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The Matching Process
Inancial as a Noncooperative
atiOnof Bargaining Game
"ica 36: Dale T. Mortensen

7.1 Introduction

The term "matching" refers to any process by which persons and/or
objects are combined to form distinguishable entities with some common
purpose that none can accomplish alone. The allocation of apartments to
tenants, the assignment of jobs to workers or factories to sites, the pairing
of men and women in marriage, and the formation of collections of agents
known as firms are all examples. Problems of interest are those in which
matchings take place voluntarily, substitution possibilities exist in the
sense that no individual agent is an essential member of any coalition, and
the "value" of the joint activity engaged in by a coalition can be divided
among its members in many ways. There are two questions of interest.
First, for a given environment described by the set of agents, the "value"
of each possible coalition, and the technology by which coalitions can
form, what is the "equilibrium" coalition structure? Second, is an equilib-
rium coalition structure "efficient" in any meaningful sense?

At this level of generality, there is a small but diverse literature. The
topics include location problems, the theory of coalition production
economies, labor managed firms, marriage and divorce, and the theory of
local public goods. That the value of a coalition's activities depends on
the identities of its members and that the willingness of the members of a
coalition to participate depends on the division of that value are essential
ingredients. A further complication arises when the identities and/or
locations of potential members are not known with certainty ex ante. In
this case the existence of recruiting and search costs create quasi rents.
How these are divided affects the incentives that individual agents have
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to allocate resources to the process of coalition formation. The focus of
the paper is on this aspect of the problem.

The problem of coalition formation under conditions of imperfect and
costly information is most closely related to the search theoretic approach
to market analysis. There are two recent papers on the topic, one by the
author (1978) and another by Diamond and Maskin (1979). Both papers
are attempts to extend existing search theory in ways that allow equilib.
rium analysis. The relatively simple problem of bilateral matching, pair.
ing, is treated. The divisions of the surplus attributable to the existence of
a match is by nature a bilateral bargaining problem. A particular
to this problem determines the value of the match to each member of a
pair. If values associated with the potential pairings are not identical
then an individual agent neither holds out for the best possible match nor
sticks with an existing one if a better opportunity presents itself. In the
absence of a requirement to compensate each other in the event of a
separation, separations occur too frequently. In a partial equilibrium
context, I show that any matched pair maximizes their joint wealth,
however they choose to divide it, if each is required to compensate the
other for the lost share of the surplus in the event of a separation initiated
by the former.

Diamond and Maskin, using the descriptive language of contract law,
call an agreement concerning the division of the value of a match a
"contract," a separation initiated by one of the two parties a "breach of
contract," and required compensation equal to lost rent "compensatory
damages." Compensation for breach voluntarily written into a contract is
called "liquidated damages." By taking into account interactions that I
ignore, they show that liquidated damages are sometimes greater than
compensatory damages. They also study the issue of the efficiency of the
matching process under both damage regimes when the surplus attribut-
able to any match is divided equally between the members of the pair.

The focus of the paper is on the relationship between the bargaining
outcome expected by the as yet unmatched pairs and the incentive of each
unmatched agent to invest in the process of forming matches. This focus
is resolved by using a model based on two distinguishing assumptions.
First, no search by matched agents is allowed. Second, the aggregate rate
at which matches form is endogenously determined by the search intensi-
ties chosen by individual unmatched agents. The breach of contract issue
is ignored given the first assumption, but the divisions of the value of a
match that agents expect to be written into contracts are crucial as a
consequence of the second. Finally, following Diamond and Maskin,
both "linear" and "quadratic" matching technologies are considered.

The method of analysis follows. Given a particular individually rational
solution to the bargaining problem that any two agents of opposite type
face when they meet, the problem of determining the search intensity
choices is formulated as a many-person repeated game. The game is
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235 Matching Process as a Noncooperative Bargaining Game

played by all the unmatched agents of the' two types. A constant steady
state fraction of matched agents of each type exists given a bargaining
outcome, any solution to the game, and a specification of the technology.
Each agent's payoff function is the discounted flow of expected future net
benefits, and benefits are transferable across agents. The noncooperative
Nash solution to the game of search intensity choice is imposed.

Not surprisingly the joint Nash search intensity choices and hence the
matching process that is induced by it are generally inefficient in the sense
that another possibility exists which would make all players better off. If
the probability that a match will form in a short time interval is indepen-
dent of the number of unmatched agents—the "linear" technology
case—no unmatched agent searches intensively enough given any fixed
division of the value of a match. The externality involved can be de-
scribed as follows. If an unmatched agent searches more intensely, he and
some agent of the opposite type will form a match more quickly on
average. However, in contemplating his search intensity choice, the
agent only takes account of his own expected benefit, which is pro-
portional to his share of the surplus obtained in the future match. The
share to be obtained by his future partner is ignored. An alternative
contract exists that will solve this incentive problem. Specifically, when
the agent responsible for the formation of a particular match is allocated
all the surplus attributable to it, the joint wealth of all players is maxi-
mized by the Nash solution to the game of search intensity choice.

Given a "quadratic" technology, the probability that a match will form
in a short time interval is proportional to the number of unmatched pairs.
The contingent contract just described does not yield an efficient match-
ing outcome in this case. Although the externality discussed still exists,
more intensive search by all other agents reduces the number of agents of
the opposite type that each individual can expect to find in the future. As
a consequence of this second externality alone, unmatched agents search
too intensively. Interestingly, the effects of the two externalities in com-
bination cancel, given an appropriate bargaining outcome. In one limit-
ing case of the model, the Nash solution to the game of search intensity
choice maximizes the total wealth of all the searching agents if every
partnership divides the surplus equally. More generally, the agent re-
sponsible for the formation of each match must be allocated a share of its
surplus that lies between one-half and unity.

In sum, matching outcomes depend on the bargains that agents not yet
matched expect to negotiate. Although there is no reason to believe that
one individually rational outcome will occur rather than another, the
incentives induced by virtually all motivate inefficient search. However, a
particular bargaining outcome does exist that yields an efficient matching
process in each example considered in the paper. The imposition of this
contract can be viewed as an assignment of property rights that would
induce a cooperative solution to the game of matching.
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236 Dale T. Mortensen 237

7.2 Matching Technologies it is well
In this section we sketch an aggregate matching model, formally a steady st

stochastic process of the "birth/death" type. Following Diamond and imi ing

Maskin, the problem is one of forming pairs composed of agents of two (1)
different types for the special case in which the numbers of agents of both
types are equal. Let m denote the common number of agents of the two associat
types or, equivalently, the number of possible pairs. Let n denote the (2a)
number of unmatched pairs. The state space for the matching process is
the set of all possible values that n can take on, the set {O, 1,. . . ,m}. and

Let a(n) denote the average instantaneous rate at which new matches (2b)
form and b(n) denote the average instantaneous rate at which new
unmatched pairs enter the process given that there are n unmatched pairs For eac
at the moment. (Both of these functions are specified in detail later.) the pro
Hence, the probability that exactly one new match will form in a short i con
time interval of length is approximately a(n)& and the probability that linear a
one new unmatched pair will enter the system is Since either or the n ut
neither of these two possibilities will occur during the interval with virtual the nun
certainty for sufficiently small values of &, we have which i

= + (1 + O(&)!, (3)
= 1) + 1) where

+ + n = 1,2,... ,m, form a
m unmat

= 1, portior

where is the probability that there will be n unmatched pairs at time t Hence

and 0 as 0. The first equation reflects the fact that there (3')
can be no unmatched pairs at the end of the interval (t,t + only if The'either there were one at the beginning and a match formed during the

dinterval or there were none at the beginning and none entered during the enoe
interval. The second equation reflects the fact that either a "birth" or a agen 5

unmatdeath can occur or neither does when n > 0. The last requirement
reflects the fact that [P1(0), . . , is the probability distribution per Ufl

over possible states at time t. (4)
Divide both sides of the first two equations by rearrange terms

appropriately, and take the limits as 0. The result is the system of If
differential equations

contad
P(0) = a(1)P(1) — b(0)P(0),

k(n) = a(n + 1)P(n +1) + b(n — 1)P(n —1) — [a(n) + b(n)]P(n), dratic I
ante.

n=1,2 m, For
m enter£P(n) = 1.
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It is well known that the solution to this system converges to a unique
steady state as if (a(n), b(n)) � 0. (See Feller 1968, PP. 454—58.) The
limiting distribution is the particular solution to the difference equation

(1) a(n+1)P(n+1) + b(n—1)P(n—1)= [a(n)+b(n)]P(n)

associated with the boundary conditions

(2a) a(1)P(1) = b(0)P(0)

and

(2b) = 1.

For each n, the limiting probability is the relative frequency with which
the process is in state n along any sample path of infinite length.

I consider two alternative specifications of the matching rate a(n),
linear and quadratic. In the linear case, the probability that some one of
the n unmatched pairs will meet in a short time interval is independent of
the number of unmatched pairs. Hence, the average instantaneous rate at
which pairs form is proportional to n; i.e.,

(3) a(n)=an,
where tht is the probability that a particular pair of the n possibilities will
form a match. In the quadratic case, the probability that a particular
unmatched pair will form a match during a short time interval is pro-
portional to the fraction of agents of either type that are not matched.
Hence,

(3') a(n) = a(n/m)n = an2/m.

These alternative specifications can be interpreted as follows. Let a1
denote the frequency with which each unmatched agent of type 1 meets
agents of type 2, and let a2 denote the frequency with which each
unmatched agent of type 2 meets agents of type 1. The contact frequency
per unmatched pair is the sum

(4) a=a1+a2.

If matched agents of the opposite type are never met, (3) obtains.
However, if all matched and unmatched agents of the opposite type are
contacted with equal probability, then (3') obtains because n/rn is the
probability that a contact made will be unmatched. Hence, in the qua-
dratic case, matched and unmatched agents cannot be distinguished ex
ante.

For the specification of b(n), the rate at which new unmatched pairs
enter the system, we suppose that existing matches dissolve at an exoge-
nous average rate 3. Hence,
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—1'
(5) b(n) = 13(m—n), or, equi

where 1/13 is the expected duration of a match. In other words, 13 is the
"turnover" rate. As the

In principle one can solve (1) for the explicit functional form of the mean is
limiting probability distribution over the states of the process for each
specification of a(n) and b(n). For our purpose, it is enough to derive an
expression for the expected fraction of unmatched pairs. Since we are when
primarily interested in the large numbers of agents case, this task is
facilitated by an appeal to the law of large numbers. (7')

Given (2a), an inductive argument applied to (1) yields

(6) P(n) = [b(n—1)Ia(n)JP(n—1), n = 1,... ,rn,
in general. Of course, (8)

m m ,n+1 m jnboth

=
nP(n) = I nP(n) = !(n+ 1)P(n + 1) f(O)

decrea
by virtue of the fact that (2b) implies P(rn + 1) = 0. Hence, in the linear
case, (3), (5), and (6) imply

En = £ (n +1) [13(rn - n)/ci(n + 1)]P(n)
fl = 0

moth
= (13/a) (m—n)P(n) = (13/a) [rn—En] matelfl=0

or, equivalently, turnO'

(7) E(n/rn) = 13/(a+13).

Indeed, experts will recognize that P(n) is the binomial distribution with conte
"probability of success" 13/(a+13) and "sample" size rn. Hence, the in thi
variance of n/rn, witho

rn
vanishes as m

The explicit form of the distribution function is not so transparent in .

the quadratic case, but the law of large numbers still applies. The latter• IS

tefact allows us to derive the limiting value of E(nlrn) using the following ra
tiargument. First, note that sec

ni ,n+1
En2 n2P(n) = I n2P(n) = I n2P(n) = I (n + 1)2P(n +1)

n=1 n=l n=0 perul
by virtue of (2b). Consequently, (3'), (5), and (6) imply

En2 = I (n + 1)2[m13(rn — n)/a(n + 1)2]P(n)
n=0 unit

m deli
= (rn13/ci) I (m—n)P(n) = (rn13/a) (rn—En) argtn=0
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or, equivalently,

us the E(n/rn)2 = (13/a)[1—E(n/rn)].

As the variance of n/rn, E (n/rn)2 — [E n/rn]2, vanishes as m —p the
of the mean is approximately equal to the positive root of the quadratic
r each 2
rive an + (13/a) E(n/rn) — (13/a) = 0

are when rn is large. In other words,
task is 1/2

1
(7') E(n/rn) = + 4(131a)1 - -(13/a).

Equations (7) and (7') imply that

(8) E(n/m)=f(13/ci)
in both cases wheref(x) is a strictly increasing concave function such that
f(0) = 0 and f(cc) = 1. Furthermore, the elasticity = xf'(x)/f(x) is

• decreasing and tends to zero as x in both cases, but
linear

1 if linear,

if quadratic.

In other words, the expected fraction of unmatched agents is approxi-
mately 13/a in the linear case and (13/a)"2 in the quadratic when the
turnover rate 13 is small relative to the contact rate a. The specification
assumed by Diamond and Maskin (1979) is equivalent to this approxima-
tion. As the observed fraction of unmatched agents is small in many

n with contexts (the unemployment rates in labor markets and the vacancy rates
the in the markets for apartments are examples), its consideration is not

without interest.

7.3 Matching Equilibria

ent in An equilibrium theory of search intensity choice by unmatched agents
latter is developed in this section. Since these choices determine the stochastic
Dwing rate at which matches form (specifically the parameter a in the previous

section), the theory provides a behavioral foundation for studying bi-
lateral matching processes. The model is special in the sense that only

- 1) unmatched agents are permitted to search. This restriction is imposed to
permit a clearer view of issues relating to efficiency of matching pro-
cesses.

An agent's search intensity is defined as the expected frequency with
which agents of the opposite type are contacted. The cost of search per
unit time period c(s), i = 1 and 2, is an increasing strictly convex function
defined on the positive real line with the property that c(0) = 0. The
arguments1 IS the expected number of contacts made by the agent per unit
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time period. Hence, s4t is (approximately) equal to the probability that (9)
agent i will initiate a contact with an agent of type j i in a short time Call A
interval of length Hence, +s2) is the probability that a particular ties
unmatched pair will meet during the interval in the linear matching ageit'
technology case. In the quadratic case, +s2)n/m is the same prob-
ability.

Ex ante all unmatched pairs are identical in the sense that the expected (10)
total value of any match is the same for all possible pairings. Prior to a
face to face meeting no one has information on which to base an inference
concerning how the value of a particular match will differ from that of any
other. However, cx post a statistic x E [0, 1], which we interpret as the
"quality" or "fit" of the match, is observed. It determines the value of the
match w(x). In other words, at the actual meeting of the two agents the
"goodness of fit" is determined. This process of "getting to know one and r
another" is viewed as a random draw from a distribution characterized by A
the c.d.f. F(x). This formalization of ex post heterogeneity is from Wilson is a c
(1979). playe

Consistent with the interpretation of x as an indicator of quality, w(x) is same
a positive increasing continuous function on [0,11. The distçibution func- ary. I
tion F(x) is also assumed to be continuous.

A division of the value of a match between the members of a part- suffi
nership contingent on the fit realized is a vector function (w1(x), w2(x)), sity1
where w1(x), i = 1 and 2, is the allocation obtained by the agent of type
Ultimately, the division is determined as an outcome of the bargaining
that takes place between the members of actual pairs after they meet. For (lOa
now, the division and the c.d.f. F(x) are regarded as given, the same for andall potential pairs, and known to all unmatched agents.

Let i = 1 and 2, denote the expected present value of an agent's (lOb

future net stream of benefits given that he pursues an optimal search
strategy. The agent's choice problem is one of dynamic programming, whe
and is the value of the agent's optimal program at time t. We wish to I =

apply Bellman's principle of dynamic optimality. To do so, we must sear
specify the outcomes of all events that can occur during a small future his
time interval of length age

I start with the case of a linear matching technology. The probability
that a particular agent of type i will meet some unmatched agent of type j OPt

is + s1(t)), j i, where s is the search intensity to be chosen and s1(t) is arb
the search intensity common to all agents of the opposite type. Suppose
that the latter is known to our agent and is regarded as given. If the agent the
does not meet another of opposite type during the interval, then he
continues to search, which has expected value &) by definition. If a wot
prospective partner is met during the interval, then a fit x E [0, 1] is ma
realized and the pair considers the split (w1(x), w2(x)). An individually altc

rational match is consummated if and only if fea
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I

y that (9) (w1(x), w2(x)) � (v1(t + Ai), v2(t + &)).

time Call A(t+iXt) C [0,1], the subset of qualities defined by these inequali-
icular ties, the set of acceptable fits. Bellman's principle then requires that our
ching agent's optimal strategy and its value, given the same for agents of the
prob- opposite type, satisfy

ected
rtoa

(10) = max{—&c1(s)
+ (s+s1)[Pr{x

s�O 1+tht
rence x E{w1(x) xE A(t+ &)} + Pr{x &)j

')fany
the

ofthe
1+ jr/=j, j= land2,

ts the where is the cost of search incurred by the agent during the interval
w one and r is the discount rate common to all agents.
ed by
filson

A joint search strategy that solves (10) for both i = 1 and 2
is a candidate for a Nash solution to the game of search strategy choice

.

IS

func-

played by unmatched agents. Because the supergame is a sequence of the
same instantaneous game continuously repeated, the solution is station-
ary. By requiring v(t) = v(t + &) for all (t, and hy making the obvious
limiting argument, (10) can be made to yield the following necessary and

. part-
2(x)),

sufficient conditions for a noncooperative stationary Nash search inten-
sity pair denoted as Letting (v?, denote the associated payoffs

YPe 1 obtained,
•

.

uning
t. For (lOa) = max[(s1+$)Pr{x —

Si�O
and

rent's
earch

(lOb) = max[(s? + s2) Pr{x E A°} [E{w2(x) Jx E A°} — — c2(s2)J,
s2�O

ming,
ish to

where A° is the set of acceptable fits defined by (9) when
i = 1 and 2. In a Nash equilibrium every unmatched agent selects his own

must search intensity to maximize the expected net benefit flow attributable to
uture his own search given the optimal choices made by all other unmatched

agents.
ibility Now consider the bilateral bargaining problem that two agents of
typej opposite type face when they meet. Because the division (w1(x), w2(x)) is
c1(t) is
ppose
agent

arbitrary at this point, it can happen that the realized fit x is not in the
acceptable set A° even though w(x), the total value of a match, exceeds
the sum of both agents' values of continued search, + However, in

he this situation an alternative division of the value of the match exists which
ai. If a would make both agents better off by inducing a consummation of the
,1] is match even if both expect the division (w1(x),w2(x)) to obtain for any

alternative matching opportunity. In other words, only divisions that are
feasible and both individually and jointly rational, i.e.,

j
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(ha) w(x) = + w2(x) (15b)

and This rut
(lib) + VxE[0,1], Obviou

betwee
can be equilibrium outcomes of the bilateral bargaining problem that
unmatched agents face when they meet. special

The existing theory of symmetric bilateral bargaining does not provide bargair
any generally accepted restrictions on outcomes beyond those given in Prop
(11). Hence, we must be content with the following definition of equilib- matchii
rium. w(x) 01

Definition 1. An allocation of the value of every possible match
: [0,11 —÷ and a search strategy pair E is an (16a)

equilibrium solution to the combined noncooperative/bargaining game of
matching if they satisfy (16b)
(12a) rvi = max[(s[ — vI,0] — c1(s1)J,

where
(12b) rv°2 = max — c2(s2)] (15)

52�O exist ti
and

are u4
(13a) VxE[0,1], (c71(v)

(13b) w(x)�v? + suffici

given a linear matching technology. The equations of (12) are implied by (17a)
(10) and (11), and the equations of (13) are a restatement of feasibility (17b)
and individual rationality, respectively. In sum, an equilibrium search .

intensity pair is a Nash strategy relative to a bargaining outcome and the Since
bargaining outcome is feasible and individually rational given the non-
cooperative Nash payoffs induced by it. nonin

Because (13a) implies that the converse of (13b) is true, the set of [0,1]
equilibrium acceptable fits is hypot

An
ofth

Because w(x) is nondecreasing in x, a critical reservation fit x° � 1 exists (18)
such that all fits x � are acceptable. The minimally acceptable fit is the
smallest solution to

(14) w(x°) = V1 + V2.

As a consequence of the well-known indeterminacy of the bilateral uniq9
bargaining problem, many equilibria exist in general. To illustrate this that 9
point, consider the following family of divisions of the value of every
possible match as candidates for equilibrium bargaining outcomes: 4(ui)

poifli
(15a) = + 0[w(x) — v? — Vx E [0,11, that
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This rule satisfies both conditions of (13) for every choice of 0 E [0, 1].
Obviously the family is the class of rules—divide the surplus of the match
between the two types of agents according to the shares 0 and (1—0). The
special case of 0 = is Nash's (1950) solution to symmetric bilateral
bargaining problems.

Proposition 1. Given a linear matching technology, a unique nontrivial
matching equilibrium exists for every 0 E [0, 1] if either (i) < OE
w(x) or (ii) < (1 —0)E w(x).

Proof. Combine (12) and (15) to obtain
(16a) max[(s1 +s°2)OEmax[w(x) — v°,0] — c1(s1)],

sj�O
(161,) rv02 = max[(s? + 52) (1 — 0)E max [w(x) — v°,0} — c2(s2)],

edby
" bility

.d the
non-

et of

exists
is the

Lteral
this

j

where v0 + v02. Since every element of the class of rules defined by
(15) satisfies (14), we need only show that unique strategy/payoff pairs
exist that solve (16) for every 0 E [0, 11. As the cost functions are strictly
convex, the solutions to the two optimization problems implicit in (16)
are unique for an arbitrary value of v0, call it v. Let (s1,s2) =
(cr1(v),ff2(v)) denote the functions implicitly defined by the following
sufficient conditions for optimality:

(17a)

(17b) � (1— 0)Emax[w(x) — v,0],

equality if s1 > 0,

equality if s2 > 0.

Since and are both continuous and increasing, the implicit
functions defined by (17), 1(v) and if2(v), are both continuous and
nonincreasing. Furthermore, � 0, � 0, and w(1) � w(x) Vx E
[0, 1] together with (17) imply u1(w(1)) = o-2(w(1)) = 0. Finally, the
hypothesis implies either if > 0, cr2(0) > 0, or both.

An inspection of (16) and (17) reveals that v0 = + v02 is a fixed point
of the continuous function 4(v) defined by
(18) r4(v) = max[(s1+if2(v))OE[w(x)—v,0J — c1(s1)]

s1�O

+ max [(cr1(v) +s2)(1 — 0)E[w(x) — v,0] — c7(s,)].
s2

Since = (if 1(v°),cr2(v°)), it suffices to establish that 4(v) has a
unique fixed point. Because Ew(x) > 0 and c1(0) = c2(0) = 0, the fact
that either if > 0, cr2(0) > 0, or both implies 4(0) > 0. Furthermore,
4(w(1)) = 0 because cr1(w(1)) = r2(w(1)) = 0. Hence, the continuity of

is sufficient to guarantee a v0 = f(v°) E (0, w(1)). Finally, the fixed
point is unique because (18) and if 1(v), i = 1 and 2, nonincreasing imply
that 4(v) is decreasing.

(15b) = VxE[0,1].

that

ovide
'en in
tuilib-

natch
is an

me of
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The hypothesis is necessary as well as sufficient for a nontrivial equilib.. where
rium. If both (i) and (ii) fail, then the equilibrium is 0. No

funmatched agent searches because the marginal cost is too high relative (21a)
to the expected benefit of trying to find a match, and

In equilibrium, the matching rate is
(21b)

(19) I
where x0 is the marginally acceptable fit as defined by (14). In other
words, the equilibrium matching rate is equal to the product of the Consequilibrium meeting rate and the equilibrium probability that a random in outmeeting of an unmatched pair will yield an acceptable match. Both of
these and, hence, the equilibrium steady state fraction of unmatched Pro'

l

agents E(n/m) = 13/(a + 13) vary with 0, the shares of the surplus obtained eby the two agent types. <Given an appropriate modification of the equations of (12), the exis-
tence of a matching equilibrium can also be established for the quadratic
matching technology. During a short interval of length the probability (22a)
that an individual agent of type i will either find or be found by some
unmatched agent of the other type, j i, is (22b)

Here s is the agent's own search intensity, s1 is the common intensity at
which agents of the other type search, and n/rn, the fraction of unmatched areagents of each type, is both the probability that an agent found by our
individual is not matched and the probability that some one of the n (23a)
unmatched agents of the other type will find our individual. With large
numbers of agents, n/rn is (almost) nonstochastic and equal tof(13/a) in a (2 )

steady state, where f(.) is the function defined by (7').
By virtue of Bellman's principle, a particular agent of type i selects an equat

intensity that solves cr2(O)
A Osol

— 0
— + (s+s1)f(13/a)Emax[w,(x),v1] funct

+
1{1 —

providing that bargaining outcomes are individually rational. If the
search intensities chosen by all other agents are known and regarded as

dgiven, then the joint solution for all agents is the noncooperative Nash an

search intensity pair with associated payoff that satisfy

(20a) rv? =

max — — c2(s2)J,
s2�0 equl
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juilib- where
0. No (21a) a° = — F(x°)J

and

(21b) x°=w'(v°).
Replacing the conditions of (12) with (20), we obtain sufficient conditions

other for a matching equilibrium in the quadratic case.
of the Consider again the family of feasible and individually rational bargain-
indom ing outcomes that divide the surplus of every match according to fixed
oth of shares, those defined by (15) for all values of 0 E L0,1].
itched Proposition 2. Given a quadratic matching technology, a nontrivial

equilibrium exists for every 0 E [0, 1] if either (1) < OEw(x) or (ii)
< (1—0)Ew(x).

exis- Proof. Given (15), the equations of (20) can be rewritten as
dratic
ibility (22a) = max + s2)f(131a°)OEmax [w(x) — v0, 0] — c1(s1)J,
some

(22b) max [(s? + s2)f(13/a°) (1 — 0)Emax [w(x) v°, 0] — c2(s2)],s2�0

where v° + Again, consider the necessary and sufficient condi-
tions for an optional pair (s1,s2) given an arbitrary denoted as v. These

e arey our
the n (23a) equality if s1>0,
large

in a (23b) (1 — 0)Emax [w(x) — v, 01, equality if s2 >0.

Because f(13/a) is increasing and a = (s1 + s2)[1 — F(w'(v))}, the
an equations define continuous functions (c71(v), such that (r1(0),

cr2(0))>Oanda1(w(1)) = a2(w(1)) = 0.Hence,v(w(1)) Oandv(0)>
0 so that a fixed point V0 = 9(v°) E (0, w(1)) exists, where 9(v) is the
function defined by

r9(v) = max [(s1 + cr1(v)f(13/a(v))OEmax[w(x) — v,0] —c1(s1)]
s1nO

f the + max[(o1(v) +s2)fffl/a(v))(1—0)Emax[w(x) — v,0] — c2(s2)]
s2 noedas

Nash and
a(v) = + cr2(v)} [1— F(w 1(y))]

Because the functions (u1(v),u2(v)) need not be nonincreasirig, the argu-
ment used to establish uniqueness in proposition 1 does not go through.
Nevertheless, for every fixed point = is an
equilibrium search intensity pair.
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7.4 Matching Efficiency Let g(s

In the linear matching technology case, unmatched agents do not two eqi
choicesearch intensively enough in any of the equilibria identified in the pre..
decrea$vious section. Specifically, an intensity pair (s1,s2) > exists that is figurerstrictly preferred by every unmatched couple. Because the matching agentsfrequency is determined by the search intensities of all agents, an increase realizein that of one type augments the value of search to every member of the

other type. However, no individual agent takes account of this external agentseconomy. In this section, I show that this externality is internalized by the Thebargaining outcome that allocates all the surplus attributable to every low. SIImatch to the agent responsible for making the match. regionAlthough this same externality is present given a quadratic technology, As a cthere is another with a countervailing effect. It arises because the ex- too smpected meeting rate is proportional to the fraction of unmatched pairs the ex'which is itself endogenously determined as a decreasing function of the tion otsum of the intensities with which the two agent types search. In the in whiabsence of the first externality, more intensive search by all other agents Noreduces the return to search for each individual by reducing the probabil- pectsity that an agent met will be unmatched. Interestingly, 4if the surplus matchattributable to every match is shared equally, then the effect of the
second externality just cancels that of the first in the limit as the fraction
of unmatched agents tends to zero. In the general case, joint wealth
maximization requires that the matchmaker receive the larger share of
the surplus attributable to each match.

The principal purpose of this section, then, is to show that most
equilibria are inefficient but that joint wealth maximizing equilibria exist
if a more general class of feasible and individually rational bargaining
outcomes is allowed. The class includes those that make the division of
the surplus attributable to every match between the partners contingent
on the identity of the agent responsible for ma,king the match.

To formally establish that every equilibrium identified in the previous
section is inefficient given a linear technology, we use the fact that the
conditions of (16) implicitly define two functions v1(s2) and v2(s1) such
that = Both are clearly continuous and strictly
increasing because of the external economy already discussed, If
> 0, then these functions and the first-order conditions for a Nash
strategy choice by members of each agent type implicitly define the
equilibrium intensity pair as the intersection of the two reaction
curves. Formally, (16) and (17) imply

= —

and

= — Fig.

t
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Let g.(s1),j i, denote the two reaction curves implicitly defined by these
two equations. As c(s1) and are all strictly increasing, the optimal
choice by one type given the other's intensity g(s1) is continuous and
decreasing as illustrated in figure 7.1. The curves labeled and v02 in the
figure represent the intensity pairs that yield the same value of search to
agents of type i = 1 and 2 as that obtained at Since the payoff
realized by each type increases with the other's search intensity, all
intensity pairs in the shaded region in figure 7.1 are strictly preferred by
agents of both types to the equilibrium

The average quality of the matches that form in equilibrium is also too
low. Since v = v1 + v2> v0 = + for any intensity pair in the preferred
region, the minimally acceptable fit '(v) is larger than in equilibrium.
As a consequence, the matching rate a = (s1 + s2)[1 — F(w '(v))] can be
too small even though (s1 + 52)> (s1? + In other words, the existence of
the externality does not unambiguously imply that the equilibrium frac-
tion of unmatched agents 13/(a° + 3) is too large except in the special case
in which all matches have identical values ex post (w(x) = w 'Ix E [0, 1]).

No unmatched agent searches intensively enough because none ex-
pects to receive the net social benefit attributable ço the formation of a
match, w(x) — — in the future in return for the marginal investment

Fig. 7.1

4

Nash equilibrium.

Si

0 S
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required to seek out some agent of the opposite type. Viewed from this Propo
perspective, it would appear that the externality could be internalized by
allocating the entire net benefit, the surplus attributable to such a match,
to the agent who succeeded in making the contact responsible for the formatii
formation of the match. This particular allocation rule is a special case of Giver
the class of bargaining outcomes that are contingent on this random equilibr
event.

Let w,1(x) denote the value of a match with fit x E [0, 1] to the agent of (27a)
type i given that the pair met as a consequence of a contact made by the
agent of type j. The argument provided in the previous section justifies
the following generalization of the equilibrium concept. 27bDefinition 2. An allocation rule (w?1, 4): [0, 1]—i ,j = 1 and 2, and
a search intensity pair E is an equilibrium solution to the
noncooperative bargaining game of matching given a linear technology if

o o o o o where
(24a) rv1 = max{s1Emax[w11(x) — v1,OJ + s2Emax[w12(x)

S 1

(28)
— v1,0] — c1(s1)},

(24b) = +

i shares
— V2,uJ —

using
and forj = 1 and 2, An
(25a) w(x) = + V x E [0, 1], alloca

(25b) V xE[0,1}.

The conditions of (24) define a noncooperative Nash search intensity pair intefl
and reflect the fact that the surplus obtained by each party to a match is lndLV

contingent on who made the contact. The conditions of (25) require that than
the contingent allocation of the value be feasible and individually ra- matc
tional. One can easily establish existence in the sense of proposition 1 for Tb
every rule that divides the surplus attributable to every match according 29ato shares contingent on the name of the agent making the match.

An inspection of (24) reveals that the externality is still present except
in the special case

0 ifj=i,
(26) w11(x) = 0 ifj i. whe

This rule obviously allocates all the surplus of every match to the agent
responsible for the contact that led to its formation. Given (24) and (26),
we have As/I

rv0 max [(s1-i-s2)Emax[w(x)—v°,0J — — c2(s2)], (7'),
(s i .S2) � 0 folk

where v0 = + v02. Hence, stra
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Proposition 3. Given a linear technology, the joint wealth of every
unmatched couple is maximum in equilibrium if and only if all the surplus
associated with every match is allocated to the agent responsible for its
formation.

Given a quadratic matching technology, the analogous definition of an
equilibrium is obtained by replacing the conditions of (24) by

(27a) = — c1(s1)
s1�O

+ v'?,O}},

(27b) = max Emax — 0] — c2(s2)

+ Q31a°) E max [w°21(x) — v02, 0J},

where f(131a) is the increasing function defined by (T) and

(28) a0= — F(w1(v°)J

is the equilibrium rate at which acceptable matches form. Again, equilib-
rium can be established for any rule that allocates the surplus according to
shares contingent on the name of the agent responsible for the contact
using the argument of proposition 2.

An inspection of (27) reveals the following fact. Were the efficient
allocation rule for the linear case = v?, j i) adopted, then every
agent searches too intensely. The reduction of the probability that an
agent contacted in the future will be unmatched attributable to more
intensive search by all (f'(•) > 0) is not taken into account by any
individual. This observation suggests that some rule that allocates less
than the entire surplus to the agent responsible for making a particular
match might have the desired incentive properties.

The joint wealth maximizing problem is

(29a)

where

rv* = max {(s1 +s2)f(13/a)Emax[w(x) — v*,0]

— c1(s1) — c2(s2)}

=

(29b) a = (s1 +s2)[1 — F(w l(v*))].

As f(') is an increasing concave function such that f(0) = 0 by virtue of
(7'), the right-hand side of (29a) is strictly concave in (s1,s2). Hence, the
following first-order conditions are sufficient to determine the search
strategy pair ,s2*) that maximize the sum of the values of search V1 + v2:

agent
(26),
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(30) c(s7) +

0(51 +S2)Emax[w(x)_v*,0J
Os,

= [1—

with strict equality holding if s7> 0, i = 1 and 2, where = xf'(x)If(x)
is the elasticity off(.). As = and f(0) = 0 while = 0

= 1 by virtue of (7'), one can establish that exists by applying the flow
familiar fixed point argument.

Equations (29) and (30) imply that the joint wealth maximizing inten-
sity pair is a Nash solution given the following feasible and individually
rational contingent bargaining outcome:

+ [1 — if] = i,
(31) w.(x)=

i = 1 and 2. Given this rule, every Nash solution satisfies

(32) rv° = max {(s1+s2)[1 — .rlIl3Ia*)]f(131a0)

x Emax[w(x)—v°,0I —c1(s1) —c2(s2)}

+ Emax[w(x) — v°,01,

where v0 = + v02 by virtue of (27). Consequently,
(33) [1 — 1(13/a*)]f(131a0) Emax [w(x) —

251

are cor

and

by virt

and

by yin
v* �: V

Fur
follow

Pro
to the
unma
[0,11)

Pro

canbi

(34a)

and

(34b)

with strict equality holding if s? > 0, i = 1 and 2. Beca
Clearly, every solution to (29) and (30) satisfies (32) and (33). Hence, , are b
Proposition 4. Given a quadratic technology and a contingent bargain- fore'

ing outcome that allocates to the agent responsible for making every when
match the share 1 — of its surplus, a search intensity pair that prop
maximizes the joint wealth of every unmatched couple is a Nash solution Oi
to the game of search intensity choice. each

Because of the possibility of multiple equilibria (see proposition 2), the rium
converse is not guaranteed. However, if there is an inefficient equilib- rate
rium, neither agent type searches intensively enough. ageni

Proposition 5. Given the hypothesis of proposition 4, the joint wealth meet:
maximizing search intensity pair (sj',sfl is unique and at least as large as

any Nash solution associated with the allocation rule (31).
have

Proof. Because � � 0 and and are continuous and
strictly increasing, the functions v(s1,s2) defined by

•

= 0

rv(s1,s2) = [s1c(s1) + — — c1(s1) — c2(s2) uniq

4



• 251 Matching Process as a Noncooperative Bargaining Game

are continuous and strictly increasing,
=

and

=

by virtue of (29) and (30), while

:x)/f(x) =

ridf(c) and
henow

inten- by virtue of (32) and (33). Hence, the fact that is unique and such that
idually by definition implies ,sfl unique and ,sfl � QED.

Furthermore, proposition 5 provides the means needed to establish the
following converse of proposition 4.

Proposition 6. Given the hypothesis to proposition 4, a Nash solution
to the game of search intensity choice maximizes the joint wealth of every
unmatched couple if all matches are identical ex post (w(x) = w V x E

S [0,1]).
Proof. Because all matches are acceptable (w � v°) in equilibrium a0 =

[1 — F(w'(v°)] = Hence, under the hypothesis, (33)
can be rewritten as
(34a) c(s?) � [1 — — v°], equality if > 0,

and

(34b) � [1 — il( + [w — 1,0], equality if > 0.

Because f(t3Ia) is strictly increasing and continuous and and
:ence, are both strictly increasing and Continuous, the solution to (34) is unique
rgain- for every choice of v0 and decreases as increases. As ,sfl solves (34)
every when v0 = v' > implies < which contradicts
r that proposition 5.
lution One way to interpret these results follows. When the agent who makes

each match receives the entire surplus, a joint wealth maximizing equilib-
the rium is possible if the agent's share [w(x) — v°] is taxed at the proportional

tuilib- rate T,(13/a*) and if the proceeds of the tax are redistributed to the other
agent. The optimal tax rate depends on the joint wealth maximizing

'ealth meeting rate = +sfl[1 — F(w I(v*))]. To calculate it, one would
ige as have to solve explicitly the joint wealth maximizing problem. However,

•
. because E(n/m) = = 0 and i(0) = and

I= 0, the optimal tax rate is approximately (the surplus is shared
equally) if the equilibrium fraction of unmatched agents is near zero and
unique and is zero (the agent who makes a match gets all the surplus) if
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the equilibrium fraction of unmatched agents is near one and unique. Pretati
Finally, uniqueness of equilibrium is guaranteed if matches are not too the
heterogeneous ex post. prlnciç

being

a Reinterpretation suppli
A unique feasible and individually rational division of the surplus Given

attributable to every match that motivates all unmatched agents to search the br
efficiently exists given either technology. The allocation has the property Bec
that a larger share is received by the agent responsible for making the tive a
match. The sum of the ex ante present values of the future net incomes match
accruing to the members of the typical unmatched pair is maximum when discre
they expect this allocation rule to obtain. However, no individual once searci
contacted by another has an incentive to agree to that division cx post. prese
Furthermore, the agent who made the contact has no special bargaining effort
position as a consequence once the meeting takes place. Hence, there is the t
no reason to believe that ex post bilateral bargaining will yield the COmn

efficient agreement. tive 1

Agents who are as yet unmatched might precommit. Each may well be Th
willing to agree ex ante to assign the unknown agent who will make the mark
match the appropriate share of the surplus. However, there exists no woub
means by which the typical unmatched pair can meet cx ante for this
purpose. Once the pair meets, the two no longer have the incentives only
required to obtain the agreement that might have motivated their meet- rule;
ing. The fact of having met only presents them with the bilateral bargain-
ing problem as we formulated it in the text. ceiv1

This paradox might be resolved by introducing a class of third parties, twee,
brokers or middlemen, who supply matching services and by so doing light
have a continuing interest in the bargaining outcomes. Of course, brokers rule
exist in many market contexts in which matching is important. Labor
markets, markets for housing, and at various times and places the "mar- brok
riage market" all serve as examples. The presumed ability of specialists to same

provide matching services of better quality and at a lower cost is the usual crea
explanation given for the existence of such middlemen. Although these with
advantages may be necessary to explain the existence of brokers, another i

sear

possible role is suggested by the following reinterpretation of the model. yleic

Suppose that there are two types of principals that can be matched as fruit
pairs for some purpose. However, assume that the cost of self-search by
each principal is prohibitive relative to the expected benefit attributable
to a future match. A principal can hire a broker to search in his stead at a Rel
reasonable price because the latter can search more economically. Given
that none of the principals search for themselves, w(x) is the difference
between the total value of a match with fit x and the sum of the opportu-
nity cost that the two would incur were they matched. Given this inter- fl

-
i
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ni ue pretation, any match with fitx such that w(x) — p(x) � 0 is acceptable to
the pair, where p(x) is the sum of the contingent commissions that the two
principals pay to their brokers. If the sum of the opportunity costs of
being matched is the same for every unmatched pair, then competition
among the many unmatched principals for the scarce matching services
supplied by brokers would bid the sum of the commission up to w(x).
Given this price structure, the agents in our model can be interpreted as

search the brokers who represent the 2n unmatched principals.
operty Because all the matches are equivalent from each principal's perspec-
ng the tive and each is indifferent to the length of time required to obtain a
comes match, the search intensities and the criterion for an acceptable match are

i when discretionary decisions taken by the brokers. Hence, s is the intensity of
tl once search chosen by a broker who represents a principal of type i and v, is the

present value of the profit that the broker can expect in return for his
aining effort to locate a match for that principal. An allocation of w(x) between

is the two agents who meet to form a match is now a division of the
id the commission, that both principals are willing to pay, between their respec-

tive brokers.
veil be The one difference is that the brokers have a continuing interest in the
ke the market for matching services that principals for themselves
ists no would not have. Having formed one match, they look forward to the
or this prospect of doing the same for other principals in the future. They not

only have an incentive to precommit themselves to the efficient allocation
meet- rule; as third parties they also have the means to do so. The fact that in

trgain- some market contexts the broker responsible for creating a match re-
ceives the entire finder's fee while in others commissions are split be-

arties, tween the principals' brokers in a prescribed manner is suggestive in the
doing light of our results concerning the dependence of the efficient allocation

rokers rule on the, form of the matching technology.
Labor This reinterpretation of the model is obviously a very special case once
"mar- brokers are introduced. The opportunity costs of being matched is not the
lists to same for all principals of the same type. This kind of heterogeneity will
usual create inframarginal rents for some and hence an interest in the intensity

t these with which the broker searches. A general model must also allow for
iother search by the principals as well as the brokers. These complications may
iodel. yield quite different results. Nevertheless, the reinterpretation suggests a
hed as fruitful path for further research.
rch by
utable
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variabi
functiComment Peter Diamond tween

Dale Mortensen's analysis of matching equilibrium focuses on the incen- simph

tives for search effort. Each individual chooses a rate at which he tries to Let

contact potential partners. With the quadratic technology the rate of
success depends on the number of potential partners available. The
quality of any potential match is a random variable. Mortensen assumes 2)

that matches are made (contracted) if and only if the value of the match
exceeds the (dynamic programming) value of by the Indivi1

pair of potential partners. Matches are not broken for better alternatives. ing WI

Mortensen's analysis of efficient incentives for search takes this con- the nj
tracting rule as given. Interestingly, this contracting rule is not socially exter
efficient with the quadratic technology. Passing up a match that is just level
worthwhile improves the search process for others, at no cost to the pair state
passing up a match. This external economy implies that the efficient
contracting rule involves passing up matches that are privately (3)
worthwhile.' This result is shown below.

This issue did not arise in my work with Maskin since we assumed that As I
individuals could break a contract to form a better match with no re-
source cost. Once one assumes a setup cost for creation of a match, the Note

same inefficiency in private contracting appears in a model with breach of 1.

contract. mate1

To focus on the issue of contracting, Mortensen's model is simplified by
eliminating search intensity as a decision variable. Let s1 and s2 be the
(positive) rates of search of the two types Of agents. Search is assumed to
be costless. Since search does not vary with the division of the surplus
from a match, we can assume that the surplus is divided evenly between
partners, with no loss in generality.

With these simplifications, the equilibrium with a quadratic technology
(Mortensen equations (20)—(21)) becomes

Peter Diamond is professor of economics at Massachusetts Institute of Technology.
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its ap- = (5i + — v'? —

lJot4r (1) rv02 = (s1 + — —

5—62. a0 = (s1 + s2) (1 — F(x°)),

where r is the interest rate; v?, the value of the search process; w(x), the
value of a match of quality x; F(x), the distribution of the random
variable x; a constant of the search process; f a positive increasing
function determined by the search process; and 2, an integer lying be-
tween 1 and 3. With the equal division rule, we have v? = further
simplifying the analysis.

r Let us make the minimum acceptable quality of match a control
variable. Denoting it by x", we can write the value equation as

(2) = + + s2)(1 - -
match
)y the Individual incentives call for accepting any worthwhile match, i.e., hay-
ttives. ing w(x*) = 1ff did not vary with this would also be efficient for
s con- the matching process. However, since f increases in xk, there is an
)Cially external diseconomy in forming a match and is maximized at a higher
is just level of xK, one with w(x*) > The level of maximizing the steady
.e pair state value satisfies
fIcient 13f'F'
vately (3) w(x*) —

= + 52) (1 — F)2
(w(x) — dF.

d that As long as match quality is variable, this expression is positive.
re-

h, the Note
ach of 1. Unemployment compensation is one method of inducing individuals to pass up

matches that would otherwise be worthwhile.
iedby Referenceethe
ied to Diamond, P., and Maskin, E. 1979. An equilibrium analysis of search
irplus and breach of contract, I: Steady states. Bell Journal of Economics 10:
:ween 82105.
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Comment Steven A. Lippman parti
syste

In the game-theoretic spirit of two earlier papers (Diamond and syste
1979; Mortensen 1978) with costly and imperfect information, Mortensen inclu4
considers an environment in which homogeneous agents of two types as wM
meet pairwise via a search process in order to form a match. (We shall
utilize marriage, apartment rentals, and the labor markets as prototypical
examples.) The matches provide the sole source of benefits, search is the deat
only cost, and each agent's payoff function is the expected discounted man
flow of net benefits. The focus of Mortensen's equilibrium analysis is on tionsi
the incentives of unmatched agents for engaging/investing in search.
Presumably, the incentives vary directly with the number n of unmatched given
pairs. We shall refer to n as the state of the system. tion

An important feature of Mortensen's approach is that the aggregate
matching model is set up as a birth/death process. This structure, which is COflt

hinted at in Diamond and Maskin (1982) and Mortensen (1978), is quite mod
general and admits a hearty mix of examples; employed in full-blown strat
generality, however, the ensuing analysis would be nearly intractable. As folio
formulated by Mortensen, a birth—an increase in the n—occurs a m
whenever a new unmatched pair is created; dissolution of an extant (att
match (e.g., divorce) and immigration (e.g., entry into the labor force clea
and creation of a new job) are the obvious means of increasing n, with the
latter possibility explicitly excluded in this paper (and included in Di-
amond and Maskin 1979). A death occurs when a match is. formed. This but
leads Mortensen to posit the birth and death rates con

can
(1) >t,, = (m — bro

— Ian , the linear technology, allo
(2)

.
the

LaG), the quadratic technology,

where 13 is the dissolution (or turnover or divorce) rate and m is the
number of each type of agent in the total population. Using these rates,
the expected fraction of unmatched pairs is calculated and this quantity is 1

then utilized in deriving properties of the equilibrium solution(s).
With the above setup an analysis different from Mortensen's could be

pursued. Assuming that signals effective in revealing individual agents' m -
existence and availability are in place—viz., absence of a wedding ring
and presence at a singles bar, vacancy sign, or help wanted ad—a search- (3)
ing unmatched agent can avoid contacting an already matched agent.
Moreover, these signals reveal the state of the system to all interested

Steven A. Lippman is professor, Graduate School of Management, University of Califor- an
nia, Los Angeles.
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257 Matching Process as a Noncooperative Bargaining Game

parties, including potential entrants. With knowledge of the state of the
system as revealed by the agents (or even their brokers), markets with
system dynamics such as agglomerative and imitative effects can be
included. For example, there are many contexts in which the immigration
as well as the turnover rate should be modeled as increasing inn, for n is a
measure of matching opportunities.

Further complications are presented by the fact that the birth and
death rates are not exogenously given but rather affected (in a nonlinear
manner) by the agents' strategies. We illustrate this and other complica-
tions in the following example.

Assume that the contract flow rate for each agent associated with any
given contact is a random variable X with cumulative distribution func-
tion F, and X is independent of the past history of the system. To simplify
matters, assume that the agents in any match must evenly divide the
contract benefits, thereby eliminating the bargaining aspects of the
model. In such a simple system with agglomeration, the agent's optimal
strategy is characterized by two increasing sequences and (vn) as
follows. When the state of the system is n, an unmatched agent will accept
a match with flow rate in excess of v,,; matched agents will willingly
(attempt to) separate when their current benefit is less than dn It is
clear that

= n(1 —

but the birth rate is a function not only of n but also of the set of existing
contracts. In order to maintain the Markovian nature of the process we
can utilize Mortensen's assumption that matches are not voluntarily
broken for better alternatives, though "involuntary" dissolutions are
allowed; that is, dissolution for a particular match is not dependent upon
the contract flow rate for that particular match. In this case we have

Xnm = — n) +

where 2m is the total population of agents, 13,, is the dissolution rate, and
is the immigration rate. As exposited we assume that and increase

in n, with serving as measure of population "malaise."
Now the value Vn,m(V) of a match with flow v when there are n and

m — n unmatched and matched agents of each type is given by

V n.m(3) = A
+

A 4'n_im(i') +_Vn+i,m+i(V)a+Il,,m ct+I1,,m

and

(m—1—n)13,, 13,,

+ An,m
+

An.m }
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(4) Vnm(O) = An,m
-a + n.m n,m

n—i
(m—n)f3

+ 'nm +
1m(0) + i,m+

where a is the discount factor, An,m + Xnm, An,m/(a+Anm)
Ee_nT is the expected discount factor,

V =vEf
a+Anm

is the expected discounted earnings till a change of state, and T is an
exponential random variable with parameter Anm.

The difficulty in determining the existence and qualitative properties of
(va) is apparent; nevertheless, success in such an undertaking would A censurely provide valuable insights. indust
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