tracking the 1990-91 Recession 

The model did not perform brilliantly in tracking the 1990-91 recession, 
but this may make it all the more useful to examine graphically how it be- 
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haved. This recession was mild, with no annualized growth rate for GNPiGDP 
much outside the ? 3 percent range. Since the model’s historical RMSE for 
GNP/GDP is about 0.5 percent in levels, and therefore 2 percent at an annual 
rate, it cannot be expected that the model would precisely track the path of 
GNP over such a mild fluctuation. On the other hand, the two quarters of 
negative GNP growth in 1990:IV and 1991:I were almost completely unantic- 
ipated by the model. 

The pattern of changing forecasts over this period is largely explained by 
two factors: the forecast path for each variable adapts to the new initial con- 
ditions as errors are accounted for, and the steady drop in interest rates, 
largely unanticipated by the model, affects predictions for other variables over 
a two- to three-year horizon. Before looking at the data for actual forecasts 
over the span of the recession, I document the cross-variable effects of interest 
rate disturbances. 

Figure 4.1 displays interest rate forecasts made in June 1992, using data on 
national accounts through 19923 and some contemporaneous data on other 
variables. One forecast uses a 1992:II Treasury-bill rate of 3.687 percent, 
which is a guess, based on actual monthly data for April and May of the likely 
actual 1992:II value. The other two forecasts condition on 199231 bill rates 
lower by 0.25 and 0.5 percent. The forecast is made by updating coefficients 
based on data through 1992:I for all variables, forecasting 199231 using these 

1 --C TBILLS=3.687 + TBILLS=3.437 +u TBILLS=3.187 1 
Fig. 4.1 Reasury-bill rate, June 1992 forecast 



197 A Nine-Variable Probabilistic Macroeconomic Forecasting Model 

al 
c 2 3.5- 

J 3- 
- 

c 

5 2.5- 

E 2  
m 

3 
i 

1991 1992 1 993 1 994 1’ 
o-- I I I I r 1 1 1  

Years 
95 

1 --t TBILLS=3.687 + TBILLS=3.437 - m- TBILLS=3.187 1 
Fig. 4.2 Real GDP/GNP growth, June 1992 forecast 

coefficients, replacing the forecast values for 1992:II for the bill rate, M1, the 
unemployment rate, the value of the dollar, and stock prices with “actual” 
values based on monthly data for the first two months of the model, updating 
the coefficients again, treating this mixed vector of forecast and actual values 
for 1992:II as if it were a new data point, then projecting from 1992:III on- 
ward with this final set of updated coefficients. The parameters of the model 
are those obtained from 1992 updates of the likelihood (the “11” rows in 
tables 4.1 and 4.2), not those of the 1987 model. Note that these interest rate 
forecasts diverge and that the paths are spread apart by much more than their 
original 0.5 percent dispersion after a year or two. Note also that nonlinearity 
shows itself clearly-since the Treasury-bill rate enters the model untrans- 
formed, an initial 0.25 percent perturbation in its path would in a linear model 
produce exactly half the perturbation in the remaining forecast path that an 
initial 0.5 percent would. Here instead the 0.5 percent initial perturbation 
produces considerably less than double the effect of a 0.25 percent perturba- 
tion after the initial period. 

Figure 4.2 shows that the lower interest rates imply a forecast of more rapid 
output growth. Fig. 4.3 shows that the lower interest rates imply only slightly 
different GDP deflator inflation forecasts. The forecast inflation is lower with 
lower interest rates, but by a small enough amount that most of the drop in 
nominal rates still translates into a lower real rate. Fig. 4.4 shows that the sign 
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Fig. 4.5 Real GNP/GDP growth forecasts 

of the effect on inflation in commodity prices is the opposite of that on infla- 
tion in the GDP deflator and that the magnitude is larger. (Note, however, that 
the commodity price index is much more volatile than the GDP deflator.) 

This pattern of results is similar to the pattern that I noted in an earlier paper 
(Sims, in press) analyzing data across several countries with simpler VAR 
models. It raises interesting questions of interpretation, discussed in the ear- 
lier paper, that I leave aside here. 

Figure 4.5 shows successive forecasts of GNP/GDP growth rates over the 
recession period, together with the actual growth rates for the period as shown 
in the revised GDP data available in December 1992. Unlike the forecast er- 
rors reported in the tables, these are actual historical forecasts, so the effects 
of data revisions can be seen in the plots. Each plotted line shows actual data 
for three quarters before the first quarter for which there were no data on GNP 
at the time of forecast, together with forecast values for the twelve subsequent 
quarters. In 1990:IV, the forecast (which used data through 1990:III for na- 
tional accounts but some current data on interest rates, unemployment, 
money, the exchange rate, and stock prices) still showed no negative growth, 
although the projected positive growth rate of about 1.5 percent was low by 
historical standards. The 1990:IV GNP data were enough to pull the forecast 
growth for 1991:I down to less than 1 percent at an annual rate, but this left 
an error, compared to the actual negative growth of nearly 3 percent, nearly 
as large as for 1990:IV. The 1991:II and later forecasts, however, have been 
fairly well on track for the pattern of slow recovery since then. 

Figure 4.6 shows how these patterns appear on a graph in levels. The fact 
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Fig. 4.6 Real GNPlGDP level forecasts 

that the prerecession forecasts were for slow growth did not prevent them from 
being substantially mistaken about the 1991-92 levels of GNP. If growth pro- 
ceeds as the model projects through 1992, GDP will be back up to its 1990:IV 
projected path around the end of 1992. 

Figure 4.7 shows the sequence of interest rate forecasts. In every quarter 
except 199 1 :III, the interest rate fell by substantially more than the model had 
anticipated. On the basis of figures 4.1-4.4, we should expect that these in- 
terest rate shocks should increase forecast growth rates for output, slightly 
decrease forecast GDP deflator inflation, and increase forecast commodity 
price inflation over a two- to three-year horizon. We can see the corresponding 
increasingly optimistic long-run output growth forecasts in figures 4.5 and 
4.6. Figures 4.8 and 4.9 show that, indeed, long-run GDP deflator inflation 
forecasts shifted downward and long-run commodity price inflation forecasts 
shifted upward. Note also the substantial effect of the data revision and switch 
to GDP rather than GNP accounting between the 1991:IV and the 1992:I fore- 
casts. From figure 4.8, the “actual” inflation rate for 1991:III used in forming 
the 1991:IV forecast can be seen to be more than a percentage point above 
that used in forming the 1992:I forecast. 

4.7 Conclusion 

This model represents a further step in a research program attempting to 
bring into the realm of explicit probabilistic theory more of our uncertainty 
about the way the economy works. The model has been used for forecasts 
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Fig. 4.9 Commodity price inflation 1992 forecasts 

with the same parameters (the IT vector) since mid-1987 and has performed 
reasonably well. It is a part of a sequence of models that have been used for 
forecasting since 1980, all of which have made forecasts without any add 
factors or ad hoc adjustments in response to current data over the entire period 
of record. 

The form of the model has some implications for developments in macro- 
economic theory that aim at explaining observed data. The model has substan- 
tial time variation in its coefficients, which is essential to generating good 
forecasts for some variables. Theories that imply linear models with fixed 
coefficients will therefore inevitably fall short. Rational expectations theo- 
rists, who have taken the lead in developing explicitly stochastic models, have 
not yet generated econometrically usable structural models capable of fitting 
a world of stochastically drifting parameters. 

Recently, a number of authors (e.g., Bernanke 1986; Blanchard and Watson 
1986; and Sims 1986a) have explored the use of convenient schemes for inter- 
preting stationary VAR models. It is either discouraging or challenging, de- 
pending on your point of view, to note that, just as tools for convenient iden- 
tification of stationary VAR models begin to be widely used, evidence 
emerges that stationary VAR models are inadequate. The problem of generat- 
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ing convenient identification schemes for the nonlinear, nonnormal model laid 
out in this paper appears quite difficult. 

Appendix 
Data Description 

Treasury-bill rate. Three-month Treasury-bill rate, auction average. 
MZ. Re-1959 data on M1, spliced together with more recent official data. 

For this series as for others described below as spliced, the splicing is done 
simply by scaling the earlier data to match the level of the more recent data at 
the date of switch. 

PGDF! GDP deflator, 1987 = 100, seasonally adjusted. Spliced to earlier 
data on the GNP deflator at 1959:I. 

GDP87. GDP, 1987 prices, seasonally adjusted. Spliced to earlier data on 
real GNP at 1959:I. 

BFZ87. Business fixed investment in 1987 prices, seasonally adjusted, from 
the GDP accounts. Spliced to earlier data from the GNP accounts at 1959:I. 

UNEMF! Unemployment rate, civilians aged twenty and over, seasonally 
adjusted. 

DOLLAR. Federal Reserve Board trade-weighted index of the value of the 
U.S. dollar, 1973 = 100. 

STOCKS. The Standard and Poors 500 stock index, 1941-43 = 10. 
PCOMM. Sensitive intermediate and crude producer prices index, January 

1948 = 100 (U.S. Department of Commerce, Business Conditions Digest, 
ser. AOM098). 
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Comment Pierre Perron 

It is a humbling experience to be asked to comment on such a paper. Forecast- 
ing economic time is surely not an easy task, and relatively few succeed at 
providing a useful product that is based on scientific principles and is free of 
the so-called add factors. Christopher Sims has been the intellectual leader of 
a class of forecasting models that, indeed, can claim such success. This paper 
provides an overview of the main features of the model as it now stands as 
well as several assessments of the quality of recent forecasts. Being neither an 
expert on the topic of forecasting nor particularly well trained in the Bayesian 
tradition, I will restrain myself to some general remarks that I hope will help 
the reader better understand and appreciate some issues underlying this meth- 
odology These comments pertain to the following topics: the Bayesian inter- 
pretation, the treatment of trends, and the use of the mixture of normal distri- 
bution and its implications. 

The Bayesian Interpretation 

When reading a discussion of a paper that uses Bayesian tools, the reader 
often expects the discussant to probe or question the priors. I will refrain from 
doing so. In a sense, I am inclined to think that little can be gained from 
discussing whether one prior is better than another. What appears more impor- 
tant is to question the robustness of the results to reasonable changes in the 
prior specifications. This is, in principle, desirable, but in a project of this 
magnitude it appears difficult to ask the investigator for a full sensitivity anal- 
ysis. In effect, I have nothing against the priors; none seem particularly un- 
reasonable or, again, particularly undebatable. Many are imposed explicitly 
to make the model tractable. This is, however, fair game and does not appear 
any less a flaw than other simplifications found in alternative methodologies. 

Pierre Perron is associate professor of economics at the University of Montreal and a research 
associate at the Centre de Recherche et DCveloppement en Economique. 
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What strikes me, however, is that the model and the way in which it is 
estimated can hardly be said to be more Bayesian than any other popular ap- 
proaches such as the standard VAR, the structural VAR (e.g., Blanchard and 
Watson 1986), the error correction type model of Stock and Watson (1991), 
or even, if I dare say so, the traditional simultaneous equations models of the 
Cowles Commission type (e.g., Fair 1984). 

The basic starting point of the model is a data-generating process (DGP) of 
the general form 

(1) x(t) = f [ x ( t  - I) ,  . . . , x(t - m); e(t)l, 

where x(t)  is the k x 1 vector of variables in the system (the nine macroeco- 
nomic time series). In application, f is specified as a VAR of order m with 
time-varying parameters: 

j = l  s = l  

+ P(t; i ,  j + 1 ,  1)  + u(t; i ) ,  i = 1, . . . , k .  

So O ( t )  contains here all the p’s. The parameters e(t) are specified to evolve 
according to a general function of the form 

(3) g[w)p(t - 1)1 = g{w); e(t - 1); [x(t - s), s 2 11; PI, 

where @(t - 1) is the information set dated time t - 1 .  Here the vector p are 
some “hyperparameters” that govern the evolution of the parameters of the 
model. The vector of parameters 0(0) is also treated as a random variable with 
a marginal probability density function of the form h[8(0), y]. Here p and y 
are the T ’ S  in the notation of the paper (eleven of them in all). Hence, the 
likelihood of the data is 

(4) 

The model is estimated by maximizing the likelihood function with respect to 
p and y (more precisely, the method of estimation is quasi maximum likeli- 
hood since all k equations are estimated separately; as stated, it would be 
maximum likelihood estimation with no correlation across errors in the differ- 
ent equations). I see very little that is explicitly Bayesian in this approach; no 
priors are imposed over the T ’ S  to obtain the posterior distribution. 

Sims (1991) argues that what makes this modeling approach explicitly 
Bayesian is the presence of the probability density function h[8(0), y] for the 
vector of initial conditions for the time paths of the parameters 0(t) .  The ar- 
gument is that maximum likelihood estimation of y will not yield a consistent 
estimate, thereby invalidating the standard justification for the classical ap- 
proach (essentially because the accumulation of information as additional data 
become available does not add information about y given that the initial con- 
ditions have transient effects). I think that such an argument is open to debate. 

p[x( t ) ;  t = 1 ,  . . . , q x ( - m  - l), . . . , x(0);  p, y]. 
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This point can be illustrated as follows. In a state space model with stationary 
variables, one can use the ergodic distribution of the parameters to initialize 
the system. When the time paths of the variables are nonstationary, this is no 
longer feasible, and one must either condition on some initial values or spec- 
ify probability distributions for them. Sims’s (1991) arguments imply that 
doing the latter necessarily makes the model Bayesian. I do not think that 
a classical interpretation of this modeling is strained. The initial distribu- 
tion need not be viewed as imposing some priors; rather, it can be viewed 
simply as a convenient way to allow for randomness in the initial condition. 
The fact the maximum likelihood estimation on these parameters is inconsis- 
tent is also not much of a problem in a classical approach given that these 
initial conditions are often viewed as nuisance parameters, that is, param- 
eters that are not the object of direct inference. In any event, it appears less 
strained to give a classical interpretation to the imposition of a probability 
distribution on the initial conditions than it is to give a Bayesian interpreta- 
tion of the estimation method obtained without specifying prior distributions 
on IJ.. 

The many priors imposed and discussed at length to justify them are ways 
to impose restrictions on the unrestricted time-varying parameters VAR given 
by (2). After all, this VAR is much too general, and some restrictions need to 
be imposed. This is no different than for any other forecasting model. 

The final product is basically a constrained VAR where the constraints are 
highly nonlinear. Hence, the priors can be viewed as simply imposing a priori 
restrictions as in any other more “structural” model. The basic difference here 
from, say, the Cowles Commission approach is that the restrictions are “justi- 
fied” using prior distributions that are themselves justified by extraneous em- 
pirical results (e.g., the plausibility of unit roots characterizing the time se- 
ries) instead of being based primarily on theoretical arguments. 

Let me stress that none of the comments above are meant to carry any neg- 
ative connotations. On the contrary, I view it as quite an achievement when 
one is able to end up with a successful model with only some eleven free 
parameters by imposing restrictions that do not appear unbelievable. My view 
is basically that the priors act as alternative justifications for parameter reduc- 
tion efforts that are present in all methods. The advantage here may lie in the 
highly nonlinear aspects of the restrictions that are eventually achieved. 

The Weatment of Wends 

One of the priors imposed is that the parameters are such that the data series 
have a prior mean of independent integrated processes. Some have argued that 
this is basically equivalent to first-differencing the data prior to the analysis. 
This implication is false, as argued in Sims (1991), because only the mean of 
the prior is centered on the unit root but variability is allowed. Note, however, 
that such centering on the unit root creates potential problems associated with 
the probability mass put on explosive processes. It might be more appropriate 
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to truncate or downweight the possibility of explosive roots relative to station- 
ary ones. 

The main point that I wish to convey, however, is that there is a more subtle 
way in which the structure of the model implies fitted unit root processes for 
any series that seems to be characterized by a nonstationary mean (e.g., real 
GNP, M1, the GNP deflator, stock prices, etc.). This is linked to the treatment 
of trends or, indeed, their absence. The basic fact to recognize is that no time 
trends are included as regressors in the estimated VAR as described (prior to 
the imposition of restrictions) by (2). My argument is that leaving out time 
trends (of any variety, linear or segmented, with constant or random coeffi- 
cients) implies fitted series with unit roots. As much as Sims does not appear 
particularly to be a proponent of unit roots-see, for example, Sims (1988) 
(and I am not either; see Perron [1989])-the absence of trends in the esti- 
mated model precludes having series estimated to be characterized by “trend- 
stationary” processes (which we may view as equivalent to using differenced 
data). 

To see how the argument goes, it is useful to consider a standard VAR with 
time-invariant parameters (for a more detailed treatment, see also Campbell 
and Perron [ 199 1 ] ) . Consider a DGP of the form 

( 5 )  

with A(L) a matrix polynomial of order m in the lag operator L.  We can write 
( 5 )  as 

(6) A(L)x, = A(1)k + @S + A(1)St + e,, 

where CP = Z;!, iA, is the mean lag matrix. Alternatively, denote A( 1) = II 
following Johansen’s (1988) notation for cointegrated systems: 

(7) Ax, = p* + nx,-, - nS(t - 1) + lags(A.x,) + e, 

or 

(8) Ax, = p* + IIZ,-, + lags(Ax,) + e,. 

Note that, in general, the vector 2, may contain elements with unit roots as 
well as stationary processes. It depends on the values of the matrices in the 
lag polynomial A@). To see that the fitted series will behave as unit root pro- 
cesses if the estimated model does not contain trend regressors, consider the 
following. A VAR with no time trends will be misspecified unless IIS = 0. 
In general, with a cointegrated system, II = up’, where a and p are k x r 
matrices, r being the number of cointegrating vectors present and p being the 
matrix whose columns are the cointegrating vectors. Hence, IIS = 0 if and 
only if p’S = 0; that is, the cointegrating vectors that annihilate the nonsta- 
tionarity in the noise component (P’Z, - 1[0])  also annihilate the nonstation- 
arity in the trend component. Such a condition is often referred to as “deter- 
ministic cointegration .” 

x, = p + St  + Z,, A(L)Z, = e, - N ( 0 ,  X), 
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The condition p’6 = 0 may be one that is natural to impose, but it pre- 
cludes the possibility of variables with a stationary noise component. Suppose 
that one of the variables (say the jth) is trend stationary, that is, 6, # 0 and Z,,, - I(0); then one of the rows of p is eJ = (0, . . . , 1, 0, . . . , 0) (with a one 
in the jth position). Here, the unit vector is a (trivial) cointegrating vector. 
However, one of the conditions for the nonmisspecification of a VAR with no 
trends as regressors is that e,!6 = 6, = 0, that is, that the series is trendless. 
Accordingly, the model is misspecified if there is a series with a nonzero trend 
and a stationary noise component. The effect of this possible misspecification 
is to bias the parameters in such a way that the fitted values imply the presence 
of a unit root, and this bias does not vanish in large samples (for a proof in the 
univariate case, see Perron [ 19881). 

The example given above shows the importance of the treatment of trends. 
While I considered only simple linear time trends in the context of VAR with 
constant coefficients, the same principle applies in a more general context. 
The presence of trend regressors is necessary if trending series with stationary 
noise components are to be entertained as a possibility. I do not suggest the 
inclusion of linear time trends with constant coefficients in each equation. An 
interesting extension would involve the inclusion of time trends in the general 
VAR (2) with time-varying coefficients as well. The changes in these coeffi- 
cients may be infrequent, and the prior distribution of mixed normality for the 
coefficients is particularly well suited for this purpose (I discuss this further 
below). 

This increased generality would not come without drawbacks, however. It 
has been documented that the presence of time trends in estimated autoregres- 
sions creates, in general, a large downward bias on the sum of the autoregres- 
sive coefficients (see, e.g., Andrews 1991). Note, however, that this bias, 
unlike the ones created without trends, vanishes in large samples. In any 
event, asymmetrical priors could correct this bias. Such an extension may also 
introduce complexities in the specification of the priors. For example, flat 
priors on the trend coefficients and the autoregressive parameters are no longer 
adequate. Consider, for example, a simple univariate AR( 1) such that x, = p 
+ 6t + Z, with Z, = &,- I + e,. Such a process can be written as 

(9) 

or 

x, = (1 - a)p + 6cx + (1 - cxpt + ax,-, + e, 

x, = p* + Pt + ax,-, + e,, 

where p* = (1 - cx)p + 601, and p = (1 - a)6. Note that, when cx = 1, 
p = 0, and a good prior should reflect this relation. Accordingly, priors 
should not be imposed on a, p, and p* but directly on 01,  6, and p. This may 
be more difficult to implement in practice. For similar arguments cast explic- 
itly in a Bayesian framework, see Uhlig (1991). 
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The Mixture of Normals Prior 

In his concluding comments, Sims argues that “the model has substantial 
time variation in its coefficients, which is essential to generating good fore- 
casts for some variables.” The importance of time variation in the coefficients 
is indeed highlighted throughout the paper. I certainly agree with this interpre- 
tation and the fact that the introduction of time variation in the parameters is a 
major step forward. However, in this model, time variation is associated with 
another modeling device, namely, specifying the form of the distribution of 
disturbances as a mixture of two normals. I think that such an assumption (or 
prior) is not simply “an arbitrary convenience” but rather a potentially equally 
important feature of the model. 

The mixture of normal assumption for the distribution of the disturbances 
has the following form for the vector [P ( t ) ,  u(t; i ) ] :  

where 4(a, b) is the normal density function with mean a and variance b. 
This specification states that [P(t ) ,  u(t: i ) ]  has mean [P*(t  - I ) ,  01, where 
P*(t  - 1) is also specified to follow a specific distribution. Its variance, how- 
ever, is V(t;  i )  with probability nlo and n:IV(t; i )  with probability (1 - nl0). 

While the use of mixtures of normal distribution, and other non-Gaussian 
distributions in general, for disturbances is rather new in econometric model- 
ing, it has some history in the statistics literature (see, in particular, Kitagawa 
[1987] and the comments related to that paper, esp. Martin and Raftery 
[1987]). The main motivation for its use is the modeling of structural changes 
(and outliers) in a time series of data. To see why this is so, consider the case 
where, in (1 I ) ,  nl0 is small and rill is large (substantially larger than one). In 
this case, the disturbances are drawn from the low-variance normal distribu- 
tion most of the time, but, occasionally, a disturbance is drawn from the nor- 
mal distribution with high variance. This effectively introduces a fat-tailed 
type behavior for the disturbances. To see why this can be useful in the anal- 
ysis of structural change, note first that the p’s follow martingale-like paths 
and that the x’s are, in general, integrated as well (in the sense that the errors 
u[t: i ]  have a permanent effect on the level of the series x [ t ] ) .  In this case, a 
disturbance u(t; i) drawn from the high-variance component will create a pat- 
tern similar to a structural change in the level of the n’s (since the event is 
relatively rare and of a different order of magnitude than the disturbances that 
are drawn most of the time). Similarly, a disturbance to the coefficients P(t;  i, 
j + 1, 1) (in the notation of [2]), that is, in the constants of each equation, 
will create a pattern similar to a structural change in the rate of growth of the 
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series. Disturbances from the high-variance component to other coefficients 
create major changes in the autoregressive coefficients that are more difficult 
to interpret but that could include structural changes in cointegrating vectors. 
Note that, if trends are included in the specifications to allow “trend- 
stationary” series, similar disturbances to the u’s and the constants become, 
respectively, outliers and changes in level while structural changes in slopes 
would be associated with draws from the high-variance component for the 
coefficients on the time trends. 

Many recent papers have argued that structural changes of the type de- 
scribed above are likely to be important ingredients in the characterization of 
many economic time series (e.g., Perron 1989, 1990; Hamilton 1989; Chen 
and Tiao 1990; Gregory and Hansen 1992; and others). A recent study by Park 
(1992) also extends Kitagawa’s (1987) framework explicitly allowing mix- 
tures of normals and shows its relevance in characterizing some aggregate 
economic time series involving a one-time change in slope. For these reasons, 
I think that the mixture of normals specification is likely to be a key ingredient 
in the success of this methodology. It would indeed be of substantial interest 
to report in some future work the time path of the coefficients and the implied 
decomposition into trend and noise components. 

Several comments stand out from the structural change interpretation dis- 
cussed above. First, let me reiterate the point made in the last section about 
the potential importance of including trend regressors to allow for the pres- 
ence of series with a noise component that is stationary (in the sense of having 
no unit root but not excluding possible changes in the autoregressive coeffi- 
cients). When allowance is made for the possibility of structural changes in 
slope and/or intercept, such a generalization becomes even more relevant (see 
Perron 1989). 

A comment specifically directed to the specification of the mixture of nor- 
mals (1 1) is the following. Note that there is only one parameter,  IT,^, measur- 
ing the probabilities associated with each component of the mixture; accord- 
ingly, the probability of drawing a disturbance from the high-variance 
component is the same for all elements of the vector P ( t )  (i.e., the drift and 
the autoregressive coefficients) and for the errors u(t; i). Under the interpreta- 
tion discussed above, this implies the same probability of occurrences for 
changes in level, in slope, or in the autoregressive coefficients (e.g., in the 
cointegrating vectors). Similarly, the coefficient IT,,  is unique; hence, the rel- 
ative difference in the magnitude of the variances in the mixture is the same 
for all coefficients. These constraints appear overly stringent. I do not see why 
one should expect the same probability of changes for all coefficients (or for 
changes in different components of the trend function of the noise function). I 
believe that substantial gains could be achieved by relaxing this constraint. 
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Concluding Comments 

The main lesson that I have learned from having to study the issues behind 
the forecasting methodology proposed by Sims, to write these comments, is 
that I came to appreciate its qualities better. I expressed some divergence of 
opinion as to its Bayesian interpretation, but such issues are mainly ones of 
semantics and in no way question the fact that this forecasting model is well 
grounded and a very useful development in this line of research. My other 
comments are merely suggestions for possible extensions that could improve 
what is already a successful model. 

While the model presented here appears relatively successful at providing 
unconditional predictions, it falls short when considering conditional predic- 
tions to analyze policy interventions and interpret the more structural aspects 
of the model. These issues can be analyzed only in a carefully identified sys- 
tem. Such identification issues have been studied in the context of VAR mod- 
els with time-invariant parameters (see, e.g., Blanchard and Watson 1986; and 
Sims 1986) but are still open questions in the present, more general frame- 
work with time-varying parameters. Analyses pertaining to these identifica- 
tion issues indeed appear to be important avenues for future research. 
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