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6 ‘Multiperiod Securities
and the Efficient Allocation
of Risk: A Comment on
the Black-Scholes Option
Pricing Model

David M. Kreps

6.1 Introduction

Over the past six years, a great stir in academic financial theory
(sometimes spilling over into practice) has been caused by the option
pricing model originally advanced by Black and Scholes (1973) and by
Merton (1973b).' The reason for this stir is that strong results are derived
from what seem at first to be weak assumptions. While the weakness of
these assumptions is illusory, the model does make an important point:
The ability to trade securities frequently can enable a ““few’ multiperiod
securities to span “many’’ states of nature. In the Black-Scholes model
there are two securities and uncountably many states of nature, but
because there are infinitely many trading opportunities and, what is
crucial, because uncertainty resolves “‘nicely,” markets are effectively
complete. Thus the punchline: Perhaps even though there are far fewer
securities than states of nature, nonetheless there is a complete (or nearly
complete) set of contingent claims markets. Perhaps, therefore, risk is
allocated efficiently.

The purpose of this paper is to explore this idea and to attempt to see
what is important in determining the number of securities “needed” to
have complete markets. In this regard, the following two questions will
be addressed to some extent: (1) The Black-Scholes model has been
criticized on the grounds that it takes as given that which any good
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economist would want endogenously determined: equilibrium priceg of
the few multiperiod securities. This is a valid criticism because those
prices are the critical data in determining whether markets are complete
To what extent, then, is it reasonable to suppose that equilibrium Price
will have the property required for complete markets? (2) In what senge

if any, is the Black-Scholes result robust? It will be seen that the prOpert;,
required for complete markets concerns the very delicate fine structure of
the model. Other models that approximate the Black-Scholes model in 5
standard sense do not possess this property. Do these other models have
“approximately complete’ markets? One hopes that the answer is yes.
Otherwise, one either must be able to discern the critical fine structure or
must discard the conclusions of the Black-Scholes model for practica]
purposes.

The paper is divided into two parts. The first part contains an analysig
of the basic issues in the spirit of Radner (1972). In section 6.2 a mul-
tiperiod exchange economy with uncertainty is formulated. The economy
is specified by a finite state space (1, a collection of agents, a finite set of
dates + = 0,1,...,T at which agents consume, and an exogenously
specified information structure, which describes what information (all)
agents know at each date. Formally, the information structure is a se-
quence of nondecreasingly finer partitions of Q, {F;t = 0,...,T}. The
interpretation is that at date ¢, all agents know which cell of F; contains the
true state and no more. There is a single consumption good which serves
as numeraire. Finally, there are N “long-lived” securities that allow
agents to trade consumption between dates and states. Each security isa
contingent claim to consumption at the terminal date T. Markets where
these securities can be exchanged for each other and for the consumption
good open at each date t, withp = {p,(t,0);n =1,...,N,t=0,...,T,0
€ Q} the price process of the securities. A definition of an equilibrium for
this economy is given, exactly as in Radner (1972). Every such equilib-
rium is given an alternate characterization, as an equilibrium in a De-
breu-style economy where a (possibly incomplete) set of contingent
claims markets opens at date zero.

The basic question is posed and answered in section 6.3: Under what
.conditions will the corresponding Debreu-style economy be one with a
complete set of markets (so that the equilibrium allocation is Pareto
efficient)? A necessary and sufficient condition for thisis: Fort <T and A
€F, let K(t,A) be the cardinality of {4’ € F,,;; A" C A}. Then it is
necessary and sufficient that for every t and A € F, the span of the
conditional support of p(t+ 1) given w € A has dimension K(z,A). There-
fore, a necessary condition is that /V, the number of securities, must be at
least K = max{K(t,A)}. This is illustrated by a simple example that
makes the basic point: With N securities and T trading dates (t =
0,....,T-1),upto NT states of nature can be spanned.
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While it is necessary for complete markets that K = N, this is not
sufficient. The necessary and sufficient conditions involve the equilibrium
prices p, and this is clearly less than satisfactory on economic grounds. A
refinement is given in section 6.4 that is more satisfactory. Fixing every-
thing except the terminal payoffs of the securities (that is, fixing the state
space, information structure, and agents), “‘almost every” selection of K
or more securities (determined by their terminal payoffs) gives an econ-
omy with a complete markets equilibrium. (This presumes that an
equilibrium with a complete set of contingent claims markets exists.)
Here, “almost every” means a generic result in the sense of Radner
(1979). Thus, in determining whether markets are “likely” to be com-
plete in an economy with long-lived securities, the crucial comparison is
K versus the number of securities N. This section closes with several
embellishments on the basic model.

The qualitative insight to be gained from the analysis in sections 6.2,
6.3, and 6.4is clear: A few securities that are frequently traded may span
a very large dimensional space of contingent claims. Markets may be
complete, and it is possible that risk is allocated efficiently. But how are
these “‘may be’s” to be converted into more positive statements? What
value of K is appropriate for modeling purposes? Might it be that K is
very much larger than N, and yet markets are approximately complete
and risk is allocated approximately efficiently? These questions concern-
ing the robustness of the analysis are extremely difficult for two related
reasons. The analysis does not indicate what (if anything) will suffice for
‘‘approximately complete markets” and ‘‘approximately efficient alloca-
tions.” The analysis identifies K as the crucial piece of data, and K is a
property of the fine structure of the model. If conditions necessary for
“approximate completeness/efficiency’’ involve the datum K, then one is
unlikely to be able to apply this analysis with any confidence—the task of
discerning the “true” value of K defies the imagination.

The following sort of result is therefore sought. If one economy
approximates a second idealized economy in a coarse sense and if the
idealized economy has ‘‘complete markets,” then the first economy has
approximately efficient equilibrium allocations. The key is to make the
sense of approximation as coarse as possible, in order to make the
analysis as robust as possible. The remainder of the paper is devoted to
discussion of this type of result and in particular to convergence to the
Black-Scholes model that dominates the financial literature. The issues
raised are very delicate and difficult mathematically, and therefore the
analysis given is preliminary at best.

Section 6.5 concerns the idealized economy to which other economies
will converge: the Black-Scholes model. The use of continuous time
creates difficuities. Both the sense in which this model represents a
Radner equilibrium and the sense in which it is a “complete markets”
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equilibrium are not straightforward. These difficulties are resolved as in
Harrison and Kreps (1979), and the section closes with brief discussion on
the inadequacies of this resolution.

A convergence result is proved in section 6.6. Within a certajy
framework, sequences of models that converge to the Black-Scholeg
model have asymptotically efficient equilibrium allocations. The mode of
convergence required is such that a sequence can converge withoyt
convergence of the ‘‘fine structure” of the economies: In each economy
along the sequence, K is very much larger than N. (In fact, K = «and y
= 2 for each economy.) This shows that for approximate efficiency, the K
versus N comparison may be misleading.

This convergence result is a step in the right direction, but it suffers
from some severe deficiencies. Chief among these is that the framework
of the result is very restrictive—the state space, information structure,
and agents are all fixed along the sequence. (What changes along the
sequence are the dates at which trading takes place and, perhaps, the
equilibrium prices.) It ought to be the case that this sort of convergence
result holds in a much less restrictive setting. But when one attempts to
obtain analogues in wider contexts, difficulties arise. For example, if the
state space changes along the sequence, then so does the commodity
space and so (perforce) must the agents. How then is one to define
“asymptotic efficiency’’? Section 6.7 discusses where these difficulties lie,
why in some sense they cannot be completely overcome, and how they
might be partially finessed. “Answers’ are not provided in this section.
Rather, the aim of the discussion is to indicate limitations of both the
result in section 6.6 and any possible extension and to spur research that
will culminate in an approximation theory more adequate than that which
is given here.

Section 6.8 presents a brief summary of the main points of the paper,
together with a list of weaknesses and questions left unanswered by the
analysis.

The general topic addressed here has a long history in the literature,
and a review of pertinent contributions may help put things in perspec-
tive. The mode of analysis of a multiperiod exchange economy follows
Radner (1972) and his definition of an equilibrium of plans, prices, and
price expectations. This definition is implicit as well in the simpler setting
of Arrow (1964). Arrow (1964) and Guesnerie and Jaffray (1974) discuss
circumstances under which a Radner economy has a ‘‘complete’ set of
markets—Arrow analyzes a two-period economy, and Guesnerie and
Jaffray extend Arrow’s idea (that at each date there should be a complete
set of financial claims for the next date) to a multiperiod setting. When a
Radner economy does not have “‘complete markets,” inefficiencies may
result, and these may be inefficiencies even relative to the existing market
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structure. On this and other points concerning incomplete Radner econo-
mies, see Hart (1975). Several papers, noting that there are ‘“‘fewer
securities than states,”” have discussed the role of options on those secur-
ities for completing markets. On this point, see Breeden and Litzenber-
ger (1978), Friesen (1979), and Ross (1976).

There is a chunk of literature that seeks to show how efficient alloca-
tions can arise with few securities using arguments very different from
those used here. In these papers, agents are assumed to be “‘sufficiently
alike” (for example, identical subjective probability estimates, no non-
market income, and HARA class utility functions with identical risk
cautiousness) so that complete markets are unnecessary. See, for exam-
ple, Wilson (1968).

When some of the information may be privately held and/or informa-
tion is endogenously generated and is costly, a host of difficulties arise:
Grossman (1977) and Grossman and Stiglitz (1976) are two excellent
examples of the huge literature on this topic.

Throughout this paper only exchange economies are considered. Ex-
tending the analysis to questions of production and productive efficiency
involves nontrivial complications, even in the snmple models of the first
half of the paper. These problems are roughly those pointed to in the
“spanning” literature: see Diamond (1967), Stiglitz (1972), and the Bell
Journal Symposium on the Optimality of Competitive Capital Markets
(1974). Because of the multiperiod setting here, where agents are con-
stantly changing their portfolio holdings, the papers of Grossman and
Stiglitz (1980) and Hart (1979) are especially important.

6.2 Equilibrium in a Multiperiod Exchange Economy

Consider the following model of an exchange economy with uncer-
tainty. There is a finite number of states of the world, indexed by w € Q.
There is a finite number of time periods, indexed byt = 0,1,...,T. All
agents in this economy have access to the same information which is
exogenously specified. This information is represented by a sequence of
partitions of Q, {F; ¢t = 0,...,T}. The interpretation is that at time ¢
agents know which cell of F, contains the true state. Information increases
through time: F,, | is at least as fine as £. For simplicity, it is assumed that
Fy is trivial and that Fr is the discrete partition. The o-field of events
generated by F is denoted F,.

There is a single consumption good which cannot be stored. This good
is consumed at each date, and the amount consumed at date ¢ can vary
across cells of F;; thus, the consumption space for agents is X = X7_,

R where R(F1 is the space of F, measurable real valued functions
on Q. The notation x = (x(0),...,x(T)) is used for a generic element of
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X, with x(¢, w) denoting the value of x(¢) in the state w. Vectors x wil| be
interpreted as net trade (rather than total consumptlon) vectors fo,
agents.

The agents in this economy are indexed by i = 1,...,I. Each agent jg
characterized by a subset X' C X, representing fea51ble net trades for
agent i, and by a complete and transitive binary relation = on X
representing agent I’s preferences among net trades. It is assumed
throughout that each X" is “comprehensive upwards,” in the sense that i
x € X'andif x’ € X are such that x'(t,w) = 0 for all tand w, then x + x’ ¢
X'. Moreover, it is assumed that each X' contains the origin, and tha
each =* s strictly increasing in the sense that for x and x’ # 0 as above,
X+ x'>x

There are N assets or securities in this economy. These are claims to
(statg contingent) consumption at date T. They are indexed by n =
1,...,N. Security n entitles the bearer (on date T) to d,(w) units of the
consumption good at date T if the state is w. The net supply of these
securities is zero. It is assumed that for every state there is one of these
securities that pays off a nonnegative amount in every state and a strictly
positive amount in that state.

At each date ¢t = T and in every state, markets open in whlch these N
securities can be traded for one another and for the consumption good.
The price (in units of the consumption good) of security » at date ¢ in state
o will be denoted by p,(t,w). These markets are frictionless—there are
no transaction costs and no restrictions on short sales. A price system is a
vector stochastic processp = {p,(t,w);n =1,...,N,t=0,...,T,w € Q}
with p(¢) F, measurable for each ¢.

The agent’s problem in this economy is to manage a portfolio of these
N securities in order to obtain for himself the best possible net trade
vector of state contingent consumption. This is formalized as follows. A
trading strategy is an N dimensional vector stochastic process 8 =
{6,,(t,w)} such that 8(¢) is F, measurable for each ¢. The interpretation is
that 0,,(¢, w) is the number of shares of security » held from date tuntil £+ 1
in state w. (Fort = T, 06,(T, w) is the number of shares from which the
dividend is received.) The constraint that 8(¢) is F, measurable is the
natural information constraint. If prices are givenby p = {p,(¢)}, then the
strategy 0 results in the following net trade vector in state contingent
consumption:

(2.1) x(8,p) = (x(0;0,p),...,x(T;0,p)), where
x(0;8,p) = —06(0)+p(0) (the dot means dot product),
x(t;0,p) = (6(t—1)—06(t))p(t)fort=1,...,T—1,and
x(T;0,p) =(6(T-1) - O(T))-R(T) +0(T)d.
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A net trade bundle x € X is said to be feasible for agent i at prices p if x €
X' and if there exists a trading strategy 6 such that x < x(8, p). The set of
feasible net trade bundles for i at prices p is denoted X‘(p). Note that this
definition contains an implicit assumption of free disposal and that x €
X'(p) implies that x satisfies the appropriate budget constraints on net
trades.

An equilibrium for the economy described above is a price system p
and, for i = 1,...,1, net trade bundles x’ and trading strategies 6’ such
that

(2.2a) x'=x(0,p) and x'€ X' for all i,

(2.2b) x'is 2" maximal among all x € X'(p) for each i,
and

(2.2¢) 6'=0.

Condition (a) says that x’is a feasible net trade for i/ and that x' is feasible
if i adopts the trading strategy 6‘. Condition (b) says that taking prices p as
given, agent i can do no better than x‘. Condition (c) is the market
clearing condition. It says that securities markets clear exactly. Note that
this together with (2.2a) and (2.1) imply that £, x’ < 0, or markets for the
consumption good clear. This is an equilibrium of plans, prices, and price
expectations in the sense of Radner (1972), assuming rational expecta-
tions on the part of agents as to the prices that will prevail at subsequent
dates contingent on states.’

The following alternative characterization of an equilibrium will be
useful. Fix a price system p. Define

M’ ={x€X:x=x(8,p) for some trading strategy 6}.
Suppose it is true that
(2.3) MOKEX: x=0,x+0=d.

(As shall be claimed in the following proposition, (2.3) is necessary for
any equilibrium where agents’ preferences are strictly increasing in the
sense above.) Then define

224 M={xcX:x=m'+(,0,...,0)form’ € M’ andr€ R}
and
(2.5) w(m’ 4+ (r,0,...,0)) =rform’ € M andr€R.

Clearly, M is a subspace of X. Moreover, (2.3) guarantees thatw: M — R
is a well-defined, strictly positive linear functional.
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Proposition 1. 1f {p, (x',8°)!_,} is an equilibrium, then (2.3) holds, ang
(2.6) x'e MN X' w(x') <0, and x’ is 2’ maximal in {x € MN X*: m(x) <0},

Conversely, if p satisfies (2.3) and if there exist x’ satisfying (2.6) (for M
and 7 defined from p) and 3, x* = 0, then there exist 6’ such that
{p,(x',6"} is an equilibrium.

The proof is straightforward and is left to the reader with one hint. In
the converse half, suppose x' and p are given. By strict monotonicity of
>i there exist 8' such that x' = x(6',p). Let ' = ' fori # 1and §' =
—3,4, 8—then verify that x(8',p) = x(6',p) = x'. Of course, 2,6 = 0,

The interpretation of this proposition is clear. Fix an equilibrium
{p,(x',6")}, and define M and = from p by (2.4) and (2.5). Imagine an
economy in the style of Debreu (1959) where at date zero agents can
purchase any net trade bundle x € M at the price m(x). Note well that if M
# X, this is not an economy with a complete set of contingent claims
markets. Of course, agent i faces two constraints in this Debreu-style
economy: The x he selects must lie in X‘ and must satisfy the budget
constraint w(x) = 0. Then (2.6) says that prices 1 are equilibrium prices in
this economy with corresponding equilibrium allocation (x).

Interpreting the converse half is a little trickier. Fix a Debreu-style
economy with contingent claims markets for claims in some M, and let
be equilibrium prices and (x') the corresponding equilibrium allocation.
The proposition does not guarantee that there are prices p that give the
same equilibrium allocations in an economy with the given long-lived
securities. Rather, if there are prices p that give rise to M and the
equilibrium 7 via (2.4) and (2.5), then they are equilibrium prices (with
corresponding allocation (x)).

6.3 Complete Markets Equilibria

Suppose that for an equilibrium price system p, the corresponding
space M is X. Then the equilibrium allocation (x’) is an equilibrium
allocation for a Debreu-style economy with a complete set of contingent
claims markets and therefore is Pareto efficient. Thus, it is natural to seek
conditions that yield M = X.

Define fort < Tand A € F,

3.1) K(t,A) = cardinality{A’' € F, . ,: A’ CA},
and K = max{K(t,A);t<T,A€F}.

In words, K(t,A) is the number of “subcells” of A in F,,,. This is a
measure of the amount of information that might be received by date ¢+ 1
if at date ¢ the event A is known to prevail: If K(t,A) = 1, then no new
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information will be received. If K(t,A) =.2, then new information of an
either/or type will be received, and so on.

Proposition 2. Let p be an equilibrium price system, and let M be
defined from p by (2.4). A necessary and sufficient condition for M = X'is
that foreacht < T and A € F,

(3.2) dimension {span{p(t+1,w);w €A}} = K(t,A).

A paraphrase of this condition is that the conditional support of p(t+1)
given that w € A consists of K(¢, A) linearly independent vectors. There
are at most K(t,A) vectors in this conditional support (because p(t+ 1)
is F,,, measurable). Thus, K(t,A) is an upper bound on dim
{span{p(t+1,w); w €A}}. The condition is that this upper bound is hit in
every instance. The proof of this proposition involves straightforward
induction on T. Rather than work through the details, a full example will
be given which should make both the proposition and its proof trans-

parent.

Example. Suppose that there are six states {w,...,ws} and four dates
t = 0,...,3. The exogenous information structure is given by the parti-
tions

Fy = (O}, F; = {{wy, 02} {3, 04, w5, gl
F= {{w.,wz},{w3,w4},{w5,w6}},
B = {{w}, {02}, {w3}, {wa}, {ws}, {we}}.

Thus, K(1,{w,,w,:}) = 1 while K(2, {w,,w,}) = 2. Suppose that there are
two securities whose dividends at date 3 are as in table 6.1.

Consider two possible equilibrium price systems arising from these
data, as depicted in figures 6.1a and 6.1b. The column vectors in these
event trees give the prices of the two securities as a function of the date
and state. For example, in figure 6.1a the column vector (9,4.2)’ which is
starred is interpreted to mean p,(2,w,) = .9 and p,(2,w,) = 4.2. Note
that the tree structure corresponds to the information structure.

Does M = Xin either or both cases? The answer is yes if and only if for
everyt>0and A € F, the vectorx = (x(0),...,x(T)) thatis given by x(s)
= 0fors # rand x(t) = 1, is in M. That is, there must exist a trading
strategy that produces one unit of consumption in event A at date ¢ and
nothing at any other date-event pair. Begin by asking if this is true for¢ =
1 and for every A € F;. In each case the answer is yes—the two possible
values of p(1) are linearly independent; thus, there exist (8,,08;) and
(87,65) such that  (8),0,)+(p1(1),p2(1))’ = Lyruy and  (8],69)
(P1(1),P2(1))" = iy, wyr wsrwg)- This clearly suffices. Now proceed to ask
the question fort = 2. For A = {w,, w,} there is no problem in either case.
But matters are not so simple for A = {w3,w,}. In case a it can be done:
First, solve

v e e e e
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Table 6.1
State W, W, w3 Wg4 ws wg
Payoff of security #1—d,(*) 1 1 1 1 1 1
Payoff of security #2—d,(*) 1 2 3 6 4

(8,,62)°(.9,4.2)' = 1and (8,,6,)*(.909,4.1)" = 0.

This can be done because the two column vectors are linearly indepen-
dent. Let (6],63) be the solution. Next, solve

(8,,8,)+(.81,1.26)" = 0and (8;,8,)+(.81,3.75)' = (87,83)+(.81,3.75)".

This can be done by the first step—the solution, denote it (6;*,65*), is
just a scalar multiple of (81,63). Then the strategy of starting with
(87*,05*) at date zero, changing to (0,0) at date one if {w, w,} occurs and
to (87,05) if {w3, w4, ws,we} occurs, and then consuming everything at
date two yields one unit of consumption at date two if and only if {03, w,}
occurs.

But consider case #. One cannot solve

(81,0,)+(.9,4.2)' = 1 and (8,,08,)(.909,4.242)' =0,

because the two column vectors are linearly dependent. Thus, if one
consumes one unit at date two and nothing at date three when {ws, ws}
occurs, one must consume something either at date two or at date three
when {ws, wg} Occurs.

By inductively applying this sort of logic, one can see that M = X in
case a (as predicted by proposition 2), but that M # X in case b.

Example a makes the basic idea clear. In this economy there are six
states of nature and only two securities, yet markets are complete. This is
because the process of learning which of the six states is the true state
takes place not all at once but in three steps. Agents can revise their
portfolios after each step in the learning process. At each step, at most
two ‘“‘signals” are possible. And the equilibrium prices of the two secur-
ities are “‘well behaved”’—they are “linearly independent’ in a fashion
that enables agents to take full advantage of new information as it is
received.

6.4 Genericity of the case M = X with K or more securities

Condition (3.2) in proposition 2 can be viewed as two nested condi-
tions. First, the number of securities N must be at least as large as max, 4
K(t,A) = K. In addition to this, the equilibrium prices must be “suf-
ficiently independent.” In case b of the example, N = K (= 2), but
because p(2, w;) and p(2, ws) are not independent, markets are not com-
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Fig. 6.1a (top) and b (bottom)

plete. This second part of (3.2) is less than satisfactory on economic
grounds, because it involves endogenous data, the equilibrium prices p. It
cannot be completely dispensed with—not every set of K or more secur-
ities will have equilibrium prices that satisfy (3.2). Consider, for example,
K securities whose dividends at date T are scalar multiples of one
another. (Thatis, d,, = r,d, forr, € R.) But aresult almost this strong is
possible. Fix the economic setting; that is, fix the state space. information
structure. and agents. Suppose N securities are selected at *‘random.” By
a selection of N securities is meant a selection of a point ¢ from the set
(RFTMN which hereafter is denoted by D. A subset of D will be called
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sparse if its closure has Lebesgue measure zero. If the selection of 4 ig
done ‘“randomly enough,”” there is zero probability that the outcome wijj
land in a given sparse set. Following the terminology of Radner (1979), ,
result that holds off of a sparse set is called generic. The next proposition
therefore gives the title of this section.

Proposition 3. Fix the economic setting. Suppose that if in this setting a
Debreu-style regime of complete contingent claims markets is set up,
then there is an equnllbrlum with equilibrium allocation {x'}. Thenif N >
K, there is a sparse set in D such that for all d not in that set, the economy
with N long-lived securities paying d admits an equilibrium with M = x
and with equilibrium allocation {x;}.

Proof. In the Debreu-style economy, there is a linear functional ¢ : X
— R that is strictly positive and that satisfies

(4.1) x'€X',d(x')=<0,and x'is = maximal in {xe X' d(x)=0}.

(That is, ¢ gives the equilibrium™ prices.) Normalize ¢ so that
¢((1,0,...,0)) = 1. Fort = 0,...,T and A € F, define x, 4 by

Xi.a(s) =0fors # tand x, 4(f) = 1.

That is, X, 4 1S the claim that pays one unit of consumption at date ¢ in the
event A.

Foranyd € D, define p from d and ¢ as follows. For¢ < Tand w € Q, let
A € F be such that w € A. Then let

(4.2) Pa(tiw) = 2 dp(@) (X)) (X0a)-

Two things, once demonstrated, give the result. First, except for d from a
sparse subset of D, p so defined satisfies (3.2), and thus M = X. Second,
for all such d, the linear functional m defined in (2.5) is ¢.

For the first result, it is necessary to show that except for d from a
sparse set, the set {p(t+1, »); w € A} contains K(¢,A) linearly indepen-
dent vectors forevery tand A € F,. Since there are finitely many such pairs
(t,A) and since the union of a finite number of sparse sets is sparse, it
suffices to show that for every ¢t and A the set of d € D for which the
corresponding {p(t+1,w); o € A} does not contain K(t,A) linearly
independent vectors is sparse. Using (4.2), the set {p(t +1,w); w € A} can
be written

{QEA,d(w)¢(xT(w})/¢(x1+ l.A');A’ E E+11AI QA}’

which, letting o(f, w) denote the strictly positive scalar &(X7.jwp) /¢ (Xr.4)
is

{3 d@)a(+1,6);4" €F.y,A'CA).
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The set of d for which this set of K(¢,A) vectors is linearly dependent is
clearly closed. That it has Lebesgue measure zero is also apparent as
follows: Let Y : D — (R)X4) be the map

Y(d) = [WEA,d(“’)a("*‘ Lo)aer, .aca

and let \ denote Lebesgue measure on D. Then the measure AoY ~! on
(RM)X(4) i5 absolutely continuous with respect to Lebesgue measure
because the a(t+ 1,w) are strictly positive. And the Lebesgue measure in
(RM)K(A) of vectors [(r)N= &4 such that the (r), are linearly depen-
dent is zero, if N = K.

For the second result, it suffices to show that for all strategies 0,
&(x(8,p)) = 0. There is nothing to do but grind this out:

T-1
&(x(8,p)) = d(xo0,.0)x(0;0,p) + El A§F¢(xf,A)X(t,A:9,p) +

2 Oz ) x (T, 0:6,p)
= 600 (~00)PO) + . T (x.)0=1,4) -

0, A p(A) + 3 S0 ) [(O(T-1,0) -
0(T,0))*p(T,w) + 0(T,w)d]
T-1
=%, [-00A)»P0A)b(x) +
DA P+ LAY (- 1.4)]

A€F Ly AT

(note that d = p(T))
T-1
=3 3 0(A)[- méAP(T,w)d)(XT.(m}) +

t=0 A€F
h) T,
A'EF‘+l'A'gAp( m)(b(XT,{w))]

T-1
= 3, % 00A)[0)=0. QED

A remark may help the reader through this maze. If the security prices
p are to be the ““same’ as ¢, then (4.2) is required. This can be seen as
follows. In the Debreu-style economy, for A € F,aclaim to d,,1 4 (contin-
gent) units of consumption at date T costs 3¢ 4 d,(w) b (X1(.}) units of
date zero consumption, or 2 ¢4 d,(0) & (X7 (w))/d(X:.4) units of date ¢,
event A consumption. If expectations are rational and an equilibrium is in
force, then this must be the price in units of date s consumption of security
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n at date t in the event A. This is (4.2). As to the genericity of condition
(3.2), the reader may find it helpful to take the economic structure of the
example, make up a set of equilibrium prices for a Debreu-style economy
with complete markets, and then see what is entailed in picking d so that p
defined from (4.2) does not satisfy (3.2).

Several remarks about this proposition and the previous analysis are
worth making.

1. A by-product of the proposition is a result concerning the “generic
existence of equilibrium”: If N = K and if the economic setting is such
that an equilibrium exists with a Debreu-style regime of complete contin-
gent claims markets, then for all d except from a sparse subset of D, the
economy admits an equilibrium.

2. The proposition does not show that for N = K and generic d, all
equilibria are Pareto efficient. It only shows that there are efficient
equilibria. But it seems likely that the stronger result is true, at least for
“most” economic settings.

3. The following result complementary to the proposition might be
imagined: Fixing Q and {F}, for every d € D where N = K the set of
“communities of agents” that do not admit an equilibrium in which M =
X is sparse among all communities of agents. The concept of acommunity
of agents is ambiguous here, but what is intended is something like the
treatment in Radner (1979), where agents are parametrized by their
subjective probability assessments. Such a result is impossible—as al-
ready noted, if the d,, are collinear and {2 has more than one state, then M
= Xcannot result. It is conjectured that the result is true, however, if this
and similar trivially pernicious choices of d are disallowed. (It seems
likely that the technology developed in Radner (1979) would work excel-
lently in this context.)

4. Insections 6.2 through 6.4 it has been assumed that there is a single
perishable consumption good. It should be clear that the results given
hold if there is a finite number of consumption goods, as long as there are
spot markets in the consumption goods at each date and if securities pay
off in a good whose relative price is strictly positive in the date T spot
market.

5. Ithas been assumed that all securities “‘live” from date zero to T and
that securities pay off only on date 7. Clearly, the basic results do not
change if securities pay off on other dates as well and/or if securities live
for other sets of dates. The important thing is that for any time period ¢ to
t+1 and event A € F, at least K(¢,A) securities must be ““alive.”

6. For the sake of completeness, a result from Harrison and Kreps
(1979) is repeated here. Suppose that one is given a state space {2, a time
index set{0, ..., T}, an information structure {F}, and aset of N securities
{d.;n =1,...,N}. Moreover, suppose that a price system p is given and it
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is claimed that p is the equilibrium price system for an economy as above.
That is, the claim is that there exists a population of agents meeting the
requirements above such that p is part of an equilibrium in the economy
that houses them. Under what conditions is this claim true? For simplic-
ity, assume that one of the securities, say, the first, pays out a strictly
positive amount in every state of nature. One necessary and sufficient
condition for an affirmative answer is that (2.3) is true. A second is that
there exists a probability measure Q on Q2 such that Q({w}) > Oforevery w
€ Q, and if E[+] denotes expectation with respect to O, then

E[p.(t+1)/py(t+ D)|E] = p.(t)/p\(2),

forevery t < T and n. (Also, p(T) must be proportional to d.) Moreover,
M = X if and only if there exists exactly one such probability measure.

6.5 The Black-Scholes Model

The Black-Scholes model is a continuous time, infinite state version of
the model in section 6.2 that comes to a similar and striking conclusion:
With a “simple enough” information structure, a small finite number
(two) of securities can span an infinite dimensional space of contingent
claims, owing to the infinite number of trading opportunities. The sense
in which this is true is not entirely straightforward, so a review of the
model is now presented. _

A probability space (),F,P) is given. On this space is defined a
standard (mean zero, variance one) Brownian motion {B(t); ¢ € [0, 1]}.
The information available to agents atdate ¢ (¢ € [0, 1]) is the history of the
Brownian motion up to that date: F, = F{B(u); 0 < u < t}. It is assumed
that F = F, as before.

For simplicity it will be assumed that agents consume only at dates zero
and one and that they have endowment of the consumption good only at
those dates.’ A consumption bundle is therefore a pairx = (r,y), where r
€ R is consumption at date zero and y is state contingent consumption at
date one, an F measurable real valued function. The space of consump-
tion bundles is denoted X = R X Y and is assumed to be a linear space of
such pairs.* Agents are described by a feasible net trade set X' C X and a
preference ordering ' on X'. It is assumed that each X" is “comprehen-
sive upward” and that ' is strictly increasing in the following sense: If x’
= (r',y’) € Xissuch that ' =0and y’' = 0 P-a.s., and either ' > O or
P(y'>0)>0,thenforallx € X', x + x' € X'andx + x' >'x.

There are two long-lived securities in this world, which (as before) are
claims to date one consumption. The first yields e” units of consumption
independent of the state, while the second yields exp {p + o B(1,w)} units
in state w. (Here, 7, p, and o > 0 are given constants.) Trading in the two
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securities can take place at any date between zero and one (as better
information about the true state of the world is received), with relative
equilibrium prices

(5.1) pi(t) = €" and py(t) = exp{ps + o B(t)}.

At date zero, the two securities and the consumption good are traded at
relative prices one apiece.

In saying that these are equilibrium prices, the following is meant.
Given the price process p = {p(t)}, agents seek to manage a portfolio of
the two securities so as to obtain the best possible net trade vector. A
trading strategy is formally represented as a vector stochastic process § =
{6,(t);n = 1,2,1 €[0,1]}, where 8,(t,w) represents the number of shares
of security n held at time ¢ if the state is w. The obvious informational
constraint on 6 is that for every ¢, 8(¢t) must be F, measurable. But more
qualifications are necessary. One must say what sorts of trading strategies
represent actions that agents are physically capable of. Moreover, be-
cause no consumption takes place between dates zero and one, because
agents’ preferences are strictly increasing, and because (by assumption)
agents do not receive fresh funds for investment between thoge two dates,
any trading strategy 0 should be self-financing. That is to say, any changes
in the composition of an agent’s portfolio at dates ¢ € (0, 1] should involve
zero net cost of transaction. Any purchases should be financed by a
corresponding sale, and the proceeds from any sale should be reinvested
elsewhere. (Date one is included in this constraint as it is imagined that
date one consumption takes place after date one markets close.)

One possibility is to say that agents can employ any strategy 6 such that
t = 0,(¢t,0) is of bounded variation for every n and a.e. w. Such 6
correspond to trading strategies that have the representation: The
amount held at date ¢ is the difference between a total amount bought
during [0,¢] and an amount sold during that period. It is clear that such a
strategy 0 should be called self-financing if 0 = d6(s)*p(¢) forallz € (0,1].
In this case 6 yields the net trade vector x(8,p) = (r(0,p),y(8,p)) given
by

(5.2) r(6,p) = —6(0)*p(0) and y(0,p) = 6(T)-d.

A second, less generous possibility is to say that agents are capable of
employing only simple trading strategies, defined as follows. A trading
strategy 6 is called simple if there exist a finite integer/ and dates 0 = £, <
t, <t, <...<t;=1such that 8(¢,w) is constant over intervals of the form ¢
€ [#,4+1). In words, agents rearrange their portfolios only finitely many
times, where the number of times and the dates are fixed in advance. A
simple strategy 8 is self-financing if [6(¢;) — 8(¢;_,)]*p(¢;) = Oforallj =1,
in which case (5.2) gives x(0,p).

)
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Having defined what strategies agents are capable of, the definition of
an equilibrium proceeds exactly as before. An equ:llbnum isan ensemble
{p,(x', 6‘)} such that p(¢) is F, measurable for all ¢, x' = x(B‘,p) € X' for
each i, x' is = maximal in {x(8,p)} N X" for each i, and Z; 6’ = 0.

Does the Black-Scholes model give prices which for some community
of agents are equilibrium prices in this sense? The answer to this question
depends on what trading strategies are allowed to agents. If bounded
variation strategies as defined above are permitted, then the answer is no.
This is because there is a bounded variation strategy 6 such that for p the
Black-Scholes prices, r(8,p) > 0 and y(6,p) = 0 P-a.s. That is, the
condition analogous to (2.3) does not hold. See Harrison and Kreps
(1979), section 6) for the basic idea. Note that this phenomenon is not
peculiar to the Black-Scholes model. It occurs in virtually every con-
tinuous time model with frictionless markets and two or more securities.
But if simple trading strategies only are allowed, then the answer is yes.
To show this, show that (2.3) does hold in this case. (A direct proof is not
difficult.) The discussion in Kreps (1981, section 6) shows that this is
sufficient.

Take then the case where only simple trading strategies are allowed. A
result analogous to proposition 1 is immediate. Defining

={x € X:x =x(0,p) for a simple trading strategy 6},
={x€X:x=m'+ (r,0) for m' € M’ and r€R}, and
w(im' +(r,0))=rform' €M’ and réR,

it follows that M is a subspace of X and w is a_we]l-deﬁned, strictly positive
linear functional on M. Moreover, if {p, (x',8')} is an equilibrium, then

m(x')=<0,x € X'\ M, and x'is = maximalin {x €¢ X' N M :7(x) <0}.

Thatis, {x'} is an equilibrium allocation in a Debreu-style economy where
claims in M can be bought at prices .

Is this a “‘complete markets” equilibrium? It can be shown that M # X
(for any reasonable choice of X), so the answer seems to be no. But there
is a sense in which the answer is yes. Suppose that X = R x L*(Q,F,P);
strategies 8 must satisfy 0,,(t)p,(t) € L*(Q,F,P)foralltandn = 1,2, X*
= X for each i, and each agent’s preferences are continuous in the
Euclidean x L2-norm product topology on X. Then following the results
in Harrison and Kreps (1979) and Kreps (1981, especially theorem 5),
there exists a strictly positive linear functional ¢ : X — R such that if
{p,(x',8)} is an-equilibrium (where p are the Black-Scholes prices, of
course), then

(5.3) P(x')=0,x'€ X',and x'is = maximal in {x € X": y(x) <0}.

. il
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(The linear functional ¢ turns out to be the unique continuous, strictly
positive extension of w from M to all of X, and it is the uniqueness of thjg
extension that yields (5.3).)

This is the sense in which two long-lived securities can yield a complete
set of contingent claims for uncountably many contingencies if there are
infinitely many trading opportunities. One feels uneasy about both thjs
model and the conclusion arrived at on several grounds, among which are
the following:

1. The restriction to simple trading strategies is unnatural. There are
other more natural ways to exorcise trading strategies that violate (2.3).
For example, the requirement that 8(¢)*p(¢) = — L for some finite L will
suffice for the Black-Scholes model. This can be interpreted as a credit
constraint. But no theory has been developed along these lines to the
author’s knowledge.

2. The twin assumptions that each X’ = X and that each ='is Euclid-
ean X L?continuous are hardly palatable. (To some extent, the use of the
L?topology can be foregone. See Harrison and Kreps 1979, section 7.) It
would be nice to be able to widen the class of trading strategies so that M
= X and p is part of an equilibrium. The extant literature on the
Black-Scholes model, especially Merton (1977), suggests that the former
can be done by allowing trading strategies that are Ito integrals, and it has
been conjectured by Harrison (1978) that the entire program is feasible if
a restricted class of Ito integrals is allowed.

3. Most important is that no intuitive feeling has been developed for
why two securities suffice to give ‘‘complete markets” in this model, nor
whether this result is generic in any sense. How does one generalize Ktoa
continuous time setting, and why (if a generalization is possible) does K
= 2 in this case? The proof of theorem 3 in Harrison and Kreps (1979) is
the key step in obtaining the result that markets are ‘“‘complete’ in the
Black-Scholes model, and in that proof the key step is the use of the
remarkable result of Kunita and Watanabe (1967) that every martingale
on the Brownian information structure can be written as a stochastic
integral of Brownian motion. Intuitive comprehension of that result is
necessary if one is to feel comfortable using the Black-Scholes model.

6.6 A Convergence Result

Begin with the following pieces of the Black-Scholes model: (€2, F, P),
{F; t € [0,1]}; a finite collection of agents with X' = X = R X L*(Q,F,P)
and preferences that are Euclidean x L continuous and strictly increas-
ing. Assume that if these agents are placed in a Debreu-style economy
with a complete set of contingent claims markets, then the linear func-
tional ¢ : X — R that is introduced in section 6.5 is an equilibrium set of
prices, with corresponding equilibrium allocation (x'). '
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Now consider placing these agents in a sequence of economies like
those in section 6.2 except that Q as above remains fixed and so is infinite.
Index the economies by H = 1,2,... In economy H, trading in two
securities takes place at the H + 1datest = 0,1/H,...,1. The informa-
tion available at date h/H is F,, (for F, as above), and thus “K = " in
each of these economies. Let {p,(t;H);n = 1,2,¢ = 0,1/H,...,} denote
the equilibrium prices in economy H, and let (xi(H)) denote the corre-
sponding equilibrium allocation. Assume for simplicity that d,(H) = €
forall H,sothatp,(¢; H) > 0for alltand Hby (2.3),and thatp(0; H) = 1
for all H.

Of course, in economy H itis not true that M = X. Thus, the allocation
(x(H)) may be Pareto inefficient. To measure the degree of this in-
efficiency, the allocations (x‘(H)) will be compared with the efficient
allocation (x'). Write x'(H) = (#(H),y'(H)) and x' = (,y"). Define
8'(H) by

6.1) 8(H) =inf{8>0:(F(H) + 8,y'(H))> (", y")}.

That is, x'(H) augmented by 8'(H) units of date zero consumption is at
least as good as x'. If agent i prefers x'(H) to x', then 8‘(H) 1s set equal to
zero. If no & can be found to make : better off with x i{(H) + (5,0) than
with x’, then (H) is set equal to +». Define

(6.2) A(H) = i S(H).

In words, A(H) units of date zero consumption can be distributed among
agents after they trade to equilibrium in economy H so that each agent is
at least as well off as in the efficient allocation (x'). If A(H) is “small,”
then economy H is “nearly” efficient.

Proposition 4. Let{p(t);t € [0, 1]} be the Black-Scholes price system. If
the equilibrium prices {p(¢; H)} converge to {p(¢)} in the sense that

(6.3) ’l}m pa(t; H)/p\(t; H) = po(¢)/ py(t) in L? uniformlyin t,

then limy_... A(H) =

Proof. (This proof makes heavy use of the technology of Harrison and
Kreps 1979 and Kreps 1981, and it is probably unintelligible to readers
unfamiliar with those papers.)

Without loss of generality, it can be assumed that » = 0 and p,(¢) =
pi(t; H) = 1 for all H. (See Harrison and Kreps 1979, section 7.) In this
case (6.3) becomes: limy_... po(t; H) = p,(t) in L? uniformly in ¢.

It will suffice to show that for every x € X such that y(x) < 0 there exists
a sequence of (self-financing) trading strategies 8( /) that involve trading
at dates 0,1/H,...,1 only and a sequence {x(H)} C X such that

(6.4) x(6(H),p(H))=x(H)forevery H,and ’l}m x(H)=x.
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(lel[S in X are always in the Euclidean x L? product topology.) For if
this is true for all x, it is true in particular for x'. Thus, as H gets large it is
feasible in economy H for agent i to obtain an x‘(8(H), p(H)) which is at
least as good as some x(H) which in turn is close in terms of >/ tg y
(Recall the continuity of =‘) By revealed preference, x ‘(H) >,
x(8'(H),p(H)), and thus §(H) — 0 as H — =.

Fix x € X. From Harrison and Kreps (1979) and Kreps (1981) it j
known that there exist simple trading strategies 6(€) that are sels.
financing for p and x(€) (€ = 1,2,...) such that

6.5) x(8(£),p)=x(€) forevery € and gim x(€) =x.

In Harrison and Kreps (1979), such 8 are assumed to satisfy the condition
8,(t)p,(t) € L? foreach tand n. But in fact one can add the condition that
8,(¢) € L™ for all ¢, and still there exist 8(€) and x(¢) as in (6.5). (To see
this, review the proof of theorem 2 in Harrison and Kreps 1979 with this
additional condition on simple trading strategies, and verify that it re.
mains a valid proof.) For the remainder of this proof, simple trading
strategies will be assumed to satisfy this additional condition.

Let 6 be any simple trading strategy that is self-financing for p. Define
from 6 a trading strategy 6’ (for economy H) by

04 (h/H) = 8,(h/H)forh =0, ...,H,0%(0) = 8,(0), and
8% (¢) for t>0 defined so that 8" is self-financing for { p(¢; H )}.

Note that if 8 changes values at dates 0 = t, < t; <...<t; < 1, then 87
changes values at dates 8,1t wherefort € [O 11,7 = influ=r,
= h/H for some integer h}.
To show that (6.4) is true, it will suffice to show that for any simple 6
(self-financing for p),

(6.6) Jim x(8%,p(H)) = x(8,p).

For this combined with (6.5) yields (6.4) by an easy argument. To show
(6.6), note first that 8”(0) = 0(0) and therefore r(8”,p(H)) =
—0(0)+p(0;H). Since F, is trivial, the constant p(0;H) — p(0) by
assumption, and thus 7(8”,p(H)) = —8(0)*p(0) = r(6,p). Next note
that

y(8,p) = 0(1)+d = 0(t;)*d = 8(t))*[d — p(t,)] + (1) *p(t))
= 8(ty)*[d — p(t;)] + 8(t,-1)*p(t))

(because 0 is p self-financing)
=0(t))°[d - p(t)] + 9(‘1 )°[p(t) = p(t;-1)] + 0(4,- 1) p(ty - 1)

=0(ty)[d - p(e)] + 2 9(‘) [p(4+1) — p(t)] + 8(0)=p(0)
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(by iterating the above argument)

= 02(6) [~ palt)] + 2 0a(6) ol ) — palt)] + 0(0)+p (0
(since dy = py(t) = 1). Similarly,
y(8",p(H)) = 6% () [d(H) — po(t] s H)) +
'S 04 oo} i H) = paltf )] + 6(0)+p(03 H).

For H large enough that ¢;,, — ¢;> 1/H for all , it follows that 95”(:,’-”) =
85(t)) for all j. By assumption, 85(r) € L* for all f, and by previous
argument, 8(0)+p(0) = lim, 687(0)+p(0;H). Thus, y(8,p) = limy
y(8",p(H)) follows from limy dy(H) = d, in L? (note that d is pro-
portional to p(1) and d (H ) is proportional to p(1; H), and by assumption
d, =d(H)=1), and

Jim [pa(t™;H) = pa(0)] = lim [po(t"; H) = pat™)] +

llqim [p2(t*) = p2(t)] = 0 + 0 = 0in L2 uniformlyint,
the first by the hypothesis of the proposition and the second because t* —
t < 1/H and geometric Brownian motion is L? uniformly continuous.
QED.

Proposition 4 shows that it is possible to have K much larger than N
(o versus 2), and yet equilibrium allocations are “‘nearly” efficient. This
in itself is not remarkable—Wilson (1968) shows that this is possible by
making strong assumptions concerning agents’ preferences. But here
much weaker assumptions about preferences are made. Instead, there

are strong assumptions on the ability to trade securities frequently, the -

way in which uncertainty resolves, and the approximate behavior of
equilibrium security prices. It would be preferable, of course, not to
make assumptions about equilibrium prices. A possible direction would
be to take as given (1, F, P, {F,}, and agents, assume that s : X — R gives
equilibrium prices for a Debreu-style economy with complete markets,
and then show that (1) for each H, or for H sufficiently large, there is an
equilibrium in the long-lived securities economy with two securities that
pay off exactly (or approximately) what the Black-Scholes securities pay,
and (2) these equilibrium prices converge to the Black-Scholes prices in
the sense of (6.3). But even if this is true, it is a result predicated on very
strong assumptions.

A number of extensions can be obtained cheaply. The reliance on the
exact distributions of the Black-Scholes price processes is unnecessary—
the methodology works for any diffusion process covered by theorem 3 in
Harrison and Kreps (1979). This includes, for more than two securities,
multidimensional diffusions. The diffusion assumption is not particularly

i et
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necessary, except insofar as it is a case where “‘markets are complete” iy,
the limit. Other stochastic processes, such as the jump process mode] of
Cox and Ross (1976), could be used. Finally, the use of the space of
square integrable claims and the L? topology is not necessary—see the
discussion in Harrison and Kreps (1979, section 7). Of course, if prefer.
ences are continuous in another topology, then (6.3) will have to b
modified appropriately.

It is worth noting that what is a flaw in the Black-Scholes model],
namely, the need to restrict attention to simple trading strategies, be.
comes a virtue here. If one takes the view (implicit in proposition 4) that
the Black-Scholes model is to be regarded as an ideal approximation tg
economies with many, but only finitely many, trading dates, then the
restriction makes sense. In the “limit”” economy, agents should not be
able to employ strategies that cannot be approximated (in terms of
preference) by strategies available in the economies approaching the
limit. The trading strategies of bounded variation that turn nothing into
one unit of consumption do not pass this test for agents of the sort
discussed here. So from this perspective, these strategies can reasonably
be excluded from the set of strategies available in the limit economy.

6.7 Extending the Convergence Result

Perhaps the least satisfactory aspect of proposition 4 is that in it, Q, F,
P, {F}, and the agents do not change along the sequence. A more
satisfactory treatment of the problem would cover the following example.

Fix a positive integer H and imagine an economy with 3 states of -
nature. Every state w has H coordinates (w,, . . . ,wy) where each w, takes
on one of three possible values: —2; 0; 2. Think of each w, as being
determined by an independent experiment, where the probabilities of the
outcomes 2 and —2 are ¥s apiece and the probability of outcome 0 is %.
Let O denote this state space and P this probability measure on Q. In
this economy, agents consume at dates zero and one and trade at dates ¢
= 0,1/H,...,1. The information available at date 4/H, denoted F /1, is
the o-field generated by the first 4 coordinates of the state. (That is, at
date h/H the first h coordinates of the state have been revealed to agents.)
Note that this yields K = 3. There are two securities traded in this
economy, paying the following dividends at date one:

H
df = e and d¥ (w) = exp [o(IZ_lm,,)/\/H + p.

Here w = (wy,...,wy),andr, u, and o > 0 are given constants. These are
traded together with the consumption good at date zero at relative prices
one apiece. The two securities are also traded for each other at dates
1/H,...,1 with relative equilibrium prices




! 225 Multiperiod Securities and the Efficient Allocation of Risk

h
i (hH,w) = ™" and p (h/H,w) = exp [a( leg)/\/H + wh/H].
g::

(No matter what values r, u, and o take on as long as o > 0, for large
enough H these prices are equilibrium prices for some agents. That is, for
all sufficiently large H they satisfy (2.3).)

Because K = 3 and N = 2, this economy has incomplete markets. Yet
for large H, the equilibrium price system in this economy is “‘very much
like” the Black-Scholes price system. A more precise statement is that as
H goes to infinity, the price systems p*’ converge weakly to the Black-
Scholes price system (in the sense of Billingsley 1968).° Does this imply
that as H goes to infinity, the equilibrium allocations are asymptotically
Pareto efficient?

Proposition 4 offers no concrete guidance on this question. Here,
unlike there, as H changes so do state spaces and information structures.
Since the state spaces change, so must the commodity spaces, and there-
fore so must the agents. There is a sense in which proposition 4 offers
evidence that the answer to this question is yes: It is possible to define on
the Black-Scholes probability space a sequence of vector stochastic pro-
cesses {p"'(h/H); h = 0,...,H} that have the same distribution as the
processes { p"/(h/H)} given above and that converge to the Black-Scholes
prices in the sense of (6.3).° Therefore, if for large H one seeks to
approximate in M'(H) (the set of budget feasible net trades in economy
H) the individual agents’ parts of an allocation that is budget feasible at
the Black-Scholes prices (on the presumption that one such allocation is
Pareto efficient), then proposition 4 suggests that this is possible.

But for a number of reasons, the quality of this evidence is low.

1. As noted above, the agents must change with H. In what sense can
an allocation from the Black-Scholes economy be Pareto efficient for
economy H? There can be no sense in which this is true, because for
agents in economy H, their piece of any such allocation does not lie in the
domain of their preferences. What would make sense is a statement such
as:

(7.1) In economy H there is a Pareto efficient allocation (x'(H)) ¢
(X(H))" such that as H goes to infinity, each x'(H ) is approximated
by some bundle from M'(H).

2. Assuming that (7.1) is to be sought, how is the notion of “‘approxi-
mate” to be formalized? Proposition 4 suggests the following:

(7.2) For each x'(H) = (r(H),y'(H)) there exists (s'(H),z'(H)) ¢
M'(H) such that limy_., {|r'(H) - s(H)|+E"[(y(H) -
Z(H))Y)} = 0.

This type of criterion worked in proposition 4 because the agents (and

P* did not changé with H, and the agents’ preferences were assumed
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continuous and their net trade sets open in the corresponding topology.
Thus, from (7.2) it was easy to conclude that A(H) — 0. Here, becayg,
agents change with H, (7.2) alone will not suffice to guarantee ““asympty.
tic efficiency,” even if every agents’ preferences are Euclidean x 2
continuous. An assumption of equicontinuity (measured in date zery
consumption) will clearly be required. That is, as H changes the agen;
who “plays role i’ in economy H cannot be varying too wildly with H i
terms of the continuity of his preferences.

3. Assume that (7.1) is to be sought, formalized as in (7.2). This i
general will be false. Because agents change with H, the allocation
(x'(H)) that is being “chased” may change with H sufficiently quickly to
frustrate convergence. (This was not a problem in proposition 4 because
there a single unchanging allocation was being chased.) For example,
suppose that for efficiency in economy H it is necessary to trade the
contingent claim y(H) given by

y(@;H) =11y, 225 Where o = (@1, ..., 0p).

Trade in this claim would be necessary for efficiency if, for example, two
agents disagreed about the probability distribution of wy, even if they
agreed about all other probabilities. It can be shown that for this claim
y(H) there does not-exist z(H) € Y(H) such that for some s(H),
(s(H),z(H)) € M'(H) and

(7.3) lim E*[(y(H) - 2(H))’)

Thus, if these claims appear in the allocations (x'(H)) being chased, (7.2)
cannot hold.

Compare this with the following situation. Suppose that for efficient
allocation in economy H only the following two claims are required (in
addition to those in M(H)):

h
y'(w; H) = sup {exp| zlwg/\/m;h =0,...,H}
8=

and
y"(w; H) = [d¥ (w) —a]”

For these claims the statement corresponding to (7.3) is true, and there is
some hope that (7.2) may prove to be true.

What distinguishes y’(H) and y”(H) from y(H)? Why does (7.3) hold
for the first two and not the third? Recall that the price systems p*!
converge to the Black-Scholes prices in a very coarse fashion, in the weak
topology.” The claims y'(H) and y"(H) depend on the state only via
“coarse’ features of the price history. More precisely, they are given by
weak topology continuous functions of prices.® This is not true of the
claims y(H). They depend on the “fine features” of the price history.
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Since convergence takes place in the weak topology, it is reasonable to
expect that at best sequences of claims corresponding to weak topology
continuous functions will be approximated by marketed claims. In gen-
eral, (7.1) and (7.2) will be false, unless (perhaps) the allocations (x'(H))
being chased “settle down” in this fashion. Since (x'(H)) is meant to be a
Pareto efficient allocation for the agents in economy H, it seems likely
that in order to ensure that the (x‘(H)) “‘settle down” it will be necessary
to assume that agents “‘settle down.” (No general formulation of this can
be offered here. But the reader may wish to ponder the following exam-
ple that seems to work: Fori = 1,...,I fix real numbers o' and a utilit)}
function 4’ : R X R— R. In economy H, let agent i’s preferences for (r, y)
be given by the index E“[u'(r,o'd% (w) + y(w))]. That is, agents are
expected utility maximizers whose date one endowments are propor-
tional shares of the second security.)

4. In proposition 4 the information structure does not change with
H—at time h/H agents possess all the Brownian information to that date.
Thus, in the proposition, trading strategies 0 can have 8(h/H) depending
on more than the history of prices up to time #/H. In the sequence of
economies given above, this extra information is not available. It can be
shown in the setting of proposition 4 that for some claims this extra
information is extraneous: For a claim whose value depends continuously
on finitely many values of prices, (6.4) remains true when agents can base
portfolio holdings on past price information only. This suggests that with
some further restrictions on the allocations (x'(H)) being chased, (7.1)
and (7.2) will not be rendered false by the changing information struc-
ture. But what those restrictions are in general remains an open question.
(A good place to start is probably with the work of Aldous 1978 concern-
ing the relation between weak convergence a la Billingsley 1968 and
“convergence of information.””)

The somewhat disjointed discussion of this section can be summarized
as follows. Proposition 4 is a first step toward a general theory of approx-
imation of the sort discussed in the introduction. But it takes too many
things as fixed. A more satisfactory theory would subsume the example
with which this section began. Proposition 4 suggests that such a theory
can be created, but subject to the very important qualifications noted
above.

6.8 Concluding Remarks

To sum up what has been said: Frequent trading makes it possible for a
few securities to span many states of nature. Whether markets are “per-
fectly” complete depends critically on the fine structure of the way in
which uncertainty resolves. But the condition required for complete
markets is not “nearly” required for “approximately’”’ complete markets.
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If equilibrium prices approximate an ideal model in a fairly coarse sense
and if that ideal model has perfectly complete markets, then markets ip
the original model will give nearly efficient equilibrium allocations. Thus,
if actual security prices behave ‘“like” those in the Black-Scholes mode]
(meaning here the general class of diffusion process models for which
markets are complete), risk is allocated approximately efficiently.

A number of caveats to this argument have already been noted. The
analysis,in the second half of the paper relies on unpalatable assumptions
concerning agents’ net trade sets and preferences. The approximation
analysis takes equilibrium prices as exogenously given, which is certainly
an unhappy state of affairs. And the approximation result that is derived
is preliminary at best—a more satisfactory theory will require qualifica-
tions that may turn out to be unpalatable. To this list the following more
general caveats should be added:

1. The final conclusion given above rests on a very large supposition.
Do actual security prices behave (even coarsely) ‘“like” those in the
Black-Scholes model? One can point to incidents where sudden bits of
news have caused security prices to jump discontinuously, which the
Black-Scholes prices do not do. In Merton (1976) it is argued that such
jumps may be unimportant for the efficient allocation of risk because they
may be “‘diversifiable”’ components of uncertainty. But to make this
argument, it is at least necessary to assume that agents hold portfolios
that are “diversified”” enough to make such risk negligible. This in turn
requires strong assumptions on preferences. Moreover, “continuous
sample paths’ are not (as is sometimes naively believed) sufficient for
Black-Scholes type behavior: Harrison (1978) observes that if prices act
in precisely the Black-Scholes model except that the diffusion coefficient
changes with, say, the political party of the occupant of the White House
(and if it is impossible to make book on the results of presidential
elections), then sample paths are continuous yet markets are not com-
plete. The question of whether prices do behave approximately like
Black-Scholes prices (even coarsely) is very difficult, and nothing here
should be construed as an assertion that they do.

2. For efficient allocation of risk, all uncertainty must be ‘“‘spanned.”
In the Black-Scholes model, the only uncertainty is security price uncer-
tainty. But phenomena such as differential information, moral hazard,
individual uncertainty about future tastes, etc., represent uncertainty the
resolution of which is not reflected (completely) in any security price. At

. best, there are complete markets only in uncertainty which is so reflected.

3.. Adding production decisions to the story causes major difficulties.
A firm contemplating a new and uncertain production process cannot
(necessarily) observe prices for claims contingent on the outcome of that
uncertainty—the problems addressed in the “spanning” literature (Di-
amond 1967; Stiglitz 1972; Ekern and Wilson 1974; Leland 1974; Merton
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and Subrahmanyam 1974; Radner 1974; Grossman and Stiglitz 1980) all
arise. Note that adding firms is “easy’” only when they are “‘competitive”
(see Grossman and Stiglitz 1980), and Hart (1979) indicates that with
short sales, “competitive” firms will be difficult to find.

4. Still, suppose security prices do behave “nearly” like the Black-
Scholes prices. Then at least, it seems, markets are “‘nearly” complete for
purposes of pure exchange in the security price uncertainty. Even this is
suspect. The arguments used here put tremendous strain on the assump-
tions of rational expectations and zero transaction costs. In a world with
transactions costs and even slightly “‘irrational” expectations, there will
be a place for markets where agents can purchase at the outset sundry
“standard” packages of claims contingent on security price histories. The
CBOE need not go out of business owing to the arguments put forward
here.

Notes

1. Besides these two seminal papers, the following make significant contributions from
the perspective taken here: Cox and Ross (1976), Harrison and Kreps (1979), Kreps (1981),
Merton (1977), and Ross (1978). Smith (1976) provides a survey of the literature through
1976. Diffusion models were introduced into financial theory in Merton (1971, and 1973a).

2. Two technical points are worth making. First, unlike in Radner (1972), no bound is
placed on'the magnitude of 8. This is not necessary here, as general existence of equilibria
will not be an issue. Second, the definition of an equilibrium of plans, prices, and price
expectations presumes that agents will carry out plans that they embark on (or, more to the
point, they believe that they will carry them out). Implicit in this is an “unchanging tastes”
assumption, which can be used to motivate restrictions on preferences, notably weak
separability across states. See Donaldson, Rossman, and Selden (1978). If agents’ prefer-
ences “‘changed” in the sense of Hammond (1976), the analysis here would be significantly
different.

3. See Harrison and Kreps (1979, section 7) for a discussion of this restriction.

4, If y = y' P-a.s., then y and y’ are assumed to be indistinguishable as time one
contingent claims. Note that for the first time the probability measure P has entered the
story. It will continue to do so, and the reader should note where and how it does.

*S. To be more formal about this, define p{(t) = ¢” and p¥(1,w) = p¥(WH,w) fort €
[AW/H,(h+1)/H). Then weak convergence in D[0, 1] (with the Skorohod topology) to the
process given in (5.1) follows from Donsker’s theorem and the continuous mapping
theorem. See Billingsley (1968) for definitions and details.

6. More generally, a theorem of Skorohod (1956) ensures that weak convergence and
almost sure convergence are compatible in roughly this sense: If p(H) converges weakly to
D, then there exists a probability space on which are defined processes p(H) and g such that
each p(H) has the same distribution as p(H ) and j has the same distribution as p, and p(H)
converges a.s. to p. Note that the convergence criterion in (6.3) is neither necessary nor
sufficient for almost sure convergence in the Skorohod topology on D?[0,1]. Moreover,
replacing (7.3) by a.s. convergence in the Skorohod topology would be insufficient for
purposes here, for roughly the same reason that a.s. convergence does not imply L?
convergence for random variables. Therefore, in a general treatment of the convergence
problem, convergence in the weak topology would not be the “‘correct™ criterion.
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7. Caveat emptor: As noted above in note 6, convergence in the weak topology is apt to
turn out to be too weak a criterion for the results being sought. Throughout this section, the
weak topology is used for purposes of discussion, to indicate the general sort of convergencey
topology that one would like to use in extending proposition 4.

8. That is, they correspond to a function f : D?0,1] — R that is continuous in the
Skorohod topology.
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