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7 The Covariance Structure of 
Mortality Rates in Hospitals 
Douglas Staiger 

7.1 Introduction 

In 1987 the Health Care Financing Administration (HCFA) began publish- 
ing standardized mortality scores for each hospital in the country as an indica- 
tor of quality of care (Bowen and Roper 1987). Since then, the use of similar 
patient mortality measures has become widespread, to the point where some 
insurance plans base hospital reimbursement on such mortality measures 
(Minnesota Blues 1991; Perry 1989). At the same time, patient mortality has 
been widely used in studies of the determinants of quality of care in hospitals 
(Cutler 1995; Garber, Fuchs, and Silverman 1984; Luft, Hughes, and Hunt 
1987; McClellan, McNeil, and Newhouse 1994; Staiger and Gaumer 1995) 
and in studies of patient choice among hospitals (Luft, Hunt, and Maerki 1987; 
Luft et al. 1990; Staiger 1993). Despite the widespread use of patient mortality 
as a proxy for quality of care, there is considerable controversy over the statisti- 
cal reliability and validity of such measures (Hofer and Hayward 1996; Keeler 
et al. 1992; Krakauer et al. 1992; Luft and Romano 1993; McNeil, Pedersen, 
and Gatsonis 1992; Park et al. 1990). 

A number of questions are of particular interest to both the research and 
the policy communities. First, how much useful information is there in such 
inherently noisy measures of quality; for example, how large is the signal-to- 
noise ratio? A related question is how persistent are these measures of quality 
of care: Are hospitals with unexpectedly high mortality rates this year likely to 
have unexpectedly high mortality rates next year, in five years, in ten years? Is 
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the presumption of high persistence, commonly assumed by both the public 
and by analysts doing fixed-effect models, consistent with the data? A third 
question is whether there is a correlation in patient mortality for patients with 
distinct diagnoses admitted to the same hospital? If so, then combining infor- 
mation from different types of patients may prove to be a useful way of summa- 
rizing common hospital-level components of quality of care. A final question 
of interest is what has happened to the cross-sectional distribution of patient 
mortality over time; for example, has there been convergence or divergence 
across hospitals? Have there been any noticeable changes in the variation of 
these measures in recent years as reimbursement and competitive pressures 
have grown? 

This paper uses annual data from 1974-87 for 492 large hospitals to investi- 
gate these questions. I analyze data on standardized mortality rates for Medi- 
care admissions in both specific diagnoses and in aggregate. In addition to 
presenting simple descriptive evidence on the distribution of the mortality 
measures, I estimate covariance structures using general method of moment 
(GMM) methods along the lines of MaCurdy (1982) and Abowd and Card 
(1989). This method provides a simple and powerful description of the basic 
features of the data. 

The empirical work leads to a number of interesting conclusions. First, 75 to 
90 percent (depending on the diagnosis) of the variance in mortality is entirely 
transitory and can be thought of as independent identically distributed (i.i.d.) 
measurement error. Second, the remaining nontransitory component of mortal- 
ity is fairly persistent but is in genera! not well approximated as a permanent 
fixed effect. Instead, the nontransitory component is fairly well described as 
an autoregressive (AR( 1)) process with a first-order serial correlation of .8-.95 
depending on the diagnosis. Third, the combined data are fit fairly well by a 
simple three-factor model in which mortality consists of (1) i.i.d. error, ( 2 )  a 
fairly transitory diagnosis-specific component, and (3) a very permanent hos- 
pital component that is common across diagnoses. Finally, although there are 
some interesting changes in the cross-sectional distribution of these mortality 
measures over time (particularly during the 1970s), there is no obvious evi- 
dence that these distributions have tended to converge or diverge over time or 
changed in any interesting ways during the 1980s. 

The key difficulty in interpreting these empirical results is the possibility 
that much of what we observe in these measures may reflect systematic varia- 
tion in unobserved patient characteristics rather than quality of care. However, 
to the extent that this variation reflects quality of care, there are a number of 
useful lessons to be learned. Clearly, the large i.i.d. component in these mortal- 
ity measures limits the usefulness of historical measures as indicators of cur- 
rent quality. Similarly, to the extent that this i.i.d. component is measurement 
error, these mortality measures are a poor choice as independent variables to 
proxy for quality of care. The presence of an important component of mortality 
that is serially correlated raises questions about the bias of hospital fixed-effect 
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models that have been used to analyze mortality. Finally, the three-factor model 
is consistent with the notion that quality of care depends on both hospital-level 
infrastructure (e.g., nursing staff, physical plant), which is relatively unchang- 
ing, and diagnosis-specific technology (e.g., surgical techniques, medications), 
which may be a large source of the variation for some diagnoses but dissemi- 
nates relatively quickly. 

The paper proceeds as follows. Section 7.2 describes the data and estimation 
approach. Section 7.3 presents simple descriptive evidence on how the mortal- 
ity rate distribution has evolved over time. Section 7.4 estimates the covariance 
structure for standardized mortality rates. Section 7.5 concludes. 

7.2 Data Sources and Methods 

7.2.1 Data 

The data are derived from a 25 percent random sample of all short-term 
general hospitals in the continental United States, developed by Abt Associ- 
ates. Of these hospitals, only those operating continuously from 1974 to 1987 
were included in the analysis. Each observation in the data corresponds to a 
hospital-year from 1974-87, yielding 14 observations per hospital. 

The data set contains information on mortality for acute myocardial in- 
farction (AMI) admissions, congestive heart failure (CHF) admissions, and ur- 
gent care admissions (an aggregate group that includes AM1 and CHF). These 
three categories are discussed in more detail below. To be included in the sam- 
ple, a hospital had to have at least one admission in each diagnosis category in 
every year. This effectively limits the sample to relatively large, urban hospi- 
tals. The final sample includes 492 hospitals, with 14 years of data on each hos- 
pital. 

I use data on 45-day postadmission mortality for a subsample of Medicare 
patients, chosen on the basis of 59 conditions necessitating urgent admission 
(see Gaumer, Poggio, and Coelen 1989). These 59 conditions were selected by 
clinical panels to include cases for which adverse mortality outcomes might 
reasonably result as the result of care received. These urgent care conditions 
accounted for just over 12 percent of all Medicare admissions in 1987. Among 
the urgent care admissions, AM1 and CHF are the most frequent diagnoses and 
account for roughly one-half of the admissions. Mortality measures are avail- 
able for AM1 and CHF separately, and for urgent care diagnoses as a whole. 

The mortality data come from a 20 percent sample of Medicare discharge 
records (the MEDPAR data) combined with social security death records 
through 1989. For example, the 45-day mortality rate is based on the fraction 
of urgent care patients admitted during the calendar year that had a date of 
death within 45 days of admission. Note that these data include all deaths, not 
just those in the hospital. 

Differences in mortality rates across time and across hospitals may reflect 
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differences in patient mix rather than differences in quality of care. Therefore, 
I use an expected mortality rate (similar to that used by HCFA in their mortal- 
ity reporting) for each hospital-year to control for the variation in mortality due 
to variation in patient mix. The expected mortality rate is based on a reference 
population of Medicare patients drawn from the MEDPAR data.' Mortality 
rates were computed for the reference population for each of 354 cells defined 
by diagnosis/procedure (59 groups), gender ( 2  groups), and age (65-74,75-84, 
and over 85). Each study patient was assigned an expected mortality equal to 
the mean value for the applicable cell. The hospital-year expected mortality 
rate is the average expected mortality for study patients within each hospital 
year. 

Raw 45-day mortality rates (MR) are transformed into 2-scores by sub- 
tracting the expected mortality rate (EMR) and dividing by the estimated stan- 
dard deviation in mortality. Raw mortality rates display considerable hetero- 
scedasticity, with the variance inversely related to the number of admissions 
(N). The standard deviation is estimated assuming that mortality is binomially 
distributed, with the probability of death equal to the expected mortality rate. 
Thus the mortality Z-score is given by 

2 = (MR - EMR)/sqrt[EMR(l - EMR)/N]. 

This type of 2-score measure is a relatively common method of standardizing 
across hospitals of different sizes (see, e.g., Luft et al. 1990). 

7.2.2 Methods 

Modeling and estimating the error structure for a set of variables with panel 
data is conceptually straightforward. I follow an approach similar to that used 
by MaCurdy (1982) and Abowd and Card (1989), who use panel data on hours 
and earnings to decompose the error structure into permanent and transitory 
components. Since these methods are fairly well known, I will not go into 
detail on them here. 

The basic approach is to choose an error structure for Zi, that depends on a 
K X 1 vector (0) of unknown parameters, derive the implied covariance matrix 
(a(@)) for Z = [Z74, Z75, . . . , Zg7], and estimate the unknown parameters by 
fitting the implied covariance matrix to the actual covariance matrix. For ex- 
ample, if the mortality Z-score is composed of a hospital fixed effect plus i.i.d. 
noise, then the covariance matrix of Z takes the simple form 

qr = 0, + 0, 

f2r,r-k = 0, if k > 0, 

1. Unfortunately, the reference population changes in 1979. For the years 1974-78, the reference 
population is all MEDPAR admissions in those years. For the remaining years, the reference popu- 
lation is all MEDPAR admissions during 1979-83. Consequently, expected mortality rates (aver- 
aged over the whole sample) take a discrete jump (downward) in 1979. I have rescaled expected 
mortality rates after 1979 so that, on average, 1978 and 1979 expected mortality rates are equal. 
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where 0, represents the variance of the i i d .  measurement error (which only 
appears in the variances) and 0, represents the variance of the fixed effect 
(which determines all the off-diagonal covariances). 

GMM estimates of 0 minimize an optimally weighted sum of squared devi- 
ations between the actual and theoretical covariance matrices. Let M be a J X 1 
vector of the nonredundant elements of the sample covariance matrix (so if Z 
is N X L, the sample covariance matrix Z‘ZIN has L . ( L  + 1)/2 distinct ele- 
ments), and let m ( 0 )  be a J X 1 vector of the corresponding theoretical 
moments. Then O,,, minimizes the statistic Q(0) = N * [M - rn(0)]’ V-I 
[A4 - rn(@)], where V is the sample covariance matrix of M (fourth moments 
of 2). The statistic Q evaluated at the GMM estimate is distributed as chi- 
squared with J - K degrees of freedom and therefore provides a goodness-of- 
fit test for the model. Furthermore, parameter restrictions are easily tested us- 
ing the statistic L = Q, - Q, where Q, and Q are the goodness-of-fit statistics 
from the restricted and unrestricted models. Under the null corresponding to 
the restricted model, L is distributed as chi-squared with degrees of freedom 
equal to the difference in the degrees of freedom of Q, and Q. 

The GMM framework provides a natural method of testing how increasingly 
restrictive models fit the data. I first test whether the data can be fit well with 
a stationary covariance structure, that is, a structure in which Cov(Z,, Z,-J only 
depends on k. I then test even more restrictive error structures against the sta- 
tionary but otherwise unconstrained model. 

7.3 Descriptive Evidence 

Figures 7.1-7.3 summarize some of the basic facts and trends in 45-day mor- 
tality rates for urgent care, AMI, and CHF admissions. Figure 7.1 plots trends 
in the raw data used to construct the mortality 2-scores from 1974 to 1987. 
The variables have been scaled to better fit on one graph: the mortality rate and 
expected mortality rate are given as deaths per 10 admits, while the number of 
admissions has been logged. Actual mortality rates fell for all three admission 
categories from 1974 until around 1980 and then flattened out. For example, 
AM1 45-day mortality rates fell from over 33 percent in 1974 to just over 25 
percent in 1980. Expected mortality over this time period was surprisingly flat, 
suggesting that the decline in observed mortality was due to true improvements 
in quality of care rather than changing patient mix. At the same time that mor- 
tality was trending downward, patient volume was trending upward. For ex- 
ample, CHF admissions roughly tripled between 1974 and 1980. 

Figure 7.2 plots trends in the first three moments (mean, variance, skewness) 
of the mortality Z-score measures. These trends highlight important changes in 
the distribution of the Z-score over time and provide some evidence on whether 
hospitals are converging or diverging over time. The trend in the mean of the 
Z-score parallels the trend in actual mortality, falling until 1980 and then re- 
maining relatively flat for all diagnoses. In contrast, the variance of the Z-score 
is relatively stable, perhaps trending downward slightly for all diagnoses. The 
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Fig. 7.3 Empirical p.d.f.'s of mortality 2-score: 1974-75 (solid line), 1980-81 
(long dashes), and 1986-87 (short dashes) 

stability of the variance over time, in spite of a large rise in the number of 
patients on which these measures are based, may seem surprising. However, 
recall that the 2-score rescales by an estimate of the standard deviation in mor- 
tality and therefore should not be overly sensitive to changes in the number of 
patients. Finally, the skewness of the 2-score distribution has fallen over time, 
particularly for CHF between 1974 and 1979. 

The trends in the moments of the 2-score raise two issues. First, there is 
clearly a mean shift in mortality over time, and it will be important to remove 
year effects from this measure. More important, even after allowing for a mean 
shift, the distribution of the Z-score does not appear to be stationary. Thus 
a stationary covariance structure may fit the data poorly, particularly in the 
early years. 

Figure 7.3 plots kernel estimates (using a Gaussian kernel) of the partial 
distribution functions (p.d.f.'s) as a further way of inspecting changes in the 
distribution of the 2-scores over time. Each panel plots p.d.f. estimates pooling 
two years of data for three distinct time periods: 1974-75, 1980-81, and 1986- 
87. Each year's data were demeaned in order to remove the time effects. The 
changes in the distributions between 1974-75 and 1980-81 are quite striking. 
The distribution of AM1 mortality is relatively fat tailed and flat topped in 
1974-75, while the distribution in later years is generally tighter and seems to 
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exhibit some bimodality. The CHF distribution has a large spike of low- 
mortality hospitals in 1974-75 with a long tail of higher mortality. By 1980-81 
this spike has largely disappeared, and the distribution looks more symmetric. 

Overall, a number of interesting facts emerge from figures 7.1-7.3. First, 
there is no obvious evidence of convergence in the cross-sectional distribution 
of mortality. Neither is there any striking evidence that this distribution has 
changed much during the 1980s in response to the changing reimbursement 
and market conditions facing hospitals. In fact, since some time around 
1979-81 the distribution has been remarkably stable in both shape and loca- 
tion. In contrast, over the mid- to late 1970s the mortality distributions changed 
dramatically: average mortality fell, as did the spread and skewness of the dis- 
tribution of standardized mortality rates across hospitals. 

7.4 Estimates of the Covariance Structure 

I now turn to more formal estimates of the covariance structure of the Z- 
score for mortality in each of the diagnosis categories. The data that provide 
the basis for these estimates are contained in the sample covariance matrix for 
each diagnosis category. Since there are 14 years of data, there are 14 . 15/2 = 

105 distinct moments and potential degrees of freedom. I also consider the 
covariance between AM1 mortality and CHF mortality. This matrix is not sym- 
metric (e.g., Cov(Z,,,,,,,, Z,,,,,) is not equal to Cov(Z,,,,,,, ZCHF,74)) and there- 
fore provides 14 * 14 = 196 total degrees of freedom. 

Table 7.1 summarizes the results of a series of model specification tests. The 
first row contains the GMM goodness-of-fit statistic testing whether the data 
are consistent with a stationary covariance matrix (i.e., a symmetric covariance 
matrix with constant values along each diagonal). As might be expected from 
the changes in distributions that were apparent in figure 7.3, only urgent care 
mortality is fit well by a stationary covariance matrix. The AM1 mortality data 
reject stationarity at the 2 percent level, while CHF and the AMI-CHF covari- 
ance overwhelmingly reject stationarity, From direct inspection of the covari- 
ance matrices, it is apparent that most of the poor fit is associated with differ- 
ences between the 1974-78 period and later years. 

Despite the poor fit of the unconstrained stationary model, the resulting esti- 
mates still provide information about the general covariance pattern found in 
the data. Figure 7.4 graphs the estimated autocovariances and corresponding 
95 percent confidence intervals. These covariograms are the basic data that any 
stationary model of the error structure is trying to fit. The sharp drop-off in 
covariance at the first lag for all three diagnoses, combined with the lack of any 
large contemporaneous correlation between AM1 and CHF mortality, suggests 
significant i.i.d. measurement error in mortality. The magnitude of the decline 
suggests that as much as 90 percent of the variance in mortality is i.i.d. error. 
The gradual decline in covariance at higher lags for urgent care and AM1 sug- 
gests some kind of an AR process-an MA process would be more transitory, 
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Table 7.1 Model Specification Tests for Covariance Structure of Mortality 
Z-Score, 1974-87 (based on GMM goodness-of-fit statistic) 

For Covariance Matrix of 

Model Specification Urgent Care AM1 CHF AMI’CHF 

1. Unconstrained stationary 
covariance (symmetric) 

Tested against model I 
2. Fixed effect 

+ i.i.d. error 
+ ARMA(2,2) 

3. Fixed effect 
+ i.i.d. error 
+ AR(2) 

4. Fixed effect 
+ i.i.d. error 
+ AR( 1) 

5.  i.i.d. error 
+ AR( 1) 

6. Fixed effect 
+ i.i.d. error 

7. i.i.d. error 

104.6 
(.156) 
P I 1  

8.50 
(.290) 

[71 

9.29 
(.410) 

P I  
10.76 
(.377) 
I101 

12.68 
(.315) 
[111 

77.36 
(.OW) 
[I21 

147.6 
(.OW) 
~ 3 1  

120.26 
(.022) 
1911 

16.77 
(.019) 

[71 

23.86 
(.005) 

191 

27.92 
(.002) 
[lo1 

37.25 
(.OOO) 
[I11 

85.90 
(.OW) 
[I21 

138.8 
(.OOO) 
r131 

139.00 
(.001) 
~911 

11.95 
(.102) 

[71 

13.60 
(.137) 

P I  
13.72 
(.186) 
[lo1 

13.92 
(.237) 
[I11 

15.74 
(.203) 
r121 

41.08 
(.OW) 
r131 

Nore: Entries in table are GMM goodness-of-fit statistics. Numbers in parentheses are p-values; 
numbers in brackets are degrees of freedom. 

while a fixed effect would be more permanent. In contrast, both CHF and the 
AMI-CHF covariance look small but fairly persistent, as would be expected 
with a fixed-effect model. 

Although stationarity is not generally supported by the data, it is useful to 
consider still more restrictive models in order to see whether any simple error 
structure adequately summarizes the covariogram. Rows 2-7 of table 7.1 test 
increasingly restrictive models of the error structure against the unconstrained 
stationary model. I begin with a flexible model that includes a fixed effect, i.i.d. 
error, and an ARMA(2,2) component. The next two rows restrict the ARMA to 
be AR(2) and then AR(1). Finally, the last three rows remove the fixed effect 
or the AR(1) or both (leaving just i.i.d. error). 

In general, these goodness-of-fit tests suggest that a simple model of i.i.d. 
error plus an AR(1) does about as well as any other model in fitting each of 
the covariance structures. Only for AM1 mortality is there a clear preference 
for adding a fixed effect or an ARMA(2,2). A simple fixed-effect model is 
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Fig. 7.4 GMM estimates of covariogram (covariance by lag length) for 
mortality Z-score. Unconstrained stationary covariance and 95 percent 
confidence interval estimated with data from 1974-87. 

soundly rejected for urgent care and AMI. However, for both AM1 and CHF, 
all of the more restrictive models do a poorer job fitting the data than the un- 
constrained stationary model. 

Figure 7.5 illustrates the ability of alternative models to fit the covariogram. 
These figures graph the estimated covariogram for the unrestricted stationary 
model (solid line), the model with fixed effects, measurement error, and an 
ARMA(2,2) component (long dushes), and a more restrictive model with mea- 
surement error and an AR( l)  component (short dashes). The variance (lag of 
zero) is estimated equally well by all models and therefore has been left out of 
these figures to avoid distorting the scale. It is apparent that the more restrictive 
AR(1) model does a reasonable job fitting the basic features of the data. The 
more flexible ARMA(2,2) specification is able to pick up some apparent fluc- 
tuations in the covariance at short lags while the fixed effect helps to fit the 
leveling off of the covariogram at longer lags, particularly for AM1 mortality. 

Table 7.2 provides parameter estimates assuming that mortality is composed 
of a fixed effect, a stationary AR(I), and stationary i.i.d. error. For example, 
column (1) estimates that the total variance in urgent care mortality is com- 
posed of a large measurement error component (.844) and relatively small 
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CHF AM1 ' CHF 

Fig. 7.5 GMM estimates of covariogram (covariance by lag length) for 
mortality Z-score. Covariance estimated with data from 1974-87: unconstrained 
(solid line), fixed effect + ARMA(2,2) + i.i.d. (long dashes), and AR(1) + i.i.d. 
(short dashes). 

fixed-effect (.080) and AR(1) (.200) components. The AR(1) is fairly persis- 
tent, with a serial correlation of .829. The goodness-of-fit statistic implies that 
this simple model adequately summarizes the data. Dropping the fixed effect 
(col. [2]) has little effect on the overall fit of the model but increases the vari- 
ance and persistence of the AR( I). In other words, the data cannot distinguish 
between a fixed effect and a somewhat more permanent AR( 1). Note that the 
t-tests generally reject the hypothesis that the fixed-effect variance is zero, 
while chi-squared tests (based on the difference in the goodness-of-fit statistic 
in models with and without a fixed effect) often do not reject this hypothesis. 
This is a common feature of GMM models of parameters that are nearly un- 
identified. 

The remainder of the estimates tell a similar story: Measurement error ac- 
counts for at least 75 percent of the variance for each diagnosis; the fixed effect 
accounts for roughly 5 percent of the variance; and a moderately persistent 
AR( 1) accounts for the remainder of the variance, although this component 
accounts for more of the variance in AM1 mortality than in CHF mortality. The 
covariance between AM1 and CHF is quite persistent, making it impossible to 



Table 7.2 Variance Decomposition of Error Structure of 45-Day Mortality Z-score, 1974-87 

Variance 
Component 

Urgent Care AM1 CHF AMI'CHF 

With Without With Without With Without With Without 
Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed 
Effect Effect Effect Effect Effect Effect Effect Effect 

(1) (2) (3) (4) (5 ) (6) (7) (8) 

Variance of i.i.d. error 

Variance of fixed 
effect 

Variance of AR( 1) 

6 

GMM goodness-of-fit 
statistic 

( p-value) 
[d.f.] 

0.844 
(.021) 

0.080 
(.QW 
0.200 
(.034) 

0.829 
(.066) 

115.39 
(.155) 

[1011 

0.858 
(.01.7) 

0.266 
(.023) 

0.906 
(.014) 

117.31 
(.143) 

[I021 

0.786 
(.029) 

0.055 
(.016) 

0.208 
(.028) 

0.648 
(.074) 

148.18 
(.ow 
[lo l l  

0.814 
(.02 I )  

0.227 
(.024) 

0.792 
(.030) 

157.51 
(.OW 

[I021 

0.915 
(.041) 

0.044 
(.011) 

0.05 I 
(.035) 

0.576 
(.360) 

170.04 
(.OW 

[1011 

0.938 
(.017) 

0.07 I 
(.011) 

0.941 
(.027) 

171.13 
(.ow 
[I021 

0.016 
(.011) 

-2.14 
( 1240) 

2.18 
( 1240) 

0.999 
(.379) 

3 10.66 
(.ow 
~ 9 2 1  

0.016 
(.010) 

- 

0.037 
(.OW 
0.957 
(.035) 

3 10.87 
(.ow 
[1931 

Notes: Z,, = Fixed effect + AR( I )  + i.i.d. error. Numbers in parentheses are standard errors of parameter estimates. 
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identify a fixed effect from a very persistent AR(1). Interestingly, the variance 
of this persistent effect in the covariance is of roughly the same magnitude as 
the variance of the fixed effect in the AM1 and CHF models. This suggests that 
AM1 and CHF mortality may have a common component that is quite persis- 
tent. As a consequence of the failure of stationarity in the data, the goodness- 
of-fit statistic rejects all the models except urgent care. 

The descriptive evidence presented in section 7.3 suggests that the nonsta- 
tionarity is most evident in the early years of data. Therefore, a simple way to 
avoid the nonstationarity (and at the same time check on the robustness of the 
underlying parameter estimates) is to drop the early years from the analysis. 
Tables 7.3 and 7.4 replicate the results of tables 7.1 and 7.2 using only data for 
1979-87. The improvement in the fit of the models is dramatic (see table 7.3). 
Of course, some of this apparent improvement is due to lower power of these 
tests with a shorter panel. Still, in striking contrast to table 7.1, stationarity 

Table 7.3 Model Specification Tests for Covariance Structure of Mortality 
2-Score, 1979-87 (based on GMM goodness-of-fit statistic) 

For Covariance Matrix of 

Model Specification Urgent Care AM1 CHF AMI’CHF 

1. Unconstrained stationary 
covariance (symmetric) 

Tested against model 1 
2. Fixed effect 

+ i.i.d. error 
+ ARMA(2,2) 

3. Fixed effect 
+ i.i.d. error 
+ AR(2) 

4. Fixed effect 
+ i.i.d. error 
+ AR(1) 

5 .  i.i.d. error 
+ AR( 1) 

6. Fixed effect 
+ i.i.d. error 

7. i.i.d. error 

31.10 
(.701) 
[361 

3.98 
(.137) 

P I  

(.221) 

7.43 
(.191) 

7.62 
(.267) 

[61 

32.97 
(.OW 

101.6 
(.ow 

[81 

5.72 

[41 

PI 

171 

36.30 
(.455) 
1361 

0.55 
(.758) 

P I  
5.14 

(.273) 

8.10 
(.151) 

151 

8.16 
(.227) 

[61 

37.38 
(.ma) 

[41 

[71 

114.32 

181 

48.25 
(.083) 
[361 

3.47 
(.176) 

P I  
4.11 

(.392) 
[41 

~ 5 1  

8.26 
(.142) 

10.08 
(.108) 

[61 

11.56 
(.116) 

[71 

54.05 
(.OW 

[81 

67.18 
(.639) 
[721 

3.00 
(.223) 

121 

3.47 
(.482) 

[41 

3.48 
(.627) 

151 

3.48 
(.747) 

[61 

3.49 
(336) 

[71 

35.05 
(.o@N 

[81 

Nore: Entries in table are GMM goodness-of-fit statistics. Numbers in parentheses are p-values; 
numbers in brackets are degrees of freedom. 
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cannot be rejected for any of the covariance matrices. A model of i.i.d. error 
with an AR( 1) cannot be rejected for any of the covariance matrices. For Ur- 
gent care and AMI, the fixed-effect model is clearly rejected in favor of the 
AR(1) model. In contrast, CHF and the AMI-CHF covariance are fit equally 
well by a fixed-effect model. 

Table 7.4 provides parameter estimates of the AR( 1 )  model with and without 
a fixed effect for the 1979-87 data. Without the fixed effect, these estimates 
are little changed from those in table 7.2 using the entire panel. The goodness 
of fit of the models is much improved over table 7.2, as can be seen in the last 
row of the table. Finally, in contrast to estimates based on the full panel, the 
fixed-effect component is not particularly well identified. 

Overall, the estimates for both the full panel and for the limited 1979-87 
data have the same implications. Namely, the mortality data contain significant 
measurement error, a somewhat transitory serially correlated component, and 
perhaps a common hospital component that is quite permanent. Table 7.5 in- 
vestigates whether this simple three-component structure can adequately sum- 
marize the joint covariance matrix of the AM1 and CHF mortality data. The 
data that provide the basis for these estimates are contained in the sample co- 
variance matrix for the combined AM1 and CHF data (i.e., Z'Z/N where Z = 
(ZAM,, ZcHF)). Since there are 14 years of data for each diagnosis group, there 
are 28 . 29/2 = 406 distinct moments and potential degrees of freedom. Col- 
umn (2) of table 7.5 limits the analysis to the 1979-87 data and therefore has 
18 * 19/2 = 171 degrees of freedom. 

Data from the full sample once again overwhelmingly reject the stationarity 
assumption. A simple three-factor model is also soundly rejected against the 
alternative unconstrained stationary model. The three-factor model assumes 
that mortality for each diagnosis is composed of (1) a common factor that 
follows an AR( 1) with no measurement error and (2) a diagnosis-specific fac- 
tor (one for each diagnosis) that consists of i.i.d. measurement error plus an 
AR(1). Although the model is statistically rejected, it does precisely summa- 
rize the key features of the data. There is a very persistent factor that is com- 
mon to both diagnoses. Added to this is i.i.d. noise for each diagnosis and a 
relatively transitory AR( 1) component with serial correlation of roughly .6 for 
both diagnoses. Furthermore, the AR( 1) component accounts for a much larger 
share of the variance for AM1 mortality than for CHF mortality. 

Restricting the sample to 1979-87 dramatically improves the ability of a 
stationary model to fit the data and improves the fit of the three-factor model 
as compared to the unconstrained stationary model. Although the goodness- 
of-fit statistics still reject these models at conventional levels, the rejection is 
no longer overwhelming. For these data I have estimated the common factor 
as a fixed effect, since a fixed effect seemed to better fit the AMI-CHF covari- 
ance in tables 7.3 and 7.4. The parameter estimates are quite similar to those 
using the entire panel: there is a persistent common factor, a fairly transitory 
diagnosis-specific factor, and substantial i.i.d. measurement error. 



Table 7.4 Variance Decomposition of Error Structure of 45-Day Mortality Z-score, 1979-87 

Variance 
Component 

Urgent Care AM1 CHF AMI’CHF 

With Without With Without With Without With Without 
Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed 
Effect Effect Effect Effect Effect Effect Effect Effect 

Variance of i.i.d. error 

Variance of fixed 
effect 

Variance of AR( 1) 

6 

GMM goodness-of-fit 
statistic 

(p-value) 
[d.f.] 

0.840 
(.032) 

-0.224 
( 1.232) 

0.53 1 
(1.212) 

0.945 
(.151) 

38.52 
(S81) 

[411 

0.834 
(.028) 

0.313 
(.033) 

0.893 
(.024) 

38.72 
(.616) 

~421 

0.822 
(.035) 

0.016 
(.071) 

0.234 
(.062) 

0.778 
(.126) 

44.40 
(.330) 

[411 

0.826 
(.029) 

0.246 
(.033) 

0.802 
(.037) 

44.54 
(.369) 

[421 

0.861 
(.121) 

0.062 
(.017) 

0.086 
(.113) 

0.397 
(.560) 

56.5 1 
(.054) 

~411 

0.917 
(.024) 

0.090 
(.019) 

0.939 
(.052) 

58.68 
(.045) 

~421 

0.014 
(.020) 

-0.771 
( 13652) 

0.822 
(13651) 

0.999+ 
(7.105) 

70.66 
(.681) 

[771 

0.014 
(.016) 

0.05 1 
(.013) 

0.994 
(.057) 

70.66 
(.710) 

[781 

Notes: Z,, = Fixed effect + AR(1) + i.i.d. error. Numbers in parentheses are standard errors of parameter estimates 



220 Douglas Staiger 

Table 7.5 Three-Factor Models for Covariance Structure of AM1 and CHF 45- 
Day Mortality 2-Score 

~ 

1974-87 1979-87 
(1) (2) 

I .  Goodness-of-fit statistic for unconstrained stationary 
(symmemc) covariance structure 

2. Goodness-of-fit statistic for three-factor model 
against model 1 

3. Parameter estimates 
A. Common factor 

i. Variance of fixed effect 

ii. Variance of AR( 1 ) 

... 
'11. Lnmon 

B. AM1 factor 
i. Variance of i.i.d. error 

ii. Variance of AR( 1)  

iii. ti,,, 

C. CHF factor 
i. Variance of i.i.d. error 

ii. Variance of AR (1) 

iii. ti,,, 

1456.9 
(.OOO) 
~3641 

726.53 
(.OOO) 
[341 

0.056 
(0.004) 
0.937 
(.009) 

0.730 
(.015) 
0.187 
(.015) 
0.571 
(.035) 

0.779 
(.017) 
0.071 
(.015) 
0.578 
(.092) 

0.048 
(.007) 
- 

0.775 
(.030) 
0.207 
(.029) 
0.679 
(.056) 

0.862 
(.051) 
0.074 
(.049) 
0.518 
(.275) 

Nore: Numbers in parentheses are p-values of goodness-of-fit statistics and standard errors cf 
parameter estimates. Numbers in brackets are degrees of freedom. 

The ability of this simple three-factor model to fit the data is seen in figure 
7.6. This figure graphs the estimated covariogram for the unconstrained sta- 
tionary model (solid line) against the three-factor model (dashed line). As in 
figure 7.5, the variance (lag of zero) has been left out of these figures to avoid 
distorting the scale. The three-factor model does a reasonable job of fitting the 
covariograms. The longest lags of CHF are estimated off of relatively few years 
but suggest that CHF mortality may be more persistent than one would expect 
from the three-component model. 

Overall, this evidence points to two particularly interesting features of the 
data. First, the covariance structure is reasonably well approximated by a sim- 
ple three-factor model. A permanent hospital effect accounts for roughly 4 to 
5 percent of the variance in mortality. A more transitory diagnosis-specific 
effect accounts for another 7 percent of the variation in mortality for CHF and 
nearly 20 percent of the variation in mortality for AMI. This component has a 
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AM1 CHE 

AMI'CHF 

Fig. 7.6 GMM estimates of covariogram (covariance by lag length) jointly 
estimated for AM1 and CHF mortality Z-score. Covariance estimated with data 
from 1979-87: unconstrained (solid line) vs. three-factor model (dashed line). 

first-order serial correlation in the range of .6, so that diagnosis-specific shocks 
are mostly dissipated in five years. Finally, the remainder of the variation in 
mortality appears to be noise. The second interesting feature of the data is the 
significant nonstationarity in the distribution of mortality between the 1970s 
and the 1980s. 

7.5 Conclusion 

The empirical results presented in this paper have a number of implications. 
For those using these mortality variables as proxies for quality of care, the 
statistical properties of mortality should raise some concern. The amount of 
noise in these measures is on the order of 80 to 90 percent of the total variance. 
In a simple regression using mortality as a right-hand-side proxy for quality, 
this would lead to an attenuation bias of at least 80 percent, making the esti- 
mates of little use. Knowledge of the magnitude of measurement error can 
allow one to correct for the attenuation bias, so these estimates (or a similar 
method) might be used to correct for the bias. Even with such a correction, 
however, such low signal-to-noise ratios severely limit our ability to use such 
measures to forecast future hospital mortality. 
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Alternatively, for research that uses mortality as a dependent variable in a 
panel data setting, these estimates clearly indicate that the empirical model 
must allow for serially correlated errors. Moreover, the most common ap- 
proach of adding hospital fixed effects does not appear to be adequate. It re- 
mains to be seen whether allowing for a more complicated error structure 
would significantly affect the conclusions from such studies. 

In thinking more generally about the process that determines quality of care 
in a hospital, the three-factor model may give some insight. An obvious inter- 
pretation of the three-factor model is one in which the hospital effect repre- 
sents general infrastructure such as the nursing staff, physical plant, or skill of 
the medical staff. These characteristics might be expected to be fairly perma- 
nent, and in fact, they represent what one often thinks of when thinking of a 
top-notch hospital. In contrast, the diagnosis-specific component could be 
thought of as technological innovations specific to that diagnosis. Casual ob- 
servation suggests that AM1 is a diagnosis that has had more technological 
innovation over the past 20 years, and this is consistent with the fact that the 
variance of the diagnosis-specific factor is much larger in AM1 than in CHF. 
On the other hand, such innovations in treatment technology tend to diffuse to 
other hospitals fairly rapidly, so it is not surprising that this diagnosis-specific 
component does not persist much beyond five years. 

Of course, there are alternative interpretations of the results. For example, 
the hospital component may reflect permanent differences in the population 
that each hospital serves, which are not captured by the adjustment for ex- 
pected mortality. Distinguishing the quality-of-care interpretation from the 
case-mix interpretation is an important topic of future research. 

Finally, the results suggest that there have been important changes in the 
distribution of patient mortality across hospitals between the 1970s and the 
1980s. The reasons for this shift, and the corresponding change in the autoco- 
variance structure of mortality, are unknown. It remains to be seen whether a 
simple extension of the models considered here can explain this anomaly. One 
possible explanation is that important technology shocks always begin with 
flagship hospitals and then diffuse through the remainder of the population. 
Thus, mortality in “innovative” years might be much more correlated than in 
average years. This is a topic of future research. 
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In recent years, the need to control health care costs and the recognition that 
much of health care is of uncertain benefit has increased interest in measuring 

David Meltzer is assistant professor in the section of general internal medicine, department of 
economics, and Harris Graduate School of Public Policy at the University of Chicago and a faculty 
research fellow of the National Bureau of Economic Research. 



224 Douglas Staiger 

the quality of health care. This has been evident at multiple levels of the health 
care system, with efforts to evaluate the quality of care provided by HMOs 
operating under prepayment, hospitals operating under diagnosis-related 
groups, and individual practitioners in a variety of settings. In all these areas, 
as well as in a number of studies to which the paper alludes, mortality has been 
used as an indicator of quality. Nevertheless, there has been surprisingly little 
work examining the statistical properties of these mortality variables. Staiger’s 
paper raises important questions about the use of hospital mortality rates as an 
indicator of quality. 

Staiger uses annual data on mortality after Medicare admission for urgent 
care, congestive heart failure (CHF), and acute myocardial infarction (AMI) 
for a sample of about 500 hospitals from 1974 through 1987. He investigates 
trends in the distribution of these rates using descriptive statistics and general- 
ized method of moments estimators of the covariance structure. There are three 
major findings. First, that 75 to 90 percent of the variation in mortality is en- 
tirely transitory consistent with i.i.d. measurement error, suggesting that mor- 
tality is likely to be a poor proxy for quality whether used on the right- or left- 
hand side of a regression. Second, that mortality rates have a fairly persistent 
component consistent with a first-order autoregressive (AR( 1)) process with 
an autocorrelation of .8-.95, suggesting that hospital effects may not be well 
approximated by a fixed-effects model. Third, that the combined AMI/CHF 
data are well fit by a three-component model with an i.i.d. error, a moderately 
transitory disease-specific component, and a permanent hospital-specific com- 
ponent, which may provide some insight into the determinants of the quality 
of care in hospitals. 

The result that the vast majority of the variability in adjusted mortality rates 
is consistent with i.i.d. measurement error is the most striking result of the 
paper and raises serious questions about the value of mortality rates as a mea- 
sure of quality. If 75 to 90 percent of the variation in mortality is gone in one 
year, past variations in hospital mortality provide little information on future 
mortality. Luft and Hunt (1986) also make this point in the context of work on 
the volume-outcomes relationship. The variability in annual hospital mortality 
rates is probably particularly large in Staiger’s sample of hospitals because 
inclusion in the sample requires only a single admission in each diagnosis in 
each year. One could conceivably restrict the use of such measures to only 
larger hospitals, but quality may often be of greatest concern in smaller hospi- 
tals. Even if a few statistically significant outliers could be identified, little 
insight would be gained into quality in the majority of hospitals. The crudeness 
of the Health Care Financing Administration’s (HCFA’s) severity-of-illness ad- 
justments is also worrisome, particularly if it causes hospitals to select patients 
for treatment by considering their effect on the hospital’s mortality statistics 
rather than their potential to benefit from treatment. 

How, then, should we address the need to assess hospital quality? There are 



225 The Covariance Structure of Mortality Rates in Hospitals 

several possibilities. One is to use mortality statistics but improve risk stratifi- 
cation using more detailed clinical data in order to increase the signal-to-noise 
ratio. It is difficult to know to what extent it may be possible to refine such 
measures, but a recent study of mortality for CHF suggests that simple clinical 
measures of severity of illness (blood pressure, respiration rate, EKG changes, 
and serum sodium on presentation) substantially increase the amount of ex- 
plained variation in in-hospital mortality compared to age and sex (Chin and 
Goldman 1996). Another possibility is to measure a broader set of intermediate 
outcomes (such as postoperative infection or bleeding), which may occur more 
frequently and therefore exhibit less noise. The issue with that approach is how 
much weight to put on those outcomes if patients ultimately recover from 
them. Another strategy is to follow measures of the process of care such as 
time to thrombolysis or appropriate choice of antibiotics. Like nonfatal adverse 
outcomes, these have the advantage of occurring more frequently than fatal 
outcomes and the drawback that they may not necessarily translate into sig- 
nificant outcomes. However, if the connection between process and outcomes 
is as believed, this approach has the advantage over using outcomes measures 
that it tells the hospital not only that there is a problem but also what to do 
about it. This may explain why this approach has been frequently adopted by 
hospitals in their attempts to improve quality, for example, through the critical 
pathways approach (Coffey et al. 1992). Interestingly, the Joint Commission 
on Accreditation of Healthcare Organizations has recently moved toward 
outcomes-based measures of quality (JCAHO 1995), but the noise inherent in 
those measures and the potential to game the system by manipulating case mix 
suggest that monitoring the consequences of those changes will be important. 

Despite the large component of variability in these measures, the paper does 
report a statistically significant persistent component, which may have implica- 
tions for the use of fixed-effects models with hospital mortality data and pro- 
vide insights into the behaviors of doctors, hospitals, and the process of techni- 
cal change. As the paper points out, one needs to be cautious in attributing the 
persistent component of adjusted mortality rates to quality because there may 
be persistent differences in the underlying severity of illness across hospitals 
that are not captured by the crude HCFA severity-of-illness adjustments. One 
reason that the seventy-of-illness adjustments may be misleading is that they 
are rescaled only once over a 15-year period that contained substantial techni- 
cal change. Even if patients sorted only on observable differences in severity 
of illness, technical changes that particularly improved outcomes for sicker or 
healthier groups would result in persistent deviations of hospitals’ outcomes 
from expected. Future work could address this by using the original Medicare 
data to perform annual risk adjustment. 

Much of the remainder of the paper is devoted to examing whether the error 
process is stationary, and it finds that stationarity is generally rejected for the 
full sample, though not for the latter half of the sample. This latter result may 
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simply reflect the low power of the test for the subsample, and it raises the 
question of what one is to conclude about a process that is intermittently sta- 
tionary; but the deeper question is why we should be concerned about sta- 
tionarity. Presumably, it is for prediction; yet the first half of the paper tells US 

that the vast majority of variation in mortality rates is transient, so knowing 
that the error structure is stationary is of little consequence in enhancing our 
ability to predict. 

The paper also examines alternative models of the error structure of mortal- 
ity rates and suggests that it may be inconsistent with the use of hospital fixed 
effects. This concern is too frequently neglected by researchers using fixed- 
effects models. Table 7.1 examines increasingly restrictive models from 
ARMA(2,2) to i.i.d. measurement error and finds that an AR(1) generally does 
as well as any other model for CHF and urgent care admissions, and that there 
is only a weak preference for adding an ARMA(2,2) or fixed effect for AMI. 
Unfortunately, the test statistics reported test only against the unrestricted sta- 
tionary model. Since the models are generally nested, it would have been use- 
ful to test each additional restriction individually. Table 7.2 does report the 
effect of adding a fixed effect to the AR( 1). However, what one really wants to 
know is whether one can use a fixed-effect model and do without the AR( 1), 
and the paper does not report the more interesting exercise of assuming a fixed 
effect and adding an AR( 1). 

The final section of the paper examines the covariance of the CHF/AMI data 
in order to try to gain some insight into the process underlying these changes 
in mortality rates over time. It finds that the joint process is rather well fit by a 
fairly permanent hospital-specific component, a moderately transient disease- 
specific component, and an i.i.d. term consistent with sampling error. The pa- 
per also provides the interesting interpretation that the hospital-specific com- 
ponent might reflect a hospital’s infrastructure-such as personnel and physi- 
cal plant-while the disease-specific component might reflect technical 
progress in treating individual diseases. Ideally, one would like to measure 
these factors-technical innovations, knowledge of those innovations by spe- 
cific providers, volume of experience for both providers and hospitals, and so 
forth-and test whether they are related to outcomes. 

Though significant insights into the determinants of the quality of care seem 
unlikely to come from examination of the error structure alone, the finding that 
the majority of variation in hospital mortality rates appears to reflect random 
variation is of great consequence for the study of quality. It is there that re- 
search in this area seems likely to focus in the future. 
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