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7 Optimal Investment 
Strategies for University 
Endowment Funds 
Robert C. Merton 

7.1 Introduction 

To examine the question of optimal investment strategies for university en- 
dowment funds, one must of course address the issue of the objective function 
by which optimality is to be measured. My impression is that practicing 
money managers essentially sidestep the issue by focusing on generically ef- 
ficient risk-return objective functions for investment which are just as appli- 
cable to individuals or nonacademic institutions as they are to universities. 
Perhaps the most common objective of this type is mean-variance efficiency 
for the portfolio’s allocations. Black (1976) provides a deeper approach along 
those lines that takes account of tax and other institutional factors, including 
certain types of nonendowment assets held by institutions. The Ford Founda- 
tion study of 1969 gave some early practical (if ex post, somewhat untimely) 
guidance for investment allocations. 

Much of the academic literature (which is not copious) seems to focus on 
appropriate spending policy for endowment, taking as given that the objective 
for endowment is to provide a perpetual level flow of expected real income 
(cf. Eisner 1974; Litvack, Malkiel, and Quandt 1974; Nichols 1974; Tobin 
1974). Ennis and Williamson (1976) present a history of spending patterns by 
universities and a discussion of various spending rules adopted. They also 
discuss the interaction between spending and investment policies. Fama and 
Jensen (1985) discuss the role of nonprofit institutions as part of a general 
analysis of organizational forms and investment objective functions, but they 
do not address the functions of endowment in such institutions. 

In contrast, Hansmann (1990) provides a focused and comprehensive re- 

Robert C. Merton is George Fisher Baker Professor of Business Administration at Harvard 
University and a research associate of the National Bureau of Economic Research. 

211 



212 Robert C. Merton 

view of the various possible roles for a university’s endowment. Despite the 
broad coverage of possibilities ranging from tax incentives to promoting inter- 
generational equity, he is unable to find compelling empirical evidence to sup- 
port any particular combination of objectives. Indeed, he concludes that “pre- 
vailing endowment spending rules seem inconsistent with most of these 
objectives” (p. 39). Hansmann goes on to assert (pp. 39-40): 

It appears, however, that surprisingly little thought has been devoted to the 
purposes for which endowments are maintained and that, as a consequence, 
their rate of accumulation and the pattern of spending from their income 
have been managed without much attention to the ultimate objectives of the 
institutions that hold them. 

The course taken here to address this question is in the middle range: it does 
not attempt to specify in detail the objective function for the university, but it 
does derive optimal investment and expenditure policy for endowment in a 
context which takes account of overall university objectives and the availabil- 
ity of other sources of revenue besides endowment. In that respect, it follows 
along lines similar to the discussion in Black (1976, 26-28). In addition, our 
model takes explicit account of the uncertainties surrounding the costs of uni- 
versity activities. As a result, the analysis reveals another (perhaps somewhat 
latent) purpose for endowment: namely, hedging against unanticipated 
changes in those costs. Formal trading rules for implementing this hedging 
function are derived in sections 7.3 and 7.4. However, the paper neither as- 
sesses which costs, as an empirical matter, are more important to hedge nor 
examines the feasibility of hedging those costs using available traded securi- 
ties. The interested reader should see Brinkman (1981, 1990), Brovender 
(1974), Nordhaus (1989), and Snyder (1988), where the various costs of uni- 
versities are described and modeled, both historically and prospectively. 

Grinold, Hopkins, and Massy (1978) develop a budget-planning model 
which also integrates endowment returns with other revenue and expense 
flows of the university. However, their model differs significantly from the one 
presented here, perhaps because their focus is on developing policy guidelines 
for expenditures instead of optimal intertemporal management of endowment. 

In the section to follow, we describe the basic insights provided by our 
analysis and discuss in a qualitative fashion the prescriptions for endowment 
policy. The formal mathematical model for optimal expenditures and invest- 
ment that supports those prescriptions is developed in sections 7.3 and 7.4. It 
is based on a standard intertemporal consumption and portfolio-selection 
model. Hence, the formal structure of the optimal demand functions is already 
widely studied in the literature. It is the application of this model to the man- 
agement of university endowment which is new. For analytical simplicity and 
clarity, the model is formulated in continuous time. However, it is evident 
from the work of Constantinides (1989), Long (1974), and Merton (1977) that 
a discrete-time version of the model would produce similar results. 
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7.2 Overview of Basic Insights and Prescriptions for Policy 

As indicated at the outset, a standard approach to the management of en- 
dowment is to treat it as if it were the only asset of the university. A conse- 
quence of this approach is that optimal portfolio strategies are focused exclu- 
sively on providing an efficient trade-off between risk and expected return. 
The most commonly used measure of endowment portfolio risk is the variance 
(or equivalently, standard deviation) of the portfolio’s return. As is well 
known, the returns on all mean-variance efficient portfolios are perfectly cor- 
related. Thus, a further consequence of treating endowment as the only asset 
is that the optimal endowment portfolios of different universities should have 
quite similar risky investment allocations, at least as measured by the corre- 
lations of the portfolio returns. 

Universities, as we all know, do have other assets, both tangible and intan- 
gible, many of which are important sources of cash flow. Examples of such 
sources are gifts, bequests, university business income, and public- and 
private-sector grants. Taking explicit account of those assets in the determi- 
nation of the endowment portfolio can cause the optimal composition of that 
portfolio to deviate significantly from mean-variance efficiency. That is, two 
universities with similar objectives and endowments of the same size can 
nevertheless have very different optimal endowment portfolios if their nonen- 
dowment sources of cash flow are different. 

A procedure for selecting the investments for the endowment portfolio that 
takes account of nonendowment assets includes the following steps: 

1. Estimate the market value that each of the cash flow sources would have 
if it were a traded asset. Also determine the investment risk characteristics 
that each of those assets would have as a traded asset. 

2 .  Compute the total wealrh or net worth of the university by adding the 
capitalized values of all the cash flow sources to the value of the endowment. 

3.  Determine the optimal portfolio allocation among traded assets, using 
the university’s total wealth as a base. That is, treat both endowment and cash 
flow-source assets as if they could be traded. 
4. Using the risk characteristics determined in step 1, estimate the “im- 

plicit” investment in each traded-asset category that the university has as the 
result of owning the nonendowment (cash flow-source) assets. Subtract those 
implicit investment amounts from the optimal portfolio allocations computed 
in step 3,  to determine the optimal “explicit” investment in each traded asset, 
which is the actual optimal investment allocation for the endowment port- 
folio. 

As a simple illustration, consider a university with $400 million in endow- 
ment assets and a single nonendowment cash flow source. Suppose that the 
only traded assets are stocks and cash. Suppose further that the university 
estimates in step 1 that the capitalized value of the cash flow source is $200 
million, with risk characteristics equivalent to holding $100 million in stock 
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and $100 million in cash. Thus, the total wealth of the university in step 2 is 
(400 + 200 = ) $600 million. Suppose that from standard portfolio-selection 
techniques, the optimal fractional allocation in step 3 is .6 in stocks and .4 in 
cash, or $360 million and $240 million, respectively. From the hypothesized 
risk characteristics in step 1, the university already has an (implicit) invest- 
ment of $100 million in stocks from its nonendowment cash flow source. 
Therefore, we have in step 4 that the optimal amount for the endowment port- 
folio to invest in stocks is $260 million, the difference between the $360 mil- 
lion optimal total investment in stocks and the $100 million implicit part. 
Similarly, the optimal amount of endowment invested in cash equals (240 - 
100 =) $140 million. 

The effect on the composition of the optimal endowment portfolio induced 
by differences in the size of nonendowment assets can be decomposed into 
two parts: the wealth effect and the substitution effect. To illustrate the wealth 
effect, consider two universities with identical preference functions and the 
same size endowments, but one has nonendowment assets and the other does 
not. If, as is perhaps reasonable to suppose, the preference function common 
to each exhibits decreasing absolute risk aversion, then the university with the 
nonendowment assets (and hence larger net worth) will prefer to have a larger 
total investment in risky assets. So a university with a $400 million endow- 
ment as its only asset would be expected to choose a dollar exposure to stocks 
that is smaller than the $360 million chosen in our simple example by a uni- 
versity with the same size endowment and a nonendowment asset valued at 
$200 million. Such behavior is consistent with the belief that wealthier uni- 
versities can “afford’ to take larger risks with their investments. Thus, if the 
average risk of the nonendowment assets is the same as the risk of the 
endowment-only university’s portfolio, then the university with those assets 
will optimally invest more of its endowment in risky assets. 

The substitution effect on the endowment portfolio is caused by the substi- 
tution of nonendowment asset holdings for endowment asset holdings. To il- 
lustrate, consider again our simple example of a university with a $400 mil- 
lion endowment and a $200 million nonendowment asset. However, suppose 
that the risk characteristics of the asset are changed so that it is equivalent to 
holding $200 million in stocks and no cash. Now, in step 4, the optimal 
amount for the endowment portfolio to invest in stocks is $160 million, the 
difference between the $360 million optimal total investment in stocks and the 
$200 million implicit part represented by the nonendowment asset. The opti- 
mal amount of endowment invested in cash rises to (240 - 0 =) $240 mil- 
lion. If instead the risk characteristics of the asset had changed in the other 
direction to an equivalent holding of $0 in stocks and $200 million in cash, 
the optimal composition of the endowment portfolio would be (360 - 0 =) 
$360 million in stocks and (240 - 200 =) $40 million in cash. 

Note that the changes in risk characteristics do not change the optimal de- 
ployment of total net worth ($360 million in stocks and $240 million in cash). 
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However, the nonendowment assets are not carried in the endowment portfo- 
lio. Hence, different risk characteristics for those assets do change the amount 
of substitution they provide for stocks and cash in the endowment portfolio. 
Thus, the composition of the endowment portfolio will be affected in both the 
scale and fractional allocations among assets. 

With the basic concept of the substitution effect established, we now apply 
it in some examples to illustrate its implications for endowment investment 
policy. Consider a university that on a regular basis receives donations from 
alums. Clearly, the cash flows from future contributions are an asset of the 
university, albeit an intangible one. Suppose that the actual amount of gift 
giving is known to be quite sensitive to the performance of the general stock 
market. That is, when the market does well, gifts are high; when it does 
poorly, gifts are low. Through this gift-giving process, the university thus has 
a “shadow” investment in the stock market. Hence, all else the same, it should 
hold a smaller portion of its endowment in stocks than would another univer- 
sity with smaller amounts of such market-sensitive gift giving. 

The same principle applies to more specific asset classes. If an important 
part of gifts to a school that specializes in science and engineering comes from 
entrepreneur alums, then the school de fact0 has a large investment in venture 
capital and high-tech companies, and it should therefore invest less of its en- 
dowment funds in those areas. Indeed, if a donor is expected to give a large 
block of a particular stock, then the optimal explicit holding of that stock in 
the endowment can be negative. Of course, an actual short position may not 
be truly optimal if such short sales offend the donor. That the school should 
optimally invest less of its endowment in the science and technology areas 
where its faculty and students have special expertise may seem a bit paradox- 
ical. But the paradox is resolved by the principle of diversification once the 
endowment is recognized as representing only a part of the assets of the uni- 
versity. 

The same analysis and conclusion apply if alum wealth concentrations are 
in a different class of assets, such as real estate instead of shares of stock. 
Moreover, much the same story also applies if we were to change the example 
by substituting government and corporate grants for donations and gift giving 
as the sources of cash flows. That is, the magnitudes of such grant support for 
engineering and applied science may well be positively correlated with the 
financial performance of companies in high-tech industries. If so, then the 
prospect of future cash flows to the university from the grants creates a 
shadow investment in those companies. 

The focus of our analysis is on optimal asset allocation for the endowment 
portfolio. However, the nature and size of a university’s nonendowment assets 
significantly influence optimal policy for spending endowment. As shown in 
section 7.4, for a given overall expenditure rate as a fraction of the university’s 
total net worth, the optimal spending rate out of endowment will vary, de- 
pending on the fraction of net worth represented by nonendowment assets, the 
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expected growth rate of cash flows generated by those assets, and capitaliza- 
tion rates. Hence, neglecting those other assets will generally bias the optimal 
expenditure policy for endowment. 

In addition to taking account of nonendowment assets, our analysis differs 
from the norm because it takes account of the uncertainty surrounding the 
costs of the various activities such as education, research, and knowledge 
storage that define the purpose of the university. The breakdown of activities 
can of course be considerably more refined. For instance, one activity could 
be the education of a full-tuition-paying undergraduate, and a second could 
be the education of an undergraduate who receives financial aid. The unit (net) 
cost of the former is the unit cost of providing the education less the tuition 
received, and the unit cost of the latter is this cost plus the financial aid given. 
As formally demonstrated in section 7.3, an important function of endowment 
investments is to hedge against unanticipated changes in the costs of univer- 
sity activities. 

Consider, for example, the decision as to how much (if any) of the univer- 
sity’s endowment to invest in local residential real estate. From a standard 
mean-variance efficiency analysis, it is unlikely that any material portion of 
the endowment should be invested in this asset class. However, consider the 
cost structure faced by the university for providing teaching and research. 
Perhaps the single largest component is faculty salaries. Universities of the 
same type and quality compete for faculty from the same pools. To be com- 
petitive, they must offer a similar standard of living. Probably the largest part 
of the differences among universities in the cost of providing this same stan- 
dard of living is local housing costs. The university that invests in local resi- 
dential housing hedges itself against this future cost uncertainty by acquiring 
an asset whose value is higher than expected when the differential cost of 
faculty salaries is higher than expected. This same asset may also provide a 
hedge against unanticipated higher costs of off-campus housing for students 
that would in turn require more financial aid if the university is to compete for 
the best students. Note that this prescription of targeted investment in very 
specific real estate assets to hedge against an unanticipated rise in a particular 
university’s costs of faculty salaries and student aid should not be confused 
with the often-stated (but empirically questionable) assertion that investments 
in real estate generally are a good hedge against inflation. See Bodie (1976, 
1982) for empirical analysis of the optimal assets for hedging against general 
inflation. 

Similar arguments could be used to justify targeted investment of endow- 
ment in various commodities such as oil as hedges against unanticipated 
changes in energy costs. Uncertainty about those costs is especially significant 
for universities located in extreme climates and for universities with major 
laboratories and medical facilities that consume large quantities of energy. 

The hedging role for endowment can cause optimal investment positions 
that are in the opposite direction from the position dictated by the substitution 
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effects of nonendowment assets. For example, consider a specialized institute 
of biology that receives grants from biotech companies and gifts from finan- 
cially successful alums. As already explained, such an institute has a large 
shadow investment in biotech stocks, and it should therefore underweight 
(perhaps to zero) its endowment investments in such stocks. Suppose, how- 
ever, that the institute believes the cost of keeping top faculty will rise by 
considerably more than tuition or grants in the event that there is a strong 
demand for such scientists outside academe. Then it may be optimal to invest 
a portion of its endowment in biotech stocks to hedge this cost, even though 
those stocks’ returns are highly correlated with alum gifts and industry grants. 

As demonstrated in section 7.3, the hedging role for endowment derived 
here is formally valid as long as there are traded securities with returns that 
have nonzero correlations with unanticipated changes in the activity costs. 
However, the practical significance for this role turns on the magnitude of the 
correlations. As illustrated in Bodie’s (1976, 1982) work on hedging against 
inflation, it is often difficult to construct portfolios (using only standard types 
of traded securities) that are highly correlated with changes in the prices of 
specific goods and services. Nevertheless, the enormous strides in financial 
engineering over the last decade have greatly expanded the opportunities for 
custom financial contracting at reasonable costs. As we move into the twenty- 
first century, it will become increasingly more common for the financial ser- 
vices industry to offer its customers private contracts or securities that allow 
efficient hedging when the return properties of publicly traded securities are 
inadequate. That is, implementation of the quantitative strategies prescribed 
in sections 7.3 and 7.4 will become increasingly more practical for universi- 
ties and other endowment institutions. See Merton (1990b, chap. 14; 1990c, 
264-69) for a prospective view on financial innovation and the development 
of custom financial contracting. 

There are of course a variety of issues involving endowment management 
that have not been addressed but could be within the context of our model. 
One such issue is the decision whether to invest endowment in specific- 
purpose real assets such as dormitories and laboratories instead of financial 
(or general-purpose physical) assets. The returns on those real assets are likely 
to be strongly correlated with the costs of particular university activities, and 
thereby the assets form a good hedge against unexpected rises in those costs. 
However, because the real-asset investments are specialized and largely irre- 
versible, shifting the asset mix toward such investments reduces flexibility for 
the university. That is, with financial assets, the university has more options 
as to what it can do in the future. In future research, I plan to analyze this 
choice problem more formally by using contingent-claims analysis to value 
the trade-off between greater flexibility in selecting future activities and lower 
costs in producing a given set of activities. 

Another issue not explicitly examined is the impact long-term, fixed liabil- 
ities such as faculty tenure contracts have on the management of endowment. 
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Our formal model of sections 7.3 and 7.4 that uses contingent-claims analysis 
(CCA) can handle this extension. See McDonald (1974) and Merton (1985) 
for CCA-type models for valuing tenure and other wage guarantee contracts. 

In summary, the paper explores two classes of reasons why optimal endow- 
ment investment policy and expenditure policy can vary significantly among 
universities. The analysis suggests that trustees and others who judge the pru- 
dence and performance of policies by comparisons across institutions should 
take account of differences in both the mix of activities of the institutions and 
the capitalized values of their nonendowment sources of cash flows. 

The overview completed, we now turn to the development of the mathe- 
matical model for the process and the derivation of the quantitative rules for 
implementation. 

7.3 The Model 

The functions or purposes of the university are assumed to be a collection 
of activities or outputs such as education, training, research, and storage of 
knowledge. We further assume that the intensities of those activities can be 
quantified and that a preference ordering exists for ranking alternative inter- 
temporal programs. In particular, the criterion function for this ranking can be 
written as 

m 

where Q,(t) denotes the quantity of activity j per unit time undertaken at time 
t ,  j = 1, . . . ,m; the preference function U is assumed to be strictly concave 
in ( Q , ,  . . . ,QJ and E, denotes the expectation operator, conditional on 
knowing all relevant information as of time t. This preference ordering satis- 
fies the classic von Neumann-Morgenstern axioms of choice, exhibits posi- 
tive risk aversion, and includes survival (of the institution) as a possible objec- 
tive. The infinite time horizon structure in (1) implies only that there need not 
be a definite date when the university will liquidate. As shown in Merton 
(1990b, 149-51, 609-ll), U can reflect the mortality characteristics of an 
uncertain liquidation date. 

The intertemporally additive and independent preference structure in ( 1 )  
can be generalized to include nonadditivity, habit formation, and other path- 
dependent effects on preferences, along the lines of Bergman (1985), Con- 
stantinides (1990), Detemple and Zapatero (1989), Duffie and Epstein (1992), 
Hindy and Huang (1992), Sundaresan (1989), and Svensson (1989). How- 
ever, as shown in Merton (1990b, 207-9), those more realistic preference 
functions do not materially affect the optimal portfolio demand functions. 
Moreover, just as Grossman and Laroque (1990) show for transactions costs 
in consumption, so it can be shown here that imposing adjustment costs for 
changing the levels of university activities does not alter the structure of the 
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portfolio demand functions. Hence, because the focus of the paper is on opti- 
mal investment (rather than on optimal expenditure) strategies, we assume no 
adjustment costs for activities and retain the additive independent preference 
specification to provide analytical simplicity, 

Let S,(t) denote the (net) cost to the university of providing one unit of 
activity j at time t ,  j = 1, . . . ,m. For example, i f j  = 1 denotes the activity 
of having full-tuition-paying undergraduates, then S, would be the unit cost 
of providing the education minus the tuition received. If j = 2 denotes the 
activity of having undergraduates who receive financial aid, the unit cost S, 
would equal S, plus the financial aid given. In general, all costs and receipts 
such as tuition that are directly linked to the quantities of specific activities 
undertaken are put into the activity costs or prices, (S,). As will be described, 
fixed costs and sources of positive cash flows to the university that do not 
depend directly on the activity quantities are handled separately. As in Merton 
(1990b, 202, 499), we assume that the dynamics for these costs are described 
by the stochastic differential equations: for S = (S,, . . . ,S,,,), 

(2) dS, = &(S,t)S,dr + g,(S,t)S,dq, , j  = 1, . . . ,m , 
where8 is the instantaneous expected rate of growth in S,, g, is the instanta- 
neous standard deviation of the growth rate, and dq, is a Wiener process with 
the instantaneous correlation coefficient between dq, and dq, given by u,,, i, 
j = 1, . . . ,m. f, and g, are such that dS, 2 0 for S, = 0, which ensures that 
S,(t) 2 0. Especially since (S) has components that depend on tuition, finan- 
cial aid, and other variables over which the university has some control, one 
would expect that the dynamic path for those costs would be at least partially 
endogenous and controllable by the university, even though competition 
among universities would limit the degree of controllability. However, as 
specified, (2) is an exogenous process, not controlled by the university. Alter- 
natively, it can be viewed as the “reduced-form” process for S after optimiza- 
tion over nonportfolio choice variables. 

The university is assumed to have N nonendowment sources of cash flows, 
which we denote by Y,(t)dt for the kth source at time r .  As noted in section 
7.2, examples of such sources are gifts, bequests, university business income, 
and public- and private-sector grants. It can also be used to capture transfer 
pricing for the use of buildings and other university-specific assets where Y, is 
the rental rate and this rental fee appears as an offsetting charge in the (S,) for 
the appropriate university activities. The dynamics for these cash flows are 
modeled by, for Y = (Y , ,  . . . ,YJ ,  

(3) 

where pk and 6, depend at most on the current levels of the cash flows and the 
unit costs of university activities and de, is a Wiener process, k = 1, . . . ,N.  
Equation (3) can also be used to take account of fixed costs or liabilities of the 
university such as faculty tenure commitments, by letting Yk < 0 to reflect a 
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cash outflow. However, the focus here is on assets only, and therefore we as- 
sume that p, and 6, are such that dY, ? 0 for Y, = 0, which implies that Yk( f )  
2 0 for all t .  

By inspection of (2) and (3), the dynamics for (Y ,S )  are jointly Markov. A 
more realistic model would have pk  and 6, depend on both current and histor- 
ical values of Q , , . . . ,Qm. For example, if a university has undertaken large 
amounts of research activities in the past, it may attract more grants and gifts 
in the future. The university may also affect the future expected cash flows 
from nonendowment sources by investing now in building up those sources. 
Thus, the dynamic process for Y should be in part controllable by the univer- 
sity. However, again for analytical simplicity, the Y process is taken as exoge- 
nous, because that abstraction does not significantly alter the optimal portfolio 
demand functions. 

If for k = 1, . . . ,N ,  Vk(t) denotes the capitalized value at time t of the 
stream of future cash flows, Yk(7) for T 2 t ,  and if K(t)  denotes the value of 
the endowment at time t ,  then the net worth or wealth of the university, W(t)  
is given by 

(4) 

A model for determining the Vk(t) from the posited cash flow dynamics in (3) 
is developed in section 7.4. 

The endowment of the university is assumed to be invested in traded assets. 
There are n risky assets and a riskless asset. If P,(t) denotes the price of thejth 
risky asset at time t ,  then the return dynamics for the risky assets are given by, 
fo r j  = 1 , .  . . ,n, 

( 5 )  dP, = aJP,dt + oJPJdZJ , 

where a, is the instantaneous expected return on assetj; uJ is the instantaneous 
standard deviation of the return; and dZ, is a Wiener process. The instanta- 
neous correlation coefficients (p,,,qk,,{,,) are defined by, f o r j  = 1, . . . ,n, 

n 

W(t)  = K(t)  + C V k ( t )  . 
1 

dZ,dZ, = ~ , ~ d t  , i = 1, . . . ,n 
dqkdZJ = qkJdt , k = 1, . . . ,m 
de& = &dt , 1 = 1, . . . , N .  

For computational simplicity and to better isolate the special characteristics of 
endowment management from general portfolio management, we simplify the 
return dynamics specification and assume that (aJ,uJ,p,) are constants over 
time, i, j = 1, . . . ,n. As shown in Merton (1990b, chaps. 4, 5, 6), this 
assumption of a constant investment opportunity set implies that [P,(t + 
~ ) / P , ( t ) l ,  j = 1, . . . ,n, for T > 0 are jointly lognormally distributed. The 
riskless asset earns the interest rate r ,  which is also constant over time. Opti- 
mal portfolio selection for general return dynamics would follow along the 
lines of Merton (1990a, sec. 7; 1990b, chaps. 5, 15, 16). 

(5a) 
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To analyze the optimal intertemporal expenditure and portfolio-selection 
problem for the university, we begin with a further simplified version of the 
model in which the university's entire net worth is endowment (i.e., Yk[t]  = 

V,(t) = 0, k = 1, . . . ,N and W(t)  = K [ t ] ) .  The budget equation dynamics 
for W(t)  are then given by 

where wj(t) = the fraction of the university's wealth allocated to risky asset j 
at time t ,  j = 1, . . . ,n; the fraction allocated to the riskless asset is thus 1 - 
2 w,. Trustees, donors, and the government are assumed not to impose ex- 
plicit limitations on investment policy for the endowment, other than general 
considerations of prudence. In particular, borrowing and short selling are per- 
mitted, so the choice for (w,) is unrestricted. We further posit that spending 
out of endowment is not restricted, either with respect to overall expenditure 
or with respect to the specific activities on which it is spent. However, we do 
impose the feasibility restrictions that total expenditure at time t ,  E;, QJ,, 
must be nonnegative and zero wealth is an absorbing state (i.e., W[t] = 0 
implies W[t  + T ]  = 0 for 7 > 0). 

At each time t ,  the university chooses a quantity of activities (Q, , . . . ,Q,) 
and a portfolio allocation of its wealth so as to maximize lifetime utility of the 
university as specified in (1). Just as for the case of multiple consumption 
goods analyzed in Breeden ( 1979), Fischer ( 1975), and Merton ( 1990b, 205), 
so the solution for the optimal program here can be decomposed into two 
parts. First, at each t ,  solve for the utility-maximizing quantities of individual 
activities, (Q,, . . . ,ern), subject to an overall expenditure constraint, C( t )  = 

C;, Q,(t)S,(t). Second, solve for the optimal level of overall expenditures at 
time t and the optimal portfolio allocation of endowment. 

The first part is essentially the static activity-choice problem with no uncer- 
tainty 

subject to C(t)  = Z;, Q$k(t). The first-order conditions for the optimal activity 
bundle (Q;, . . . ,Q;) are given by, forS,(t) = s&, 

with C(r) = C;lQ;S,, where subscripts on U denote partial derivatives (i.e., 0, 
= dU//aQ,). It follows from (8) that the optimal quantities can be written as 
Q; = Q;[C(t),S(t),t], k = 1, . . . ,m . 

Define the indirect utility function U by U[C(t),S(t),t] = U(Qr, . . . ,em,t). 
By substituting U for U ,  we can rewrite (1) as 
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m 

(9) max E o [ l  U[C(r),S(t),rIdt} , 

where the “max” in (9) is over the intertemporal expenditure path [C(t)] and 
portfolio allocations [wj ( t ) ] .  Thus, the original optimization problem is trans- 
formed into a single-expenditure choice problem with “state-dependent’’ util- 
ity (where the “states” are the relative costs or prices of the various activities). 
Once the optimal total expenditure rules, [C*(t)], are determined, the optimal 
expenditures on individual activities are determined by (8) with C*(t) = 

The solution of (9) follows by applying stochastic dynamic programming 
as in Merton (1990b, chaps. 4, 5 ,  6 ) .  Define the Bellman, or derived-utility, 
function J by 

c y Q ; S k .  

m 

conditional on W(t) = W and S(t)  = S. From Merton (1990a, 555; 1990b, 
181, 202), J will satisfy 

(10) 
m n  

WiWJUi jW 

subject to J(O,S,t) = J; u(0, . . . ,O,T)&, where subscripts on J denote par- 
tial derivatives with respect to W ,  t ,  and Si, i = 1, . . . ,m and uo = pijuiuj, 
the instantaneous covariance between the return on security i andj .  A is a 
Kuhn-Tucker multiplier reflecting the nonnegativity constraint on C, and at 
the optimum it will satisfy A *C* = 0. The first-order conditions derived from 
(10) are 

(1la) 0 = U,(C*,S,t) + A* - J,(W,S,t) 

and 

” 
0 = J , ( y  - r)  + J,C W ~ W U , ~  

I 

+ C Jkwg$kuiqki, i = 1, . . . ,n , 
1 

where C* = C*(W,S,t) and w: = w*(W,S,t)  are the optimal expenditure, 
and portfolio rules expressed as functions of the state variables and subscripts 
on U denote partial derivatives. 
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From ( 1 1 a), the optimal expenditure rule is given by 

UC(C*,S,f) = J,(W,S,t) for C* > 0 
(12) x* = max [0, J,(W,S,t) - U,(O,S,t)] 

From ( 1  lb), the optimal portfolio allocation can be written as 

(13) w,*W = Ab, + 2 H , h , ,  i = 1, . . . ,n , 

where 6, = C; vI,(a, - I ) ;  h, = C; u$J,q,,v,,; v,, is the i j  element of the in- 
verse of the instantaneous variance-covariance matrix of returns (u,,); A = 
- J J J ,  (the reciprocal of absolute risk aversion of the derived-utility func- 
tion); and H ,  = - J,JJ,,, k = 1, . . . ,m. A and H ,  depend on the individual 
university’s intertemporal preferences for expenditures and its current net 
worth. However, 6, and h,, are determined entirely by the dynamic structures 
for the asset price returns and the unit costs of the various activities under- 
taken by universities. Hence, those parameters are the same for all universi- 
ties, independent of their preferences or endowment size. 

To provide some economic intuition about the optimal allocation of endow- 
ment in (1 3), consider as a frame of reference the “standard” intertemporal 
portfolio-selection problem with state-independent utility, U = U(C(t),t). As 
shown in Merton (1990b, 131-36), given the posited return dynamics in ( 5 ) ,  
all such investors will hold instantaneously mean-variance efficient portfolios 
as their optimal portfolios. For aUlaSk = Uk = 0, H, = 0,  k = 1, . . . ,m. 
Hence, in this case, (13) becomes w,”W = Ab,, and w,“Wlw,”W = b,/b,, the 
same for all investors. This is the well-known result that the relative holdings 
of risky assets are the same for all mean-variance efficient portfolios. How- 
ever, the state-dependent preferences for universities induced by the uncer- 
tainty surrounding the relative costs of undertaking different desired activities 
causes the more complex demand structure in ( 13). 

To better understand this differential demand, w,*W - Ab, = Z;l HJl,,, it 
is useful to examine the special case where for each cost S, there exists an 
asset whose instantaneous return is perfectly correlated with changes in S,. By 
renumbering securities if necessary, choose the convention that q, = 1 in 
(5a), k = 1, . , . ,m (m < n).  As shown in Merton (1990b, 203-4), it follows 
that in this case, h, = gJ@, for k = 1, . . . ,m and h ,  = 0 for k # j .  
Hence, we can rewrite (13) as 

m 

I 

i =  1 ,  . . .  wTW = Abi + - Hi gi si 

mi 

= Ab, i = m +  1, . . . ,  n .  

By the strict concavity of U with respect to C ,  J is strictly concave in W. 
Hence, J,, < 0 and Hi = - J,JJ,, is positively proportional to JiW. Thus, 
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relative to a “normal” investor with state-independent preferences (i.e., H ,  = 
0, i = 1, . . . ,m) but the same current level of absolute risk aversion (i.e., 
- J d J , ) ,  the university will optimally hold more of asset i if J , ,  > 0 and 
less if J, ,  < 0, i = 1, . . . ,m. 

If J, ,  > 0, then at least locally the university’s marginal utility (or “need”) 
for wealth or endowment becomes larger if the cost of undertaking activity i 
increases, and it becomes smaller if this cost decreases. Because the return on 
asset i is perfectly positively correlated with the cost of activity i ,  a greater 
than expected increase in S, will coincide with a greater than expected return 
on asset i. By holding more of asset i than a “normal” investor would, the 
university thus assures itself of a relatively larger endowment in the event that 
S, increases and the need for wealth becomes more important. The university, 
of course, pays for this by accepting a relatively smaller endowment in the 
event that S, decreases and wealth is less important. The behavioral descrip- 
tion for J, ,  < 0 is just the reverse, because the need for endowment decreases 
if the cost of activity i increases. 

To perhaps help in developing further insights, we use (1 2) to interpret the 
differential demand component in (14) in terms of the indirect utility and op- 
timal expenditure functions. By differentiating (12), we have that, for 
C*(W,S,t) > 0 ,  

ac* 
J,, = U,,(C*,S,t) ~ aw 

ac* 
Jkw = ucc(C*,S,t) ~ + U,-,(C*,S,t) 

ask 

- ac* 

for k = 1, . . . ,m. Because U,, < 0 and aC*/aW > 0 for C* > 0, we see that 
the sign of Hk is determined by the impact of a change in the cost of activity k 
on two items: the optimal level of total current expenditure and the marginal 
utility of expenditure. So, for example, if an increase in S, would cause both 
a decrease in optimal expenditure (aC*/aS, < 0) and an increase in the mar- 
ginal utility of expenditure (U,, > 0), then, from (15), Hk > 0 and the univer- 
sity will optimally hold more of asset k than the corresponding investor with 
a mean-variance efficient portfolio. 

Following (14) causes the university’s optimal portfolio to be mean- 
variance inefficient, and therefore the return on the endowment will have 
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greater volatility than other feasible portfolios with the same expected return. 
However, the value of the endowment or net worth of the university is not the 
“end” objective. Instead, it is the “means” by which the ends of a preferred 
expenditure policy can be implemented. Viewed in terms of the volatility 
of the time path of expenditure (or more precisely, the marginal utility of ex- 
penditure), the optimal strategy given in (14) is mean-variance efficient (cf. 
Breeden 1979; Merton 1990b, 487-88). That is, because aC*laW > 0, the 
additional increment in wealth that, by portfolio construction, occurs pre- 
cisely when S, increases will tend to offset the negative impact on C* caused 
by that increase. There is thus a dampening of the unanticipated fluctuations 
in expenditure over time. In sum, we see that in addition to investing in assets 
to achieve an efficient risk-return trade-off in wealth, universities should opti- 
mally use their endowment to hedge against unanticipated and unfavorable 
changes in the costs of the various activities that enter into their direct utility 
functions. 

In closing this section, we note that the interpretation of the demand func- 
tions in the general case of (1 3) follows along the same lines as for the special 
case of perfect correlation leading to (14). As shown for the general case in 
Merton (1990a, 558-59; 1990b, 501-2), the differential demands for assets 
reflect attempts to create portfolios with the maximal feasible correlations be- 
tween their returns and unanticipated changes in the S,, k = 1, . . . ,111. These 
maximally correlated portfolios perform the same hedging function as assets 
1, . . . ,m in the limiting case of perfect correlation analyzed in (14). Further- 
more, if other state variables besides the various activities’ costs (e.g., 
changes in the investment opportunity set) enter a university’s derived utility 
function, then a similar structure of differential asset demands to hedge 
against the unanticipated changes in these variables will also obtain. 

7.4 Optimal Endowment Management with Other Sources of Income 

In the previous section, we identified hedging of the costs of university 
activities as a reason for optimally deviating from “efficient” portfolio allo- 
cations when endowment is the only means for financing those activities. In 
this section, we extend the analysis to allow other sources of cash flow to sup- 
port the activities. To simplify the analysis, we make two additional assump- 
tions. First, we posit that pk and 6,  in (3) are constants, which implies that 
Yk(t)lYk(0) is lognormally distributed, k = 1, . . . ,N .  Second, we assume that 
for each k there exists a traded security whose return is instantaneously per- 
fectly correlated with the unanticipated change in Y,, k = 1, . . . ,N.  By 
renumbering if necessary, we use the convention that traded security k is in- 
stantaneously perfectly correlated with Y,. Hence, it follows that {, = 1 in 
(5a) and 

(16) de, = dZ, ,  k = 1,. . . , N .  
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These two assumptions permit us to derive a closed-form solution for the 
capitalized values of the cash flows, [V,(t)], using contingent-claims analysis. 
As will be shown, those valuation functions are independent of the universi- 
ty’s preferences or wealth level. 

From (3), (3, and (16) with p, and 6, constant, we have that the cash flows 
can be written as a function of the traded asset prices as follows, for k = 1, 
. . . ,N,  

(17) ‘k(‘) = Yk(o)exp( - $ k f )  [ p k ( r ) l p k ( o ) l P k  7 

where +, = p, (a, - a:/2) - (p, - 6:/2) and p, = 6Ja,. That (17) obtains 
can be checked by applying Id’s Lemma. We now derive the capitalized value 
for Y,, following Merton (1990a, 562-63; 1990b, 415-19). 

Let Fk (P,, t )  be the solution to the partial differential equation, for 0 5 
t I T,, 

(18) 

subject to the boundary conditions: 

( 19b) 

0 = 112 aFiF: ,  + rP,Fi - rFk + F: + Y, 

( 194 Fk(0,t) = 0 
Fk/(P,)Pk bounded as P ,  4 m 

(19c) Fk(pk,Tk) = 0 9 

where subscripts on Fk in (18) denote partial derivatives with respect to its 
arguments P ,  and r; Y, is given by (17); and T, is the last date at which the 
university receives the cash flows from source k ,  k = 1, . . . ,N .  It is a math- 
ematical result that a solution exists to (1 8)-( 19) and that it is unique. More- 
over, for Y, 2 0, Fk 2 0 for all P,  and t .  

Consider a dynamic portfolio strategy in which F:[P,(t),t]P,(t) is allocated 
to traded asset k at time rand V(r) - F,k[P,(t),t]P,(r) is allocated to the riskless 
asset, where V(t)  is the value of the portfolio at time t .  Furthermore, let the 
portfolio distribute cash (by selling securities if necessary) according to the 
flow-rate rule 

(20) D , ( P k , t )  = yk(t) 

as given by (17). Then the dynamics of the portfolio can be written as, for 
P,(t) = P,  and V(t )  = V ,  

(21) dV = Ff(P,,t)dP, + { [V  - Ff(P,,t)P,]r - D,(P,,t)}dt . 
Since Fk satisfies (18), it is a twice continuously differentiable function and 
therefore, by ItB’s Lemma, we can write the dynamics for Fk as 

(22) dFk = 112 a: Pi F:, + F: dt + FfdP, . 

But Fk satisfies (18) and hence, 1/2 a: Pi Ff, + Ft = rFk - rP,F: - Y,. 
Substituting into (22), we can rewrite it as 
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(23) 

From (21) and (23), we have that 

(24) 

dFk = Ft dP,  + (rFk - rP$t - Y,)dt 

dV - dFk =(rV - rP& - D, - rFk + rP,F: + Y,)dt 

= r(V - Fk)dt 

because D, = Y,. By inspection, (24) is an ordinary differential equation with 
solution 

(25) V(t )  - Fk[Pk(t),tl = {v(o) - ~ k [ ~ ~ ( ~ ) ~ ~ l ) e ~ p ( ~ ~ )  . 
Thus, if the initial investment in the portfolio is chosen so that V(0)  = 
F,[P,(O),O], then for all t and P,(t), we have that 

(26) V(t)  = Fk[P,(t),t] . 

To ensure that the proposed portfolio strategy is feasible, we must show that 
its value is always nonnegative for every possible sample path for the price P ,  
and all f ,  0 5 t I T,. Because Fk is the solution to (18) and Y, 2 0, Fk 2 0 for 
all P, and t .  It follows from (26) that V(t)  2 0 for all P ,  and t. We have 
therefore constructed a feasible dynamic portfolio strategy in traded asset k 
and the riskless asset that produces the stream of cash flows Y,(t)dt for 0 5 
t 5 T, and has zero residual value [V(T,) = 01 at Tk.  

Because the derived strategy exactly replicates the stream of cash flows 
generated by source k ,  it is economically equivalent to owning the cash flows 
Y,(t) for t 5 T,. It follows that the capitalized value of these cash flows satisfies 

(27) v k ( t )  = Fk[P,(t) , t l  

for k = 1, . . . ,N. Note that by inspection of (18)-(19), Fk, and hence V,(t), 
does not depend on either the university’s preferences or its net worth. The 
valuation for source k is thus the same for all universities. 

Armed with (27), we now turn to the optimal policy for managing endow- 
ment when the university has N nonendowment sources of cash flows. The 
procedure is the one outlined in section 7.2. To derive the optimal policy, note 
first that even if those nonendowment sources cannot actually be sold by the 
university for legal, ethical, moral hazard, or asymmetric information rea- 
sons, the university can achieve the economic equivalent of a sale by follow- 
ing the “mirror image,” or reverse, of the replicating strategy. That is, by 
(short selling or) taking a -Flk[Pk(t) ,r]Pk position in asset k and borrowing 
(Fk - F,,P,) of the riskless asset at each t ,  the portfolio will generate a posi- 
tive amount of cash, Fk(P,,t), available for investment in other assets at time 
t. The entire liability generated by shorting this portfolio is exactly the nega- 
tive cash flows, ( -  Y,dt), for t 5 T,, because V,(T,) = Fk(P,, T,) = 0. But, 
since the university receives Y,dt for t 5 T, from source k ,  this short-portfolio 
liability is entirely offset. Hence, to undertake this strategy beginning at time 
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t is the economic equivalent of selling cash flow source k for a price of Vk(t)  

As discussed more generally in Merton (1990b, sec. 14.5, esp. 465-67), 
the optimal portfolio strategy will be as if all N nonendowment assets were 
sold and the proceeds, together with endowment, invested in the n risky 
traded assets and the riskless asset. This result obtains because it is feasible to 
sell (in the economic sense) the nonendowment assets and because all the 
economic benefits from those assets can be replicated by dynamic trading 
strategies in the traded assets. Hence, there is neither an economic advantage 
nor a disadvantage to retaining the nonendowment assets. It follows that the 
optimal demand for the traded risky assets is given by (13) and the demand 
for the riskless asset is given by (1 - Z;w,*)W(t), where from (4) and (27) 

= F';[P,(t) , t] .  

Because, however, the university has not actually sold the nonendowment as- 
sets, the optimal demands given by (13) and (28) include both implicit and 
explicit holdings of the traded assets. That is, the university's ownership of 
nonendowment cash flow source k at time t is equivalent to having an addi- 
tional net worth of Fk[P,(t),t], as reflected in (28), and to having 
F~[P,(t),t]P,(t) invested in traded asset k and {Fk[P,(t),t] - F;[P,(t),t]P,(t)} 
invested in the riskless asset. Thus, ownership of source k causes implicit 
investments in traded asset k and the riskless asset. Optimal explicit invest- 
ment in each traded asset is the position actually observed in the endowment 
portfolio, and it is equal to the optimal demand given by (13) and (28) minus 
the implicit investment in that asset resulting from ownership of nonendow- 
ment assets. Let D*(t) denote the optimal explicit investment in traded asset i 
by the university at time t .  It follows from (13) that 

m 

D*(t) = Ab, + C H,hki - F;[P,(t),tIP,(t) , i = 1, . . . ,N 
(29) I 

" 
= Ab, + 2 Hkhki , i = N +  1 , . . . ,  n ,  

I 

where W(t)  used in the evaluation of A and H, is given by (28). If we number 
the riskless asset by "tz + 1 ," then explicit investment in the riskless asset can 
be written as 

n N 

D*,+,(t)  = [1 - C W ~ ( t ) l W ( f )  - C{m,(t),tI - F;[P,(r),tIP,<t)l 
(30) 1 1 

By inspection of (29), it is apparent that, in addition to the hedging of activity 
costs, the existence of nonendowment sources of cash flow will cause further 
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differences between the observed holdings of assets in the optimal endowment 
portfolio and the mean-variance efficient portfolio of a "standard" investor. 
Similarly, from (30), the observed mix between risky assets and the riskless 
asset will differ from the true economic mix. 

To explore further the effects of those nonendowment sources of cash flows, 
we solve the optimal expenditure and portfolio-selection problem for a spe- 
cific utility function, U .  However, in preparation for that analysis, we first 
derive explicit formulas for the capitalized values of those sources when Y,(t) 
is given by (17). As already noted, there exists a unique solution to (18) and 
(19). Hence, it is sufficient to simply find a solution. As can be verified by 
direct substitution into (18), the value of cash flow source k is given by, for k 
= 1 , .  . . ,N ,  

where P,, 4, are as defined in (1 7) and 

(3 1 4  

It follows from (31) that, fork = 1 ,  . . . ,N ,  

0, = r + &(a, - r)  - p., . 

(32) F:[P,(t),tlPk(t) = ppk[p,(t)3t1 7 

which implies that the capitalized value of source k has a constant elasticity 
with respect to the price of traded asset k .  Equation (32) also implies that the 
replicating portfolio strategy is a constant-proportion or rebalancing strategy 
which allocates fraction p, of the portfolio to traded asset k and fraction (1 - 
p,) to the riskless asset. In the case when positive fractions are allocated to 
both assets (i.e., [ l  - p , ]  > 0 and p, > 0), then P is a strictly concave 
function of P,.  If p, > 1 ,  then Fk is a strictly convex function of P,,  and the 
replicating portfolio holds traded asset k leveraged by borrowing. In the 
watershed case of p, = 1 ,  Fk is a linear function of P,,  and the replicating 
portfolio holds traded asset k only. 

Using (17) and (27), we can rewrite (31) to express the capitalized value of 
source k in terms of the current cash flow it generates: 

1 - exp[ - 0,(T, - t ) ]  
(33) V,(t) = Y,(t) , k =  1 , . . . ,  N .  

' k  

From (17), (31a), and (32), it is a straightforward application of It6's Lemma 
to show that the total expected rate of return for holding source k from t to 
t + dt is given by 

(34) 
= [ I  + pk(a, - r ) ]d t  . 
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Thus, if the rights to the cash flows Y, between t and Tk were sold in the 
marketplace, the expected rate of return that would be required by investors 
to bear the risk of these flows is r + Pk(ak - r ) .  Therefore, 8, equals the 
required expected rate of return (the capitalization rate) minus the expected 
rate of growth of the cash flows, p,. By inspection of (33), Vk(t)  can be ex- 
pressed by the classic present-value formula for assets with exponentially 
growing cash flows. For 0, > 0, the perpetual (T, = w) value is Y,(t)lO,, and 
the limiting “earnings-to-price” ratio, Y,(t)lVk(t), is 8,, a constant. Applying 
the closed-form solution for P, we can by substitution from (27) and (32) into 
(29) and (30) rewrite the optimal demand functions as 

m 

D f ( t )  = Ab, + 2 HJt,, - P,V,(t) , i = 1, . . . ,N 
(354 1 

m 

= Ab, + 2 H,h,, , i  = N + 1 , .  . . ,n 
l 

and 

Having derived explicit formulas for the values of nonendowment assets, we 
turn now to the solution of the optimal portfolio and expenditure problem in 
the special case where the university’s objective function is given by 

with p > 0 and r, 2 0, j = 1 ,  . . . ,m. Without loss of generality, we assume 
that Zyri = 1. From (8), the optimal Q, satisfy 

(37) 

From (36) and (37), the indirect utility function can be written as 

m 

(38) v(c,s,t) = exp(-pt){iog c - Crj[iog s, - log (r,)]} . 
I 

It follows from (1 la) that the optimal expenditure rule is 

(39) 
1 

C*(t) = exp( -pt) 
J,(W,S,d . 

It is straightforward to verify by substitution into (lo), (1 la), and (1 lb) that 

(40) 
1 

P 
J(W,S,t) = - exp( - pt)log W + Z(S,t) 
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for some function Z(S,t). By the verification theorem of dynamic program- 
ming, satisfaction of (lo), (1 la), and (1 lb) is sufficient to ensure that J in (40) 
is the optimum. 

It follows from (40) that Jkw = 0 and hence that H, = 0 in (13) and ( 3 3 ,  k 
= 1, . . . ,m. Therefore, for the log utility specified in (36) ,  there are no 
differential hedging demands for assets to protect against unanticipated 
changes in the costs of university activities. The optimal allocation of the 
university’s total net worth is thus instantaneously mean-variance efficient. 
Noting that A = -J,/J,, = W ,  we have that (35) can be written in this 
special case as 

( 4 1 4  Df(t) = b,W - P,V,(t) , i = 1, . . . ,N 

= b,W , i  = N + 1 , .  . . ,n 

and 

N 

(41b) D,*+,(t) ( 1  - C b J W  - 2 1  - P,Y,(t) ‘ 

I I 

By inspection of (41), in the absence of nonendowment assets, the fraction of 
endowment allocated to risky asset i in the university’s optimal portfolio is b,, 
i = 1, . . . ,n, and the fraction allocated to the riskless asset is (1  - qb,) ,  
independent of the level of endowment. If x,* = Df( t ) /K( t )  is the optimal frac- 
tion of endowment invested in asset i, then from (41) the difference in frac- 
tional allocations caused by the nonendowment assets is 

(424  

and 

xf(t) - b, = R(b, - P,XJ , i = 1, . . . ,N 

= Rbl , i  = N + 1 , .  . . ,n 

where A, = V,(t)/X:V,(t) is the fraction of the capitalized value of the univer- 
sity’s total nonendowment assets contributed by cash flow source k at time t ,  
k = 1,  . . . ,N ,  and R = XyVl(t)/K(t) is the ratio of the values of the universi- 
ty’s nonendowment assets to its endowment assets at time t .  

As discussed in section 7.2, the differences in (42) are the result of two 
effects: (1) the “wealth” effect caused by the difference between the net worth 
and the endowment of the university and (2) the “substitution” effect caused 
by the substitution of nonendowment asset holdings for traded asset holdings. 
Suppose, for concreteness, that the expected returns, variances, and covari- 
ances are such that a positive amount of each traded risky asset is held in 
mean-variance efficient portfolios. Then, 6, > 0, i = 1 ,  . . . ,n. It follows 
that the impact of the wealth effect in (42a) and (42b), (RbJ, is unambiguous: 
it causes a larger fraction of the optimal endowment portfolio to be allocated 
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to each risky asset and therefore a smaller percentage allocation to the riskless 
asset. Because p, 2 0 and A, > 0, i = 1,  . . . ,N, we have that the impact of 
the substitution effect in (42a) and (42b), (RPzA,), is also unambiguous: for 
those traded assets 1 ,  . . . ,N for which the nonendowment assets are substi- 
tutes, the fractional allocation is smaller; for the traded assets N + 1, . . . ,n, 
the fractional allocation is unchanged; and the allocation to the riskless asset 
thus increases. 

Because the wealth and substitution effects are in opposite directions for 
b, > 0, whether the optimal endowment portfolio allocates an incrementally 
larger or smaller fraction to traded asset k depends on whether 6, > P,A, or 
b, < PJ,. P,h, is the fraction of the total increment to net worth (from nonen- 
dowment assets) that is implicitly invested in asset k as the result of owning 
cash flow source k .  If that fraction exceeds the optimal one for total wealth, 
b,, then the optimal endowment portfolio will hold less than the mean- 
variance efficient allocation. Indeed, if A, > (1  + R)b,/(RP,), then x,*(t)  < 0 
and the university would optimally short sell traded asset k in its portfolio. 
This is more likely to occur when R is large (i.e., nonendowment assets are a 
large part of university net worth) and A, is large (i.e., cash flow source k is a 
large part of the value of nonendowment assets). 

The implications of (42a) and (42b) for optimal endowment fit the intuitions 
discussed at length in section 7.2. For instance, if a significant amount of gift 
giving to a particular university depends on the performance of the general 
stock market, then in effect that university has a “shadow” investment in that 
market. Hence, all else the same, it should hold a smaller portion of 
its endowment in stocks than another university with smaller amounts of 
such market-sensitive gift giving. As noted in section 7.2, much the same 
substitution-effect story applies to concentrations in other assets, includ- 
ing real estate. The same analysis also follows where grants from firms or 
the government are likely to be strongly correlated with the financial perfor- 
mance of stocks in the related industries. However, the underweightings in 
those assets for substitution-effect reasons can be offset by sufficiently strong 
demands to hedge against costs, as is illustrated by the biotech example in sec- 
tion 7.2. 

The analysis leading to (29) and (30) requires that there exist traded securi- 
ties which are instantaneously perfectly correlated with the changes in Y , ,  
. . . , Y,. If this “complete market” assumption is relaxed, then the capitalized 
values of those nonendowment cash flow sources will no longer be inde- 
pendent of the university’s preferences and endowment. However, the im- 
pact on endowment investments will be qualitatively similar. This more gen- 
eral case of nonreplicable assets can be analyzed along the lines of Svensson 
(1988). 

We can use our model to examine the impact of nonendowment cash flow 
sources on optimal expenditure policy. From (39) and (40), we have that the 
optimal expenditure rule is the constant-proportion-of-net-worth policy 



233 Optimal Investment Strategies for University Endowment Funds 

(43) C*(t) = pW(t) 

However, current expenditure from endowment will not follow a constant pro- 
portion strategy. Optimal expenditure from endowment at time t is [C*(t) - 
C y  Y,(t)]dt, which can be either positive or negative (implying net saving from 
nonendowment cash flow sources). If s*(t) denotes the optimal expenditure 
rate as a fraction of endowment (= [C*(t) - Ey Y, ( t ) ] /K( t ) ) ,  then from (4) 
and (43), 

where R(t) is as defined in (42a) and (42b) and y ( t )  = [Cy Y,(t)]/[C; V,(t)] is 
the current yield on the capitalized value of the nonendowment sources of 
cash flow. In the special case of (33), where the cash flows are all perpetuities 
(i.e., T, = ~0 and 8, > 0, k = 1, . . . ,M, V,(t) = Y,(t)/e, and the current 
yield on source k is constant and equal to Or. In that case, y(r) = Cy X,8,, the 
value-weighted current yield. From (31a), Ok will tend to be smaller for assets 
with higher expected growth rates of cash flow, (KJ. If on average the current 
yield on nonendowment assets is less than p, then the current spending rate 
out of endowment will exceed p. If the current yield is high so that y ( t )  > p, 
then s * ( t )  < p. Indeed, if y ( t )  > p( 1 + R)/R,  then s*(t) < 0 and optimal total 
expenditure is less than current cash flow generated by nonendowment 
sources. Because both R(t) and A,(t) change over time, we have from (44) that 
the optimal current expenditure rate from endowment is not a constant, even 
when expected returns on assets, the interest rate, and the expected rate of 
growth of nonendowment cash flows are constants. 

We can also analyze the dynamics of the mix of the university’s net worth 
between endowment and nonendowment assets. If a = r + 2; b,(az - r )  
denotes the instantaneous expected rate of return on the growth-optimum, 
mean-variance efficient portfolio, then, as shown in Merton (1990b, 169-71), 
the resulting distribution for that portfolio is lognormal with instantaneous 
expected return a(> r )  and instantaneous variance rate equal to (a - r ) .  It 
follows from (6), (41), and (43) that the dynamics for the university’s net 
worth are such that W(t)/W(O) is lognormally distributed with 

(45) 

If X,( t )  = V,(t)/W(t) denotes the fraction of net worth represented by nonen- 
dowment cash flow source k ,  then, because V,  and W are each lognormally 
distributed, X,(t)  is lognormally distributed, and from (33) and (45) 
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Ir (a  + r + S i )  
2 4 l 0 g x ~ ]  = [Pi + P - 

fork = I , .  . . , N .  
From (46), the fraction of total net worth represented by all sources of non- 

endowment cash flow, X ( t )  = Xy X,(t) = R(t)/ l l  + R(t)], is expected to grow 
or decline depending on whether p > 8,,, or p < On,,, where Om,, =- min(O,), k 
= 1, . . . , N .  In effect, a university with either a high rate of time preference 
or at least one (perpetual) high-growth nonendowment asset (i.e., with p > 
Om,,) is expected to “eat” its endowment. Indeed, it may even go to a “nega- 
tive” endowment by borrowing against the future cash flows of its nonendow- 
ment assets. Whether this expected growth in X ( t )  is the result of declining 
expected net worth or rising asset values can be determined from (45). Be- 
cause a > r ,  if p I r ,  then both the arithmetic and geometric expected rates 
of growth for net worth are positive. For p < O,,,, ,  it follows that E,[X(r)] -+ 0 
as rwm. Hence, in the long run of this case, endowment is expected to become 
the dominant component of the university’s net worth. Of course, these “ra- 
zor’s edge” results on growth or decline reflect the perpetual, constant-growth 
assumptions embedded in nonendowment cash flow behavior. However, this 
special case does capture the essential elements affecting optimal portfolio 
allocation and expenditure policies (cf. Tobin 1974). 

The formal analysis here assumes that endowment is fungible for other as- 
sets and that neither spending nor investment policy are restricted. Such re- 
strictions on endowment could be incorporated, using the same Kuhn-Tucker 
type analysis used in section 7 . 3  to take account of the constraint that total 
expenditure at each point in time is nonnegative. The magnitudes of the Kuhn- 
Tucker multipliers at the optimum would provide a quantitative assessment of 
the cost of each such restriction. However, including those restrictions is not 
likely to materially change the basic insights about hedging and diversification 
derived in the unrestricted case. The model can also be integrated into a 
broader one for overall university financial planning. Such integration would 
permit the evaluation of other nonendowment financial policies such as 
whether the university should sell forward contracts for tuition. 
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the standard microeconomiclfinance paradigm and draw heavily on the fi- 
nance literature to which he is a seminal contributor. Standard finance theory 
dictates that the university allocate its endowment plus capitalized nonendow- 
ment future income in a mean-variance efficient portfolio of financial assets, 
modified by an overlay of hedging portfolios designed to hedge against unan- 
ticipated shifts in the state variables. The extent of hedging depends on the 
prices and price expectations of financial assets and on the sensitivity of the 
university’s marginal utility of wealth to the shifts of the state variables. 

I begin by discussing the university’s objective in managing the endow- 
ment. Next I review Merton’s model and principal results. I then present some 
generalizations and offer some concluding remarks. 

The Objective in Managing the Endowment 

The task of managing a university’s endowment ought to be placed in the 
general context of the goals of a university. In addressing the goals of the 
university, we discuss three questions: (1) What, if any, objective function do 
market forces impose on the university? (2) What objective function do the 
university trustees and administration apply in practice? (3) What is the so- 
cially desirable objective function of a university? In particular, we consider 
two paradigms of the university, first as a utility-maximizing agent and second 
as a profit-maximizing firm. 

The Objective Function Imposed by Market Forces 

Is it plausible to model the university as an economic agent with a 
university-wide increasing and concave utility function? Even if we assign a 
utility function to each one of the agents who make up the university, what 
devices exist which equalize their marginal rate of substitution and lead to the 
existence of a university-wide utility function? To some extent, universities 
compete for students, funding, and the services of faculty, officers, and staff. 
There are also transfer payments between the undergraduate and graduate 
divisions of the college, professional schools, and research groups. But I 
very much doubt that these market mechanisms are adequate to equalize the 
marginal rate of substitution and give rise to a university-wide utility func- 
tion. 

Is it plausible to model the university as a profit-maximizing firm? A uni- 
versity does not have a clearly defined group of residual claimants. There are 
diverse groups of claimants to the services of a university which include the 
past, current, and future generations of students, the faculty, staff, and indus- 
try. Furthermore the threat of a takeover or reorganization, which leads cor- 
porations toward the goal of profit maximization, does not apply with equal 
force to universities, I view the university as a nexus of contracts among eco- 
nomic agents which include the state government and legislature in the case 
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of state universities; the alumni, trustees, and officers; a highly individualistic 
and fragmented faculty; and last but not least a heterogeneous student body 
with “overlapping generations” features. Rothschild and White, in chapter 1 
of this volume, present an insightful discussion of these issues. 

The Objective Function Perceived by Universities 

A search through the academic literature on the objectives of the university 
provides valuable insights but falls short of providing answers on what objec- 
tives universities do or should adopt. In addressing the investment income 
formula of the American Economic Association, Nichols (1974) assigns a 
utility function to the association and outlines the implications of the standard 
Fisherian analysis. Tobin (1974, 427) formulates the objective of the trustees 
of an endowed institution as “the guardians of the future against the present. 
Their task is to preserve equity among generations. . . . In formal terms, the 
trustees are supposed to have a zero subjective rate of time preference.” Tobin 
neither endorses nor justifies these perceived goals. Litvack, Malkiel, and 
Quandt (1974) suggest that endowment management should (1) seek to make 
investment management independent of the spending decisions of the univer- 
sity, (2) protect the real value of the endowment fund, and (3) stabilize spend- 
able income. Finally, Hansmann (1990) surveys a number of possible theories 
to explain endowment accumulation and explores their strengths and weak- 
nesses. Hansmann is unable to find a plausible and rational explanation for 
observed endowment accumulation policies. 

The lack of consensus on the perceived objectives of universities is hardly 
surprising. Universities are a diverse group of institutions with heterogeneous 
objectives. In fact, as we argue next, there is no compelling reason why uni- 
versities should have uniform objectives. 

The Socially Desirable Objectives of a University 

I argue that universities provide diverse services to the society, and there- 
fore different universities serve the society best by adopting different objec- 
tives. 

As my first example, consider a state university system. Its financial col- 
lapse has major adverse effects on the current and future generations of stu- 
dents, the academic community, and the economic and cultural life of the state 
and beyond. It seems socially desirable that this university should follow a 
prudent policy of diversifying its instructional and research activities and also 
diversify its endowment and capitalized nonendowment income and hedge it 
against future contingencies. Merton’s paradigm of the university as a utility- 
maximizing agent has implications which, in this example, are socially desir- 
able. 

As my second example, consider a small, research-oriented university lo- 
cated in a rural area where the economic life is dominated by the local spe- 



239 Optimal Investment Strategies for University Endowment Funds 

cialized industry. Suppose that this university relies heavily on the local indus- 
try for research contracts, the supply of students, and endowment income. If 
we adopt Merton’s paradigm, we conclude that the university should diversify 
its research and instructional activities away from the local industry and 
should hedge its current and capitalized nonendowment income by selling 
short, if possible, the stock of the local industry firms. Is this policy socially 
desirable? 

A case can be made that society is best served by the exact opposite policy: 
specialize the research and instructional services to serve best the demands of 
the local industry and invest the endowment in the stock of the local industry 
firms. If the local industry declines into oblivion, so does the university whose 
social function was to serve this industry. If on the contrary the local industry 
flourishes, the university is best suited in terms of its specialization and finan- 
cial strength to serve the local industry. 

Which of the two diametrically opposite policies is socially preferred? 
There is no simple answer. But I hope that the examples illustrate that diver- 
sification is not always an obvious social attribute of the university’s objec- 
tive. Furthermore, society is served best by different universities following 
different, even diametrically opposite, policies. 

A Review of the Model and Principal Results 

Merton defines the university’s objective as the maximization of a von Neu- 
mann-Morgenstern, time-separable, and concave utility function of the level 
of a set of activities ~ Q(t) = [Q,(t) ,  - . . . ,Q,,,(t)l as 

The price (or net cost) of activityj is S,(t). No distinction is made between the 
margin21 and average cost of an activity; we therefore interpret the supply 
of activities as perfectly elastic. The vector of activity prices S(t)  = [&(t),  
. . . ,S,(t)] is an exogenous autoregressive process which Merton models as a 
continuous-time diffusion process. 

The endowment capital at the beginning of period t is K(t).  The nonendow- 
ment income at t is Y( t ) ,  an exogenous stochastic process. Merton models 
[S(t) ,  Y( t ) ]  as a diffusion process. Merton assumes that the nonendowment 
income is spanned by the returns of the financial assets. Then the nonendow- 
ment income stream [Y(t) ,  Y(r + l ) ,  . . . ] may be capitalized with value f(t). 
The university’s wealth is defined as w(t) = K ( t )  + f(t), the sum of endow- 
ment capital and capitalized present and future nonendowment income. 

The expenditure on activities at time t is Q’(t)S(t), where the prime denotes 
the transpose. The wealth net of the currentexpenditure on activities is y(t) 
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- Q’(t)S(t) and is allocated among the financial assets with portfolio weights 
r(t)= [El(& . . . , ~ , ( t ) ] ,  which sum up to one. The supply of financial 
assets is perfectly elastic, and the asset returns over one period are denoted by 
R(t + 1) = [&,(t + l), . . . J n ( r  + l ) ] .  Merton models the joint process of 
financial asset prices, activity prices, and nonendowment income as a diffu- 
sion process. The wealth dynamics is 

( 2 )  - W(t + 1 )  = [W(r) - Q’ (t)S(t)]w’ ( t )R(t  + 1) . 

Zero wealth is an absorbing state; that is, W(t)  = 0 implies zero investment in 
the activities and in the financial assets at all future times. 

The control variables are the activity levels Q(t)  and the portfolio weights 
vv(t). Stated formally, the university maximizesthe expected utility in (1) by 
the sequential choice of activity levels and portfolio weights subject to the 
sequence of budget constraints, ( 2 ) ,  and the constraint of nonnegative wealth. 
Essentially, Merton models the university’s problem as the standard intertem- 
poral consumption and investment problem, which has been studied exten- 
sively in the finance literature (see Fama and Miller 1972; Ingersoll 1987; 
Merton 1990). 

Merton proceeds along familiar lines to define the indirect utility of con- 
sumption as 

(3) u[c(t), tl = maxl@(t), r1 

subject to - Q’(t)S(t) = C(t)  and then define the derived utility of wealth as 

(4) 

- Q(t) 

J[W(r), S ( t ) ,  tl = max E,{ i: u [ c ( ~ ) ,  ~(71, TI} 

[w(t),C(t)l = ‘ 
subject to the budget constraint. 

Merton’s primary focus is on the portfolio allocation, that is, the control 
variables E(t). In general, the optimal portfolio consists of a mean-variance 
efficient portfolio of the endowment plus the capitalized nonendowment in- 
come, modified by an overlay of hedging portfolios designed to hedge against 
unanticipated shifts in the state variables. In the special case where the indi- 
rect utility of consumption is the sum of the logarithm of consumption and a 
function of the state variables, a myopic policy is optimal: the university in- 
vests the endowment plus the capitalized nonendowment income in a mean- 
variance efficient portfolio, without an overlay of hedging portfolios. 

Generalizations 

The University’s Production Function 

Whether we choose to view the university as a consumer of activities, a 
profit-maximizing firm, or a nexus of contracts, we should explore the pro- 
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duction function of the university. The inputs are the expenditures on teach- 
ing, faculty, research, physical plant, and public relations-to mention just a 
few. The outputs are the activities in Merton’s terminology. We should recog- 
nize that it takes many years to build a reputation, to attract the best student 
applicants, to build a superior faculty, or to create a niche in a certain aca- 
demic field. Therefore, the production function should incorporate adjustment 
costs and “time to build.” 

For a minority of activities, such as student aid or visiting faculty, the price 
per activity unit is exogenous and well defined. But for the majority of univer- 
sity activities, the prices are endogenous. Merton is aware of this and points 
out that his exogenous price processes of activities can be viewed as “reduced- 
form” equilibrium price processes. Still it remains unclear whether Merton 
views these prices as marginal or average. In his budget equation (6), the 
activity expenditures are the sum of the product of activity levels and prices; 
therefore, prices are interpreted as average prices. In his first-order equations 
(8), the same prices play the role of marginal prices. Therefore, the distinction 
between the marginal and average price of an activity is not drawn. The dis- 
tinction can be drawn by introducing a production function. 

The Intertemporal Complementarity and Substitutability of the Activities in 
the University’s Preferences 

Some university activities exhibit strong intertemporal substitutability: a 
university basks in the glory of a Nobel laureate among its ranks long after the 
laureate has retired. Other activities exhibit strong complementarities: a uni- 
versity is more disturbed by the lowering of its academic ranking than by the 
maintenance of a steady but low ranking. 

These effects can be modeled in one of two ways. The first is to draw a 
distinction between university outputs and activities. The university outputs 
are durable goods which produce a stream of activities over time. In this case, 
the stream of activities is not directly controllable, and Merton’s analysis 
needs to be modified accordingly. 

The second way to model these effects is to define the university’s prefer- 
ences over the outputs rather than over the activity flows from these outputs. 
But then the preferences are no longer time separable, and we can no longer 
define a time-separable indirect utility function of consumption as in (3), ex- 
cept in simple cases. 

Concluding Remarks 

In the context of a simplified, or “reduced-form,’’ model of a university as 
a utility-maximizing agent, Merton has demonstrated that the basic principles 
of finance apply and, in particular, endowment funds should be managed ac- 
cording to the principles of diversification and hedging. 

I have argued that universities are a diverse group of institutions with het- 
erogeneous functions in the society. Whereas diversification of instructional 
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activities, research activities, and endowment and capitalized nonendowment 
income may be reasonable and socially desirable objectives of some universi- 
ties, it is an open question whether these objectives are reasonable and so- 
cially desirable for the whole spectrum of universities. 
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