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3 Statistical Decision Theory
Requiring Incentives for
Information Transfer

Jerry R. Green

A model of decision making under uncertainty is presented in which one
agent receives information and transmits it to another who makes a
decision that affects them both. Because their utilities differ, the former
will not necessarily transmit the observation accurately to the latter.

We study the problem faced by the decision maker. He must balance
the potentially conflicting goals of efficient actions versus accurate in-
formation transmission. Some characteristics of optimal action plans are
derived.

We also study the effect of improving the information structure on the
value of the problem. Better information may be harmful, in general; but
a sufficient condition for it to be beneficial is that there are only two
possible observations.

3.1 Introduction

In organizations, large and small, the locus of decision making is often
separate from that of information gathering. When all agents within such
a system have common values, there is no incentive for the information
gatherers to distort their observations. But this is often not the case. The
design of the decision making procedures for the organization must
balance the feasibility of eliciting accurate information transmission
against the efficiency of the decisions taken. _

In this paper a simple model of this type is presented.' Optimal decision
rules are analyzed, and properties of these rules are derived in some
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78 Jerry R. Green

special cases. We also study the impact of improving the information
structure used by the information gatherer on the decision maker’s
welfare.

The following results are demonstrated: .

1. If there are only two possible actions and two possible observations,
either a first-best can be attained or else there is no value to the informa-
tion at all.

2. If there are more than two possible actions, it may be the case that a
randomized decision rule is required to attain the optimum. Moreover,
such a rule may place a positive probability on selecting actions that are
dominated. ; '

3. Ifthere are more than two observations, the optimum may involve a
situation where the decision maker knows that the information gatherer
1is transmitting the observations imperfectly. Thus, information may be of
some value, but not as much as it would have been had it been received by
the decision maker directly.

4. The value of improved information may be negative.

5. However, if we are comparing information structures both of which
involve only two possible observations (but an arbitrary number of states
and actions), then the criterion of “more informativeness” used in statis-
tical decision theory always agrees with the ordering relevant to the
decentralized problem we have posed.

There are three strands of literature with a good deal of similarity to the
model studied herein: team theory, principal-agent problems, and incen-
tive compatibility (with preferences unknown). Before proceeding to the
main part of the paper, a brief comparison of our model with each of
these is probably worthwhile.

In team theory the actions of each individual are taken separately,
perhaps after some communication,” whereas in this model there is a
central decision maker who chooses a single action affecting both his
welfare and that of the information gatherer. Those papers in team
theory that do address issues of partially conflicting goals have retained
this feature of decentralized actions. They also have tended to allow
monetary transfers that, in conjunction with the team’s decision rules,
affect the members’ incentives. Nevertheless, at least in a formal sense,
this model lies close to team theory in spirit.

Principal-agent problems share the feature of partially conflicting
goals.’ However, the locus of information gathering and action is coinci-
dent rather than separate. Their interesting features arise, rather, from
the imperfect way in which risks can be shared and in the conflict between
such risk sharing and the appropriate motivation of the agent. In the
present model there is no explicit risk sharing possible, although consid-
erations of this sort do indirectly affect the dependence of optimal actions
on the observations transmitted. '

i
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Incentive compatibility has primarily concentrated on the imperfect, or
more explicitly, dispersed, knowledge about the preferences of the indi-
viduals composing the economy.* In this paper such information is per-
fect. The element of gamesmanship that is present is that the decision
maker must bind himself in advance to a course of action that depends on
the information transmitted to him. The information gatherer will opti-
mize his transmission against this background—and the decision maker
must take this into account ex ante. By using this “‘Stakelberg” format,
the problem becomes trivial from a game-theory point of view. This
approach has been chosen for its simplicity and also because we believe it
more closely characterizes the reality of such situations than do other
possibilities.

There is a further difference between most of the papers in incentive
compatibility and this one. These papers concentrate on the possibility or
impossibility of attaining true Pareto optima, that is, allocations compati-
ble with feasibility in the physical sense but unconstrained by informa-
tional imperfections. When Pareto optima are attainable, it is necessary
to elicit all of the relevant information about the environment. There-
fore, all attention in this literature has been centered on designing
mechanisms where truth-telling, or its essential equivalents, has been
required.® In this paper the potential for full optimality is present only in
some very special cases. The second-best nature of the optimum imposed
by the necessity for incentives in the information transmission process is
explicitly recognized. It is not the case, therefore, that we have imposed
truth-telling as an absolute constraint. Rather, we let the problem itself
dictate the (constrained) optimal accuracy of the information that is to be
elicited.

The remainder of the paper is organized as follows: Section 3.2 de-
scribes the model and defines the constrained optimization of the decision
maker. In section 3.3 several results concerning the nature of the con-
strained optimum are proved. Examples of various types of phenomena
possible in such a second-best situation are given and discussed. Section
3.4 concerns the value of improving the information structure. A brief
conclusion follows.

3.2 Description of the Model

We consider an individual who must choose from among a collection A
= {a,,...,ax} of actions. The result of these actions is uncertain at the
date at which the choice must be made. It depends on which state of
nature from among those in © = {0;,...,0,,} will arise. We assume that
this individual is a von Neumann-Morgenstern expected utility maxi-
mizer and that his utility is given by the entries in the K X M matrix




U= (ukm) s

where u,,, is the utility if a, is chosen and 8,, occurs,

Before the action must be chosen, some information relevant to the
prediction of the state of nature can be obtained. This is modeled by
introducing a set of observations Y = {y,,...,yn} and for each 8,, € © a
probability vector (\,,;,...,\nn), where A, is to be interpreted as the
conditional probability of observing y, given that the true state is 8,,,. One
writes the M X N likelihood matrix

A=(Nmn)
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An information structure is described completely by its likelihood matrix
(the set Y being relevant only through the number of points it contains,
which is given implicitly in the dimensionality of A). One nevertheless
speaks of the information structure (Y,A), or simply A, without fear of
confusion.

The individual has a prior probability distribution w = (my,...,Ta)
over O, where m,, is the probability of 6,,.

In the absence of information the act a,,,. for which U has its maximal
component would be selected.

If the individual could observe y€Y before choosing an act, he would
compute the optimal act by forming his posterior probability according to
Bayes’s rule:

xI"Il '"m
POmlyn) = —

2 )\m’n"m'
m’' =1

Writing
P=(pOm!|y))m=1..... M
. n=1,...,N
as the M x N matrix of posteriors, the matrix product UP determines his
optimal action plan according to the location of the maximal elements
within each column. ' .

This is the standard problem of statistical decision theory. This paper
addresses a problem of essentially the same nature. It differs in that the
observation y€Y is not received directly by the individual who chooses
actions but rather by someone else. To distinguish them clearly, we will
call this other person the agent and the individual we have been discussing
above, the planner. ,

The agent may have a different utility function from the planner. The
agent’s utility depends on the planner’s action and on the realized state.
Call his utility matrix U’ = (ug).

The model works roughly as follows: The planner announces the way
in which his action will depend on the observation transmitted to_him.

1
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The agent sees y, and forms his posterior. Since we will assume that the
agent and planner share the same prior distribution, this is just the ath
column of the matrix P. The agent then transmits some element y’ € Y
which may or may not be the truth y,. Thus, there are three factors
influencing the choice of y’: the true value of the observation y,, the
agent’s utility U’, and the courses of action to which the planner has
committed himself.

We will be considering this system from the planner’s point of view,
under the assumption that both the information structure (Y,A) and the
agent’s utility (U’) are known to him. It is clear that if U = U’, then there
is no barrier to the policy of announcing the optimal action plan, which
will induce the agent to transmit the true observation in every instance.
But if U # U’, then announcing the optimal action plan may induce the
agent to lie, and therefore may produce suboptimal results.

Because of these considerations, it may be the case that an announced
action plan that is stochastic is necessary to achieve the best results.* We
define the planner’s random action plan denoted by an N X K Markov
matrix

Z = (an),

where z,, is the probability that the planner will choose a, given that the
agent responds with y,. It is in the spirit of the literature on incentive
compatibility and optimal taxation that the planner actually will make his
choices according to Z rather than choose either the unconstrained best
action at that stage or the best action from among those k' for which z,,.
> 0 (and which he therefore could claim to have produced as the result of
the promised randomization).

The responses of the agent are thus determined by the maximal ele-
ments from within each column of the N X N matrix:

ZU'P.

We will define the résponse pattern R induced by Z as follows: Let R be an
N x N matrix in which every column is a probability vector concentrated
on the maximal elements of ZU' P within that column. Since U’ and P are
fixed and are known to the planner, we are interested in the correspon-
dence that sends Z into the set of all matrices R generated in this way.
Letting At and M7 be the set of all Markov matrices and their transposi-
tions, then ' :

MM,
®(Z) = {R|R s a response pattern induced by Z},

is this correspondence.
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Typically, the maximal elements in all of the columns of ZU'P will be
unique, in which case of course $(Z) consists of a single matrix of zeros
and ones. ‘

The planner tries to choose Z to his own best advantage. If Z induces
the response pattern R € ¢(Z), the actual actions that the planner will be
taking as they depend on the true observation of the agent are given by

R7Z, where R” denotes the transpose of R.

We can now calculate the planner’s expected utility attained when he

announces the action plan Z. Let the probability vector g = (q,,...,qn)"

be the probabilities of observing the various points in Y when the in-
formation structure is (Y, A) and the prior is w. We have ¢ = ATrr. Let the
symbol ~ over a vector denote the diagonal matrix with that vector on the
diagonal. The planner’s expected utility when R is the agent’s response
pattern is given by

trace R7ZUP3,

or, admitting the possibility that the agent will choose the best response
pattern from among those to which he is indifferent, we have
(1) max_ trace RTZUPq

Red(2)

The planner’s problem is to maximize (1) over Z € M, knowing the
correspondence ¢.

The second-best nature of this problem is clear from the fact that a
single decision maker would maximize trace ZUP4, with Z uncon-
strained, but here, the range of the correspondence that sends Z into {Z'
€ M|Z' = R"Z, for R € &(Z)} may be much smaller than L.

The fact that ¢ is an upper semicontinuous correspondence, but not a
continuous one, means that the objective function (1) will not necessarily
be continuous in Z. It will be upper semicontinuous (as a function), so a
maximum will surely exist. In this section we show that it can be solved by
converting it into a linear programming problem.

Nonstochastic response patterns give rise to mappings of the set of
observations into itself. We will say that p is a response rule associated
with a response pattern R, € M7 whenever

r(’(}'n))’n =1 ’

ry on =0 for all y, #p(),).

¥n'¥n

Our search for the (second-best) optimum for the planner’s problem
involves a comparison of the optimal action plans inducing all the N?
possible response rules. For each fixed p we are therefore limited to the
action plans Z ¢ ¢"'(Rp) These are defined by a system of linear
inequalities as follows: let ZU'P = V be an N x N matrix, whose typical
element is v, ,, . We need to have’

N
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(2) Vornyn= Yvnvn for every n,n’.
One can then express the planner’s problem for each fixed p as

3) max trace R,ZUP{

ZeM

subject to (2). This is a linear programming problem. The overall opti-
mum is found by comparing the values of these problems over all possible
response rules.

Although these remarks seem to imply that we will have to look at N?
separate problems, we will now argue that it suffices to solve the one for
which p is fixed at the identity.

Theorem 1

The optimum in the planner’s problem can be found by solving

4 max trace ZUP§
ZeM
subject to
(5) Vyom Z Vynovn for every n,n’,
where

ZU'P =V = (vy,.,)
Proof

Suppose the optimum of (3) subject to (2) exceeded the optimum of (4)
subject to (5) for some response rule p other than the identity. Let the
optimal action plan be Z. We will show that a trivial modification of Z
leads to another action plan Z for which (5) is satisfied and such that the
value of (4) is the same as the value of (3).

This construction is done in a very simple way: Let Z = RTZ The nth
row of Z is the p(nth) row of Z. Since there are no rows of Z which were
not rows in Z, the effective choices open to the agent are, if anything,
more limited. But since he chose the random action corresponding to the
p(nth) row of Z in response to y,, he will now choose (or at least be
indifferent to the choice of) the nth row of Z. This proves that (5) is
satisfied.

Since the random actions chosen in response to the observations are
R7Z under Z and R as well as under Z and the truthful response rule, (4)
and (3) have the same value. QED.

It will often be the case that the solution to (4) subject to (5) will involve
a Z matrix with several rows identical." That means that “truthful”
responses are elicited in a situation with fixed alternatives. The essential
response pattern is distorted by the necessity to use the same actions in
several cases—which means that these observations are really not being
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distinguished in any genuine sense. Nevertheless, theorem 1 is a useful
computational tool since it reduces an apparently complex situation to a
single linear program.

3.3 Optima in the Planner’s Problem

In order to develop some further intuition about the nature of this
problem we will now examine several special cases.

The first develops the general proposition-that with two actions and
two possible observations the problem of the planner exhibits a type of
degeneracy.

Theorem 2

If K = N = 2, the planner’s problem has an optimum of one of the
‘following two forms: (i) A first best is attainable. (ii) The agent’s informa-
tion is valueless in that the action plan is independent of the observation
transmitted.

Proof _ ,
Let U' = U'P be any 2 x 2 matrix. Consider ZU'P given by

-1 il = ! 57! ! -t i
7y 1=z \(u'yy @) _ (2@~ W)+ Uy (0 - W)+,
- bl J ! vl bt ) ryld byt 3! M
2 1=z J\u'n U (U —u )+ Uy (W~ U )+

If &(Z) contains the truthful response pattern R, = /, then we must have

(6) B 21(_711 - ﬁ'zl)z‘?z@'n —u'y),
(' —u'p)zz (W' —u'y), z1,2,€[0,1].

There are obviously two cases according to the sign of (&', — u'5)) (¥’
— u'y,). If this is positive, the agent prefers one of the acts to the other
independent of his observation; in that case, clearly, he will always
respond with whichever element of Y associates a higher probability to
the act he prefers. Only the action plan inducing his indifference, z, = z,,
remains within the truth-telling domain. The planner has thus chosen to
act independently of the information reported, so that the best action is
simply

arg max Un.
a€A
In the more interesting case of (u';, — u'5;) (U’ — ') < 0 we have
from (6) that either z, = z, (whenu'|, — @',; >0)or z, =z, (when @', —

u'y; > 0).
Consider the problem that the planner would face if he had perfect
information: '

max trace Z*UPq.
ZreM
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If the information is at all relevant to the planner, the nature of this
optimum involves either z,* = 1, z,* = 0, or z,* = 1, z;* = 0.
Therefore, when the truth-telling constraint is z; = z,, either the first-best
can be implemented (when z;* = 1, z,* = 0) or else the best policy is to
setz; =z, = 1if

arg max Un = q,
acA

orz; =2z, = 0if

arg max Uw = a,.
aeA
Other cases are completely symmetric. QED..
In the case of two states and two acts (K =-M = 2, but N arbitrary),
similar restrictions on the form of the optimum can be established. Here,
however, it is the agent’s optimum which might be implemented.

Theorem 3

If K = M =2, the solution to the planner’s problem must be one of the
following two types: (i) a choice of action independent of the information
transmitted; (ii) an action plan that implements the first-best solution for
the agent.

Note that the second-best nature of the problem from the planner’s
point of view is in full force here. The agent’s optimal action plan may be
quite different from the planner’s.

Proof
Let P be the posterior matrix in which the observations have been
reordered (if necessary), so that
(7 ' Pu=piz--- > PN
and thus

P2 <P <Pan,aSPy, + P2, =1 for all n.

Consider u;; — uy; and uy, — uy,. If these are of the same sign, the
optimal action plan is obviously of type (i). Therefore, we assume with-
out loss of generality that (u;; — uy;) > 0 and (u;; — uy;) < 0.

Ifu',, — u'5 and u’'y; — u'y, have the same sign, then the agent will
always respond with the same y, € Y, namely, that one for which z,, is
maximal (minimal) if they are both positive (negative). This would also
lead to a solution of type (i).

Let us therefore take the case of u'y; — u'y; > 0, u’; — u'5 <0.

Let Np= {nluy pin + U12D20 > Un1 P1a + U22P 20}

Na={nlu'\\pin+ u 12P22> Uz P1n + U22P20}
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These are the sets of observations that would lead the planner and the
agent, respectively, to choose a, if they were to have perfect information
about that observation.

Because of (7) we see that N, and N 4, can be described by two ““cutoff” '

indices n*, and n* 4:
N, ={n|1§n§n*p},
NA ={n|1§n§n*A}.

Again, we can assume without loss of generality that n*, < n* 4, for if
n*, = n*4, then the first-best for the planner and the agent coincide and
this action plan can be implemented with truthful responses.

We know that the first-best action plan for the agent, where z,,;, = 1ifn
€ N4, and z,,, = 0 otherwise, induces honest responses and can thus be
implemented. Suppose that another action plan Z* is the true optimum in
the planner’s problem. Let n,,, and n,;, be indices of the observations
such that

*

2% for all n.

AR U AR

The agent’s response pattern will then be Qf the form
p(yn) = Ynmax if n € Ny,
P(Vn) = Ynp  if 1§ Na.

Therefore, the planner’s expected utility level is

[ul lz*"muxl + u21(1 - Z*"maxl)] (%’Aplnqu)
+ [HIZZ*nmaxl + u22(1 —z*"maxl)] (EJAPZHQn)
+ [UIIZ*nmin] + uZl(1 _z*"minl)] (2 R plnq:l)
ngN4
+ [MIZZ*nminl + u22(1 _z*"minl)] (2 . pann)'
. nQ.NA

Because n ¢ N, — n ¢ N, the planner can increase his expected utility by
: * * .
decreasing z nmin! t0 2ero. Thus, z*%, . = 0.
Suppose that z*, | < 1. Let us take the difference between the

optimal expected utility of the planner and that obtained at the agent’s
first-best, which is implemented by z*, , = 1

(8) un (2% g — D+ uZl(—Z*nmaxl)(%Aplnq")

+ ulZ(Z*nmuxl - l) + u22(_2*nmaxl) (E_’APEnQH)'
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Note that the derivative of (8) in 2%, s

9 (g — uzl)(% P1aqn) + (U2 — u2;) (% (1=p11)qn)-
Na Na

Thus, if (9) is positive, then z*, , should be increased to one,
implementing the agent’s first-best. If (9) is negative, then z*, _ , should
be zero. It follows that z*,,; = Ofor all nand that the solutionis of type (i).

Finally, we must take the case where the planner and the agent have
diametrically opposed goals: u'y, — u';; <Oand u'y; — u'y, >0, in
addition to our maintained hypotheses uy, — uy; >0, u); — uy; <0.

The set N, can then be characterized as

Na = {n|Nz=nzn**,}.

There are two possibilities according to whether ornot n**, = n*,,. If so,
then, the decision to choose a, independent of the observation transmit-
ted dominates anything that can be sustained by a nontrivial response
function (i.e., anything obtained by z* L > z%, ). If not, then a,
dominates. QED.

The simple types of optima observed wheneither K = M =20orK =N
= 2 do not persist in more complex cases. There are essentially two
phenomena at issue. They highlight the second-best nature of the prob-
lem we have posed and contrast it with those that have been studied in the
earlier literature on incentive compatibility.

The planner’s expected utility would improve if he could obtain more
accurate answers. But to do so he may have to commit himself to an
action plan that deviates from his own (unconstrained) choice, given the
information that he will eventually possess. A potential tension is thus
established between the nonoptimality of actions and the inaccuracy of
responses. ' :

When there are more than two actions, some positive probability may
even have to be placed on an action that is dominated from the planner’s

"max min

point of view, in order to induce truthful responses by the agent. The cost -

of this nonoptimality may be outweighed by the value of the information
so obtained. This is the content of the next example.

When there are more than two possible observations, the information
may be of some value but may be imperfectly elicited in that truth-telling
is obtained in an action plan Z with some identical rows. Observations
corresponding to identical rows of Z are being lumped together in the
information transmission process for all practical purposes. Note that, by
theorem 3, such a situation must involve either more than two acts or
more than two states; otherwise, either the information would be value-
less or a genuine truth-telling situation would exist.
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Example 1
LetN =2, M =2,K =3, and

(3 14 n
s 4 q'(uz :

0 -1 -2 3
0 -4 -1 -1

Let

Z=(Z11' Z12 1—211—212),
221 Z22 =25 -2
incorporating the Markovian nature of Z in the notation.

To induce truth-telling we must choose Z so that the matrix ZUP has
the larger element of each column on the diagonal. Writing

_[GF)z1 + (10/4)z1,— 1 (9/4)zy, + (14/4)2,, -3
(3/4)zy1+ (10/4)z25,— 1 (9/4)zy; + (14/4)2, - 3}
we see that the necessary and sufficient conditions for truth-telling are
(10) (10/3) (222 = z12) < (z11 = 221) < (14/9) (202 = 212)-
In addition, we require

(11) Z,, = 0 fOI' i,j = 1,2, Z“+ leé 1, 221 + 222< 1

Note that from the planner’s point of view, act a; is dominated by
random acts assigning weight to @, and a, with at least half the probability
on the latter. In an unconstrained statistical decision problem, a; would
never be selected. But we will now observe that aj is part of the optimal
action plan because of its role in inducing the agent to tell the truth.

Following the solution method outlined in section 3.2, we compute the
optimum assuming the planner is constrained to choose Z€¢~(7); that
is,

max 1/2 trace ZUP
subject to (10) and (11). This optimum is given by
0 .643 357

Z —_

1 oo 0

and the value of the objective function® is 0.696.

Note that this value is in between what can be achieved in the first-best
(z21 = 212 = 1 and all other z’s zero), which gives an expected utility of
0.875, and what can be achieved independent of information (z,, = 2z
= 1 and all other 2’s zero), which yields 0.5.

’
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kExample 2

In this example we show how a situation of truth-telling can actually
transmit information imperfectly in that the optimal Z matrix has some,
but not all, rows identical. By theorem 1 we will obtain “truth-telling” as
a response rule, but the planner will not be able to utilize the distinctions
between certain observations.

Let
1 32 0
UP=10 1 0],
0 0 1
5 -1 -1
UP=|0 0 0],
0 0 0

q=(1/3,1/3,13)".

Solving the problem by writing the single linear program (4) subject to (5)
yields the solution

1 0 0
Z=|1 0 0
0 1 0

in which the value to the planner is 4/3. Note that observations y, and y,
are not being distinguished here. The first-best is 5/3, and the best
unconditional action (a;) would yield 1.

Although truthful responses are elicited, the agent is indifferent be-
tween this and the response pattern

1 1 0
R=10 0 0].
0 0 1

3.4 The Value of Improving the Agent’s Information

We now turn to the second theme of this paper: is it true that planners
would necessarily want to improve the information structures of their
agents? To investigate this issue it is necessary to have a criterion through
which the superiority of one information structure over another can be
asserted.

In statistical decision theory, the following definition of more informa-
tiveness, or superiority, is standard: (Y, A) is said to be more informative
than (Y',A’) if, for any U and any m, the maximal expected utility
attainable with (Y, A) is at least as large as that attainable under (Y’,A’).
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Blackwell (1951) has given a criterion equivalent to the fact that (Y,A)

is more informative than (Y’,A’): there exists a Markov matrix B such
~ that A’ = AB.

The elements of B can be interpreted" as if they were the conditional
probabilities of y’ € Y’ given y € Y. But actually the joint distribution of y
and y’ may not be like this, and in any event it is not specified. The
theorem simply says that if one information structure is better than
another, one can imagine that the poorer one is a garbled version of the
better one; for this reason it is called quasi garbling." '

When (Y,A) is more informative than (Y’,A’) and when a prior « is
fixed so that ¢ = A7m and ¢’ = A’"7 can be computed, there exists
another matrix C, which relates the two posterior matrices according to"

(12) 1) P = PC,
i) g = Cq’,
iii) C is the transpose of a Markov matrix, C € MT.

Moreover, the existence of such a matrix C implies that the matrix B
whose elements are given by

= Cnn'q’n'

4n :
will satisfy B € M, A" = AB;hence, the existence of such a Cis equivalent
to the more informativeness criterion. '

When the agent’s information structure changes, there are two effects
on the planner’s problem. First, there is a new function ¢ describing the
response rule. The observation sets Y and Y’ may be entirely different.
But even if Y and Y’ have equal numbers of elements, the new informa-
tion will generally alter the accuracy of the responses made for any action
plan. Second, there is a direct beneficial impact on the utility attainable
for the planner under any fixed response function. The trouble is, of
course, that taking advantage of this superior information may entail
using an action plan at which the requisite pattern of information transfer
will not be forthcoming from the agent.

By presenting a counterexample, we now proceed to establish that an
improvement in information may be harmful. The analysis of the coun-
terexample will rely heavily on the properties of optimal action plans
derived in theorem 3 for the case K = M = 2.

nn'

(13) b

Example 3
Let K =M = 2and
n =(1/2,172),
3/4 172 0
P= ,
1/4 172 1
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g =112, 14, U4)T,
34 14
=‘(1/4 3/4)’

g =(12,172).

One can compute directly that the matrix C given by

10
C=|0 12
0 1/2

satisfies (12) and hence establishes that the information structure for
which P is the posterior is superior to that for which P’ is the posterior.
Take the utility matrices for the planner and the agent given by

-

4 0
U= .
0 2
By theorem 3, we know that the optimum for the planner’s problem in
either case is either a situation in which the information is not being used
at all or one in which the agent is attaining his own first-best. The value of
the planner’s problem without information is the maximal element of U,
which is 2, and occurs when a, is chosen with certainty.

The agent’s problem with the poorer information structure is opti-
mized with the action plan
(1 0
Z'= ,
0 1

which is also the action plan for the planner’s first-best and generates an
expected utility of 9/4 (= trace Z' UP'¢’) for the planner. As this is above
2, the action plan Z’ is the overall optimum for the information structure
P
With the better information structure the action plan that implements

the first-best for the agent is

1 0

1 0].

0 1

But this lowers the planner’s expected utility to 2 (= trace ZUP§). Thus,
the planner can get at most an expected utility of 2 under the better
information structure, by theorem 3, and he will prefer to give the agent
the worse information structure.

and

Z =
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Despite the rather negative conclusion of the previous example there is
one case in which it can be proved that superior information is necessarily
beneficial. This is in the comparison of information structures each of
which has only two possible observations. Such systems are called bino-
mial channels in the information theory literature.

Theorem 4

The value of the planner’s problem under (Y, A) is necessarily at least
as high as that under (Y’, A’) if (Y, A) is more informative than (Y', A’)
and both are binomial channels.

This theorem will be proved in two steps. First, we will establish that if
Z is an action plan compatible with truth-telling under (Y’,A’), then Z
will also elicit truth-telling under (Y, A). Second, we prove that if an
action plan Z that induces truth-telling is optimal under (Y’,A’') and
continues to induce truth-telling under (Y,A), then the planner’s ex-
pected utility improves. Since the optimum is always attained by truth-
telling, by theorem 1, this would suffice.

By rearranging the labeling of y’y, y', € Y’ we can, without loss of
generality, establish that the Markov matrix B (defined by (13)) has its
maximal element in each row on the diagonal.

Lemma
If C and B are 2 X 2 matrices related by (13) and B has its maximal
element in each row on the diagonal, then Csatisfies the same property.

Proof .
Straightforward.

Lemma

Let C have its largest element in each row on the diagonal. Let ZU'PC
have its maximal element in each column on the dlagonal then ZU'P has
the same property.

Proof »
Denote ZU'P = Z and

c c
c=[" 12 )
I=c¢y 1-cp

We need to establish that

(14) (=2 + 22> (2 — 22) + 22,
(15) C12(Z21— 222) + 222> €12(Zn — Z12) + 212,
(16) . €11 >3
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together imply

a7 7 211> 2y and 755> 755,
Another way of writing (14) and (15) is

(18) cu(Zu—=22)>(1—cn) (2 - 21),

(19) c12(Zn1—22) <(1=¢12) (22 — Z12).-

So we want to show that (16), (18), and (19) imply (17). From (18) and
(19) and because ¢y, ¢y, € [0,1] we have the implications

2-22 - 2-12>0 lmplles Z_“ - 2-21>0,
211 - Z_21>0 lmplleS 2y — f12>0.

Therefore, Z,, — Z; and Z;;, — Z;, must have the same sign. If they are
both negative, then we have

Cll . Zp—2Z c
o 272 o Ce ’
l-cy Zy1— 2 1-cpp

contradicting (16). Therefore, (14), (15), and (16) imply 7,, - z,, and
Z,,—Z,, are both positive, which is (17). QED.

Recall that ¢ = Cq' is the distribution of the y €Y when g’ is the
distribution of y’ € Y. Since Z elicits truth-telling behavior under either
information structure, we want to prove

Lemma

Trace ZC§' < trace Z(Cq".

Proof

Straightforward computations lead to

trace ZCq' = (2101 +Z15(1 _Cu))Q'lA*‘ (Z21€12 + Z22(1 - ¢12))q">

and ‘

trace Z(Cq') = Z;1(c11q'1 +€129"2) + 222((1 —cn)g' 1+ (1-ci2)q’,).

Therefore, we want to show that A
(20) (22— 212 (A=cu)g'y + (21 —2-21‘)012(1'230-

By the previous lemma, 7,,--%,, > 0 and (Z,, — Z3;) > 0. Thus, (20)
follows from the nonnegativity of C. QED.

Combining these three lemmas, we see that the action plan Z satisfies
the truth-telling constraints for the better information structure and
induces a higher expected utility, which proves theorem 4.
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3.5 Conclusions

A simple model of decision making in a two-person organization has
been presented that attempts to capture the separation between informa-
tion gathering and action. The problem has been shown to be equivalent
to a linear program. Special situations in which a first-best could be
attained have been analyzed. '

In general, the optimal action plan may be random and may place some
weight on dominated strategies. It may elicit truthful responses, but not
in a way that allows effective use of this information.

Then we studied the behavior of the value of the problem when there is
an improvement in the agent’s information structure. This value may
respond perversely in general. However, when the information struc-
tures being compared involve only two possible observations, the two
criteria must agree.

Notes

1. We do not present any explicit models in which the structure developed here could be
applied. Some possible examples are stockbroker-client or physician-patient relations;
relations between superiors and subordinates within a firm, or between central management
of a firm and that of a subdivision. More general models in which there are several players
but emphasis on a separation between decision making and information gathering will be
studied in later work. This would extend the range of applicability to situations in which
there is some gamesmanship required among the information gatherers, as, for example,
among several divisions of the same firm which are to be allocated resources for investment.

2. The basic reference is Marschak and Radner (1972). The problem of incentives in
team theory has been treated by Groves (1973), retaining the feature of decentralized
actions in the hands of the direct receivers of information.

3. See Ross (1973), Wilson (1969), Shavell (1979), and Holmstrém (1979).

4. A partial summary of the work in this area is given in Green and Laffont (1979).
Dasgupta, Hammond, and Maskin (1979) have been particularly concerned with the Nash
and Stakelberg equilibrium approaches. Gibbard (1977) and Zeckhauser (1969) use ran-
dom decision devices, but in a different spirit than we will do here.

Most closely related to the present paper is Myerson (1979). Although formally con-
cerned with unknown preferences, his analysis is similar in spirit to ours. He allows for
random decision. He shows that using the space of possible utilities as a strategy space is
adequate for the implementation of constrained optima as Bayesian equilibria (Nash
equilibria in the game of incomplete information). However, the example he presents has
only two possible utilities, and therefore cannot display some of the phenomena we look at
in section 3.3 of this paper. '

Rosenthal (1978) proves that full information Pareto optimality is generally unattainable
in such games, and he provides a sufficient condition under which a Bayesian equilibrium
can implement such optima.

5. Groves and Ledyard (1977) have a strategy space much smaller than the space of
unknown parameters, but the domain over which its equilibria exist is hard to delineate.
Myerson (1979) and Rosenthal (1978) impose truth-telling as a constraint in their definition

" of equilibrium. The actual constrained Pareto optima we obtain in this paper do involve
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truth-telling. However, it is not imposed in the solution concept, but rather emerges as a
characteristic of the second-best. See theorem 1.

6. See example 1.

7. We will always.follow the practice of writing the constraints on responses of the agent
as weak inequalities, expressing the fact that if he is indifferent between response patterns,
we can assume that he will make the indicated choice.

8. See example 2.

9. The true optimum differs slightly because of roundmg error. This calculation was
performed on an electronic computer.

10. See Marschak and Miyasawa (1968) or McGuire (1972).

11. Another advantage of having this theorem is that it provides a constructive method to
check this relationship between information structures. The existence of such a matrix can
be determined by solving a system of linear inequalities. whereas the definition requires, in
principle, that a comparison be made over all U, =. ’

12. See Marschak and Miyasawa (1968, p. 154). Our equation (13) is their (8.23),
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Comment Andrew Postlewaite

Green presents a model of decision making under uncertainty in which
one agent receives information and transmits it to a principal. The
principal then makes a decision (chooses an act) on the basis of the
information received. Both the principal and the agent then receive a
payoff which depends on both the state of the world and the action chosen
by the principal. It is assumed that the principal must commit himself to
an action plan which determines which action (possibly ‘a probability
distribution over several actions) he will take given any information
signal transmitted by the agent. Thus, the principal is faced with a
possible incentive problem. If the principal commits himself to taking the
action which is best for him given any information signal, this may be
harmful to the agent. In this case it could be in the agent’s interest to
transmit incorrect signals. Hence, the principal, recognizing the incen-
tives he creates for the agent, assumes that the agent will behave in a
purely self-interested manner and will transmit whatever (possibly false)
information signal which according to the principal’s action plan gives the
agent his highest payoff.

It is assumed that both the principal and the agent know the probabili-
ties of the states, the probabilities of the signals the agent could receive in
each state, and the payoffs each will receive given the state and action
taken by the principal. Thus, for any action plan the principal contem-
plates, he can precisely calculate what signal the agent will transmit given
the information signal that the agent has observed (received). This, with
the probabilities of the states and information signals, is sufficient for the
principal to determine his own expected payoff for any action plan. He
chooses the action plan which maximizes his expected payoff.

Through a series of examples we will examine the possible effects of
improved information on both the principal and the agent. In each of the
examples, the set of actions the principal can take are A = {a,, a,, a3, a4}

Andrew Postlewaite is associated with the Wharton School of the University of Pennsyl-
vania, Philadelphia.
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and the states of the world are Y = {y, y,, ys, y4}; the payoffs to the
principal and the agent for each action and state of the world are given in
the matrices in figure C3.1. '

For all of the examples we assume probability (y;) = V4,i = 1,2, 3,4.
For each of the examples we will consider two information structures. In
the first structure, W, the agent will observe s, if either y, or y, is the true
state and s, if either y; or y, is the true state. In each example we will
compare the information structure W with an improved structure / where
the agent observes the state precisely; i.e., he observes s, if y; is the true
state, i = 1, 2, 3, 4. )

Before beginning the examples it will be helpful to write down the
matrices of expected payoffs for the action and information signals for the
worse information structure W. These are given in figure C3.2.

If action a4, is taken when the signal s, is observed by the agent, the
principal’s payoff is either 2b or 0 depending upon whether y, or y; is the
true state. Since each has probability Y2 given s, the principal’s expected
payoffis b in this case. The other numbers for the principal and the agent
are calculated in this manner.

The first case we will examine is that where the improved information
structure / yields higher expected payoffs for both the principal and the
agent.

Case 1. Suppose

e>d>b>c>0
and
j>h>f>g>0.

Consider an action plan for the principal given as follows: a, = f(s,),a; =
f(s2); i.e., the principal takes a, when s, is transmitted and a; when s, is
transmitted. Notice that this guarantees the agent (expected) payoff j

Principal Agent
Yl 2 3 4 A Yl 2 3 4
2b 0 2c 0 1 0 2f 0 29
0 2c 0 2b 2 2g 0 2f 0
2d 0 2e 0 3 2h 0 2j 0
0 2e 0 2d 4 0 2j 0 2h

Fig. C3.1
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Principal Agent
S S
A Sy S, A S, S,
1 b c -1 f o]
2 c b 2 g f
3 d e 3 h j
Fig. C3.2 4 e d 4 j h

regardless of the signal if he transmits the information correctly. Since we
assumed j was larger than any payoff in his matrix for information
structure W, itis in his best interests to transmit the signal correctly. This
yields the principal a payoff of e, which is the best he can get for the
structure; thus, this is the ‘‘solution’ for the structure W.

Now consider the improved structure / and the action plan

az = f(s1) = f(s3),
as = f(s) = f(s4).

This gives the agent A in states 1 and 4 and j in states 2 and 3 if he transmits
the signals correctly. These by assumption are the largest payoffs he can
getin the respective states. They similarly yield the principal either d ore,
which are his highest possible payoffs given the states. Hence, this action
plan is the solution for information structure 1.

Note that here the expected payoffs for the principal and the agent are
d + e and h + j, respectively, as compared with e and j for information
structure W.

The fact that the improved information structure /is better for both the
principal and the agent in this example is not surprising. Given the
assumed inequalities, the interests of the two agents coincide for the
relevant actions a; and a,. The common interests yield “truth-telling” on
the agent’s part for that action plan which gives the principal his highest
payoff for any observed signal. In this case we should expect improved
information to yield higher payoffs for both principal and agent than the
worse information structure.

The next example shows how the improved information structure can
hurt both principal and agent.

Case I1. Suppose

b>d+e>"%b+c)y>c>0 d,e>0

b e
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and »
f>h+j>%(f+g)>g>0 h,j>0.
For information structure W consider the action rule
a; = f(s1),
a; = f(s2),

The agent receives f if he reports the signal truthfully. Since, by assump-
tion, f is the largest payoff possible, he will do so. Since this yields the
principal b, his highest possible payoff, this action plan is optimal.
While in information structure W the agent’s and principal’s interests
essentially coincide, this dramatically changes when we go to the im-
proved information structure I. Here there is absolute conflict between
the agent and principal for actions a; and a;: if one gets a positive payoff,
the other receives nothing. Clearly the information the agent transmits is
worthless to the principal if he takes only actions a; and a,. Any use he

- makes of the signals the agent sends can be exploited by the agent. The

best the principal can do if he is to use only actions a, and a is to ignore
the signals received, e.g., use an action plan such as

al=f(si) i=172a3’4

which would yield the princi'pal Y2(b + ¢). If, however, he chooses action
plan

ay = f(sy) = f(s3),
as = f(s3) = f(sa),

the agent will find it in his best interest to transmit the correct signals. This
gives d + e to the principal, which by assumption is better than he can do
using only a; and a,. But this yields both the agent and the principal less
than their 1espective payoffs under the worse information structure W.

So far, we have only shown that the action plan f for information
structure / leaves the players worse off than in the worse information
structure W. But f is not in fact the optimal information structure for /.
Since the agent has a strict incentive to transmit signals truthfully (i.e.,
this yields him strictly higher payoff than any other response pattern), the
principal could use a stochastic action plan which would put a small
positive probability on a, and a, for the appropriate signals without
destroying the agent’s incentives. This would leave the principal slightly
better off and the agent slightly worse off than under f. The probability
that can be placed on a, and a, without destroying the incentives (and
thus making the information worthless here) becomes arbitrarily small as
h gets arbitrarily close to j. Thus, we see that if the assumed inequalities
hold and also if 4 is sufficiently close to j, the improved information
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structure / leaves both agent and principal worse off than they are in
structure W.

A few words about this example. Green makes the point that the
principal’s optimal action plan may involve positive probabilities on
dominated actions. If ¢>e and g>, that is precisely what is happening
here. Action a, dominates a; and a, dominates a4, yet the-optimal action
plan involves placing most of the probability on a5 and a4. This example
shows clearly how the problem of the agent’s incentives makes this
necessary.

A second aspect to point out is how the better information structure
makes both players worse off. Actions a, and a, are the best actions to
take from a joint point of view so long as states {y,, y,} can be distin-
guished from {y;, y4}. The worse information structure allows an action
plan to distinguish them because the interests of the two coincide. The

- better information structure gives enough information to put the players
in conflict with each other as to which of the actions a; or a, is best. Given
the framework of this model, both agents would theoretically agree to use
information structure W rather than the improved structure 1.

This raises a question which is essentially outside of this model. How is
the information structure determined, and what is the “information
about the information”? Although both principal and agent do better
under W than /, this is because the optimal action plan under W picks only
a, and a,. Given this fact, the agent has an incentive to secretly “get the
better information” in /. Thus, even the availability of the better informa-
tion structure / would prevent the principal from using only actions ¢, and
a, unless he could ensure that the agent would not observe the more
precise information signals in /. We will say a bit more below about the
questions of who chooses the information structure and the degree of
common knowledge about the information structure being used.

So far we have provided examples of an improved information struc-
ture either benefiting both principal and agent or hurting both. It is also
possible that the improved information structure / can help the agent and
hurt the principal.

Case 111. Suppose

b>c>d>e>0 b>d+e_
and
f>g>j>h>0 f<j+h

This example is similar to Case II. For structure W, the optimal action
rule is a; = f(s,), a; = f(s;). This induces truthful responses from the
agent and yields payoffs of b and f to the principal and agent, respec-
tively.




101 Decision Theory Requiring Incentives for Information Transfer

If the information structure is [ and 4 is very close to j, the optimal
action rule puts nearly all probability on a; and a,; yielding approximately
d + e to the principal and j + A to the agent; from the assumed
inequalities we see that the agent is better off and the principal worse off.

Each of the three cases above was explicitly or implicitly mentioned in
Green’s paper. The last case—that in which the agent is worse off and the
principal better off under the improved information structure—was not.
At first glance one might think this case particularly paradoxical. Cannot
the agent simply “‘ignore” the better information? Yet as Case II illus-
trated, the structure of the model essentially prevents an agent from
ignoring information. The principal commits himself to an action rule,
and if he knows that information is available he can design his action rule
so that an agent would be even worse off if he did ignore the information.
It is this Stackelberg-like feature which has the principal but not the agent
commit himself which gives rise to these phenomena.

In fact a simple transformation of Case III gives rise to an example
where the agent is worse off and the principal better off under the
improved information structure.

Case [V. Suppose

b>c>d>e>0 b<d+ e
and
f>g>j>h>0 f>j+h

An argument as in Case III shows that if 4 is close to j, the payoffs to the
principal and agent are b and f, respectively, under W and approximately
d + eand h + j, respectively, under I. That the principal is better off and
the agent worse off follows from the assumed inequalities.

As we mentioned above, the question of how the information structure
is determined becomes important. Does the agent or the principal decide
on the structure? Is the structure itself a matter of negotiation? In the
examples in both Case II and Case 1V, if the agent had the ability to
commit himself to the worse information structure, he would if he could
also convince the principal that he had done so.

It also should be pointed out that the results of the examples would be
drastically changed even if we left aside the question of determination of
the information structure, but only reversed the roles of leader and
follower in the model. Consider a situation where the agent commits
himself to a response rule and the principal then chooses an action. It is
straightforward to construct examples where both principal and agent are
better off with the roles of leader-follower reversed. In such cases we
might expect the reversed roles “institutionalized.” The model examined
in the paper is but one of a class of similar models. Which model is
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operative for a particular application would perhaps be endogenously
determined in an expanded setting.

Comment  John G. Riley

In the basic model of information acquisition as developed by Blackwell
(1951) and Marschak and Miyasawa (1968), an individual may be viewed
as paying a predetermined fee to an information service. The latter then
delivers one of a set of messages which have the effect of updating the
individual’s beliefs as to the likelihood of the various states of nature.
Swept into the background is the issue of how the purchaser of informa-
tion (hereafter referred to as the “principal”) verifies the accuracy of the
information. '

Even if the ‘‘agent” operating the information service simply collects
and processes data, verification of computations, etc., is a costly process.
However, more commonly the principal relies at least in part on the
expertise of the agent. Verification is then only indirect. The principal
either develops a long-term relationship with the agent or, alternatively,
relies on the reputation the latter has developed.

Green’s starting point is to consider what sort of contracts between
princtpal and agent might be negotiated when such indirect verification is
not available. For the problem to be interesting it is necessary that both
the purchaser and gatherer of information have an interest in the final
outcome. In general these interests will not coincide and, as a result, the
agent may have an incentive to reveal false information. When such is the
case, Green examines the potential benefits to the principal if he precom-
mits himself, for every feasible message, to a particular action (or, more
generally, to probability weights on different actions).

The first result is that the principal can do no better than induce truthful
information transfer. Appropriately interpreted this is essentially def-
initional. Let there be n possible messages from agent to principal. The
latter announces that if he receives message m;, he will take probabilistic
action z; = (z;1,...,2,), Where z,; is the probability assigned to action ;.
Effectively the agent then freely chooses from the set of probabilistic
actions Z = {zy, Z;,...,Z,}. Thus, without loss of generality we may

relabel the elements of this set so that z]" is the action chosen by the agent

when the truth is message i.

Using this result, it is then shown that if there are only two states of
nature and either two actions or two possible messages, the principal’s
optimal response is (1) to not make use of the information, or (ii) to accept

John G. Riley is professor of economics, University of California, Los Angeles.
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the message without any precommitment strategy. In more complex
environments it is shown that probabilistic precommitments can increase
the expected utility of the principal. An example is provided in which the
principal finds it desirable to introduce an action that is strictly dominated
by another action. To understand this result, I find figure C3.3 helpful.
On the horizontal axis is the possibility p of state 1, and on the vertical
axis expected utility of the principal, which we may write as

U(p;a;) = puy(a;) + (1-pluy(ay),

where u,(a;) is the utility of the principal in state s if he takes action a;.
Without the services of the information gathering agent the principal,
with prior probability p, = .5, chooses action a,. Suppose that the agent
receives one of the following two messages with equal probability:

m;:p=.8, my. p=.2.

If the agent always tells the truth, the principal has an expected utility of
ABwhenm = m; and CD when m = m,. Since each message is received
with equal probability the ex ante expected utility is EG and the net value
of the information is FG.

Expected
Utility of the
Principa)

_—Ulp;a,)

e
ZIZUlp; 02]+ zIBU(p;aa)

-
|
X ! .
I X U tp;0,)
! !
| |
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0 g e )
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of state |
Fig. C3.3 The value to the principal of receiving information.




104 Jerry R. Green

Suppose next that action a; is the dominant action from the viewpoint

of the agent. Then rather than reveal the truth he will always pass on the

message m = m,. Obviously this is valueless to the principal. To combat

this problem, the principal announces that if the message receivedism =

m, he will adopt action a, with probability z,, and action a, with probabil-
ity z,3. The expected utility of the principal is then the weighted average

25,U(piaz) + z3U(psay).

As long as action aj is sufficiently worse for the agent than a, when the
truthis m = m,, and better than a, when the truth is m = m;, his optimal
response is to reveal the truth. As a result the expected utility of the

principal is AJ if m = m;and CD if m = m,, and the information service

has an expected value of FH.

In the final section of his paper Green asks whether a more informative
agent is necessarily more valuable to the principal. Except in a very
special case he finds that the opposite may be true: even after an optimal
revision of his precommitment strategy the principal may be worse off.
Again I find a diagram helpful in understanding this conclusion. The top
part of figure C3.4 once again depicts the choices open to the principal for
the case of two states and two actions. The bottom part illustrates the
expected utility of the agent. With only the two messages m = m;, m =
m, the interests of agent and principal always ‘coincide. However, sup-
pose that message m, is really a “‘garbled” version of the following two
messages;

My P = O, mzaf pP= 04,

that is, the agent receives a message but is not sure whether it is m,, or
m,ga. If he assigns equal probabilities to the two alternatives, his informa-
tion is summarized by the message m,. Clearly an agent who is able to
unscramble such a message is sensibly described as being better in-
formed.

As depicted in figure C3.4 revelation of the unscrambled truth is of no
additional benefit to the principal since his optimal action is a, for m =
my, and m = m,g. However, the interests of principal and agent no
longer always coincide. If m = myg, the optimal action from the view-
point of the agent is a,. Therefore, the agent has an incentive to conceal
the fact that he has unscrambled message m; and to reveal the false
message m,. But suppose the principal were to learn that the agent had
become better informed. With only two actions Green’s theorem 3 tells
us that the best the principal can do is either to ignore the agent entirely or
to accept his message asif it were the truth. If he does the latter, he knows
that when the agent announces m, there is one chance in three thatp = .4
and two chances in three that p = .8. The principal then assigns a

probability of %(.4) + %(.8) = .66 to state 1, and his expected utility falls

—— — g+
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Fig. C3.4 More informative information leaving both principal and

agent worse off.

from AB to AC. A similar argument for the bottom part of figure C3.4
establishes that the agent’s expected utility rises from A'B’ to A'C’. Of
course this is also the outcome when the principal is unaware that the
agent has become better informed.

The other alternative open to the principal is to ignore the agent and
use only his prior probability of state 1 (.5). Clearly this is preferred since
it yields an expected utility of AD while lowering the expected utility of
the agent to A’ D’. Therefore, if the information contained in message m,
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becomes unscrambled, the expected utility of the principal drops from
ABto AD and the expected utility of the agent drops from A’'B' to A’'D’.
This is another simple example of the phenomenon first noted by Andrew
Postlewaite: additional information can hurt both parties. Indeed, in this
example the coarser information benefits both principal and agent while
the finer information is valueless!

I shall conclude with some more general remarks. The main inference
that I draw from Green’s paper is that we cannot expect to obtain more
than a multitude of special cases unless the model is refined in some way.
One line of attack would be to focus more closely on the way in which the
agent is compensated by the principal. Implicitly compensation takes the
form of a fixed fee paid in advance. However, by contracting to pay a fee
contingent upon the eventual state of nature the principal might be able
to eliminate, or at least reduce, the extent to which his interests conflict
with those of the agent. A second approach would be to take explicit
account of the repetitive nature of informational exchanges. In each of
the applications suggested by the author (stockbroker-client, physician-
‘patient, manager-worker) it is hardly surprising that the information
purchaser is usually observed in a long-term relationship with the in-
formation gathering agent. If precommitment strategies of the sort de-
scribed above have practical relevance, surely they are only likely in
situations which are sufficiently repetitive to allow the principal to learn
the interests of the agent and vice versa.

References

Blackwell, D. 1951. Comparison of experiments. In Neyman, J., ed.,
Proceedings of the Second Berkeley Symposium on Mathematical Sta-
tistics and Probability, pp. 93-102. Berkeley and Los Angeles: Uni-
versity of California Press. '

Marschak, J., and Miyasawa, K. 1968. Economic comparability of in-
formation systems. International Economic Review 9, no. 2: 137-74.

'





