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1. Introduction

Applied economists (including ourselves) are generally content to
study theoretical agents whose preferences are additive over time and
across states of nature. One version goes like this: Time is discrete,
with dates £ = 0,1,2,.... At each ¢ > 0, an event z is drawn from a fi-
nite set 2, following an initial event zo. The f-period history of events
is denoted by z' = (zq,21,...,%) and the set of possible -histories by
Z'. The evolution of events and histories is conveniently illustrated by
an event tree, as in Figure 1, with each branch representing an event
and each node a history or state. Environments like this, involving
time and uncertainty, are the foundation of most of modern macroeco-
nomics and finance. A typical agent in such a setting has preferences
over payoffs c(z') for each possible history. A general set of preferences
might be represented by a utility function U({c(z")}). More common,
however, is to impose the additive expected utility structure

U({e(zhD =D B Y p(zule(z)] = Ep Y Bluler), (1)
=0

t=0 et

where 0 < f < 1, p(z') is the probability of history z', and u is a
period /state utility function. These preferences are remarkably parsi-
monious: behavior over time and across states depends solely on the
discount factor §, the probabilities p, and the function u.

Although equation (1) remains the norm throughout economics,
there has been extraordinary theoretical progress over the last fifty
years (and particularly the last twenty-five) in developing alternatives.
Some of these alternatives were developed to account for the anoma-
lous predictions of expected utility in experimental work. Others arose
from advances in the pure theory of intertemporal choice. Whatever



320 Backus, Routledge, & Zin

22 =1(z0, 1, D

72 =1
(A)
2t =1(z0, 1)
z1=1 =2
22 =1(2,1,2)
722 =1(20,2, 1
71 =12 =1

(B)

2! =(20,2)

i =

-

22 =1(20,2,2)

Figure 1

A representative event tree. This event tree illustrates how uncertainty might evolve
through time. Time moves from left to right, starting at date { = 0. At each date f, an
event z; occurs. In this example, z; is drawn from the two-element set Z = {1,2}. Each
node is marked by a box and can be identified from the path of events that leads to it,
which we refer to as a history and denote by = (zooz, .. 2) starting with an arbi-
trary initial node zp. Thus the upper right node follows two up branches, z; = 1 and
% =1, and is denoted z? = (2,1,1). The set #? of all possible 2-petiod histories is there-
fore {(20,1,1), (20,1, 2), {20, 2,1), (20,2, 2)}, illustrated by the far right “column” of nodes.
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their origin, they offer greater flexibility along several dimensions,
often with only a modest increase in analytical difficulty.

What follows is a user’s guide, intended to serve as an introduction
and instruction manual for economists studying problems in which
the structure of preferences may play an important role. Our goal is to
describe exotic preferences to mainstream economists: preferences over
time, preferences across states or histories, and (especially) combina-
tions of the two. We take an overtly practical approach, downplaying
or ignoring altogether the many technical issues that arise in specifying
preferences in dynamic stochastic settings, including their axiomatic
foundations. (References are provided in the appendix for those who
are interested.) We generally assume without comment that prefer-
ences can be represented by increasing, (weakly) concave functions,
with enough smoothness and boundary conditions to generate inte-
rior solutions to optimizations. We focus instead on applications, using
tractable functional forms to revisit some classic problems: consump-
tion and saving, portfolio choice, asset pricing, and Pareto optimal allo-
cations. In most cases, we use utility functions that are homogeneous
of degree 1 (hence invariant to scale) with constant elasticities (think
power utility). These functions are the workhorses of macroeconomics
and finance, so little is lost by restricting ourselves in this way.

You might well ask: Why bother? Indeed, we will not be surprised
if most economists continue to use (1) most of the time. Exotic prefer-
ences, however, have a number of potential advantages that we believe
will lead to much wider application than we’ve seen to date. One is
more flexible functional forms for approximating features of data—the
equity premium, for example. Another is the ability to ask questions
that have no counterpart in the additive model. How should we make
decisions if we don’t know the probability model that generates the
data? Can preferences be dynamically inconsistent? If they are, how
do we make decisions? What is the appropriate welfare criterion? Can
we think of some choices as tempting us away from better ones? Each
of these advantages raises further questions: Are exotic preferences
observationally equivalent to additive preferences? If not, how do we
identify their parameters? Are they an excuse for free parameters? Do
we even care whether behavior is derived from preferences?

These questions run through a series of nonadditive preference
models. In Section 2, we discuss time preference in a deterministic set-
ting, comparing Koopmans’s time aggregator to the traditional time-
additive structure. In Section 3, we describe alternatives to expected
utility in a static setting, using a certainty-equivalent function to
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summarize preference toward risk. We argue that the Chew-Dekel
class extends expected utility in useful directions without sacrificing
analytical and empirical convenience. In Section 4, we put time and
risk preference together in a Kreps—Porteus aggregator, which leads to
a useful separation between time and risk preference. Dynamic exten-
sions of Chew—Dekel preferences follow the well-worn path of Epstein
and Zin. In Section 5, we consider risk-sensitive and robust control,
whose application to economics is associated with the work of Hansen
and Sargent. Section 6 is devoted to ambiguity, in which agents face
uncertainty over probabilities as well as states. We describe Gilboa and
Schmeidler’s max-min utility for static settings and Epstein and
Schneider’s recursive extension to dynamic settings. In Section 7, we
turn to hyperbolic discounting and provide an interpretation based
on Gul and Pesendorfer’s temptation preferences. The final section is
devoted to a broader discussion of the role and value of exotic prefer-
ences in economics.

A word on notation and terminology: We typically denote param-
eters by Greek letters and functions and variables by Latin letters. We
denote derivatives with subscripts; thus, V; refers to the derivative of
V with respect to its second argument. In a stationary dynamic pro-
gramming problem, [ is a value function and a prime (') distinguishes
a future value from a current value. The abbreviation #id means “inde-
pendent and identically distributed,” and NID(x, ¥) means “normally
and independently distributed with mean x and variance y.”

2. Time

Time preference is a natural starting point for macroeconomists since
so much of our subject is concerned with dynamics. Suppose there is
no risk and (for this paragraph only) ¢, is one-dimensional. Preferences
might then be characterized by a general utility function U({c:}). A
common measure of time preference in this setting is the marginal rate
of substitution between consumption at two consecutive dates (c; and
141, say) along a constant consumption path (c; = ¢ for all £). If the
marginal rate of substitution is

oU /0

MRSt,H—] = W ,

then time preference is captured by the discount factor

ﬂ(C) = MRSQ t+1 (C)
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(Picture the slope, ~1/8, of an indifference curve along the 45-degree
line.) If f(c) is less than 1, the agent is said to be impatient: she requires
more than one unit of consumption at ¢+ 1 to induce her to give up
one unit at t. For the traditional time-additive utility function,

uieh) = plule), 2)
=0

P(c) = f < 1 regardless of the value of ¢, so impatience is built in and
constant. The rest of this section is concerned with preferences in
which the discount factor can vary with the level of consumption.

2.1 Koopmans's Time Aggregator

Koopmans (1960) derives a class of stationary recursive preferences by
imposing conditions on a general utility function U for a multidimen-
sional consumption vector c. Qur approach and terminology follow
Johnsen and Donaldson (1985). Preferences at all dates come from the
same date-zero ufility function U. As a result, they are dynamically
consistent by construction: preferences over consumption streams
starting at any future date ¢ are consistent with I. Following Koop-
mans, let ;¢ = (¢, cr41, .. ) be an infinite consumption sequence starting
at t. Then we might write utility from date { = O on as

Li{pc) = U{co,10).

Koopmans's first condition is history-independence: preferences over
sequences £ do not depend on consumption at dates prior to &
Without this condition, an agent making sequential decisions would
need to keep track of the history of consumption choices to be able
to make future choices consistent with L. The marginal rate of substi-
tution between consumption at two arbitrary dates could depend, in
general, on consumption at all dates past, present, and future. History-
independence rules out dependence on the past. With it, the utility
function can be expressed in the form

U(gc) = Vico, L (16)]

for some time aggregator V. As a result, choices over 1¢ do not depend
on ¢p. (Note, for example, that marginal rates of substitution between
elements of ;¢ do not depend on ¢¢.) Koopmans’s second condition
is future independence: preferences over ¢; do not depend on ,;¢. (In
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Koopmans’s terminology, the first and second conditions together
imply that preferences over the present (c;) and future {¢11c) are inde-
pendent.) This is trivially true if ¢; is a scalar, but a restriction on prefer-
ences otherwise. The two conditions together imply that utility can be
written

U{oc) = V[u(co), th(x0)]

for some functions V and u, which defines # as a composite commod-
ity for consumption at a specific date. Koopmans’s third condition is
that preferences are stationary (the same at all dates). The three condi-
tions together imply that utility can be written in the stationary recur-
sive form

U(sc) = V{u(cy), U(p410)] (3)

for all dates ¢. This is a generalization of the traditional utility function
(2), where (evidently) V{(u, U) = u + U or the equivalent. As in tradi-
tional utility theory, preferences are unchanged when we apply a mono-
tonic transformation to U: if U = f(U) for f increasing, then we replace
the aggregator V with V (i, U) = f( V[u .

In the Koopmans class of preferences represented by equation (3),
time preference is a property of the time aggregator V. Consider our
measure of time preference for the composite commodity u. If U; and
u; represent U(;c) and u(c;), respectively, then

Up = Vi, Uy ) = V[uh V(M:+1, u:+2)]-
The marginal rate of substitution between u; and ., is therefore

Va(uy, Uro1)Viluigr, Us2)

MRS, ;11 = Vilug, Usyq)

A constant consumption path with period utility u is defined by
U=VuU), implying U =g(u)=V[u,g(u) for some function g.
(Koopmans calls g the r:orrespondence function.) The discount factor is
therefore f{u) = Va[u, g(u)]. You might verify for yourself that V; is
invariant to increasing transformations of L.

In modern applications, we generally work in reverse order: we
specify a period utility function # and a time aggregator V and use
them to characterize the overall utility function U. Any U constructed
this way defines preferences that are dynamically consistent, history
independent, future independent, and stationary. In contrast to time-
additive preferences, discounting depends on the level of utility u.
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To get a sense of how this works, consider the behavior of V. If prefer-
ences are increasing in consumption, # must be increasing in ¢ and V
must be increasing in both arguments. If we consider sequences with
constant consumption, U must be increasing in #, so that

Valu, g(u)]
1= Volu, g(u)]

Since V) >0, 0 < Va[u,g(u)] < 1, the discount factor is between zero
and one and depends (in general) on u. Many economists impose
an additional condition of increasing marginal impatience: Vo[u, g(u)) is
decreasing in u, or

S} = Vau, g(1)] + Valu, g(w)ga () = > 0.

Voy [u, g(1)] 4+ Vo [, g (u}]g1 (1)

Vl[u1g(u)]
1— Vaou,g(u)] <0

In applications, this condition is typically used to generate stability of
steady states.

Two variants of Koopmans's structure have been widely used by
macroeconomists. One was proposed by Uzawa (1968), who suggested
a continuous-time version of

V(u, Uy = u+ Blu)tl.

= Vo[, ()] + Voo [u, g(u)]

(In his model, S(u) = exp{—d(u)].) Since V» =0, increasing marginal
impatience is simply f(u) <0 [or dy(u) > 0]. Another is used by
Epstein and Hynes (1983), Lucas and Stokey (1984), and Shi (1994),
who generalize Koopmans by omitting the future independence condi-
tion. The resulting aggregator is V(c, U}, rather than V(u, U), which
allows choice over ¢ to depend on U. If ¢ is a scalar, this is equivalent
to (3) [set u(c) = ¢], but otherwise need not be. An example is

Vie, U} = ufc) + flc)l,

where there is no particular relationship between the functions u
and f.

22 Examples

Example 1 (growth and fiscal policy) In the traditional growth model,
Koopmans preferences can change both the steady state and the short-
run dynamics. Suppose the period utility function is #(c) and the time
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aggregator is V{u,U') = u + p(u)Ul’, with u increasing and concave
and f,(u} < 0. Gross output y is produced with capital k using an
increasing concave technology f. The resource constraint is ¥ = f(k) =
¢ + k' + g, where c is consumption, k” is tomorrow’s capital stock, and g
is government purchases (constant}. The Bellman equation is

JUk) = max u[f(k) — K"~ g] + B(u[f(k) = k" = eI (K").

The first-order and envelope conditions are
t ({1 + Bi (O ()} = Blu)h (k)
(k) = () kM1 + B [T (K],

which together imply Ji(k) = Su(c)}i(k") (k). In a steady state, 1 =
Blulf(k) —k = g) (k).

One clear difference from the traditional model is the role of prefer-
ences in determining the steady state. With constant £, the steady-state
capital stock solves ffi(k) = 1; u is irrelevant. With recursive prefer-
ences, the steady state solves S(u(f(k} —k—g|)fi(k) =1, which de-
pends on u through its impact on f. Consider the impact of an increase
in g. With traditional preferences, the steady-state capital stock doesn’t
change, so any increase in g is balanced by an equal decrease in c. With
recursive preferences and increasing marginal impatience, an increase
in g reduces current utility and therefore raises the discount factor. The
initial drop in ¢ is therefore larger than in the traditional case. In the
resulting steady state, the increase in g leads to an increase in k and a
decline in ¢ that is smaller than the increase in g. The magnitude of the
decline depends on f, the sensitivity of the discount factor to current
utility. [Adapted from Dolmas and Wynne (1998).]

Example 2 (optimal allocations) Time preference affects the optimal allo-
cation of consumption among agents over time. Consider an economy
with a constant aggregate endowment ¥ of a single good, to be divided
between two agents with Koopmans preferences, represented here by
the aggregators V (the first agent) and W (the second). A Pareto opti-
mal allocation is summarized by the Bellman equation:

J(w) = max Vly - c,](w’)]

subject to

Wic,w') = w.
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Note that both consumption ¢ and promised utility w pertain to the
second agent. If 1 is the Lagrange multiplier on the constraint, the
first-order and envelope conditions are

Vily = e J(w")] = AW (c, ")
Valy — . Jw))h(@') + AWa(c,w') =0
h(w) = —4.

If agents’ preferences are additive with the same discount factor g,
then the second and third equations imply Jy(w”)/li(w) = Wa(c,w’)/
Voly —¢,J(w")] = f/f=1: an optimal allocation places the same
weight 4 = —J;(w) on the second agent’s utility at all dates and prom-
ised utility w is constant. If preferences are additive and £, > f; (the
second agent is more patient), then Ji(w’}/1(w) = f5/F, > 1: an opti-
mal allocation increases the weight over time on the second, more
patient agent and raises her promised utility (w’ > w). In the more
general Koopmans setting, the dynamics depend on the time aggrega-
tors V and W. The allocation converges to a steady state if both aggre-
gators exhibit increasing marginal impatience and future utility is a
normal good. [Adapted from Lucas and Stokey (1984).]

Example 3 (long-run properties of a small open econonty) Small open
economies with perfect capital mobility raise difficulties with the exas-
tence of a steady state that can be resolved by endogenizing the dis-
count factor. We represent preferences over sequences of consumption
¢ and leisure 1 — # with a period utility function u(c, 1 — n) and a time
aggregator V(c,1—-n,U) =u(c,1 —n)+ p(c,1 —n)U. Let output be
produced with labor using the linear technology y = n, where 8 is
a productivity parameter. The economy’s resource constraint is y =
¢ + x, where x is net exports. The agent can borrow and lend in interna-
tional capital markets at gross interest rate r, giving rise to the budget
constraint a’ = r(a + x) = r{a + #n — c). The Bellman equation is

J(a) = max u(c,1—n)+ pc,1 — m)fjr{a + 6n — c}].

The first-order and envelope conditions are
w + fj(@’) = fha’)

g + o] 0"y = Bh(a’)o

(@) = pha’)r.
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The last equation tells us that in a steady state, f(c,1 — n)r = 1. With
constant discounting, there is no steady state, but with more general
discounting schemes the form of discounting determines the steady
state and its response to changes in the environment. Here, the long-
run impact of a change in (say) # (the wage) depends on the form of .
Suppose £ is a function of # only. Then the steady-state condition
B(1 —n)r =1 determines n independently of 8! More generally, the
long-run impact on # of a change in § depends on the form of the dis-
count function f(c,1—n). [Adapted from Epstein and Hynes (1983),
Mendoza (1991), Obstfeld {1981), Schmitt-Grohé and Uribe (2002), and
Shi (1994).]

Example 4 (dynamically inconsistent preferences) Suppose preferences as
of date t are given by:

U, (i) = ules) + 6Pulcy) + 5ﬂ2u(cf+z) +5ﬂ3“(Cr+3) 4+

with 0 < J < 1. When 6 =1, this reduces to the time-additive utility
function (2). Otherwise, we discount utility in periods ¢+ 1,t+2,
t+3,... by 88,68%,68°,.... A little effort should convince you that
these preferences cannot be put into stationary recursive form. In fact,
they are dynamically inconsistent in the sense that preferences over
(say) (cr41, Cr+2) at date t are different from preferences at t + 1. (Note,
for example, the marginal rates of substitution between c;4, and ¢,y at
t and t 4 1.) This structure is ruled out by Koopmans, who begins with
the presumption of a consistent set of preferences. We'll return to this
example in Section 7. [Adapted from Harris and Laibson (2003) and
Phelps and Pollack (1968).]

3. Risk

Our next topic is risk, which we consider initially in a static setting.
Our theoretical agent makes choices that have risky consequences or
payoffs and has preferences over those consequences and their proba-
bilities. To be specific, let us say that the state z is drawn with probabil-
ity p(z) from the finite set 2 ={1,2,...,2}. Consequences (c, say)
depend on the state. Having read Debreu’s Theory of Vaiue or the like,
we might guess that with the appropriate technical conditions, the
agent’s preferences can be represented by a utility function of state-
contingent consequences (consumption):
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U({e()}) = Ule(1),e(2),...,e(Z)].

At this level of generality, there is no mention of probabilities, al-
though we can well imagine that the probabilities of the various states
will show up somehow in U, as they do in equation (1). In this section,
we regard the probabilities as known, which you might think of as
an assumption of risk or rational expectations. We consider unknown
probabilities (ambiguity) in Sections 5 and 6.

We prefer to work with a different (but equivalent) representation of
preferences. Suppose, for the time being, that ¢ is a scalar; very little of
the theory depends on this, but it streamlines the presentation. We de-
fine the cerlainty equivalent of a set of consequences as a certain conse-
quence x that gives the same level of utility:

Ulp,py o) = Ule(1),6(2), - e(Z)].

If U is increasing in all its arguments, we can solve this for the
certainty-equivalent function u({c(z)}). Clearly x represents the same
preferences as U, but we find its form particularly useful. For one
thing, it expresses utility in payoff (consumption) units. For another, it
summarizes behavior toward risk directly: since the certainty equiva-
lent of a sure thing is itself, the impact of risk is simply the difference
between the certainty equivalent and expected consumption.

The traditional approach to preferences in this setting is expected
utility, which takes the form:

U({e(2)}) = Y p(2)ule(z)] = Eule)
or
u{c(z)}) =u™! (Z P(Z)H[C(Z)l) = u~'[Eu(c)],

a special case of (1). Preferences of this form are used in virtually all
macroeconomic theory, but decades of experimental research have
documented numerous difficulties with it. Among them: people seem
more averse to bad outcomes than expected utility implies. See, for ex-
ample, the summaries in Kreps (1988, Chapter 14) and Starmer (2000).
We suggest the broader Chew-Dekel class of risk preferences, which
allows us to account for some of the empirical anomalies of expected
utility without giving up its analytical tractability.
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3.1 The Chew-Dekel Risk Aggregator

Chew (1983, 1989) and Dekel (1986} derive a class of risk preferences
that generalizes expected utility, yet leads to first-order conditions that
are linear in probabilities, hence easily solved and amenable to econo-
metric analysis. In the Chew-Dekel class, the certainty equivalent func-
tion u for a set of payoffs and probabilities {c(z), p(z)} is defined
implicitly by a risk aggregator M satisfying

p="_ px)Mc(z), 4. (4)

This is Epstein and Zin's (1989) equation (3.10) with M = F + . Chew
(1983, 1989) and Dekel (1986, Section 2) show that such preferences sat-
isfy a weaker condition than the notorious independence axiom that
underlies expected utility. We assume M has the following properties:
(i) M(m, m) = m (sure things are their own certainty equivalents), (ii)
M is increasing in its first argument (first-order stochastic domi-
nance), (iit) M is concave in its first argument (risk aversion), and (iv)
Mikc, km) = kM(c,m) for k > 0 (linear homogeneity). Most of the ana-
lytical convenience of the Chew—Dekel class follows from the linearity
of equation (4) in probabilities.

In the examples that follow, we focus our attention on the following
tractable members of the Chew—-Dekel class:

* Expected utility. A version with constant relative risk aversion is
implied by
Mic,m) = c*m' " fa + m(l — 1/x).

If « <1, M satisfies the conditions outlined above. Applying (4), we
find

n= (Z p(z)c(z)“)” ’

z

the usual expected utility with a power utility function.

+ Weighted utility. Chew (1983) suggests a relatively easy way to gener-
alize expected utility given (4): weight the probabilities by a function of
outcomes. A constant-elasticity version follows from

Mic,m) = (c/my’c*m' = fa + m[1 — (c/m) /q].
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For M to be increasing and concave in ¢ in a neighborhood of m, the
parameters must satisfy either (a) 0 <y <landa+y<Oor(b)y<0
and 0 < &+ y < 1. Note that (a) implies « < 0, (b} implies « > 0, and
both imply o+ 2y < 1. The associated certainty equivalent function
satisfies

o L PEe@ ™

a S oplaex)y’ Zf’(z)f(z)",
where

o) — PO

pz) = S e

This version highlights the impact of bad outcomes: they get greater
weight than with expected utility if y < 0, less weight otherwise.

« Disappointment aversion. Gul (1991) proposes another model that in-
creases sensitivity to bad events (disappointments). Preferences are
defined by the risk aggregator

Caml—u/a +m(l —1/%) c=m
cfmt = fa (1 — 1/a) +o(cim! ™ —m)/a ¢ <m

Mc,m) = {

with é 2 0. When 4 =0, this reduces to expected utility. Other-
wise, disappointment aversion places additional weight on outcomes
worse than the certainty equivalent. The certainty equivalent function
satisfies

1= p@)e(@)* +6 > plMie@) < wlle(x)* — ¥ = _ plake(z)",

where [(x} is an indicator function that equals 1 if x is true and 0 other-
wise and

Lo 1+8le(z) < 4]
0= (1 Sl < 1)

It differs from weighted utility in scaling up the probabilities of all bad
events by the same factor, and scaling down the probabilities of good
events by a complementary factor, with good and bad defined as
better and worse, respectively, than the certainty equivalent. All three
expressions highlight the recursive nature of the risk aggregator M: we
need to know the certainty equivalent to know which states are bad so
that we can compute the certainty equivalent {and so on).
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Each of these models is described in Epstein and Zin (2001). Other trac-
table preferences include semiweighted utility (Epstein and Zin, 2001),
generalized disappointment aversion (Routledge and Zin, 2003), and
rank-dependent preferences (Epstein and Zin, 1990). All but the last
one are members of the Chew-Dekel class.

One source of intuition about these preferences is their state-space
indifference curves, examples of which are pictured in Figure 2. For

3 3
2.5 2.5
2 2
1.5 15
1 1
05 0.5
0 0
0 1 2 3 0 1 2 3
Expected Utility Weighted Utility
3 3
25 3 2.5
2k, 2
~ .
- BN 15 1Y
~
1 1
A iy
N .
0.5 w2 0.5 R =
~ -~
0 = 0
o 1 2 3 1} 1 2 3
Disappointment Aversion All Togather
Figure 2

State-space indifference curves with Chew—Dekel preferences. The figure contains indif-
ference curves for three members of the Chew—-Dekel class of risk preferences. In each
case, the axes are consumption in state 1 and state 2 and states are equally likely. The
risk preferences are expected utility (upper left, « = 0.5), weighted utility (npper right,
bold line, y = —0.25), and disappointment aversion (lower left, bold line, d = 0.5). For
weighted utility and disappointment aversion, expected utility is pictured with a lighter
line for comparison. For disappointment aversion, the indifference curve is the upper en-
velope of two indifference curves, each based on a different set of transformed probabil-
ities. The extensions of these two curves are shown as dashed lines. The lower right
figure has all three together: expected utility (dashed line), weighted utility (solid line),
and disappointment aversion (dash-dotted line). Note that disappointment aversion is
more sharply convex than weighted utility near the 45-degree line (the effect of first-
order risk aversion), but less convex far away from it.
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the purpose of illustration, suppose there are two equally likely states
(Z=2, p(l) = p(2) =1/2). The 45-degree line represents certainty
[c(1) = c(2)]. Since preferences are linear homogeneous, the unit in-
difference curve (4 = 1) completely characterizes preferences. For ex-
pected utility, the unit indifference curve is

#(EU) = [0.5¢(1)* + 0.5¢(2)"]/* = 1.

This is the usual convex arc with a slope of —1 (the odds ratio) at the
45-degree line. As we decrease «, the arc becomes more convex. For
weighted utility, the unit indifference curve is

B c(1)3-+at+c(2)y+a 1/°fu_
) = (S|

Drawn for the same value of « and a modest negative value of y, it is
more convex than expected utility, suggesting greater risk aversion.
With disappointment aversion, the equation governing the indifference
curve depends on whether ¢(1) is larger or smaller than c(2). If its
smaller (so that z = 1 is the bad state), the indifference curve is

1/x
u{DA) = [G%(:)c(l)" + (ZL_HS)C(Z)“] =1

If it’s larger, we switch the two states around. To express this
more compactly, define sets of transformed probabilities, p, =
(1+6)/(240),1/(2+0)] (when z=1 is the bad state}) and p, =
[1/(2+0),(1 +8)/{2+ 5)] (when z = 2 is the bad state}. Then the indif-
ference curve can be expressed as

o114

min ) _f(2)e(z)"| " =1

We’ll see something similar in Section 6. For now, note that the indif-
ference curve is the upper envelope of two curves based on different
sets of probabilities. The envelope is denoted by a solid line, and the
extensions of the two curves by dashed lines. The result is an indif-
ference curve with a kink at the 45-degree line, where the bad state
switches. (As we cross from below, the bad state switches from 2
to 1)

Another source of intuition is the sensitivity of certainty equivalents
to small risks. For the two-state case discussed above, consider the
certainty equivalent of the outcome c{l1) =1 —¢ and ¢(2) =140 for
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small ¢ > 0, thereby defining the certainty equivalent as a function of
o. How much does a small increase in ¢ reduce 47 For expected utility,
a second-order Taylor series expansion of u{¢) around ¢ = 0 is

0.2

p(EUy =1—(1- oc)?.
This familiar bit of mathematics suggests 1 — « as a measure of risk
aversion. For weighted utility, a similar approximation yields

o2
HWU R 1= (1-a-29)T,
which suggests 1 — « — 2y as a measure of risk aversion. Note that
neither expected utility nor weighted utility has a linear terin: agents
with these preferences are effectively indifferent to very small risks.
For disappointment aversion, however, the Taylor series expansion
is

J 4444 a2
DAYx~1— —{1- —_— | =.
H#(DA) (2+5)0 ( c'C)(4+45+52) 2

The linear term tells us that disappointment aversion exhibits first-order
risk aversion, a consequence of the kink in the indifference curve.

3.2 Examples

Example 5 (certainty equivalents for log-normal risks) We illustrate the
behavior of Chew-Dekel preferences in an environment in which the
impact of risk on utility is particularly transparent. Define the risk
premium on a risky consumption distribution by rp = log[E(c}/u(c)),
the logarithmic difference between consumption’s expectation and its
certainty equivalent, Suppose consumption is log-normal: log ¢(z) =
Ky + 3%z, with z distributed N(0,1). Recall that if log x ~ N{z,b),
then log E(x) =a+ /2 ["Tto’s lemma,” equation (42) of Appendix
9.2]. Since log ¢ ~ N{k1,k2), expected consumption is exp(k- + k2/2}.
Similarly, the certainty equivalent for expected utility is u=
exp(x1 + axz/2) and the risk premium is rp = (1 — «)x2/2. The pro-
portionality factor (1 — a) is the traditional coefficient of relative risk
aversion. Weighted utility is not quite kosher in this context (M is con-
cave only in the neighborhood of x), but the example nevertheless
gives us a sense of its properties. Using similar methods, we find that
the certainty equivalent is g = exp(x1 + (% + 2y)x2/2) and the risk
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Figure 3

Risk and risk premiums with Chew—Dekel preferences. The figure illustrates the relation
between tisk and risk premiums discussed in Example 5 for three members of the Chew-
Dekel class of risk preferences. The preferences are: expected utility (dashed line),
weighted utility (solid line), and disappointment aversion (dash-dotted line). The point
is the nenlinearity of disappointment aversion: the ratio of the risk premium to risk is
greater for small risks than large ones, Parameter values are the same as Figure 2,

premium is rp = (1 — @ — 2y}x2/2. Note that the risk premium is the
same as expected utility with parameter a' = « + 2y. This equivalence
of expected utility and weighted utility doesn’t extend to other distri-
butions, but it suggests that we might find some difficulty distinguish-
ing between the two in practice. For disappointment aversion, we find
the certainty equivalent using mathematics much like that underlying
the Black—5choles formula:

: 2k Ky oK lo H— K — &K lo MK
‘ua — e:x;q+<x 2/2 +5le 1+ 2/2(1)( 2 7 ) —d gxl/z ,
2

K2
where @ is the standard normal distribution function [see equation (41)
in Appendix 9.2]. Apparently the risk premium is no longer propor-
tional to x;. We show this in Figure 3, where we graph #p against x
for all three preferences using the same parameter values as Figure 2



336 Backus, Routledge, & Zin

(e =06=10.5, y=—-025). As you might expect, disappointment aver-
sion implies proportionately greater aversion to small risks than large
ones; in this respect, it is qualitatively different from expected utility
and weighted utility. Routledge and Zin's (2003) generalized dis-
appointment aversion does the reverse: it generates greater aversion
to large risks. Different sensitivity to large and small nisks provides
a possible method to distinguish such preferences from expected
utility.

Example 6 (portfolio choice with Chew-Dekel preferences) One strength of
the Chew-Dekel class is that it leads to first-order conditions that
are easily solved and used in econometric work. Consider an agent
with initial net assets ag who invests fractions w in a risky asset with
(gross) return r(z) in state z and 1 — w in a risk-free asset with return
to. For an arbitrary choice of w, consumption in state z is ¢(z) =
aglro + w{r(z) — rg)]. The portfolio choice problem might then be
written as

max faofro +w(r(z) — r)}] = a0 max alyo +wlr(z) — o),

the second equality stemming from the linear homogeneity of u. The
direct approach to this problem is to choose w to maximize g, and in
some cases we'll do that. For the general Chew—-Dekel class, however,
we may not have an explicit expression for the certainty equivalent
function. In those cases, we use equation (4):

max pi{ro +w(r(z) — ro)}] = max 3 p(2)Mlro +w(r(z) — ro), #°],

where z* is the maximized value of the certainty equivalent function.
The problem on the righthand side has first-order condition

3" pl)Milro + wlr(z) — o), 1'[r(2) — 7ol

= E[My(ro +w(r — o), 4" ){r — 0)] = 0. (5)

(There are M; terms, too, but you might verify for yourself that they
can be eliminated.) We find the optimal portfolio by solving the first-
order condition and {4) simultaneously for w and #*. The same con-
ditions can also be used in econometnic work to estimate preference
parameters.
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To see how you might use (5) to determine w, consider a numeri-
cal example with two equally likely states and returns ry =1.01,
r{1) =0.90, and r(2) = 1.24 (the "equity premium” is 6%). With ex-
pected utility, the first-order condition is

1 -8 Zp (ro + w[r(z) — ro])**[r(z) — ro] = 0.

Note that #* drops out and we can solve for w independently. For
a = 0.5, the solution is w = 4.791, which implies p* = 1.154. The result
is the dual of the equity premium puzzle: with modest risk aversion,
the observed equity premium induces a huge long position in the risky
asset, financed by borrowing. With disappointment aversion, the first-
order condition is

(1+3)p(1)(ro + wir(1) — ro])™ ' [r(1) — 7o)
+ p(2)(ro + w[r(2) — r0))* *[1(2) — ro] = 0,

since z=1 is the bad state. For d =0.5, w =2.147 and u* = 1.037.
[Adapted from Epstein and Zin (1989, 2001).]

Example 7 (portfolio choice with rank-dependent preferences) Rank-
dependent preferences are an interesting alternative to the Chew-
Dekel class. We rank states so that the payoffs c(z) are increasing in z
and define the certainty equivalent function by

p=ul (Z(glp(z)] —glPz - 1)1>u[c(z)1) =u! (Z ?(Z)H[C(Z)])

where g is an increasing function satisfying ¢(0) =0 and g(1) =1,
P(z) =37, p(u) is the cumulative distribution function, and p(z) =
¢[P(z)] — g[P(z—1)] is a transformed probability. If g(p) = p, this is
simply expected utility. If g is concave, these preferences exhibit risk
aversion even if « is linear. However, since u is nonlinear in probabil-
ities, it cannot be expressed in Chew-Dekel form. At the end of this
section, we discuss the difficulties this raises for econometric estima-
tion. In the portfolio choice problem, the first-order condition is

> p@me@)[r(z) — rol =0, (6)

which is readily solved if we know the probabilities. [Adapted from
Epstein and Zin (1990) and Yaari (1987).]
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Example 8 (risk sharing) Consider a Pareto problem with two agents
who divide a given risky aggregate endowment y(z). If their certainty
equivalent functions are identical and homogeneous of degree 1, each
agent consumes the same fraction of the aggregate endowment in all
states. The problem is more interesting if the agents have different
preferences. Let us say that two agents, indexed by i, have certainty
equivalent functions g'[c’(z)]. A Pareto optimal allocation solves:
choose {c1(z),c%(z)} to maximize z! subject to ¢'{z) + c?(z) < y(z) and
#t* = ji for some number 7. If 1 is the Lagrange multiplier on the sec-
ond constraint, the first-order conditions have the form
aut ou?

ez~ i

With Chew-Dekel nsk preferences, the derivatives have the form:

out o . ) )
R = POMI@), ]+ 3 ploMe' ) ]

i

ot
dci(z)

= pOM[C @), 1] / (1 -y p(x)M;;[c%x),w]).

This expression is not particularly user-friendly, but in principle we
can solve it numerically for specific functional forms. With expected
{power) utility, an optimal allocation solves

[ [y(z) = PR = 2] T )

which implies allocation rules that we can express in the form ¢! =
s'(y)y. If we substitute into the optimality condition and differentiate,
we find ds'/dy > 0 if o > oy the less risk averse agent absorbs a dis-
proportionate share of the nisk.

3.3 Discussion: Moment Conditions for Preference Parameters

One of the most useful features of Chew—Dekel preferences is how eas-
ily they can be used in econometric work. Since the risk aggregator (4)
is linear in probabilities, we can apply method of moments estimators
directly to first-order conditions.

In a typical method of moments estimator, a vector-valued function
f of data x and a vector of parameters # of equal dimension satisfies
the moment conditions
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Ef(xa 80) = 07 (7)

where ¢ =8 is the parameter vector that generated the data. A
method of moments estimator #r for a sample of size T replaces the
population mean with the sample mean:

T
Ty flx,6r) =0.
f=1

Under reasonably general conditions, a law of large numbers implies
that the sample mean converges to the population mean and 87 con-
verges to #y. When the environment permits a central limit theorem,
we can also derive an asymptotic normal distribution for 6r. If the
number of moment conditions (the dimension of f) is greater than the
number of parameters (the dimension of #), we can apply a general-
ized method of moments estimator with similar properties (see Han-
sen, 1982.)

The portfolio~choice problem with Chew-Dekel preferences has ex-
actly this form if the number of preference parameters is no greater
than the number of risky assets. For each risky asset {, there is a mo-
ment condition,

filx,8) = Ma(c, 4* )(ri — 1o},

analogous to equation (5). In the static case, we also need to estimate
u*, which we do using equation (4) as an additional moment condition.
[In a dynamic setting, a homothetic time aggregator allows us to re-
place ;* with a function of consumption growth; see equation (13).]

Qutside the Chew-Dekel class, estimation is a more complex activ-
ity. First-order conditions are no longer linear in probabilities and do
not lead to moment conditions in the form of equation (7). To estimate,
say, equation (6) for rank-dependent preferences, we need a different
estimation strategy. One possibility is a simulated method of moments
estimator, which involves something like the following: (i) conjecture a
probability distribution and parameter values; (ii) given these values,
solve the portfolio problem for decision rules; (iii) calculate (perhaps
through simulation) moments of the decision rule and compare them
to moments observed in the data; (iv) if the two sets of moments are
sufficiently close, stop; otherwise, modify parameter values and return
to step (i). All of this can be done, but it highlights the econometric
convenience of Chew—Dekel risk preferences.



340 Backus, Routledge, & Zin

4, Time and Risk

We are now in a position to describe nonadditive preferences in a
dynamic stochastic environment like that illustrated by Figure 1. You
might guess that the process of specifying preferences over time and
states of nature is simply a combination of the two. In fact, the combi-
nation raises additional issues that are not readily apparent. We touch
on some of them here; others come up in the next two sections.

4.1 Recursive Preferences

Consider the structure of preferences in a dynamic stochastic envi-
ronment. In the tradition of Kreps and Porteus (1978), Johnsen and
Donaldson (1985), and Epstein and Zin (1989), we represent a class of
recursive preferences by

uf = V[uhﬂt(uf-l'l)]s (8)

where U, is shorthand for utility starting at some date-t history z/, U4y
refers to utilities for histories z/*! = (z’,z/11) stemming from z’, 1 is
date-t utility, V is a time aggregator, and x4 is a certainty-equivalent
function based on the conditional probabilities p(z:11]z*). This struc-
ture is suggested by Kreps and Porteus (1978) for expected utility cer-
tainty equivalent functions. Epstein and Zin (1989) extend their work
to stationary infinite-horizon settings and propose the more general
Chew-Dekel class of risk preferences. As in Section 2, such preferences
are dynamically consistent, history independent, future independent,
and stationary. They are also conditionally independent in the sense of
Johnsen and Donaldson (1985): preferences over choices at any history
at date t (Z, for example) do not depend on other histories that may
have (but did not) occur (z' # z'). You can see this in Figure 1: if we
are now at the node marked (A), then preferences do not depend on
consumption at nodes stemming from (B) denoting histories that can
no longer occur.

If equation (8) seems obvious, think again. If you hadn’t read the
previous paragraph or its sources, you might just as easily propose

u! = ﬂt[V(ufa ut+1)]a

another seemingly natural combination of time and risk preference.
This combination, however, has a serious flaw: it implies dynamically
inconsistent preferences unless it reduces to equation (1). See Kreps
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and Porteus (1978) and Epstein and Zin (1989, Section 4). File away for
later the idea that the combination of time and risk preference can raise
subtle dynamic consistency issues.

We refer to the combination of the recursive structure (8) and an
expected utility certainty equivalent as Kreps-Porteus preferences.
A popular parametric example consists of the constant elasticity
aggregator,

Vi, w(W)] = (1= Bye? + B’ O
and the power certainty equivalent,
u(U) = [EU, (10)

with p, o < 1. Equations (9) and (10) are homogeneous of degree 1 with
constant discount factor f. This is more restrictive than the aggregators
we considered in Section 2, but linear homogeneity rules out more gen-
eral discounting schemes: it implies that indifference curves have the
same slope along any ray from the origin, so their slope along the 45-
degree line must be the same, too. If U is constant, the weights (1 — §)
and f define U = u as the (steady-state) level of utility. It is common to
refer to 1 — o as the coefficient of relative risk aversion and 1/(1 — p) as
the intertemporal elasticity of substitution. If p = «, the model is equiv-
alent to one satisfying equation (1), and intertemporal substitution is
the inverse of risk aversion. More generally, the Kreps-Porteus struc-
ture allows us to specify risk aversion and intertemporal substitution
independently. Further, a Kreps—Porteus agent prefers early resolution
of risk if & < p; see Epstein and Zin (1989, Section 4). This separation of
risk aversion and intertemporal substitution has proved to be not only
a useful empirical generalization but an important source of intuition
about the properties of dynamic models.

We can generate further flexibility by combining (8) with a Chew-
Dekel risk aggregator (4), thereby introducing Chew—-Dekel risk pref-
erences to dynamic environments. We refer to this combination as
Epstein—Zin preferences.

4.2 Examples

Example 9 (Weil's model of precautionary saving) We say that
consumption-saving models generate precautionary saving if risk de-
creases consumption as a function of current assets. In the canonical
consumption problem with additive preferences, income risk has this
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effect if the period utility function 1 has constant k = w111t/ (u11)2 >0,
See, for example, Ljungqvist and Sargent (2000, pp. 390-393). Both
power utility and exponential utility satisfy this condition. With power
utility [u(c) = ¢*/a], k = 2){o — 1), which is positive for o < 1 and
therefore implies precautlonary saving. (In the next section, we look
at quadratic utility, which effectively sets « = 2, implying k = 0 and
no precautionary saving.) Similarly, with exponential utility [u(c} =
—exp(—uc)], k =1 > 0. With Kreps—Porteus preferences, we can address
a somewhat different question: does precautionary saving depend on
intertemporal substitution, risk aversion, or both? To answer this ques-
tion, consider the problem characterized by the Bellman equation

J(a) = mf‘x{(l — Pc? + puf(a’))

subject to the budget constraint 4’ =r(@ —c)+y’, where p(x)=
—o ' log E exp(—ax) and {y} ~ NID(xy,k2). The exponential cer-
tainty equivalent x4 is not homogeneous of degree 1, but it is ana-
lytically convenient for problems with additive risk. The parameters
satisfy p < 1, = 0, 7 > 1, and g/ #¢2/1) < 1, Of particular interest
are p, which governs intertemporal substitution, and «, which governs
risk aversion.

The value function in this example is linear with parameters that
can be determined by the time-honored guess-and-verify method. We
guess (we've seen this problem before) J{a) = A + Ba for parameters
(A, B) to be determined. The certainty equivalent of future utility is

ulJ(@')) = ulA + Bria —c) + By’ = A + Br(a — ¢) + Bxy — aB%k2 /2, (11)

which follows from equation (42} of Appendix 9.2. The first-order and
envelope conditions are

0 =J(@)'[(1- pc*~ — pu~"Br]

Jia)y = B = J(a)' " fu’~"Br,

which imply

u= (A" 1a) = ()7 (A + Ba)
c=[(1-By/B"""@) = (1~ £)/B)/" (A + Ba).

The latter tells us that the decision rule is linear, too. If we substitute
both equations into (11), we find that the parameters of the value func-
tion must be:
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A= (r—1)" (%) — Barz/2)B

(1 _ ﬁ)lf(l_p) (1-p)/p
L - ﬁlf(lﬂ)rp/um] '

They imply the decision rule
¢ = (1= g2/ =P g 4 (r — 1) [y — Baxz /2)).

The last term is the impact of risk. Apparently a necessary condition
for precautionary saving is a > 0, so the parameter controlling precau-
tionary saving is risk aversion. [Adapted from Weil (1993).]

Example 10 (Merton—Samuelson portfolio model) Our next example illus-
trates the relation between consumption and portfolio decisions in iid
environments. The model is similar to the previous example, and we
use it to address a similar issue: the impact of asset return risk on con-
sumption. At each date ¢, a theoretical agent faces the following budget
constraint:

B = (@ — ) E WitTit1,
i

where w;; is the share of post-consumption wealth invested in asset {
and 7y is its return. Returns {r;;,1} are iid over time. Preferences are
characterized by the constant elasticity time aggregator (9) and an arbi-
trary linearly homogeneous certainty equivalent function. The Bellman
equation is

Jia) = max{(1 = F)e + pulJ@")"}'7,

subject to
a'=(a—c) Zw,-r; =(a—o,
i

and Y, w; = 1, where 7, is the portfolio return. Since the time and risk
aggregators are linear homogeneous, so is the value function, and the
problem decomposes into separate portfolio and consumption prob-
lems. The portfolio problem is:

max g[J(a")] = (2 — c) max u[J(r,)]
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Since returns are iid, the portfolio problem is the same at all dates and
can be solved using methods outlined in the previous section. Given a
solution #* to the portfolio problem, the consumption problem is:

J(a) = max{(1 = e’ + Bl(a — "]}

The first-order condition implies the decision rule ¢ = [A/{1 + A)la,
where

A= (1= BIFH P ey 0,

The impact of risk is mediated by x* and involves the familiar balance
of income and substitution effects. If p < 0, the intertemporal elasticity
of substitution is less than 1 and smaller g¢* (larger risk premium) is
associated with lower consumption (the income effect). If p > 0, the
opposite happens. In contrast to the previous example, the governing
parameter is p; the impact of risk parameters is imbedded in #*. Note,
too, that the impact on consumption of a change in ¢* can generally be
offset by a change in £ that leaves A unchanged. This leads to an iden-
tification issue that we discuss at greater length in the next example.
Farmer and Gertler use a similar result to motivate setting « = 1 (risk
neutrality) in the Kreps-Porteus preference model, which leads to lin-
ear decision rules even with risk to income, asset returns, and length
of life. [Adapted from Epstein and Zin (1989), Farmer (1990), Gertler
(1999), and Weil (1990).]

Example 11 (asset pricing) The central example of this section is an
exploration of time and risk preference in the traditional exchange
economy of asset pricing. Preferences are governed by the constant
elasticity time aggregator (9) and the Chew-Dekel risk aggregator (4).
We characterize asset returns for general recursive preferences and
discuss the identification of time and risk preference parameters. We
break the argument into a series of steps.

Step (i) (consumption and portfolio choice). Consider a stationary
Markov environment with states z and conditional probabilities p(z’|z).
A dynamic consumption/portfolio problem for this environment is
characterized by the Bellman equation

J(@.2) = max{(1 - fc* + fulj(a’,2' )"},

subject to the budget constraint a' = (a2 —c) Y wri(z,2') =(a—c)-
>iwir] = (a — c)r,, where r, is the portfolio return. The budget con-
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straint and linear homogeneity of the time and risk aggregators imply
linear homogeneity of the value function: [{a,z) = aL(z) for some scaled
value function L. The scaled Bellman equation is

L(z) = max{(1 - )b + B(1 = Y ulL(z)rylz, 2P,

where b = c/a. Note that L(z) is the marginal utility of wealth in state z.

As in the previous example, the problem divides into separate port-
folio and consumption decisions. The portfolio decision solves: choose
{w;} to maximize u[L{z")r,(z,z")]. The mechanics are similar to Exam-
ple 6. The portfolio first-order conditions are

Zp )M Lz (2, 2), L2 ) iz, 2') = 1j(2,2')] = O (12)

for any two assets i and j. Given a maximized g, the consumption deci-
sion solves: choose b to maximize L. The intertemporal first-order con-
dition is
(1-pp*™" = p1-b) . (13)
If we solve for ¢ and substitute into the (scaled) Bellman equation, we
find
= (1= B)/A ¥ Ib/(1 - bV

(14)

L=(1- ﬁ)l/.ﬂb(.ﬂ—l)/ﬂ

The first-order condition (13) and the value function (14) allow us
to express the relation between consumption and returns in almost
familiar form. Since ¢ is linear homogeneous, the first-order condition
implies p(x'r;) = 1 for

¥ =L'fu= e fo)’ ™ r) M

The last equality follows from (¢'/c) = (b'/b)(1 — b)ry, a consequence
of the budget constraint and the definition of b. The intertemporal
first-order condition can therefore be expressed as

pl(x w([Bie o) )Py =1, (15)

a generahzatlon of the tangency condition for an optimum (set the
marginal rate of substitution equal to the price ratio). Similar logic
leads us to express the portfolio first-order conditions (12) as

E[Ml(x’r;,, Dx'(¢! — )] =0.
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If we multiply by the portfolio weight w; and sum over j, we find
E[Mlxr 1xr’]_E[M1xr 1xr] (16)

Euler’s theorem for homogeneous functions allows us to express the
right side as

E[My(x'r,, 1)x'r)] = 1 — EMa(x'r;, 1).

Whether this is helpful depends on M. [Adapted from Epstein and Zin
{1989).]

Step (ii) (equilibrium). Now shift focus to an exchange economy in
which out'put growth follows a stationary Markov process: g’ =
y'/y = g(2’). In equilibrium, consumption equals output and the opti-
mal portfoho is a claim to the stream of future output. We denote the
price of this claim by g and the price-output ratio by Q = g/y. Its return
is therefore

r, = {1 +¥)q=(QY +y)/{Qy) =g{Q +1)/Q. (17)

With linear homogeneous preferences, the equilibrium price-output
ratio is a stationary function of the current state, J(z). Asset pric-
ing then consists of these steps: (a) substitute (17) into (15) and solve
for Q:

A8 Q" + 1)]V) = QY7,

(b) compute the portfolio return r, from equation (17); and (c) use (16)
to derive returns on other assets.

Step (iii) (the iid case). If the economy is iid, we cannot generally
identify separate time and risk parameters. Time and risk parameters
are intertwined in (16), but suppose we were somehow able to esti-
mate the risk parameters. How might we estimate the time prefer-
ence parameters f and p from observations of #, (returns) and b (the
consumption-wealth ratio)? Formally, equations (13) and (14) imply
the intertemporal optimality condition

(1—b)'"* = fu(r,)’.

If 7, is iid, # and b are constant. With no variation in g or b, the optimal-
ity condition cannot tell us both p and #: for any value of p, we can sat-
isfy the condition by adjusting the discount factor . The only limit to
this is the restriction § < 1. Evidently a necessary condition for identi-
fying separate time and risk parameters is that risk varies over time.
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The issue doesn’t arise with additive preferences, which tie time prefer-
ence to risk preference. [Adapted from Kocherlakota (1990) and Wang
(1993).]

Step (iv) (extensions). With Kreps-Porteus preferences and non-
iid returns, the model does somewhat better in accounting for asset
returns. Nevertheless, it fails to provide an entirely persuasive account
of observed relations between asset returns and aggregate consump-
tion. Roughly speaking, the same holds for more general risk prefer-
ence specifications, although the combination of exotic preferences
and time-varying risk shows promise. [See Bansal and Yaron (2004);
Epstein and Zin (1991); Lettau, Ludvigson, and Wachter (2003); Rout-
ledge and Zin (2003); Tallarini (2000); and Weil (1989).]

Example 12 (risk sharing) With additive preferences and equal dis-
count factors, Pareto problems generate constant weights on agents’
utilities over time and across states of nature, even if period/state
utility functions differ. With Kreps—Porteus preferences, differences in
risk aversion lead to systematic drift in the weights. To be concrete,
suppose states z follow a Markov chain with conditional probabilities
p(z'|z). Aggregate output is y(z). Agents have the same aggregator,
Vie,u) = (¢’ + fir?) /p, but different certainty equivalent functions,

wixtz)] = (Z p(z’lz)x(z’)“')” "

for state-dependent utility x. The Bellman equation for the Pareto prob-
lem is

J(w.2) = max (y(2) — )" +fu' (w20}

subject to
(e + ptwo ") /p =z w.

Here, c and w, refer to consumption and promised future utility of the
second agent. The first-order and envelope conditions imply

VORI
(#l)p—mf(wzf’zf)oq—lh (wz’, Zl) — Il (w, z)(#;)ﬂ—azwatzfl

Il(wu Z) = -1
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The first equation leads to the familiar allocation rule ¢ =
[14+ AU y(z), If oy # o, the weight A will generally vary over
time. [Adapted from Anderson (2004) and Kan (1995).]

Example 13 (habits, disappointment aversion, and conditional indepen-
dence) Habits and disappointment aversion both assess utility by
comparing consumption to a benchmark. With disappointment aver-
sion, the benchiark is the certainty equivalent. With habits, the
benchmark is a function of past consumption. Despite this apparent
similarity, there are a number of differences between them. One is tim-
ing: the habit is known and fixed when current decisions are made,
while the certainty equivalent generally depends on those decisions.
Another is that disappointment aversion places restrictions on the
benchmark that have no obvious analog in the habit model. A third is
that habits take us outside the narrowly defined class of recursive pref-
erences summarized by equation (8): they violate the assumption of
conditional independence. Why? Because preferences at any node in
the event tree depend on past consumption through the habit, which
in turn depends on nodes that can no longer be reached. In Figure 1,
for example, decisions at node (A) depend on the habit, which was
chosen at (say) the initial node zy and therefore depends on anything
that could have happened from there on, including (B) and its succes-
sors. The solution, of course, is to define preferences conditional on a
habit state variable and proceed in the natural way.

4.3 Discussion: Distinguishing Time and Risk Preference

The defining feature of this class of preferences is the separation of
time preference (summarized by the aggregator V) and risk preference
(summarized by the certainty equivalent function #). In the functional
forms used in this section, time preference is characterized by a dis-
count factor and an intertemporal substitution parameter. Risk prefer-
ence is characterized by risk aversion and possibly other parameters
indicated by the Chew-Dekel risk aggregator. Therefore, we have
added one or more parameters to the conventional additive utility
function (1). Examples suggest that the additional parameters may be
helpful in explaining precautionary saving, asset returns, and the inter-
temporal allocation of risk.

A critical question in applications is whether these additional param-
eters can be identified and estimated from a single time series real-
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ization of all the relevant variables. If so, we can use the methods out-
lined in the previous section: apply a method of moments estimator to
the first-order conditions of the problem of interest. Identification
hinges on the nature of risk. If risk is iid, we cannot identify separate
time and risk parameters. This is clear in examples, but the logic is
both straightforward and general: we need variation over time to iden-
tify time preference. A more formal statement is given by Wang (1993).

5. Risk-Sensitive and Robust Control

Risk-sensitive and robust control emerged in the engineering literature
in the 1970s and were brought to economics and developed further by
Hansen and Sargent, their many coauthors, and others. The most pop-
ular version of risk-sensitive control is based on Kreps-Porteus prefer-
ences with an exponential certainty equivalent function. Robust control
considers a new issue: decision making when the agent does not know
the probability model generating the data. The agent considers instead
a range of models and makes decisions that maximize utility given the
worst possible model. The same issue is addressed from a different
perspective in the next section. Much of this work deals with linear-
quadratic-guassian (LQG) problems, but the ideas are applicable more
generally. We start by describing risk-sensitive and robust control in
a static scalar LQG setting, where the insights are less cluttered by al-
gebra. We go on to consider dynamic LQG problems, robust control
problems outside the LQG universe, and challenges of estimating—
and distinguishing between—models based on risk-sensitive and ro-
bust control.

5.1 Static Control

Many of the ideas behind risk-sensitive and robust control can be
illustrated with a static, scalar example. We consider traditional opti-
mal control, risk-sensitive control, and robust control as variants of the
same underlying problem. The striking result is the equivalence of op-
timal decisions made under risk-sensitive and robust control.

In our example, an agent maximizes some variant of a quadratic re-
turn function,

u(v,x) = —[Quv* + Rx?),

subject to the linear constraint,
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x = Axg + Bv + C(w + &), {18)

where v is a control variable chosen by the agent, x is a state vari-
able that is controlled indirectly through v, xo is a fixed initial value,
(Q,R) > 0 are preference parameters, (A, B, C} are nonzero parameters
describing the determination of x, ¢ ~ N(0, 1) is noise, and w is a dis-
tortion of the model that we'll describe in greater detail when we get
to robust control. The problem sets up a trade-off between the cost
(Qv?) and potential benefit (Rx?) of nonzero values of v. If you've seen
LQG control problems before, most of this should look familiar.

Optimal control. In this problem and the next one, we set w =0,
thereby ruling out distortions. The control problem is: choose v to max-
imize Eu given the constraint (18). Since

Eu = —[Quv® + R(Ax,y + Bv)*] — RC2, (19)

the objective functions with and without noise differ only by a con-
stant. Noise therefore has no impact on the optimal choice of v. For
both problems, the optimal v is

v = —(Q + B*R) }(ABR)x,.

This solution serves as a basis of comparison for the next two.

Risk-sensitive control. Continuing with w = 0, we consider an alterna-
tive approach that brings risk into the problem in a meaningful way:
we maximize an exponential certainty equivalent of u,

u(u) = —o~ ! log E exp(—au),

where « > 0 is a risk aversion parameter. (This is more natural in a
dynamic setting, where we would compute the certainty equivalent of
future utility a la Kreps and Porteus.) We find g(u) by applying for-
mula (43) of Appendix 9.2:

p(u) = —(1/2) log(1 — 2aRC?)
— [Qv + [R/(1 — 2«RC?)](Axp + Bv)?] (20)

as long as 1 — 2¢RC? > 0. This condition places an upper bound on the
risk aversion parameter «. Without it, the agent can be so sensitive to
risk that her objective function is negative infinity regardless of the
control. The first term on the right side of (20} does not depend on v or
x, 50 it has no effect on the choice of v. The important difference from
(19) is the last term: the coefficient of (Axy + Bv)® is larger than R, mak-
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ing the agent more willing to tolerate nonzero values of » to bring x
close to zero. The optimal v is

v = —(Q + B’R — «QRC?) ' (ABR)x).

If « = 0 (risk neutrality) or C = 0 {no noise), this is the same as the opti-
mal control solution. If « >0 and C # 0, the optimal choice of » is
larger in absolute value because risk aversion increases the benefit of
driving x to zero.

Robust control. Qur third approach is conceptually different. We
bring back the distortion w and tell the following story: We are playing
a game against a malevolent nature, who chooses w to minimize our
objective function. If our objective were to maximize Eu, then w would
be infinite and our objective function would be minus infinity regard-
less of what we do. Therefore, let us add a penalty (to nature) of fw?,
making our objective function

min Eu + fw?.
w

The parameter & >0 has the effect of limiting how much nature
distorts the model, with small values of & implying weaker limits on
nature. The minimization implies

w = (8 — RC?)™'R(Axq + Bv),
making the robust control objective function

min Eu + Buw? = —[Qv? + [R/(1 — 07'RC?)](Axq + Bv)*] — RC2.  (21)

The remarkable result: if we set 8! = 24, the robust control objective
differs from the risk-sensitive control objective (20) only by a constant,
so it leads to the same choice of v. As in risk-sensitive control, the
choice of v is larger in absolute value, in this case to offset the impact
of w. There is, once again, a limit on the parameter: where « was
bounded above, ¢ is bounded below. An infinite value of & reproduces
the optimal control objective function and solution.

An additional result applies to the example: risk-sensitive and robust
control are observationally equivalent to the traditional control prob-
lem with suitably adjusted R. That is, if we replace R in equation (19)
with

R =R/(l ~2aRC?) = R + 24R*C% /(1 — 20RC?) > R, (22)
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then the optimal control problem is equivalent to risk-sensitive control,
which we've seen is equivalent to robust control. If Q and R are func-
tions of more basic parameters, it may not be possible to adjust R
in this way, but the exercise points to the qualitative impact on the
control: be more aggressive. This result need not survive beyond the
scalar case, but it’s suggestive.

Although risk-sensitive and robust control lead to the same decision,
they are based on different preferences and give the decision different
interpretations. With risk-sensitive control, we are concerned with risk
for traditional reasons, and the parameter o« measures risk aversion.
With robust control, we are concerned with model uncertainty (possi-
ble nonzero values of w). To deal with it, we make decisions that max-
imize given the worst possible specification error. The parameter ¢
controls how bad the error can be.

Entropy constraints. One of the most interesting developments in
robust control is a procedure for setting &: namely, choose # to limit
the magnitude of model specification error, with specification error
measured by entropy. We define the entropy of transformed probabil-
ities p relative to reference probabilities p by

I(p;p) = sz) log(p(z)/p(z)] = E log(p/p), (23)

where the expectation is understood to be based on p. Note that I{p; p)
is nonnegative and equals zero when p = p. Since the likelihood is
the probability density function expressed as a function of parameters,
entropy can be viewed as the expected difference in log-likelihoods
between the reference and transformed models, with the expectation
based on the latter.

In a robust control problem, we can limit the amount of specification
error faced by an agent by imposing an upper bound on I: consider
(say) only transformations p such that I(p; p) < Iy for some positive
number Iy. This entropy constraint takes a particularly convenient form
in the normal case. Let p be the density of x implied by equation (18)
and p the density with w = 0:

p(x) = (2nC* V2 exp[—(x ~ Axo — Bv — Cw)?/2C?)
= (2rC2)71/2 exp[—€?/2]
p(x) = (2nC?) 7 exp[—(x — Axo — Bv)*/2C?

=

2rC?)~ e exp[—(w+a) /2.
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Relative entropy is
1(p; p) = E(w?/2 +we) = w?/2.

If we add the constraint w?/2 < Ij to the optimal control objective (19),
the new objective is

I‘l‘%{])n —[Qv* + R(Ax + Bv + Cw)z] — RC? + f(w® — 20y),

where # is the Lagrange multiplier on the constraint. The only differ-
ence from the robust control problem we discussed earlier is that ¢ is
determined by Iy. Low values of Iy (tighter constraints) are associated
with high values of #, so the lower bound on # is associated with an
upper bound on Iy.

Example 14 (Kydland and Prescott’s inflation game) A popular macro-
economic policy game goes like this: the government chooses inflation
g to maximize the quadratic return function,

u(g, y) = —lg* + Ry?],
subject to the Phillips curve,
¥ = Yo+ Blg—g°) + Clw +e),

where v is the deviation of output from its social optimum, ¢° is ex-
pected inflation, (R, B,C) are positive parameters, yg is the noninfla-
tionary level of output, and £~ N(0,1). We assume y; < 0, which
imparts an inflationary bias to the economy.

This problem is similar to our example, with one twist: we assume
g¢ is chosen by private agents to equal the value of g they expect the
government to choose (another definition of rational expectations}) but
taken as given by the government (and nature). Agents know the
model, so they end up setting 4° = g. A robust control version of this
problem leads to the optimization:
mgx ngn ~E(g* + Riyo + B(p — p°) + C(w + a)]z) + gw?.

Note that we can do the min and max in any order (the min-max theo-
rem). We do both at the same time, which generates the first-order con-
ditions

4+ RB[yo+B(g—4°)+Cw] =0

—6w + RC[y; + B(g — ¢°) + Cw] = 0.
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Applying the rational expectations condition 4° = g leads to

__( RB ) - 07'RC
1=\ 0 re2 ) “\1-grc2 )

Take 6! = 0 as the benchmark. Then g = —RBy > 0 (the inflationary
bias we mentioned earlier) and w =0 (no distortions). For smaller
values of 0 > RC?, inflation is higher. Why? Because negative values
of w effectively lower the noninflationary level of output (it becomes
Yo + Cw), leading the government to tolerate more inflation. As ¢
approaches its lower bound of RC?, inflation approaches infinity. If we
treat this as a constraint problem with entropy bound w?/2 < Iy, then
w= (210)1 & (recall that w < 0} and the Lagrange multiplier & is re-
lated to Ih by

0 = RC? — RCyy/ (215)"72.

The lower bound on @ corresponds to an upper bound on I. All
of this is predicated on private agents understanding the govem-
ment’s decision problem, including the value of §. [Adapted from
Hansen and Sargent (2004, Chapter 5} and Kydland and Prescott
(1977).]

Example 15 (entropy with three states) With three states, the constraint
I(p; ) < Iy is two-dimensional since the probability of the third state
can be computed from the other two. Figure 4 illustrates the con-
straint for the reference probabilities p(1) = p(2) = p(3) =1/3 (the
point marked +) and Iy = 0.1. The boundary of the constraint set is
the egg shape. By varying Iy, we vary the size of the constraint set.
Chew-Dekel preferences can be viewed from the same perspective.
Disappointment aversion, for example, is a one-dimensional class of
distortions. If the first state is the only one worse than the cer-
tainty equivalent, the transformed probabiliﬁes are ﬁ( 1=Q+8)p(1)/
(1 +6p(1)), p(2) = p(2)/[1 +p(1)], and p(3) = p(3)/(1 +dp(1)]. Their
entropy is

1(d) = log(1 +dp(1)] — p(1) log(1 + J),

a positive increasing function of ¢ = 0. By varying J subject to the con-
straint 1(d) < Iy, we produce the line shown in the figure. (It hits the
boundary at d = 1.5.) The interpretation of disappointment aversion,
however, is different: in the theory of Section 3, the line represents dif-
ferent preferences, not model uncertainty.
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Figure 4

Transformed probabilities: Entropy and disappointment aversion. The figure illustrates
two sets of transformed probabilities described in Example 15: one set generated by an
entropy constraint and the other by disappointment aversion. The bold triangle is the
three-state probability simplex. The “+” in the middle represents the reference probabil-
ities: p{1) = p(2) = p(3) = 1/3. The area inside the egg-shaped contour represents trans-
formed probabilities with entropy less than 0.1. The dashed line represents probabilities
implied by disappointment aversion with & between 0 to 1.5,

5.2 Dynamic Control

Similar issues and equations arise in dynamic settings. The tradi-
tional linear-quadratic control problem starts with the quadratic return
function,

u(v, x) = —(v; Qui +x; Ry + 2x," Sy),

where v is the control and x is the state. Both are vectors, and (Q,R, 5)
are matrices of suitable dimension. The state evolves according to the
law of motion

Xpy1 = Axy + Buy + Clwn + &41), (24)
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where w is a distortion (zero in some applications) and {¢;} ~ NID(0, /)

is random noise. We use these inputs to describe optimal, risk-

sensitive, and robust control problems. As in the static example, the

central result is the equivalence of decisions made under risk-sensitive

and robust control. We skip quickly over the more torturous algebraic

steps, which are available in the sources listed in Appendix 9.1.
Optimal control. We maximize the objective function:

o
Eo Y pBlu(vr,x)
=0

subject to (24) and w; = 0. From long experience, we know that the
value function takes the form

J(x)= —x"Px—gq (25)

for a positive semidefinite symmetric matrix P and a scalar 4. The Bell-
man equation is

—x"Px — g = max{—(v' Qu+ x'Rx + 2x"' Sv)
v

— BE[(Ax + Bv+ C¢’) ' P(Ax 4+ Bv + Ce') + 4|} (26)
Solving the maximization in (26) leads to the Riccati equation
P=R+pBA'PA- (BATPB +5)(Q+ SB"PB) ' (BBTPA+ ST). (27)
Given a solution for P, the optimal control is v = —Fx, where
F=(Q+pB'PB) Y(pB"PA+5"). (28)

As in the static scalar case, risk is irrelevant: the control rule (28) does
not depend on C. You can solve such problems numerically by iter-
ating on the Riccati equation: make an initial guess of P (we use I),
plug it into the right side of (27) to generate the next estimate of
P, and repeat until successive values are sufficiently close together.
See Anderson, Hansen, McGrattan, and Sargent (1996) for algebraic
details, conditions guaranteeing convergence, and superior computa-
tional methods (the doubling algorithm, for example).

Risk-sensitive control. Risk-sensitive control arose independently but
can be regarded as an application of Kreps—Porteus preferences using
an exponential certainty equivalent. The exponential certainty equiva-
lent introduces risk into decisions without destroying the quadratic
structure of the value function. The Bellman equation is
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J(x) = max{u(v,x) + Bl ()]},

where the maximization is subject to x' = Ax 4 Bv + C¢’ and w«(]) =
—o ! log E exp(—«f). If the value function has the quadratic form of
(25), the multivariate analog to (43) gives us

ulJ(Ax + Bo + C&')] = —(1/2) log|l — 2aCTPC|
+ (Ax + Bv)" P(Ax + Bv),
where
P=P+2aPC(I - 24CTPC)"'CTP (29)

as long as |I — 2«CTPC| > 0. Each of these pieces has a counterpart in
the static case. The inequality again places an upper bound on the risk
aversion parameter «; for larger values, the integral implied by the ex-
pectation diverges. Equation (29) corresponds to (22); in both equa-
tions, risk sensitivity increases the agent’s aversion to nonzero values
of the state variable. Substituting P into the Bellman equation and max-
imizing leads to a variant of the Riccati equation,

P=R+BATPA— (BATPB + 5)(Q + SB"PB) 1(BBTPA + ST), (30)
and associated control matrix,
F=(Q+pB"PB) (B "PA +S™).

A direct (if inefficient) solution technique is to iterate on equations (29)
and (30) simultaneously. We describe another method shortly.

Robust control. As in our static example, the idea behind robust con-
trol is that a malevolent nature chooses distortions w that reduce our
utility. A recursive version has the Bellman equation:

J(x) = max min{u(v, x) + f(0w’ w+ EJ(x"))}
subject to the law of motion x' = Ax + Bv + C(w + &'). The value func-

tion again takes the form of equation (25), so the Bellman equation can
be expressed as

—x"Px — g = max min{—(v"Quv + x"Rx + 20" Sx) + fbw w
(g w

— BE([Ax + Bv 4+ C(w + ¢)] " P{Ax + Bv + C&') + p)}. (31)

The minimization leads to



358 Backus, Routledge, & Zin

w = (8 — CTPC)"'C"P(Ax + Bo)

and

6w w — (Ax + Bv + Cw)' P(Ax + Bv + Cw) = (Ax + Bv) " P(Ax + Bv),
where

P=P+607'PC(I-#7C"PC) ICTP. (32)

Comparing (32) with (29), we see that risk-sensitive and robust control
lead to similar objective functions and produce identical decision rules
if 61 = 2.

A different representation of the problem leads to a solution that fits
exactly into the traditional optimal control framework and is therefore
amenable to traditional computational methods. The min-max theorem
suggests that we can compute the solutions for v and w simultane-
ously. With this in mind, define:

. (2 - Q 0 N R
v—[wJ, Q—[O —[)’6‘[]’ S=[5 0], B=[B (]
Then the problem is one of optimal control and can be solved using
the Riccati equation (27) applied to (Q,R, $, A, B). The optimal controls
are v = —F1x and w = —F>x, where the F; come from partitioning F. A
doubling algorithm applied to this problem provides an efficient com-
putational technique for robust and risk-sensitive control problems.

Entropy constraints. As in the static case, dynamic robust control
problems can be derived using an entropy constraint. Hansen and Sar-
gent (2004, Chapter 6) suggest

Zﬁtw;rw,/Z <y
=0

Discounting is convenient here, but is not a direct outcome of a multi-
period entropy calculation. They argue that discounting allows distor-
tions to continue to play a role in the solution; without it, the problem
tends to drive I; and @, to zero with time. A recursive version of the
constraint is

L= ﬁﬁl(wawt -I).

A recursive robust constraint problem is based on an expanded state
vector, (x,I), and the law of motion for I above. As in the static case,
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the result is a theory of the Lagrange multiplier #. Conversely, the solu-
tion to a traditional robust control problem with given # can be used to
compute the implied value of Iy. The recursive version highlights an in-
teresting feature of this problem: nature not only minimizes at a point
in time, but also allocates entropy over time in the way that has the
greatest adverse impact on the agent.

Example 16 (robust precautionary saving) Consider a linear-quadratic
version of the precautionary saving problem. A theoretical agent has
quadratic utility, u{c;) = (¢; — y)z, and maximizes the expected dis-
counted sum of utility subject to a budget constraint and an auto-
regressive inCOME processs:

A = r(A — ) + Y
Yeer = (1- W)ﬁ + QY + FE4,

where {¢} ~ NID(0,1). We express this as a linear-quadratic control
problem using ¢; as the control and (1,4, y:) as the state. The relevant
matrices are

1 —p 0 0
Q s’ -y ¥ 0 0
[s R]: o 0 o of
0 0 0 0
1 00 0 0
A=|(1~-9)y r o], B=|-r|, C=|o
(l-¢)y 0 ¢ 0 o

Weset §=095 r=1/8y=2 §y=1, ¢ =08, and ¢ = 0.25. For the
optimal control problem, the decision rule is

¢ = 0.7917 + 0.0500a; + 0.1583y:.

For the robust control problem with @ = 2 (or the risk-sensitive control
problem with o = 1/26 = 0.25), the decision rule is

¢, = 0.7547 + 0.0515a; + 0.1632y,.

The impact of robustness is to reduce the intercept (precautionary
saving) and increase the responsiveness to a and y. Why? The antici-
pated distortion is

w; = —0.1557 + 0.0064a; + 0.0204y;,,
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making the actual and distorted dynamics

1 0 0
A=102 10526 08],
0.2 0 0.8
1 0 0

A—CF,=]-0.1247 1.0661 0.8425
—0.1247 0.0134 0.8425

The distorted dynamics are pessimistic (the income intercept changes
from 0.2 to —0.1247) and more persistent (the maximal eigenvalue
increases from 1.0526 to 1.1086). The latter calls for more aggressive
responses to movements in ¢ and y. [Adapted from Hansen, Sargent,
and Tallarini (1999) and Hansen, Sargent, and Wang {2002).]

5.3 Beyond LQG

You might conjecture (as we did) that the equivalence of risk-sensitive
and robust control hinges critically on the linear-quadratic-gaussian
structure. It doesn’t. The critical functional forms are the exponential
certainty equivalent and the entropy constraint. With these two ingre-
dients, the objective functions of risk-sensitive and robust control are
the same.

We demonstrate the equivalence of risk-sensitive and robust con-
trol objective functions in a finite-state setting where the math is rel-
atively simple. Consider an environment with conditional probabilities
p(z’|z). Since z is immaterial in what follows, we ignore it from now
on. In a typical dynamic programming problem, the Bellman equation
includes the term EJ = 3 p(z'}J(z’). A robust control problem has a
similar term based on transformed probabilities p(z’) whose values
are limited by an entropy penalty:

= min 3~ ()] +9{Zp ) log[p z’)/p(z’)]}
H(Z p(z') — 1).

If p(z’) = p(z’), this is simply EJ. The new elements are the minimiza-
tion with respect to p (the defining feature of robust control), the en-
tropy penalty on the choice of p (the standard functional form), and
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the constraint that the transformed probabiliies sum to 1. For each
p(z’), the first-order condition for the minimization is

J(2') + 6{log[p(z')/p@)] + 1} + 4= 0. (33)

If we multiply by p(z’) and sum over z’, we get | + 6 + 4 = 0, which
we use to eliminate 4 below. Each first-order condition implies

plz'y = p(zl)e—[}(z’)+0+i]/€ — p(zr)e_;(z')/9+f/9_

If we sum over z’ and take logs, we get
J= ~0og(3_pte) expl /),

our old friend the exponential certainty equivalent with risk aversion
parameter o = 6 . If we place f in its Bellman equation context, we've
shown that robust control is equivalent (even outside the LQG class) to
maximizing Kreps-Porteus utility with an exponential certainty equiv-
alent. The log in the entropy constraint of robust control reappears
in the exponential certainty equivalent. An open question is whether
there’s a similar relationship between Kreps—Porteus preferences with
(say) a power certainty equivalent and a powerlike alternative to the
entropy constraint.

5.4 Discussion: Interpreting Parameters

Risk-sensitive and robust control raise a number of estimation issues,
some we've seen and some we haven't. Risk-sensitive control is based
on a special case of Kreps—Porteus preferences and therefore leads to
the same identification issues we faced in the previous section: we
need variation over time in the conditional distribution of next period’s
state to distinguish time and risk parameters.

Robust control raises new issues. Risk-sensitive and robust control
lead to the same decision rules, so we might regard them as equivalent.
But they're based on different preferences and therefore lead to differ-
ent interpretations of parameters. While risk-sensitive control suggests
a risk-averse agent, robust control suggests an agent who is uncertain
about the model that generated the data. In practice, the two can be
quite different. One difference is plausibility: we may find an agent
with substantial model uncertainty (small #) more plausible than one
with enormous risk aversion (large «). Similarly, if we find that a
model estimated for Argentina suggests greater risk aversion than one
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estimated for the United States, we might prefer to attribute the differ-
ence to model uncertainty. Hansen and Sargent (2004, Chapter 8) have
developed a methodology for calibrating model uncertainty (error de-
tection probabilities) that gives the robust-control interpretation some
depth. Another difference crops up in comparisons across policy re-
gimes: the two models can differ substantially if we consider policy
experiments that change the amount of model uncertainty.

6. Ambiguity

In Sections 3 and 4, agents know the probabilities they face, and
with enough regularity and repetition, an econometrician can estimate
them. Here we consider preferences when the consequences of our
choices are uncertain or ambiguous. It’s not difficult to think of such
situations: what are the odds that China revalues this year by more
than 10%, that the equity premium is less than 3%, or that productivity
shocks account for more than half of the variance of U.S. output
growth? We might infer probabilities from history or market prices,
but it’s a stretch to say that we know (or can find out) these probabil-
ities, even though they may affect some of our decisions. One line of
attack on this issue was suggested by Savage (1954): that people maxi-
mize expected utility using personal or subjective probabilities. In this
case, we retain the analytical tractability of expected utility but lose the
empirical convenience of preferences based on the same probabilities
that generate outcomes (rational expectations). Another line of attack
generalizes Savage: preferences are characterized by multiple probabil-
ity distributions, or priors. We refer to such preferences as capturing
ambiguity and ambiguity aversion, and explore two examples: Gilboa
and Schmeidler’s (1989) max-min expected utility for static environ-
ments and Epstein and Schneider’s (2003) recursive multiple priors
extension to dynamic environments. The central issues are dynamic
consistency (something we need to address in dynamic settings) and
identification (how do we distinguish agents with ambiguous prefer-
ences from those with expected utility?).

6.1 Static Ambiguity
Ambiguity has a long history and an equally long list of terminology.

Different varieties have been referred to as Knightian uncertainty,
Choquet expected utility, and expected utility with nonadditive (sub-
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jective) probabilities. Each of these terms refers to essentially the same
preferences. Gilboa and Schmeidler (1989) provide a simple represen-
tation and an axiomatic basis for a preference model in which an agent
entertains multiple probability models or priors. If the set of priors is
I, preferences are represented by the utility function

U{c(z)}) = ﬂhl_}Zn(z)u[c(z)] =~ min Equ(c). (34)

Gilboa and Schmeidler refer to such preferences as max-min because
agents maximize a utility function that has been minimized with re-
spect to the probabilities 7. We denote probabilities by #, rather than
p. as a reminder that they are preference parameters. The defining fea-
ture is I1, which characterizes both ambiguity and ambiguity aversion.
If IT has a single element, (34) reduces to Savage’s subjective expected
utility.

Gilboa and Schmeidler’s max-min preferences incorporate aver-
sion to ambiguity: agents dislike consequences with unknown odds.
Consider an agent choosing among mutually exclusive assets in a
three-state world. State 1 is pure risk: it occurs with probability
1/3. State 2 is ambiguous: it occurs with probability 1/3 — y, with
—1/6 <y < 1/6. State 3 is also ambiguous and occurs with probability
1/3 + 7. The agent’s probability distributions over y define I1. We
use the distributions m,(y = ¢) =1 for —1/6 < g <1/6, which imply
(1/3,1/3 —g,1/34+ g) as elements of Il. These distributions over y
are dogmatic in the sense that each places probability 1 on a partic-
ular value. The approach also allows nondogmatic priors, such as
m,(y = —1/6) = n,(y = 1/6) = 1/2. In this setting, consider the agent’s
valuation of three assets: A pays 1 in state 1, nothing otherwise; B pays
1 in state 2; and C pays 1 in state 3. How much is each asset worth
on its own to a max-min agent? To emphasize the difference between
risk and ambiguity, let u{c) = c. Using (34), we find that asset A is
worth 1/3 and assets B and C are each worth 1/6. The agent is appar-
ently averse to ambiguity in the sense that the ambiguous assets, B
and C, are worth less than the unambiguous asset, A. In contrast, an
expected utility agent would never value both B and C less than A.

Example 17 (portfolio choice and nonparticipation) We illustrate the im-
pact of ambiguity on behavior with an ambiguous version of Example
6. An agent has max-min preferences with t(c) = ¢*/o¢ and « = 0.5. She
invests fraction w of initial wealth a¢ in a risky asset with returns
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[#(1) = w1 — g, 12) =x1 + 0, with ¢ =10.17] and fraction 1 ~w in a
risk-free asset with return ryp = 1.01 in both states. Previously we
assumed the states were equally likely: 7(1) = n(2) = 1/2. Here we let
n(1) take on any value in the interval [0.4,0.6] and set 7(2) = 1 — #(1).
Two versions of this example illustrate different features of max-min
preferences.

* Version 1: First-order risk aversion generates a nonparticipation re-
sult. With expected utility, agents are approximately neutral to fair
bets. In a portfolio context, this means they’ll buy a positive amount of
an asset whose expected return is higher than the risk-free rate, and
sell it short if the expected return is lower. They choose w =0 only
if the expected return is the same. With multiple priors, the agent
chooses w = 0 for a range of values of x; around the risk-free rate (the
nonparticipation result). If we buy, state 1 is the worst state and the
min sets 7(1) = 0.6. To buy a positive amount of the risky asset, the
first-order condition must be increasing at w = 0:

0.6(rg)" My —a — 1) + 0.4(r))* k1 + 0 —10) 2 0,

which implies x; —rp =020 or x; =1.014+0.2(0.17) = 1.044. If we
sell, state 2 is the worst and the min sets n(2) = 0.6. The analogous
first-order condition must be decreasing:

0.4(r0)* iy — 0 — 1) + 0.6(r0)* 1y + 0 — 1) <0,
which implies 1, < rg — 0.2¢ = 0.976. For 0.976 < x; < 1.044, the agent
neither buys nor sells.

* Version 2: Let x; = 1.07. Then the mean return is high enough to
induce the agent to buy the risky asset and state 1 is the worst. The
optimal portfolio is w = 2.147. In this two-state example, the result is
identical to disappointment aversion with § = 0.5. With more states,
this need not be the case.

[Adapted from Dow and Werlang (1992) and Routledge and Zin
(2001).]
6.2 Dynamic Ambiguity

Epstein and Schneider (2003) extend max-min preferences to dynamic
settings, providing an axiomatic basis for

UW=wu+p ﬂlﬁl E U, (35)
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where U, is shorthand for utility starting at some date-t history z‘, u;
is ntility at z', Uy refers to ntilities starting with histories z/*! =
(zf,z¢41) stemming from z°, I1; is a set of one-period conditional proba-
bilities n(z;11|z'), and E, denotes the expectation computed from the
prior 7. Hayashi (2003) generalizes (35) to nonlinear time aggregators:
Uy = V(uy, mingeqy, ExUpy).

As in Section 4, the combination of time and risk raises a question
of dynamic consistency: can (35) be reconciled with some reasonable
specification of date-zero max-min preferences? The answer is yes, but
the argnment is subtle. Consider the dilation example suggested by
Seidenfeld and Wasserman (1993). The starting point is the event tree
in Figure 1, to which we add ambiguious probabilities. (We suggest
you write them on the tree) Date-one probabilities are n(z; =1) =
n(z1 = 2) = 1/2; they are not ambiguous. Date-two (conditional) prob-
abilities depend on z; and an autocorrelation parameter p, for which
the agent has dogmatic priors on the values +1 and —1. Listed from
top to bottom in the figure, the conditional probabilities of the four
datetwo branches aren{z; = 1|z = 1) ==n(zo =2|z1 =2) = (1 4+ p)/2
and z(m=2|51=l)=r(za=1jz =2)=(1-p)/2. In words: the
probabilities depend on whether 2; and z; are the same or different
and whether pis +1 or —1.

With these probabilities, consider the value of an asset that pays 1 if
zz = 1,0 otherwise. For convenience, let u(c} = ¢ and set f =1. If the
recursive and date-zero valuations of the asset differ, preferences are
dynamically inconsistent. Consider recursive valuation. At node (A)
in Figure 1, the value is (1 + p)/2. Minimizing with respect to p, as
suggested by (35), implies p = —1 and a value of 0. Similarly, the
value at node (B) is also 0, this time based on p=1. The valne at
date zero is therefore 0 as well; there is no ambiguity, so the value is
(1/2)(0) + (1/2)(0) = 0. Now consider a (naive) date-zero problem
based on the two- period probabilities of the fonr possible two-period
paths: (1 4+ p)/4, (1 — p)/4, (1 — p)/4, and (1 + p)/4. Ambiguity in these
probabilities is again represented by p. Since the asset pays 1 if the first
or third path occurs, its date-zero value is (1 +p)/4 + (1 —p)/4=1/2,
which is not ambiguous. The date-zero value (1/2} is clearly greater
than the recursive value (0), so preferences are dynamically inconsis-
tent. The computational point: our recursive valuation allows p to
differ across date-one nodes, while our date-zero valuation does not.
The conceptual point: giving the agent access to date-one information
increases the amoint of information but also increases the amount of
ambiguity, which reduces the value of the asset.
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Any resolution of this dynamic inconsistency problem must modify
either recursive or date-zero preferences. Epstein and Schneider pro-
pose the latter. They show that if we expand the set of date-zero prob-
abilities in the right way, they lead to the same preferences as (35).
In general, preferences depend on probabilities over complete paths,
which in our example you might associate with the four terminal
nodes in Figure 1. Epstein and Schneider’s rectangularity condition
tells us to compute the set of probabilities recursively, one period at a
time, starting at the end. At each step, we compute a set of probabilities
for paths given our current history. In our example, the main effect of
this approach is to eliminate any connection between the values of p at
the two date-one nodes. The resulting date-zero probabilities take the
form (1+p)/4, (1 —p)/4, (1 —p,)/4, and (1+ p,)/4. The value of
the asset is therefore (1+p1)/4+ (1 p,)/4=1/2+ (p; — p;)/4. If we
minimize with respect to both p; and p,, we set p; = =1 and p, = +1
and the value is zero, the same value we computed recursively.
In short, expanding the date-zero set of probabilities in this way
reconciles date-zero and recursive valuations and resolves the dy-
namic inconsistency problem.

A related example illustrates the Epstein—Schneider approach in a
somewhat more complex environment that allows comparison to
an alternative based on entropy constraints. The setting remains the
event tree in Figure 1. Date-one probabilities are n(z) = 1) = (1 +4)/2
and n(z; = 2) = (1 — 8)/2, with a dogmatic prior for any ¢ in the in-
terval [—4,6] and 0 <4 < 1. Date-two probabilities remain (1 + p)/2,
(1-p)/2, (1-p)/2, and (1+ p)/2, but we restrict p to the interval
(-2.p] for 0 < p <1. An asset has date-two payoffs of (from top to
bottom in the free) 1+¢,¢,1, and 0, where £ = 0. The Seidenfeld—
Wasserman example is a special case with d =¢=0 and 5 = 1. The
addition of ¢ to the payoffs introduces a concern for first-period ambi-
guity. Consider four approaches to the problem of valuing the asset:

* Naive date-zero approach. The four branches have date-zero
probabilities of [(1+8)(1+p)/4,(1+8)(1—p)/4,(1-5)(1-p)/4,
(1-6)(1+p)/4]. Conditional on ¢ and p, the asset is worth
{(1+&c+0+dp)/2. If we minimize with respect to both & and p, the
value is (1 4+ &+de —6p)/2.1fé = p = 1/2 and ¢ = 1, the value is 9/8.

* Recursive approach. We work our way through the tree, starting at
the end and applying (35) as we go. At node (A), the value of the
asset is (1 —p)/2. If we minimize with respect to p, the value is
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min,(1+p)/2+e=(1-p)/2+¢ (set p=—p). At (B), the value is
min,(1 —p)/2=(1-p)/2 (set p=p). At the initial node, the value
is (1-7)/2+4 (1+9)¢/2. Minimizing with respect to & gives us
(1-0)/2+(1-38)¢/2=[1-p+(1-3)¢]/2 (set &=-5). This is
smaller than the date-zero valuation, which implicitly forced us to
choose the same value of p at (A)and (B). Ifé = p = 1/2 and ¢ = 1, the
valueis 1/2.

* Rectangular approach (sophisticated date-zero). As in the dilation ex-
ample, we allow p to differ between the two date-one nodes, giv-
ing us two-period probabilities of [(1+3)(1+ p;)/4, (1+6)(1—p;)/4,
(1-8)(1—p,)/4,(1-58)(1+p,)/4]. Conditional on 6, p,, and p,,
the asset is worth (1+38)(1+p)(1+&)/4+(1+8)(1—pyle/d+
(1-36)(1 — py)/4. Minimizing with respect to the parameters gives us
the same value as the recursive approach.

+ Entropy approach. In this context, entropy is simply a way of describ-
ing the set IT: an entropy constraint places limits on (3, py, p,) that
correspond to limits on the conditional probabilities at each node. We
compute entropy at each node from equation (23) using (1/2,1/2) as
the reference probabilities. The date-one entropy of probabilities fol-
lowing the initial node is

1,(8) = (1/2)[(1 +8) log(1 +3) + (1 — ) log(1 — &)].

Note that [1(0) =0, () = h(—d) = 0, and dI, /dd = (1/2) log[(1 + )/
(1 — &)]. Similarly, the date-two entropy for the node following z; =1iis

Li(pi) = (1/2)[(1 + p;) log(1 + p;) + (1 = p;) log(1 — py),

which has the same functional form as f. The overall two-period en-
tropy constraint is

L(S)+ [(1+6)/2la(py) + [(1 - 8)/ 2l (p;) <1 (36)

for some number [ > 0 (a preference parameter). Qur problem is to
chose (4, pq, p2) to minimize the value of the asset subject to the entropy
constraint. What's new is the ability to shift ambiguity across periods
implicit in the trade-off between first- and second-period entropy.

We solve this problem recursively. To do this, it’s helpful to break
the constraint into pieces: (d) < I and, for each i, Ii(p;) <L =T- .
They are equivalent to the single entropy constraint (36) if the multi-
pliers on the individual constraints are equal. In the first period, we
choose not only the value of ¢ that satisfies the date-one entropy
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constraint but how much entropy to use now (I;) and how much to
save for the second period (I, = I — I;). The solution is the allocation
of entropy that equates the multipliers. Given a choice I;, we solve the
date-two problems. At node A, the entropy-constrained valuation
problem is to choose p; to minimize ¢+ (1 + p,)/2 subject to the en-
tropy constraint I (p) < L. If 8 is the multiplier on the constraint,
the first-order condition is

1/2+(6/2) log[(1 +p}/(1 — )] = 0.

As with rectangularity, we set p; < 0 to reduce the probability of the
good state (z; = 1). We're going to reverse-engineer this and determine
the constraint associated with setting py = —1/2, the number we used
earlier. With this value, entropy is I> =0.1308 and the first-order con-
dition implies § = 0.9102. The value of the asset at this node is there-
fore ¢+ 1/4. At node B, if I, =0.1308 a similar calculation implies
p =172, 0=09102, and an asset value of 1/4. Note, in particular,
that p is set differently at the two nodes, just as it is under rectangu-
larity. At the initial node, we now have the problem of choosing ¢ to
minimize  [(1+6)/2)(e+1/4) +[(1 —)/2}(1/4) =1/4+ [(1 +J)/2e
subject to the entropy constraint I;(6) < I;. The first-order condition is

gf2+(6/2) log[(1 +8) /(1 -4)] =0.

If e =1 and [ = 0.2616, the solution includes § = 1/2, I, = 0.1308, and
0 =09102. As with rectangularity, the value is 1/2. However, for
other values of ¢ entropy will be reallocated between the two periods
in the way that has the largest adverse impact on utility. If 0 <2 < 1,
the risk between nodes (A) and (B) is relatively small and entropy will
be shifted from period one to period two, increasing |p;| and decreas-
ing 4|, If £ > 1, first-period risk is more important and entropy will
be shifted from period two to period one, with the opposite effect.
This reallocation of ambiguity has no counterpart with rectangularity,
where the range of probabilities (and associated parameters) is unre-
lated to other aspects of the problem (the payoffs, for example, repre-
sented here by &).

We have, then, four approaches to the same problem, each of which
has arguments in its favor. The naive date-zero approach, which is in
the spirit of Chamberlain’s (2000} econometric application, allows less
impact of ambiguity than the other approaches but does so in a way
that remains consistent with a version of date-zero max-min prefer-
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ences. It does place some importance, however, on the choice of date
zero: if we reoptimize in the future, we would typically compute dif-
ferent decisions. The recursive approach, without rectangularity, might
be justified as a game among agents at different dates. The same idea
has been widely used in other contexts (the next section, for example}.
The rectangular approach is a clever way to reconcile date-zero and
recursive approaches and leads to a natural recursive extension of
Gilboa-Schmeidler. One puzzling consequence is that it can induce
ambiguity in events that have none to begin with. (Recall the joint
probability of the first and third paths in the dilation example, which
is 1/2 regardless of p.) The apparent puzzle is resolved if we realize
that the date-zero rectangular set does not represent date-zero ambigu-
ity; it represents the date-zero probabilities needed to anticipate prefer-
ences over future ambiguity. Epstein and Schneider (2003, p 16) put it
this way: “[T]here is an important conceptual distinction between the
set of probability laws that the decision maker views as possible ...
and the set of priors that is part of the representation of preference.” Fi-
nally, the entropy approach allows the min to operate not only within
a period but across periods, as entropy and ambiguity are allocated
over time to have the greatest impact. This violates conditional inde-
pendence for reasons similar to habits (Example 13) but seems consis-
tent with the spirit of pessimism captured by the min in (34).

Example 18 (precautionary saving) Ambiguity generates precautionary
saving through pessimism: pessimistic forecasts of future income re-
duce current consumption and raise current saving. The magnitude
depends on the degree of ambiguity. We illustrate the result with a
two-period example that shares several features with its robust control
counterpart (Example 16). The endowment is yp at date zero and
y1 ~ N(x1 +7,x2) at date one. The parameter y governs ambiguity:
% < g? for some positive number g. An agent has utility function

U=u(co)+p mym Eu(cy)
with u(c) = —exp(—ac). The budget constraint is c; = y1 + 7(ifo — co). If

we substitute this into the objective function and compute the expecta-
tion, we find

U= —exp(—uc) — f myin exp(—ar(yo — co) — olx1 +¥) + oczxz/Z].

The minimization implies y = —g (pessimism). The first-order condi-
tion for ¢y then implies
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co = log(Br)/lelr = V)] + (rya +sa) /(1 +7) —axz /(1 + 1) =g/ (1 + 7).

Here the second term is permanent income, the third is risk and risk
aversion, and the fourth the impact of ambiguity. [Adapted from Miao
(2003).]

Example 19 (sharing ambiguity) 1f agents have identical homothetic
preferences, optimal allocations are proportional: the ratio of date-state
consumption by one agent is proportional to that of every other agent.
In stationary settings, we often say (with some abuse of the language)
that consumptions are perfectly correlated. Observations of individuals
and countries, however, exhibit lower correlations, suggesting a risk-
sharing puzzle. One line attack on this puzzle is to let agents have dif-
ferent preferences. In international economics, for example, we might
let the two countries consume different goods. A variation on this
theme is to let preferences differ in their degree of ambiguity. In partic-
ular, suppose agents have less ambiguity over their own endowment
than over other agents” endowments. A symmetric two-period, two-
agent example shows how this might work. Agent 7 has utility function

U' =log ¢, + # min n'(z) log ci(z),
8§ ﬂ“n}z (2) log 1(2)

for i = 1,2. In period zero, each is endowed with one unit of the com-
mon good. In period one, there are four states (z) with the following
endowments (') and probabilities (r'):

1 2 1 2 1 2

z Y y n n c c
1 2 2 1/4 -y, 1/4 -y, 2 2
2 2 1 1/4+ 7 1/4—7, 9/4 3/4
3 1 2 1/4—y, 1/4+7, 3/4 9/4
4 1 1 1/4+p 1/4+ 7y, 1 1

Each set I’ is constructed from dogmatic priors over values for y;
between —1/8 and 1/8. Note that each agent is ambiguous about
the other agent’s endowment, but not her own. Without ambiguity
(y; = 0), the symmetric optimal allocation consists of one-half the ag-
gregate endowment in all states: perfect correlation across the date-one
states. With ambiguity, agent i chooses the value of y; that minimizes
her utility, y; = 1/8. Since agent 1 applies a lower probability (1/8) to
state 3 than agent 2 (3/8), she gets a proportionally smaller share of
the aggregate endowment in that state. The resulting allocations are
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listed in the table and show imperfect correlation across agents. The
amount of ambiguity in this case is so large that in states 2 and 3 the
agent with the larger endowment consumes even more than her en-
dowment. A simple decentralization makes the same point. Suppose
agents at date zero trade claims to the endowments of the two coun-
tries. How much would each invest in her own endowment, and how
much in the other agent’s endowment? If w is agent 1’s investment in
her own endowment, it satisfies

wy'(z) + (1 —w)y*(z) = ' (z)

for all states z. The solution in this case is w = 5/4: agent 1 exhibits ex-
treme home bias in her portfolio. [Adapted from Alonso (2004) and
Epstein (2001).]

6.3 Discussion: Detecting Ambiguity

Preferences based on subjective probabilities capture interesting fea-
tures of behavior that other preferences cannot, but they raise challeng-
ing issues for quantitative applications. Consider subjective expected
utility. If we allow the probabilities that enter preferences (7) to differ
from those that generate the data (p), we can “explain” many things
that are otherwise puzzling. The equity premium, for example, could
result from agents placing lower probability on high-return states than
the data-generating process. It is precisely the lack of predictive con-
tent in such explanations that led us to rational expectations (7 = p) in
Sections 3 and 4.

Ambiguity provides a justification for systematically pessimistic
probabilities—they’re the minimizing choice from a larger set—but
raises two new issues. One is how to specify the larger set of probabil-
ities or models. Hansen and Sargent (2004) propose choosing models
that have similar log-likelihood functions, much as we do in hypothe-
sis tests. Differences between such models are presumably difficult to
detect in finite data sets. Epstein and Schneider (2004) suggest nonsta-
tionary ambiguous models that are indistinguishable from a reference
model, even in infinite samples. The other issue is observational equiv-
alence: robust control and recursive multiple priors generate behavior
that could have been generated by an expected utility agent, and possi-
bly by a Kreps—Porteus agent as well. In some cases, the agent seems
implausible, but in others it does not. Distinguishing between ambigu-
ous and expected utility agents remains an active area of current
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research. The most ambitious example to date is Epstein and Schneider
(2004), who note that ambiguous news has an unusual asymmetric af-
fect on asset prices since bad news affects the minimizing probability
distribution but good news does not.

7. Inconsistency and Temptation

Economists often tell stories about the hazards of temptation and the
benefits of reducing our choice sets to avoid it. We eat too much junk
food, we overconsume addictive substances, and we save tog little. To
counter these tendencies, we may put ourselves in situations where the
range of choices limits our ability to make bad decisions. We go to res-
taurants that serve only healthy food, support laws that discourage
or prohibit addictive substances, and sequester our wealth in housing
and 401(k) accounts that are less easily used to finance current con-
sumption. The outstanding questions are why we make such choices,
what the relevant welfare criterion should be, and how we might de-
tect the impact of temptation on observed decisions.

7.1 Inconsistent Preferences

The traditional approach was outlined in Example 4: dynamically in-
consistent preferences. This line of research is motivated by experi-
mental studies, which suggest that subjects discount the iramediate
future more rapidly than the distant future. Common practice is to
approximate this pattern of discounting with the quasi-geometric or
quasi-hyperbolic scheme: 1,88,86%,68°, and so on, with 0 < f < 1 and
0 <d £ 1. The critical parameter is ¢: if 6 < 1, the discount factor be-
tween dates t = 0 and f = 1 (namely, df) is less than the discount factor
between datesf =1 and t = 2 (§).
Let us say, then, that an agent’s utility from date f on is

U, = Eifu(c,) + Bulcrp) + 0B u(ciyn) + 8%ulcies) + -

= u(ct) + OPE iﬁju(cr+j+l)-
=0

The only difference from Example 4 is the introduction of uncertainty
implicit in the conditional expectation E;. The dynamic inconsistency
of these preferences suggests two questions: With competing prefer-
ences across dates, what does such an agent do? And what preferences
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should we use for welfare analysis? We need an answer to the first
question to derive the behavioral implications of inconsistent prefer-
ences, and an answer to the second to evaluate the benefits of policies
that limit choice.

The consensus answer to the first question has become: treat the
problem as a game with the agent at each date acting as a separate
player. Fach such player makes choices that maximize her utility,
given the actions of other players (herself at other dates). There are
many games like this, corresponding to different strategy spaces. We
look at stationary Markov perfect equilibnia, in which agents’ decisions
are stationary functions of the current state for some natural definition
of the state. Consider the classical consumption problem with budget
constraint dr.1 = t1+1(@ — ¢t) + -1, where y and # are iid positive ran-
dom variables, and a borrowing constraint 4 > g that we will ignore.
Our objective is a stationary decision rule ¢, = h(a;) that solves the
game. With constant discounting (3 = 1), the problem is the solution
to the dynamic programming problem summarized by the Bellman
equation,

J(a) = max u(c) + BEJIr'(a =) + ']

Under standard conditions, | exists and is unique, continuous, con-
cave, and differentiable. Given such a |, the maximization leads to a
continuous stationary decision rule ¢ = h(a).

The equilibrium of a game can be qualitatively different. A station-
ary decision rule can be derived with a future value function

J(a) = u(c™) + BEJir'(a — ") + v, (37)
where
" =arg max u(c) + 0PEJir'(a — o) + v']. (38)

Note the difference: when § < 1, the relation that generates [ is differ-
ent from that generating the choice of c. As a result, the decision rule
need not be unique or continuous; see Harris and Laibson (2001),
Krusell and Smith (2004), and Morris and Postlewaite (1997). For all of
these reasons, there can be no general observational equivalence result
between constant and quasi-geometric discounting. Nevertheless, the
solutions are similar in some common examples.

Example 20 {(consumption and saving) Consider the classical saving
problem with log utility (u(c) =logc), budget constraint a4y =



374 Backus, Routledge, & Zin

fe (@ —¢;) (no labor income), and log-normal retum ({logr} ~
NID(st, a?)). With quasi-geometric discounting, we compute the sta-
tionary decision rule from:

J(a) =log c* + BE[[r'(a —c*)]
¢ =arg max log ¢ + 3pE][r'(a — c)).

We find the solution by guessing that the value function has the form
J(a) = A+ Bloga. The first-order condition from the maximization
implies ¢ = (1 +8B)™"a. Substituting into the recursion for J, we find

=(1-p"

i ( ﬁﬁ5ﬁ> = M)

Compare this decision rule with two others:

« Constant discounting. The decision rule with constant discounting is
¢ = (1 — pa (set & = 1). Note that with quasi-geometric discounting the
agent consumes more, but not as much more as an agent with constant
discount factor f3. The latter is the result of strategic interactions be-
tween agents. The data-t agent would like to save a fraction 8§ of her
assets at date ¢, and a larger fraction f at future dates { +n > {. She
knows, however, that future agents will make the same calculation
and choose saving rates less than f. To induce future agents to con-
sume more (absolutely, not as a fraction of wealth), she saves more
than 48 today. Note, too, that her consumption behavior is observa-
tionally equivalent to an agent with constant discount factor

_ B
1-p+ap
A similar result holds for power utility and suggests that, despite

the difficulties noted earlier, constant and quasi-geometric discounting
may be difficult to distinguish in practice.

p= <p.

« Comunitment. Suppose the date-t agent can choose decision rules for
future agents. Since the agent’s discount factor between any future
dates i +n >t and t+#n+ 1 is f, she chooses the decision rules ¢; =
(1 —df)a; for date i and ¢ipy = (1 — flar.y for all future dates t +n > t.
This allocation maximizes the utility of the date-f agent, so in that
sense commitment (limiting our future choice sets) is good. But its not
clear that date-t preferences are the appropriate welfare criterion.
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[Adapted from Barro (1999); Imrohoglu, Imrohoglu, and Joines (2003);
and Phelps and Pollack (1968).]

Example 21 (asset pricing) A similar example can be used to illustrate
the role of quasi-geometric discounting on asset prices. The first step is
to derive the appropriate Euler equation for equations (37) and (38).
Define the current value function by

L{a) = max u(c) +opEJ[r'(a —c) + y']. (39)

The first-order and envelope conditions are
1n1(c) = OPE(J1(a")r’]
Li(a) = SE[h(a")r],

implying the familiar L(2) = u1(c). In the constant discounting case,
J(a) = L(a) and we're almost done. With quasi-geometric discounting,
we need another method to express J; in terms of u;. If we multiply
(37) by ¢ and subtract from (39), we can relate | to L and u: 6f(a) =
L(a) — (1 = d)u(c). Differentiating yields

ofi{a) = Li(a) — (1 — & (c)m(a).

If we multiply by f and substitute into the first-order condition, we get
the Euler equation,

u(c;) =E{B1—-(1- 5)h1(ﬂf+1)]ul(ct+1)?'t+1}-

This relation is a curious object: it depends not only on the current
agent’s decision problem, but (through h) on the strategic interactions
among agents. The primary result is to decrease the effective discount
factor, and raise mean asset returns, relative to the standard model.
[Adapted from Harris and Laibson (2003); Krusell, Kuruscu, and Smith
(2002); and Luttmer and Mariotti (2003).]

7.2 Temptation

Many of us have been in situations in which we felt we had too many
choices. {Zabar’s Delicatessen and Beer World have that effect on us.)
In traditional decision theory, this statement is nonsense: extra choices
are at best neutral because you can always decide not to use them. Gul
and Pesendorfer (2001) give the phrase meaning: they develop prefer-
ences in which adding inferior choices (temptations) can leave you
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worse off. Among its features: utility can depend on the set of choices,
as well as the action taken; temptation (in the sense of inferior choices)
can reduce utility; and commitment (in the sense of restricting the
choice set) can increase utility. We describe their theory in a static set-
ting, then go on to explore dynamic extensions, including some that
resemble quasi-geometric discounting.

Let us compare two sets of choices, A and B. In traditional decision
theory, the utility of a set of possible choices is the utility of its best
element. If the best element of A is at least as good as the best ele-
ment of B, then we would say A is weakly preferred to B: A > B in
standard notation. Suppose we allow choice over the potentially
larger set Auw B. The traditional approach would tell us that this
cannot have an impact on our decision or utility: if A > B, then we
are indifferent between A and A w B. Gul and Pesendorfer suggest a
set betweenness condition that allows inferior choices to affect our pref-
erence ordering:

A= B implies A-AuB=B.

The traditional answer is one extreme (namely, A ~ A w B), but set
betweenness also allows inferior choices B to reduce our utility
(A = A uB). Wesay in such cases that B is a temptation.

Adding set betweenness to an otherwise traditional theory, Gul and
Pesendorfer show that preferences can be represented by a utility func-
tion of the form:

u(A) = rpean[v(c) + w(c)] — max w(c). (40)

Note that preferences are defined for the choice set A; we have aban-
doned the traditional separation between preferences and opportu-
nities. To see how this works, compare the choices ¢* = argmax,_, -
[v(c) +w(c)] and ¢** =argmax,_, w(c) for some choice set A. If
c* = ¢, then v and w agree on A and preferences are effectively gov-

erned by v (the w terms cancel). If not, then w acts as a temptation
function.

Example 22 (consumption and saving) A clever use of temptations
reproduces quasi-geometric discounting. Let

v(cy1, c2) = u(c1) + fulcs)

w(cy, c2) = y[uler) +0pulca)],
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with 0 <d < 1 and y > 0 (intensity of temptation). The budget con-
straint has two parts: ¢1 + k; = rk; and 2 = rke, with k; given, which
defines A. The agent solves

max [(1+y)u(cr) + (1 + w)fu(ea)] = max ylutcr) +pufca)]

c1,02eA

The first max delivers the first-order condition:

- (T2

The difference from the standard model lies in the first term. The two
extremes are y = 0 (which gives us the standard no-temptation model)
and y = o0 (which gives us an irresistible temptation and the quasi-
geometric discount factor éf). Since the term is decreasing in y, greater
temptation raises first-period consumption. [Adapted from Krusell,
Kuruggu, and Smith (2001).]

Gul and Pesendorfer (2002, 2004) and Krusell, Kurusqu, and Smith
(2001) have extended the temptation approach to quasi-geometric dis-
counting to infinite-horizon settings. We illustrate the idea with a non-
stochastic version of the consumption problem. Krusell, Kurugcu, and
Smith suggest an approach summarized by the “Beliman equation”

Ja) = max{u(c) + Blr(a — ¢)] + Llr(a — c)]} —~ max Lir(@ — )],

where
L(a) = y{u(c*) +8BL[r(a — c*)]}

serves as a temptation function and ¢* = arg max, u{c) + ff[r(a — c)] +
L[r(a —¢)]. Gul and Pesendorfer suggest the special case 6 = (. The
Krusell-Kurugcu-Smith version reproduces the first-order conditions
and decision rules generated by the Markov perfect equilibrium for
quasi-geometic discounting. The Gul-Pesendorfer version avoids some
of the mathematical oddities associated with the former. Each suggests
an answer to the welfare question.

7.3 Discussion: Detecting Inconsistency and Temptation
The difficulty of estimating the parameters of models based on quasi-

geometric discounting is that the decision rules often look like those
from traditional models with constant discounting. In some cases,
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they’re identical. One way to distinguish between them is to look
for evidence of commitment. Agents with inconsistent preferences or
temptations will typically be willing to pay something to restrict their
future choice sets. In models with constant discounting, there is no
such incentive, so commitment devices provide a natural way to tell
the two approaches apart. Laibson, Repetto, and Tobacman (1998,
2004) apply this logic and find that the combination of illiquid asset
positions (pensions, 401(k) accounts) and high-interest liabilities (credit
card debt) generates sharp differences between the two models and
precise estimates of the discount parameters (6 = 0.70, #=0.96, an-
nual). With constant discounting, borrowing at high rates and in-
vesting at (on average) lower rates are incompatible.

The focus on commitment devices seems right to us, both for quasi-
geometric discounting and for temptations more generally. There are
some outstanding questions, however, most of them noted by Kocher-
lakota (2001). One is whether tax-sheltered savings have other ex-
planations (lower taxes, for example). If 401(k) plans were a pure
commitment device, we might expect people to pay more for them
and receive less, but this doesn’t seem to be the case: sheltered and
unsheltered investment vehicles have pretty much the same returns.
Similarly, if commitment is valuable, why would an agent hold
both liquid (uncommitted) and illiquid (committed) assets? The former
would seem to undercut the bite of the latter. Finally, what is the likely
market response to the conflicting demands of commitment and temp-
tation? Will the market supply commitment devices or ways to avoid
them? Is credit card debt designed to satisfy agents’ desire to undo
past commitments? Does it lower welfare? Perhaps future work will
resolve these questions.

8. Questions, Answers, and Final Thoughts

We have described a wide range of exotic preferences and applied
them to a number of classic macroeconomic problems. Are there any
general lessons we might draw from this effort? We organize a discus-
sion around specific questions.

8.1 Why Model Preferences Rather Than Behavior?

Preferences play two critical roles in economic models. The first is that
they provide, in principle, an unchanging feature of a model in which
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agents can be confronted with a wide range of different environments,
institutions, or policies. For each environment, we derive behavior
(decision rules) from the same preferences. If we modeled behavior di-
rectly, we would also have to model how it adjusted to changing cir-
cumstances. The second role of preferences is to evaluate the welfare
effects of changing poelicies or circumstances. Without preferences, it’s
not clear how we should distinguish good policies from bad. In our
view, this is a major accomplishment of the temptation interpretation
of quasi-geometric discounting: it suggests a clear welfare criterion.

82 Are Exotic Preferences Simply an Excuse for Free Parameters?

Theoretical economists think nothing of modifying the environments
faced by their agents. Aggregate and individual risk, length of life,
information structures, enforcement technologies, and preductivity
shocks are all fair game. However, many economists seem to believe
that modifying preferences is cheating—that we will be able to explain
anything (and hence nothing) if we allow ourselves enough freedom
over preferences. We would argue instead that we have restricted our-
selves to an extremely limited model of preferences for no better rea-
sons than habit and convenience. Many of the weaknesses of expected
utility, for example, have been obvious since the 1950s. We now have
the tools to move beyond additive preferences in several directions.
Why not use them?

Equally important, the axiomatic foundations that underlie the
preferences described above impose a great deal of discipline on their
structure. We have let these foundations go largely without mention,
but they nevertheless restrict the kinds of flexibility we've consid-
ered. Chew-Dekel risk preferences, for example, are more flexible
than expected utility, but they are far less flexible than general prefer-
ences over state-contingent claims. One consequence: exotic prefer-
ences have led to some progress on the many empirical puzzles that
plague macroeconomics and finance, but they have yet to resolve
them.

Some exotic preferences make greater—or at least novel—demands
on the data than we are used to. Kreps—Porteus and Epstein—Zin pref-
erences, for example, require time-dependence of risk to identify sepa-
rate time and risk preference parameters. Robust control comes with
an entropy toolkit for setting plausible values of the robustness pa-
rameter, but comparisons across environments may be needed to
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distinguish robust from risk-sensitive control. Applications of tempta-
tion preferences to problems with quasi-geometric discounting rely
heavily (entirely?) on observed implications of commitment devices,
about which there is some difference of opinion. In short, exotic prefer-
ences raise new empirical issues that deserve open and honest debate.
We see no reason, however, to rule out departures from additive utility
before we start.

8.3 Are Exotic Preferences Behavioral?

Many of the preferences we've described were motivated by discrep-
ancies between observed behavior and the predictions of the additive
preference model. In that sense, they have a behaviorial basis. They
are also well-defined neoclassical preference orderings. For that reason,
we think our approach falls more naturally into neoclassical economics
than into the behavioral sciences.

We regard this as both a strength and a weakness. On the one hand,
the strong theoretical foundations for exotic preferences allow us to use
all the tools of neoclassical economics, particularly optimization and
welfare analysis. On the other hand, these tools ignore aspects of hu-
man behavior stressed in other social sciences, particularly sociology
and social psychology. Kreps (2000} and (especially) Simon (1959) are
among the many economists who have argued that something of this
sort is needed to account for some aspects of behavior. We have some
sympathy for this argument, but it’s not what we've done in this

paper.
84 Are There Interesting Preferences We've Missed?

If you've gotten this far, you may feel that we can’t possibly have left
anything out. But it’s not true. We barely scratched the surface of
robust control, ambiguity, hyperbolic discounting, and temptation. If
you'd like to know more, you might start with the papers listed in
Appendix 9.1. We also ignored some lines of work altogether. Among
them are:

+ Incomplete preferences. Some of the leading decision theorists suggest
that the most troubling axiom underlying expected utility is not the
infamous independence axiom but the more common assumption of
completeness: that all possible choices can be compared. Schmeidler
(1989), for example, argues that the critical role of the independence
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axiom is to extend preferences from choices that seem obvious to those
that do not—that it delivers completeness. For this and other reasons,
there is a long history of work on incomplete preferences. Notable
applications in macroeconomics and finance include Bewley (1986)
and Kraus and Sagi (2002, 2004).

* Flexibility, commitment, and self-control. Kreps (1979) describes envi-
ronments in which agents prefer to maintain flexibility over future
choices, just as agents with temptations prefer commitment. Amador,
Werning, and Angeletos (2003) characterize optimal allocation rules
when you put the two together. Ameriks, Caplin, Leahy, and Tyler
(2004) quantify self-control with survey evidence and relate it to indi-
vidual financial decisions. Benhabib and Bisin (2004) take a cognitive
approach to a similar problem in which agents choose between auto-
matic processes, which are subject to temptations, and control pro-
cesses, which are not.

+ Social utility. Experimental research suggests that preferences often
depend on comparisons with others; see, for example, Blount (1995)
and Rabin (1998). Abel (1990) and Gali (1994) present well-known

applications to asset pricing.

+ Other psychological approaches. Bénabou and Tirole (2002) model self-
confidence. Bernheim and Rangel (2002) build a cognitive model and
apply it to addiction. Brunnermeier and Parker (2003) propose a model
of subjective beliefs in which agents balance the utility benefits of opti-
mism and the utility cost of inferior decisions. Caplin and Leahy (2001)
introduce anxiety into an otherwise standard dynamic choice frame
work and explore its implications for portfolio choice and the equity
premium.

We find all of this work interesting, but leave a serious assessment of it
to others.

8.5 Have We Wasted Your Time (and Ours)?

It’s too late, of course, but you might ask yourself whether this has
been worth the effort. To paraphrase Monty Python, “Have we deliber-
ately wasted your time?” We hope not. We would guess that additive
preferences will continue to be the industry standard in macroeco-
nomics, finance, and other fields. Their tight structure leads to strong
and clear predictions, which is generally a virtue. But we would also
guess that exotic preferences will become more common, particularly
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in quantitative work. Who knows? They may even lose their claim to
being “exotic.”

We think several varieties of exotic preferences have already proved
themselves. Applications of Kreps—Porteus and Epstein-Zin prefer-
ences to asset pricing, precautionary saving, and risk-sharing are good
examples. While these preferences have not solved all of our problems,
they have become a frequent source of insight. Their ease of use in
econometric work is another point in their favor.

The preferences described in the last three sections are closer to the
current frontiers of research, but we are optimistic that they, too, will
lead to deeper understanding of economic behavior. Certainly robust
control, recursive multiple priors, and temptation are significant addi-
tions to our repertoire. They also raise new questions about identifi-
cation and estimation. Multiple priors is a good example. When the
probabilities affecting an agent’s preferences are not characterized sim-
ply by the probabilities generating the data, we need to parameterize
the agent’s uncertainty and describe how it evolves through time. We
also need to explore ways to distinguish such agents from those with
expected utility or Kreps—Porteus preferences. Temptation is another.
As a profession, we need to clarify the features of data that identify
the parameters of temptation functions, as well as the kinds of tempta-
tions that are most useful in applied work. None of these tasks is sim-
ple, but we think the progress of the last decade gives us reason to
hope for more.

Let’s get to work!

9. Appendixes

9.1 Reader’s Guide

We have intentionally favored application over theory, but if you'd
like to know more about the theoretical underpinnings of exotic prefer-
ences, we recommend the following:

Section 2. Koopmans (1960} is the classic reference. Koopmans (1986)
lays out the relevant theory of independent preferences. Lucas and Sto-
key (1984) approach the problem from what now seems like a more
natural direction: they start with an aggregator function, while Koop-
mans derives one. Epstein and Hynes (1983) propose a convenient
functional form and work through an extensive set of examples.
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Section 3. Kreps (1988) is far and away the best reference we've seen
for the theory underlying the various approaches to expected utility.
Starmer (2000) gives a less technical overview of the theory and dis-
cusses both empirical anomalies and modifications of the theory de-
signed to deal with them. Brandenburger (2002) describes some quite
different approaches to probability assessments that have been used in
game theory.

Section 4. Our two favorite theory references on dynamic choice in
risky environments are Kreps and Porteus (1978) and Johnsen and
Donaldson (1985). Epstein and Zin (1989) describe the technical issues
involved in specifying stationary recursive preferences and explain the
roles of the parameters of the constant elasticity version.

Section 5. Our primary reference is Hansen and Sargent’s (2004) mono-
graph on robust control; we recommend Chapters 2 (overview), 5
(static robust control), 6 (dynamic robust control), and 9 and 17 (en-
tropy constraints). Whittle (1990) is an introduction to linear-quadratic
robust control for engineers. Hansen and Sargent (1997) introduce risk-
sensitive control in Chapters 9 and 15. Gianonni (2002), Maenhout
(2004), Onatski and Williams (2003), and Van Nieuwerburgh (2001)
are interesting applications.

Section 6. The essential references are Gilboa and Schmeidler (1989)
and Epstein and Schneider (2003). Among the other papers we have
found useful are Ahn (2003); Casadesus-Masanell, Klibanoff, and
Ozdenoren (2000); Chamberlain (2000); Epstein and Schneider (2002,
2004); Gilboa and Schmeidler (1993); Hayashi (2003); Klibanoff, Mari-
nacci, and Mukerji (2003); Sagi (2003); Schmeidler (1989); and Wang
(2003).

Section 7. The relevant theory is summarized in Gul and Pesendorfer
(2004); Harris and Laibson (2003); and Krusell, Kuruscu, and Smith
(2001). DeJong and Ripoll (2003); Esteban, Miyagawa, and Shum
(2004); and Krusell, Kurugcu, and Smith (2002) are interesting
applications.

9.2 Integral Formulas

A number of our examples lead to normal-exponential integrals, most
commonly as expectations of log-normal random variables or expo-
nential certainty equivalents of normal random variables. The follow-
ing definitions and formulas are used in the paper.
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Standard normal density and distribution functions. If x ~ N(0,1)}, its
density is f(x) = (2r)"*~*"/2. Note that f is symmetric: f(x) =
f(—x). The distribution function is ®(x) = [*_ f(u)du. By symmetry,
I7 flydu =1 - @(x) = O(—x).

Integrals of "e ***f(x).” We come across integrals of this form in Sec-
tion 3, when we compute certainty equivalents for log-norinal risks,
and Section 4, when we consider the exponential certainty equivalent
of a linear value function (Weil’s model of precautionary saving). Eval-
uation follows from a change of variables. Consider the integral:

r e (x)dx = (2m)~/? Jx e /2 gy

—aG -

We solve this by completing the square: expressing the exponent as
a+bx—x?/2=d - y*/2, where d is a scalar and y = fx — g is a linear
transformation of x. Wefind y =x—b{(f =1, g=b)andd = a + b?/2,
so the integral is

(27!)71/2] T2 g e‘”bz/zj f(y)dy

-0
— o™ 2Q(x* — b). (41)

A common special case has an infinite upper limit of integration:

E(ea+b.I’) — (2?:)71/2 JOC' ea+bx~x2/2 dx = eﬂ+b2,f2. (42)

—oC
As an example, let log y = u+ ox; then Ey = E(e!°B¥) = E(e#7%%) =
E,LH-O'z/'Z
Integrals of "e" "+ f(x).” Integrals like this arise in Section 5 in risk-
sensitive control with a quadratic objective. Consider

Iw ea+bx+cx2f(x) dx = (21:)—1/2 jm ea+bx—(1—2c)x2/2 dx.
— oG —o0

We assume 1 — 2c > 0; otherwise the integral diverges. We solve by
the same method: express the exponent as a+bx — (1 — 2¢)x?/2 =
d—y?/2 for some y=fr—g We find f=(1-20)" g¢=
b/(1—2c)", and d=a+b%/(1-2c), so that y=(1-2c)""x—
b/(1— 2.:)” 2, The integral becomes

J; eu+bx+cx2f(x) dx = (1 — 2c)_1/26"+b2/[2(1_20)i j f(y)dy

e

={1- 26)—1/260+b2/{2(1—2c)]. (43)
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Note

We are unusually grateful to the many people who made suggestions and answered
questions while we worked through this enormous bedy of work. Deserving special
mention are Mark Gertler, Lars Hansen, Tom Sargent, Rob Shimer, Tony Smith, Ivan
Werning, Noah Williams, and especially Martin Schneider. We also thank Pierre Collin-
Dusiresne, Kfir Eliaz, Larry Epstein, Anjela Kniazeva, Per Krusell, David Laibson, John
Leahy, Tom Tallarini, Stijn Van Nieuwerburgh, and seminar participants at Carnegie
Mellon University and New York University.
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1. Introduction

Backus, Routlege and Zin (which I will henceforth refer to as BRZ)
have assembled an ambitious catalog and discussion of nonstandard,
or exotic, specifications of preferences. BRZ include illustrations of how
some of these specifications have been used in macroeconomic applica-
tions. Collecting the myriad of specifications in a single location is
an excellent contribution. It will help to expand the overall accessibility
and value of this research.

In my limited remarks, I will not review all of their discussion, but I
will develop some themes a bit more and perhaps add a different but
complementary perspective on some of the literature. Also, my discus-
sion will feature some contributions not mentioned in the BRZ reader’s
guide. Most of my discussion will focus on environments in which it
is hard or impossible to distinguish seemingly different relaxations of
expected utility. While BRZ emphasize more distinctions, [ will use
some examples to feature similarities across specifications. Much of
my discussion will exploit continuous-time limits with Brownian mo-
tion information structures to display some revealing limiting cases.
In particular, I will draw on contributions not mentioned in the BRZ
reader’s guide by Duffie and Epstein (1992); Geoffard (1996); Dumas,
Uppal, and Wang (2000); Petersen, James, and Dupuis (2000); Ander-
son, Hansen, and Sargent (2003); and Hansen, Sargent, Turmuhambe-
tova, and Williams (2004) along with some of the papers cited by BRZ.

As a precursor to understanding the new implications of exotic pref-
erences, we explore how seemingly different motivations for altering
preferences give rise to similar implicaticns and in some circumstances
the same implications. BRZ have separate sections entitled fime (Sec-
tion 2), time and risk (Section 4), risk sensitive and robust control (Section
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5), and ambiguity (Section 6). In what follows, I will review some exist-
ing characterizations in the literature to display a tighter connection
than what might be evident from reading their paper.

2. Endogenous Discounting

I begin with a continuous-time version of the discussion in the BRZ
treatment of time (Section 2 of their paper). An important relaxation of
discounted utility is the recursive formulation of preferences suggested
by Koopmans (1960), Uzawa (1968), and others. These are preferences
that allow for endogenous discounting. A convenient generalization of
these preferences is one in which the discount rate is a choice variable
subject to a utility penalty, as in the variational utility specification of
Geoffard (1996).

Consider preferences for consumption defined over an interval of
time [0, T] with undiscounted continuation value U, that satisfies:

T

il = i [ AF(ev0)

t

t
At = exp (J -7 dr)
0

where {¢;:0<t<T} is an admissible consumption process and
{v):0<t<T} is an admissible subjective discount rate process.!
Then 4 is a discount factor constructed from current and past discount
rates. The notation E; is used to denote the expectation operator condi-
tioned on date ¢ information. Equation (1) determines the continuation
values for a consumption profile for each point in time. In particular,
the date zero utility function is given by:

(1)

T
Uy = EOJ AsF(cs, vs)ds

0
The function F gives the instantaneous contribution to utility, and it
can depend on the subjective rate of discount v, for reasons that will
become clear.

So far we have specified the discounting in a flexible way, but stipu-
lating the subjective discount rates must still be determined.” To con-
vert this decision problem into an endogenous discount factor model,
we follow Geoffard (1996) by determining the discount rate via mini-
mization. This gives rise to a nondegenerate solution because of our
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choice to enter v as an argument in the function F. To support this min-
imization, the function F(c,v) is presumed to be convex in v. Given the
recursive structure to these preferences, v solves the continuous-time
Bellman equation:

Ve, L) = hgf[P(r:g,v) — vl (2)

The first-order conditions for minimizing v are:
Fylcr,vp) = Us

which implicitly defines the discount rate ; as a function of the current
consumption ¢; and the current continuation value U;.

This minimization also implies a forward utility recursion in U; by
specifying its drift:

i, Erese = U _

210 & _V(Ch ut)

This limit depicts a Koopmans (1960)-style aggregator in continuous-
time with uncertainty. Keopmans (1960) defined an implied discount
factor via a differentiation. The analogous implicit discount rate is
given by the derivative:

D= _VU(C1 u)

consistent with representation (1).

So far we have seen how a minimum discount rate formulation
implies an aggregator of the type suggested by Koopmans (1960) and
others. As emphasized by Geoffard (1996), we may also go in the
other direction. Given a specification for V, the drift for the continua-
tion value, we may construct a Geoffard (1996)-style aggregator. This
is accomplished by building a function F from the function V. The con-
struction (2) of V formally is the Legendre transform of F. This trans-
form has an inverse given by the algorithm:

F{c,v) = sup[V(c, U) + oU] _ (3)
u

Example 2.1  The implied discount rate is constant and equal to 6 when:
Vie,U) = u(c) —oU

Taking the inverse Legendre transform, it follows that:
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F(c,v) = sup[u(c) — 6U + vU]
u

_ {u(c) fv=2¢
4o ifv#s

This specification of V and F gives rise to the familiar discounted utility
model.

Of course, the treatment of exotic preferences leads us to explore
other specifications outside the confines of this example. These include
preferences for which v is no longer constant.

In economies with multiple consumers, a convenient device to char-
acterize and solve for equilibria is to compute the solutions to resource
allocation problems with a social objective given by the weighted sum
of the individual utility functions (Negishi, 1960). As reviewed by BRZ,
Lucas and Stokey (1984) develop and apply an intertemporal counter-
part to this device to study economies in which consumers have recur-
sive utility. For a continuous time specification, Dumas, Uppal, and
Wang (2000) use Geoffard’s formulation of preferences to characterize
efficient resource allocations. This approach also uses Negishi/Pareto
weights and discount rate minimization. Specifically Dumas, Uppal,
and Wang (2000) use a social objective:

E l’P
{v'r>£}2 tj. (CS’ .;

i _
dr

@
~uky

where the Negishi weights are the date zero initial conditions for AS
and { denotes individuals.

Thus far, we have produced two ways to represent endogenous dis-
count factor formulations of preferences. BRZ study the Koopmans
(1960) specification in which V(c,u) is specified and a discount rate is
defined as —V(c, LI). In the Geoffard (1996) characterization, V{c, LI)
is the outcome of a problem in which discounted utility is minimized
by choice of a discount rate process. The resulting function is concave
in L. As we will see, however, the case in which V is convex in LI is of
particular interest to us. An analogous development to that given by
Geoffard (1996} applies in which discounted utility is maxirnized by
choice of the discount rate process instead of minimized.
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3. Risk Adjustments in Continuation Values

Consider next a specification of preferences due to Kreps and Porteus
(1978) and Epstein and Zin (1989). (BRZ refer to these as Kreps—Porteus
preferences but certainly Epstein and Zin played a prominent role in
demonstrating their value.) In discrete time, these preferences can be
depicted recursively using a recursion with a risk-adjustment to the
continuation value of the form:

U; = u(ce) + P Eh(U;,, (5)

As proposed by Kreps and Porteus (1978), the function / is increasing
and is used to relax the assumption that compound intertemporal lot-
teries for utility can be reduced in a simple manner. When the function
h 15 concave, it enhances risk aversion without altering intertemporal
substitution (see Epstein and Zin, 1989).

Again it is convenient to explore a continuous-time counterpart.
To formulate such a limit, scale the current period contribution by ¢,
where ¢ is the length of the time interval between observations, and
parameterize the discount factor f§ as exp(—de), where ¢ is the instanta-
neous subjective rate of discount. The local version of the risk adjust-
ment is:

i EEM(UZL) = U

li
£|0 £

= —h'(Uu(cr) — 8U;] (6)

The lefthand side can be defined for a Brownian motion information
structure and for some other information structures that include jumps.

Under a Brownian motion information structure, the local evolution
for the continuation value can be depicted as:

AU} = u} dt + o7 - dB: (7)

where {B;} is multivariate standard Brownian motion. Thus, p is the
local mean of the continuation value and |o; |* is the local variance:

ELy =}
o llm t+e 1
e 210 £
* 2
o7 2 = lim 2 iee = H)
¢ o e

By Ito’s Lemma, we may compute the local mean of ii(L]):
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Ed(Uy,,) — h(U;)
&

* * 1 * *
= h’(ur )ﬂ; +§h”(ut )“7: |2

Substituting this formula into the lefthand side of equation (6) and
solving for /' gives:
h " ( U * ) 2
; =ol — ————t"|a} 8
e ;- ulcr) w{Ur) lo/| (8)
Notice that the risk-adjustment to the value function adds a variance
contribution to the continuation value recursion scaled by what Duffie
and Epstein (1992) refer to as the variance multiplier, given by:

;)
R(Ur)

When # is strictly increasing and concave, this multiplier is negative.
The use of & as a risk adjustment of the continuation value gives rise to
concern about variation in the continuation value. Both the local mean
and the local variance are present in this recursion.

As Duffie and Epstein (1992) emphasize, we can transform the utility
index and eliminate the explicit variance contribution. Applying such
a transformation gives an explicit link between the Kreps and Porteus
(1978) specification and the Koopmans (1960) specification. To dem-
onstrate this, transform the continuation value via U; = h(l;). This
results in the formula:

tim 2 =8y,
z|0 &
where

Vie, ) = ' [lh (WD) [u(c) — k' (D))

The Geoffard (1996) specification with discount rate minimization can
be deduced by solving for the inverse Legendre transform in equation
(3). The implied endogenous discount rate is:

(%))

=Vule,U) =06 - W)

[u(e) = 3h= (L)

Consider two examples. The first has been used extensively in the lit-
erature linking asset prices and macroeconomics aggregates including
consumption.
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Example 3.1 Consider the case in which

1— Q)u*}(l—?)/(l—el
11—+

and h(U™)y = I

where g > 0 and y > 0. We assume that o # 1 and y # 1 because the comple-
mentary cases require some special treatment. This specification is equivalent
to the specification given in equations (9) and (10) of BRZ.3 Then:

Ve, U) = [(1 — pyLijle /0= ( c* ) - 5(1 — ”) u

1-p 1—p
with implied endogenous discount rate:

_ 1y (%9)[ u{c) J

T T W

Notice that the implied endogenous discount rate simplifies, as it should, to be
0 when ¢ = y. The dependent component of the discount rate depends on the
discrepancy between o and y and on the ratio of the current period utility to
the continuation value without the risk adjustment:

U =)

v

At the end of Section 2, we posed an efficient resource allocation
problem (4) with heterogenous consumers. In the heterogeneous con-
sumer economy with common preferences of the form given in Exam-
ple 3.1, the consumption allocation rules as a function of aggregate
consumption are invariant over time. The homogeneity discussed in
Duffie and Epstein (1992) and by BRZ implies that the ratio of current
period utility to the continuation value will be the same for all con-
sumers, implying in turn that the endogenous discount rates will be
also. With preference heterogeneity, this ceases to be true, as illustrated
by Dumas, Uppal, and Wang (2000).

We will use the next example to relate to the literature on robustness
in decisionmaking. It has been used by Tallarini (1998) in the study of
business cycles and by Anderson (2004) to study resource allocation
with heterogeneous consumers.

Example 3.2 Consider the case in which h(U*) = —fexp(—U*/6) for
& > 0. Notice that the transformed continuation utility is negative. A simple
calculation results in:

Vie,U) = A% [u(c) + 40 log(—%ﬂ
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which is convex i U. The maximizing v of the Legendre transform (2) is:

v :6+% [u(c)+5910g(—%)]

and the minimizing U of the inverse Legendre transform (3) is:

U = —0 exp [—Hv & u(c)]
Consequently:
F(c,v) = —060 exp [%ﬁ;—u(c)]

which is concave in .

So far, we have focused on what BRZ call Kreps-Porteus prefer-
ences. BRZ also discuss what they call Epstein~Zin preferences, which
are dynamic recursive extensions to specifications of Chew (1983)
and Dekel (1986). Duffie and Epstein (1992) show, however, how to
construct a corresponding variance multiplier for versions of these
preferences that are sufficiently smooth and how to construct a corre-
sponding risk-adjustment function & for Brownian motion information
structures (see page 365 of Duffie and Epstein, 1992).

This equivalence does not extend to all of the recursive preference
structures described by BRZ. This analysis has not included, for in-
stance, dynamic versions of preferences that display first-order risk
aversion.* BRZ discuss such preferences and some of their interesting
implications.

Let me review what has been established so far. By taking a
continuous-time limit for a Brownian motion information structure,
a risk-adjustment in the continuation value for a consumption profile
is equivalent to an endogenous discounting formulation. We can
view this endogenous discounting as a continuous-time version of a
Koopmans (1960)-style recursion or as a specification in which dis-
count rates are the solution to an optimization problem, as in Geoffard
(1996). These three different starting points can be used to motivate the
same set of preferences. Thus, we produced examples in which some of
the preference specifications in Sections 2 and 4 of BRZ are formally
the same.

Next, we consider a fourth specification.
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4. Robusiness and Entropy

Geoffard (1996) motivates discount rate minimization as follows:

{TThe future evolution of relevant variables (sales volumes, asset default rates
or prepayment rates, ete.) is very important to the valuation of a firm’s debt. A
probability distribution on the future of these variables may be difficult to de-
fine. Instead, it may be more intuitive to assume that these variables remain
within some confidence interval, and to define the value of the debt as the
value in the worst case, i.e. when the evolution of the relevant state variables is
systematically adverse.

It is not obvious that Geoffard’s formalization is designed for a robust-
ness adjustment of this type. In what follows a conservative assess-
ment made by exploring alternative probability structures instead
leads to a formulation where the discounted utility is maximized by
choice of discount rates and not minimized because the implied
Vic, U) is convex in U. In this section we will exploit a well-known
close relationship between risk sensitivity and a particular form of
robustness from control theory, starting with Jacobson (1973). A discus-
sion of the linear-quadratic version of risk-sensitive and robust control
theory is featured in Section 5 of BRZ. The close link is present in much
more general circumstances, as I now illustrate.

Instead of recursion (5), consider a specification in which beliefs are
distorted subject to penalization:
Uy = min - w(e) + BE(UL ge1) + FOE((10g Gr41)Ge41] (9)

g1 20, By =1

The random variable g,4; distorts the conditional probability distribu-
tion for date { + 1 events conditioned on date ¢ information. We have
added a penalization term to limit the severity of the probability dis-
tortion. This penalization is based on a discrepancy measure between
the implied probability distributions called conditional relative en-
tropy. Minimizing with respect to g,41 in this specification produces a
version of recursion (5), with k given by the risk-sensitive specification
of Example 3.2. It gives rise to the exponential tilting because the
penalized worst-case g4 is:

u*
Gr+1 °C €XP (— :9“)

Probabilities are distorted less when the continuation value is high and
more when this value is low. By making the # large, the solution to this
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problem approximates that of the recursion of the standard form of
time-separable preferences. Given this dual interpretation, robustness
can look like risk aversion in decisionmaking and in prices that clear
security markets. This dual interpretation is applicable in discrete and
continuous time. For a continuous time analysis, see Hansen, Sargent,
Turmuhambetova, and Williams (2004) and Skiadas (2003).

Preferences of this sort are supported by worst-case distributions.
Blackwell and Girshick (1954) organize statistical theory around the
theory of two-player zero-sum games. This framework can be applied
in this environment as well. In a decision problem, we would be led to
solve a max-min problem. Whenever we can exchange the order of
minimization and maximization, we can produce a worst-case distri-
bution for the underlying shocks under which the action is obtained
by a simple maximization. Thus, we can produce ex post a shock
specification under which the decision process is optimal and solves a
standard dynamic programming problem. It is common in Bayesian
decision theory to ask what prior justifies a particular rule as being op-
timal. We use the same logic to produce a (penalized) worst-case spec-
ification of shocks that justifies a robust decision rule as being optimal
against a correctly specified model.

This poses an interesting challenge to a rational expectations econo-
metrician studying a representative agent model. If the worst-case
model of shock evolution is statistically close to that of the original
model, then an econometrician will have difficulty distinguishing exotic
preferences from a possibly more complex specification of shock evolu-
tion. See Anderson, Hansen, and Sargent (2003) for a formal discussion
of the link between statistical discrimination and robustness and Han-
sen, Sargent, Turmuhambetova, and Williams (2004) for a discussion
and characterization of the implied worst-case models for a Brownian
motion information structure. In the case of a decision problem with a
diffusion specification for the state evolution, the worst-case model
replaces the Brownian motion shocks with a Brownian motion dis-
torted by a nonzero drift.

In the case of Brownian motion information structures, Maenhout
(2004) has shown the robust interpretation for a more general class of
recursive utility models by allowing for a more general specification of
the penalization. Following Maenhout (2004), we allow € to depend on
the continuation value LI},

In discrete time, we distorted probabilities using a positive random
variable 4;,; with conditional expectation equal to unity. The product
of such random variables:
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f+1

zi1 = [ [ 9
=1

is a discrete time martingale. In continuous time, we use nonnegative
martingales with unit expectations to depict probability distortions.
For a Brownian motion information structure, the local evolution of a
nonnegative martingale can be represented as:

dzy = Zi g dW,

where g; dictates how the martingale increment is related to the incre-
ment in the multivariate Brownian motion {W; : f = 0}. In continuous
time, the counterpart to E;(q:+1logqi41) is the quadratic penalty
2+/*/2, and our minimization will entail a choice of the random vector
&t

In accordance with Ito’s formula, the local mean of the distorted ex-
pectation of the continuation value process {U : t > 0} is:

Eyzi .U

*
lim tie
e|0 &

— ztU,*

* *
=iy + L0 8y

where the continuation value process evolves according to equation
(7). The continuous-time counterpart to equation (9) is:

2
“ﬁ=”?m‘ﬁﬁ&-¢m@0+¢ﬁu:—awungg"

with the minimizing value of g; given by:

*
a;

& = T puy)

Substituting for this choice of g;, the local mean for the continuation
value must satisfy:

oy 1*
26(Ly)

[1: = —H(Cr) +5U,* +

(provided of course that z is not zero). By setting 6 to be:

r'{U*)
_h”(U*)

BU*) =

we reproduce equation (8) and hence obtain the more general link
among utility recursions for h increasing and concave. This link,
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however, has been established only for a continuous-time economy
with a Brownian motion information structure for a general specifica-
tion of h.

The penalization approach can nest other specifications not included
by the utility recursions I discussed in Sections 2 and 3. For instance,
the concern about misspecification might be concentrated on a proper
subset of the shock processes (the Brownian motions).

To summarize, we have now added a concern about model speci-
fication to our list of exotic preferences with comparable implications
when information is approximated by a Brownian motion information
structure. When there is a well-defined worst-case model, an econo-
metrician might have trouble distinguishing these preferences from
a specification with a more complex but statistically similar evolution
for the underlying economic shocks.

5. Uncertainty Aversion

The preferences built in Section 4 were constructed using a penalty
based on conditional relative entropy. Complementary axiomatic treat-
ments of this penalty approach to preferences have been given by
Wang (2003) and Maccheroni, Marinacci, and Rustichini (2004).

Formulation (9) used # as a penalty parameter, but 8 can also be
the Lagrange multiplier on an intertemporal constraint (see Petersen,
James, and Dupuis, 2000, and Hansen, Sargent, Turmuhambetova,
and Williams, 2004). This interpretation of & as a Lagrange multiplier
links our previous formulation of robustness to decision making when
an extensive family of probability models are explored subject to an
intertemporal entropy constraint. While the implied preferences differ,
the interpretation of & as a Lagrange multiplier gives a connection be-
tween the decision rules from the robust decision problem described at
the outset of Section 4 and the multiple priors model discussed in Sec-
tion 6 of BRZ. Thus, we have added another possible interpretation to
the risk-sensitive recursive utility model. Although the Lagrange mul-
tiplier interpretation is deduced from a date zero vantage point, Han-
sen, Sargent, Turmuhambetova, and Williams (2004) describe multiple
ways in which such preferences can look recursive.

Of course, there are a variety of other ways in which multiple
models can be introduced into a decision problem. BRZ explore some
aspects of dynamic consistency as it relates to decision problems with
multiple probability models. A clear statement of this issue and its
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ramifications requires much more than the limited space BRZ had to
address it. As a consequence, I found this component of the paper less
illuminating than other components.

A treatment of dynamic consistency with multiple probability
models either from the vantage point of robustness or ambiguity is
made most interesting by the explicit study of environments in which
learning about a parameter or a hidden state through signals is fea-
tured. Control problems are forward-looking and are commonly
solved using a backward induction method such as dynamic program-
ming. Predicting unknown states or estimating parameters is inher-
ently backward-looking. It uses historical data to make a current
period prediction or estimate. In contrast to dynamic programming,
recursive prediction iterates going forward. This difference between
control and prediction is the source of tension when multiple probabil-
ity models are entertained. Recursive formulations often ask that you
back away from the search for a single coherent worst-case probability
model over observed signals and hidden states or parameters. The con-
nection to Bayesian decision theory that I mentioned previously is
often broken. In my view, a pedagogically useful treatment of this
issue has yet to be written, but it requires a separate paper.

6. Conclusion

We have shown how divergent motivations for generalizing prefer-
ences sometimes end up with the same implications. S0 what? There
are at least three reasons I can think of why an economic researcher
should be interested in these alternative interpretations. One reason is
to understand how we might calibrate or estimate the new preference
parameters. The different motivations might lead us to think differ-
ently about what is a reasonable parameter setting. For instance, what
might appear to be endogenous discounting could instead reflect an
aversion to risk when a decision maker cares about the intertemporal
composition of risk. What might look like an extreme amount of risk
aversion could instead reflect the desire of the decision maker to ac-
commodate model misspecification.

Second, we should understand better the new testable implications
that might emerge as a result of our exploring nonstandard preferen-
ces. Under what auxiliary assumptions are there interesting testable
implications? My remarks point to some situations when testing will
be challenging or fruitless.
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Finally, we should understand better when preference parameters
can be transported from one environment to another. This under-
standing is at least implicitly required when we explore hypothetical
changes in macroeconomic policies.

It would be nice to see a follow-up paper that treated systematically
(1) the best sources of information for the new parameters, (2) the ob-
servable implications, and (3) the policy consequences.

Notes

Conversations with Jose Mazoy, Monika Piazzesi, and Grace Tsiang were valuable in the
preparation of these remarks.

1. We may define formally the notion of admissible by restricting the consumption and
discount rate processes to be progressively measurable given a prespecified filtration.

2. Geoffard (1996) does not include uncertainty in his analysis, but as Dumas, Uppal,
and Wang (2000) argue, this is a straightforward extension.

3. This equivalence follows by letting p=1-¢ and ¥ =1 -y and transforming the
utility index.

4. See Duffie and Epstein (1992), page 361, for a more complete discussion about what
is excluded under the Brownian information structure by their variance multiplier
formulation,
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Ivan Werning
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Torcuato di Tella

1. Introduction

This paper provides a practical and user-friendly overview of prefer-
ence specifications outside the very dear, but perhaps too pervasive,
additively separable expected-utility framework."! The paper’s stated
intention is for choice-theorists to reach out to macroeconomists, offer-
ing a road map to a selection of exotic preference specifications accu-
mulated through years of progress.

The paper succeeds at its main cbjective: any macroeconomist wish-
ing greater preference flexibility should consult this paper. Given the
intended audience and space limitations, the authors make some excel-
lent choices, such as sacrificing axiomatic foundations and emphasiz-
ing examples with homogeneity assumptions.

I would have welcomed more space devoted to the difficult question
regarding how useful the overall exotic preference strategy may be for
macroeconomics, or more competitive comparisons across exotic pref-
erence that could help clarify which specifications might be most fruit-
ful. Perhaps it is too early to make these calls, but with so many offered
options more guidance would be have been very welcome.

Review papers are to some extent comments on a literature. So for
the rest of my commentary, instead of layering a comment over an-
other, I will attempt to add to the discussion by expanding on some
general themes that lurk in the background of the paper. My discus-
sion revolves around three ideas. I will first discuss why exotic aspects
of preferences may be of great importance by reviewing some norma-
tive implications. I then use observational equivalence results to illus-
trate the empirical challenges faced in identifying exotic aspects of
preferences. I conclude by discussing a few examples of exotic alterna-
tives that macroeconomists have taken to altering preferences.
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2. Exotic Welfare Calculations

Exotic preferences often have their most interesting implications for
counterfactual situations, common in normative analyses, where the
observational equivalence issues discussed below do not apply. These
normative implications underscore why identifying exotic aspects of
preferences may be important.

Indeed, in the case of intertemporal preferences with temptations or
time inconsistencies one can argue that normative implications have
been at center stage. In the case of preferences for risk, an interest-
ing example of great relevance for macroeconomists is provided by
the welfare costs of business-cycles calculations pioneered by Lucas
(1987).2 This exercise requires only specifying a preference relation for
a representative agent and two consumption processes, one with and
one without business cycles. As a measure of the cost of business cycles
one computes the proportional increase in the first consumption pro-
cess required to make the representative agent indifferent to the second
process.

The exercise is attractive for its simplicity; it is renowned and influ-
ential for its outcome. Lucas performed the exercise using additive
expected-utility and obtained small costs, on the order of 0.1% of
consumption, for the removal of all consumption risk around a deter-
ministic linear trend. Several authors have explored whether such low
welfare costs may be an artifact of simplifying assumptions, especially
regarding preferences. One reason for concern is that the equity-
premium puzzle (Mehra and Prescott, 1985) shows that additive
expected-utility preferences underestimate the required compensation
for equity return risk we’ve historically observed. Thus, it may also be
ill-suited for evaluating the compensation required for aggregate con-
sumption risk.

Preferences that arguably do a better job matching asset price data do
lead to larger welfare cost calculations. For example, Obstfeld (1994)
and Tallerini (2000} explore the welfare costs of aggregate consump-
tion risk with the non-expected recursive iso-elastic preferences used
by Epstein and Zin (1989). They show that the costs can be two orders
of magnitude larger if one increases the risk-aversion parameter to
match the historical equity premium. Dolmas (1998} uses certainty-
equivalence functions that display first-order risk aversion and reaches
similar conclusions.
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3. Exotic Data

The example above illustrates that exotic preferences may significantly
affect important welfare calculations. Motivated by their relevance one
is ready to face the challenge of selecting a specification and choosing
its parameters. This identification problem is often quite difficult, and
the paper gives several clues why.

The paper contains many examples where exotic preferences do not
lead to exotic behavior, or where different exotic specifications lead to
similar behavior. Extreme instances are provided by observational
equivalence results: situations where identical behavior is obtained for
more than one parameter specification.

Theoretically, one can view observational equivalence, for a particu-
lar economic situation, as a convenient way of isolating the role not
played by the extra degrees of freedom introduced by exotic specifica-
tions. The new parameters affect behavior that is in some sense orthog-
onal to an initial subset of behavior, that for which the observational
equivalence result holds.

Empirically, observational equivalence results illustrate the more
general challenge of identifying the additional new parameters that
exotic preferences may introduce, or selecting among alternative pref-
erence specifications.” Since observational equivalence results are situa-
tion specific, enriching or changing the environment and data available
may deliver enough additional information to identify preference
parameters. However, this comes at the cost of increasing the data and
modeling requirements.

To illustrate these issues consider hyperbolic discounting prefer-
ences. In standard consumption-saving situations, where no illiquid
asset is available, observational equivalence results are pervasive and
holds for all specifications for which closed form solutions are avail-
able in the case with standard geometric discounting.® Various combi-
nations of the two discount parameters, § and J, deliver exactly the
same behavior. This suggests that, in general, with income and con-
sumption data alone it will be very difficult to identify these preference
parameters separately.

To see how changing the environment can aid identification consider
a hyperbolic consumer facing stochastic i.i.d. labor income with two
risk-free assets, liquid and illiquid.® Suppose the illiquid asset requires
a lag in liquidation so that it cannot be used for immediate consump-
tion. This effectively impose a cash-in-advance constraint so that con-
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sumption is bounded by the sum of labor income and wealth held in
the liquid asset. The liquid and illiquid asset may have different rates
of return.

Total savings continue to depend on both discount factors and vari-
ous combinations of £ and ¢ imply the same total savings. Thus, ob-
servation of total saving behavior itself does not provide enough
information to identify both discount factors separately. However, the
portfolio choice between liquid and illiquid assets can provide addi-
tional information. In general, this information can help disentangle
the discount factors f and é. Indeed, with sufficient knowledge of other
primitives observation of the demand for liquid and illiquid assets
identifies ff and 8.7

The challenge is that the relative demand for liquidity depends on
many other primitives aside from the discount factors, such as the de-
gree of risk aversion and intertemporal substitution, the distribution of
income shocks, the return to both assets or more general characteristics
of the assets. For instance, suppose we observe high relative demand
for an illiquid asset such as housing. It is difficult to discern whether
this is evidence of hyperbolic discounting or of relatively high ex-
pected returns or other desired characteristics of the illiquid housing
asset. Without knowledge of these primitives identification of f and ¢
becomes difficult.

The lesson is more general than this hyperbolic example. The paper
offers many other cases of observational equivalence, or situations
with near observational equivalence, and the resulting problems of
identification. For example, the authors explain why it may be difficult
to tell apart expected utility from weighted utility, or robust control
from risk-sensitive preferences.

Each of these situations certainly pose specific challenges, but meet-
ing these challenges will require richer, exotic data. Moreover, one
needs to consider richer modeling situations to place these preferences
into and this in itself can bring additional parameters to be identified.
These considerations explain why identifying new parameters intro-
duced by exotic preferences may be extremely challenging, but cer-
tainly not impossible.

4. Exotic Alternatives: Complements or Substitutes?

The typical economic model consists, at a minimum, of a specifica-
tion of the following triplet: preferences, technology, and market
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arrangements. An alternative to exotic preferences is to consider non
standard or exotic technology and/or market arrangements. The latter
is possibly the road most heavily traveled by macroeconomists.

As an example consider models with incomplete markets. One in-
teresting application of these models is to explore and enrich the
business-cycle cost calculations discussed above. Lucas’s representa-
tive agent calculation implicitly assumes complete markets, but with-
out them, small aggregate movements in consumption may hide much
more dramatic fluctuations for a subset of individuals. Using a cali-
brated incomplete markets model, Krusell and Smith (2002) show that
the welfare costs may vary greatly across individuals; indeed, while
business cycles may make poorer agents lose significantly, around 3%
of consumption, it may actually make richer agents gain a comparable
amount.

Constantinides and Duffie (1996) construct an incomplete markets
model that is observationally equivalent for asset pricing and aggre-
gate consumption data to representative agent models with higher risk
aversion. In their setting, modifying preferences or the market environ-
ment is a substitute for each other.

On the other hand, household income and consumption data have
been approached with models combining richer preferences and mar-
ket arrangements, such as borrowing and other financial constraints.
Thus, in some cases, exotic preferences may indeed complement other
modeling approaches.

Notes

1. I follow the authors in using the term exofic for anything outside this more standard
model.

2. See Lucas (2003) for an updated critical review of the literature.

3. Most contributions compute the benefit of a removal of all aggregate consumption
risk, i.e. the process without business cycles is deterministic. This is probably unrealistic,
and Alvarez and Jermann (2000) show that it can make a huge difference. They find huge
gains for the removal of all uncertainty but only moderate ones for the removal of uncer-
tainty at bustness-cycle frequencies.

4. While exact observational equivalence results usually rely on specific functional form
assumptions, they are often symptomatic of more general near observational equivalence
results that make parameter estimation extremely difficult.

5. These include, for the income fluctuations problem with i.i.d. labor income and con-
stant interest rate the exponential, constant absolute risk aversion (CARA) and quadratic
utility functions. With deterministic labor income one can add the iso-elastic, constant
relative risk aversion (CRRA) utility function, see Example 21 in the paper.
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6. I have characterized the model described here with exponential-CARA utility quite
sharply.

7. This is related to the strategy pursued recently by Liabson, Repeto and Tobacman
(2004).

References

Alvarez, Fermando, and Urban Jermann. (2000). Using asset prices to measure the costs of
business cycles. NBER Working Paper No. 7978. October.

Constantinides, George M., and Darrell Duffie. (1996). Asset pricing with heterogenous
consumers. Jeurnal of Political Econony 104:219-240.

Dolmas, James. (1998). Risk-preferences and the welfare costs of business cycles. Review
of Econontic Dynamics 1(3):646-676.

Epstein, Larry G., and Stanley E. Zin. (1989). Substitution, risk aversion, and the temporal
behavior of consumption growth and asset retums I: A theoretical framework. Economet-
rica 57(4): 937-969.

Krusell, Per, and Anthony A. Smith, Jr. (2002). Revisiting the welfare effects of eliminat-
ing business cycles. Mimeo. Princeton University.

Laibson, David, Andrea Repeto, and Jeremy Tobacman. (2004). Estimating discount func-
tions from lifecycle consumption choices. Mimeo. Harvard University.

Lucas, Robert E., Jr. (1987). Models of Business Cycles. New York: Basil Blackwell.

Lucas, Robert E., Jr. (2003). Macroeconomic Priotities. Americapn Economic Review 93(1):1-
i4.

Mehra, Rajnish, and Edward C. Prescott. (1985). The equity premium: A puzzle. fournal of
Monetary Economics 15(2):145-161.

Obstfeld, Maurice. (1994). Evaluating risky consumption paths: The role of intertemporal
substitutability. European Economic Review 38(7):1471-1486.

Tallerini, Thomas D, Jr. (2000). Risk-sensitive real business cycles. Journal of Monetary
Economics 45(3):507-532.



Discussion

In response to the discussants, especially to Lars Hansen, Stanley Zin
agreed with the three main points that Hansen emphasized: empirical
implementation, identification of new parameters, and policy rele-
vance. He noted how some authors, such as José-Victor Rios-Rull or
Edward Prescott, believed that when one deviates from the standard
utility framework, one could obtain any result one wanted, but their
paper proved that this was not correct and that it was, in fact, very
easy to get nothing at all. The challenging issue, he pointed out, was to
understand what these preference models were doing and not doing,
and he referred to Ivan Werning’s last example, where different fric-
tions delivered different responses from the model. Zin mentioned
that the use of these less standard preferences was not incompatible
with the use of tools, such as calibration of parameters or moment
matching, that economists utilized in expected utility models. Related
to policy relevance, he noted that another contribution of the paper
was to delineate where Pareto comparisons of different policies could
and could not be done since these comparisons required explicit utility
functions and not only behavioral decision outcomes.

Several participants commented on Ivan Werning’s model with lig-
uid and illiquid assets. David Laibson made some observations on the
identification of the hyperbolic model and on the challenge proposed
by Zin of using standard tools with these nontraditional preferences.
He noted that in one of his recent papers, he and his co-authors devel-
oped a model, similar to the one presented by Werning, where they
were able to obtain very precise estimates of the short-run discount
parameter, §, of around £ and of the long-run discount parameter, 8, of
about 4%. Robert Shimer talked about the empirical implications of
time-inconsistent preferences. In particular, he mentioned a paper by
Narayana Kocherlakota published in 2001 in the Federal Reserve Bank of
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Minneapolis Quarterly Review, where he considered an equilibrium
asset-pricing model with liquid and illiquid assets. Kocherlakota found
that the model delivered some counterfactual results, such as a pre-
mium on the illiquid asset and the fact that, in equilibrium, agents fully
specialized in one type of asset without mixing assets.

Fumio Hayashi noted another important empirical fact (besides the
asset-price puzzle already mentioned): the comovement of consump-
tion and income. He suggested that the preferences proposed by
Hansen in his discussion, which had Pareto weights and were time
invariant, might be able to explain this puzzle.

Mark Gertler commented that a related approach to using exotic
preferences to explain the equity premium and its time variation was
to use external habit formation, such as in the models of John Camp-
bell and John Cochrane or Andrew Abel, and questioned the authors
about using exotic preferences as opposed to habit formation. Zin re-
plied to Gertler that in the case of context-dependent preferences like
the ones he mentioned, it was hard to think of Pareto comparisons of
policies since policy changes that alter the economy also modified the
individuals, since these context-dependent preferences were specific to
the environment.

Marjorie Flavin noted that the expected utility framework had been
criticized for being overly restrictive, and she believed that some of the
overly restrictive results were usually the consequence of additional
assumptions, such as costlessly adjustable consumption goods. She
mentioned that in her recent work, she had developed models that
retained the expected utility framework but included nondurable con-
sumption and housing, subject to substantial adjustment costs, and
she was able to obtain state dependence of risk aversion, path depen-
dence of risk aversion, and the possibility of disentangling risk aver-
sion from the elasticity of intertemporal substitution.

Finally, Kenneth Rogoff criticized the discussants for their harsh cri-
tique of the motivation of the paper because he believed that the type
of work the authors had done was not possible two decades ago. In
this respect, he noted the large implementation lags between the time
when utility functions were thought of and when they could actually
be implemented in economic problems.






