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SOME CONSEQUENCES OF TEMPORAL AGGREGATION
IN SEASONAL TIME SERIES MODELS

William W. S. Wei
Temple University

ABSTRACT

Given a basic stochastic seasonal time series model, developed by Box and
Jenkins, the corresponding model for temporal aggregates is derived. Insofar as
forecasting future aggregates is concerned, the loss in information due to aggregation
is substantial if the nonseasonal component of the model is nonstationary. This is
not so serious for long-term forecasting, especially when the nonseasonal compo-
nent is stationary. In forecasting future aggregates, there is no loss in information
if the basic series is a purely seasonal model. In terms of parameter estimation,
aggregation causes a tremendous loss in efficiency, regardless of the given model.
The results are shown by both theory and actual data.

INTRODUCTION

Temporal aggregation poses an important problem in
time series analysis. It is so because, in working with
data, one must decide on the time unit he is going to use
for his basic observations. If the model for a phenomenon
under investigation is regarded appropriate in terms of a
small basic time unit (e.g., a month), then proper infer-
ences about the underlying basic model should be drawn
from the analysis of data in terms of this basic time unit.
Improper use of data in some larger time scale (e.g., a
quarter or 1 year) to make inferences could be very
misleading and, hence, seriously bias the views of policy-
makers unless the effects of aggregation are accurately
examined and, hence, properly taken into account.

The temporal aggregation problem was first studied in
the field of econometrics in the context of some simple
distributed lag or regression models, e.g., Theil (8],
Mundlak (4], Zellner and Montmarquette [11], Sims [6],
Tiao and Wei (10], and others. In the analysis of a
univariate time series, the problem was investigated by
Quenouille (5], Amemiya and Wu [1], Brewer [3], Telser
(7], Tiao [9], and others. However, all previous work has
been restricted to the case where the underlying models
are nonseasonal. The important problem of aggregation’s
effect on seasonal models is still relatively unexplored.

In this paper, we study some consequences of temporal
aggregation in discrete stochastic seasonal time series
models developed by Box and Jenkins (2, ch. 9]. In the
next section, we solve a fundamental problem in temporal
aggregation. That is, for a given seasonal time series
model in terms of a basic time unit, we derive the

corresponding model for temporal aggregates and also
discuss the relationship and properties of the models.
Since one of the principal purposes of time series analysis
is to forecast, the third section will study the effect of
aggregation on forecasting. In the fourth section, the loss
of information due to aggregation in terms of parameter
estimation is examined. In the fifth section, the results are
illustrated with an actual example of the U.S. employment
data. Finally, in the last section, a summary of findings
and some concluding remarks are given.

MODEL STRUCTURE OF TEMPORAL AGGREGATES
The Basic Model

Assume that the basic series z, follows a general
multiplicative seasonal model with period s, e.g.,

ap(B*)¢,(B)X1-B*)’(1-B)"2=0,(B)Ba(B%a, (1)

where the a,’s are independently and identically distributed
as N(O, o?%), B is the backshift operator, such that
Bz,=z,~,, ap(B® and Bq(B%) are polynominals in B® of
degrees P and Q and ¢, (B) and 6, (B) are polynomials
in B of degrees p and g, respectively. We also assume
that all of these polynomials satisfy stationarity and
invertibility conditions. That is, all the polynomials have
their roots lying outside the unit circle. This model, which
has been developed by Box and Jenkins [2, ch. 9] and
called a model of order (p, d, q) x (P, D, Q),, provides a
useful representation for a variety of seasonal time series.
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In many economic and business time series, t=month
and s=12. The model then implies that the time series z;
is the product of two correlated random components. The
seasonal component

ap(B°) (1-B*)°z,=Bo(B°)b, @)

describes the relationship from year to year for a certain
month, and the nonseasonal component

$»(B)(1-B)*b=04B)a: €)

relates the remaining stochastic factors from month to
month for all years.

Under the normality assumption, any stationary and
invertible stochastic process {«,} is uniquely characterized
by its autocovariance generating function y,(B), defined
by

vu(B)=JE_ v.(j)B’ C)]
where
Yul)=E (u~E (uy)) (u-s~E (u,)).
Let

w=(1-B*Y(1- BY'z,=[8( B)9( B)V[a( B*)$( B)la,

It can be easily seen that the autocovariance generating
function of {w,} is given by

Yu(B)=0%G (B*)g (B) )
where
G(B)=X= G, B*=B(B)B(F)a(B*)a(Fr)
&(B)=X" g B'=6(BY(F)/¢$(B)p(F), and F=B-!

More explicitly,

Yu( B)=0}% z YeB¢

==

7:—-2“’

where »
Gn &eys ©)

Temporal Aggregate and Its Model Structure

Let the m-component nonoverlapping sums

zr=( > B,) Znr )

J=0

be the desired temporal aggregates, where T is the
aggregate time unit. For example, if + is a month, and m
equals 3, then T is a quarter. Define X,=(} 15! BY)z, and
note that Z,=X,,,. For practical purposes, we assume that
the number of aggregation components m is chosen such

SECTION Vi1 L/EI

that s=mS for some integer S, which is usually the case in
economic and business applications.
Let

m-1 d+1
W,=(2 BJ) w=(1-BmS)?(1-Bmy!X,

1-Bm\ %' B(B*)§(B
( ) B(B)%(B) ®)

1-B o B*)$(B )
The autocovariance generating function yy (B) is given by

l_Bm d+1 1-Fm d+1
vW(B)=<rzG(B')( l-B) (m) 2(B) )

Letting t=m7T, B=B™, and V,=W,r, W€ can write
Vr=(1-8%(1-BY'Z, with the autocovariance generating
function being given by

'Yv(%)" 2 yv(K) B¥

(10)

where v, (K) is the coefficient of B—*™ in v, (B) in (9) and
equals

YHK)=E(VyVrx)

® - d+1Xm—1)
=02 z Gy z BKm¥e-jg
j=—0 . é==(d+1Xm-1)
2d+2
2d+2 [ €+H(d+1-D)ym+d
zo( )( 1)( N ) (1)

Remarks on Some Special Cases

1. If P=D=Q=0, the model (1) becomes a nonseasonal
model, (5) becomes vy,,(B)=02g(B) and (11) reduces
to

d+1Xm-1)

yw(K)=0%

. é=~(d+1Xm-1)

8Kmye

i=0

On the other hand, letting ¢,(B)=I1x,(1-8;B)
and multiplying I17_,[(1-8* B™)(1 -B™)¢+Y
(1-8;B)(1-B)?*'] on both sides of (1), we have

P

Y= 1'1 (1-37B™)(1-B™)iX,

=1

& (1-%7 m) (I-B"')“*‘
p( o5 ) \Tog) B (1)
and E(YrYpmr-mx)=0 for K>r  where
-p-d-1
r= [p +d+ l+‘%] and [x] denotes the integer

2d+2 .
% (2d+2)( 1y (€+(d;-dl;zl)m+d) 1)

the {
[10]:

G

Or

whe

Ve e e
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: part of x. The aggregate Z;=Xnr, thus, follows an

T ARIMA (p, d, r) process with the autocovariance

i structure given by (12). This is a generalization of

] the result given in Amemiya and Wu [1], Telser [7],

j Brewer [3], and Tiao [9], who studied the conse-
quences of aggregation on a stationary AR (p),
ARMA (p, q), and a nonstationary MA (q) process,
respectively. '

2. If p=d=q=0, model (1) becomes a purely seasonal

and (11) reduces to

mo3G s

w(K)={0 if K=j$ for some j (14)

otherwise

Thus, the aggregates follow a purely seasonal model
) of period S. Moreover, (14) implies that aggregation
does not change the model form. In fact, the order
i and parameters of the model remain exactly the
same as the basic model, except that the variance of
the noise term in the aggregate model inflates m
times as expected. Note that if S=1, i.e., m=s, (14)
becomes v, (K)=ma2Gy, and, thus, aggregation re-
duces a purely seasonal model to a nonseasonal
model. In other words, the seasonal effect in this
case has been smoothed out.

,i To further characterize our aggregate model, we quote
jthe following lemma, which was proved by Tiao and Wei
1{10]:

{

4 Let {z,} be a stationary and invertible process and
{Z;} be the series of temporal aggregates defined in (7).
Then, {Z;} is also a stationary and invertible process.

Summarizing these results, we obtain theorem 1I:

Suppose the basic series z, follows a process of order
(p, d, @) x (P, D, Q), given in (1) and Z; is the
aggregate series defined in (7). Then Z; is a process of
order (p, d, r) x (P, D, Q)s given by

ap (BN (BY1-BY (1-BYZr=v,(B)Bo(BICr  (15)

where

r=[p +d+1+m——l]
m

Crs are independently and identically distributed as
N (0,0%), ap(BS), and Be(%B%) are polynomials in B¢ of
degrees P and Q, respectively, and A,(%B) and v (%)
are polynomials in % of degrees p and r, respectively.
The 0'%', aP(QBS), Ap(%)v V,.( %), and Bq(%s) are obtained
by solving the equations induced from equating the
coefficient of & in the following relationship, such that
stationarity and invertibility conditions are satisfied

Ba(B),(B) Ba(FS)v,(F)
o, (BN B) ap(FSA,(F)

yv(B)=0%

K=—x

! =3 yUK)B (16)
|

: model of period s, (5) becomes vy,(B)=cG (B*),
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where y,(K) was given in (11) and F= %1,

It should be noted that the aggregate model in (15) is
derived under the practical consideration that the number
of aggregation components m<s. It is readily seen from
comparing (11) and (12) that in this case aggregation
contaminates the model structure through its nonseasonal
component in (3). If the number of aggregation compo-
nents m=s, it was pointed out in remark 2 that the
seasonal model reduces to a regular nonseasonal autore-
gressive integrated moving average (ARIMA) process.
Furthermore, it can be easily seen from (13) that, for a
given nonseasonal ARIMA (p, d, q) process, as m
becomes large, autoregressive parameters tend to zero,
and, hence, the aggregate model reduces to an integrated
moving average (IMA) (d, d) process, which was also
shown in Tiao [9]). Thus, given a general model in (1), if m
becomes a large multiple of s, which is usually the case in
economic and business applications, then the limiting
aggregate model (15) becomes an IMA (D+d, D+d)
process. In particular, if D=d=0, the limiting aggregate
model further reduces to a process of white noise. Thus,
temporal aggregation will, in general, complicate the model
structure. However, as the number of aggregation compo-
nents m becomes large, it tends to simplify the model
form. This may give an explanation why the modeling of
time aggregates is sometimes much more involved and
sometimes relatively simpler than the modeling of basic
disaggregated sertes.

'EFFECT OF AGGREGATION ON FORECASTING

One serious information loss due to aggregation in
forecasting is obvious. If the basic data are available, we
can use the basic model to forecast any future aggregates.
However, if only aggregates are available, we cannot use
the aggregate model to predict desired future disaggre-
gates.

Now, suppose we are only interested in forecasting a
future aggregate Z;,, at time 7. We may construct it
either from basic data z, or from aggregates Z,;. Employing
a general result in Box and Jenkins [2, 128], the optimal
forecast of Z,,, given its past history, is the conditional
expectation E (Zr,.|past history).

Now, the model (1) for the basic series {z,} is invertible.
It can be written as

z,=2 TiZ—5ta a7
i=1

where the =,’s are a convergent series obtained by
equating coefficients in

0.(B)Bo(B*)(1-m B-m,B% ...)
=ap(B*)p,(B)(1-B*)’(1-B)* (18)
Thus, it is really shown that

@®

E(Zr,HIZu Le-1y v« .)=27T}')Z,_,+, (19)

j=t
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where

)~ -1 e~h)
=Tyt zm 7

and

wP=m; for j=1, 2, ...

Given that the basic data Zmp, Zmr-1» ... are available, the
optimal forecast Z;(¢) of Z., at time T is, hence, given
by the following convergent series of all available obser-
vations

me @
21(€)= ZE( zmT(j)lzmT- Zmr—1y o) = Zwtzh'r—.iﬂ (20)
=1 i=t

where

l s
w=2 ‘:, wj?

2
Proceeding in the same way, the optimal forecast Z(¢)
of Zyr,. at time T, given the aggregates Z,, Zr_;, ..., can
be written as a convergent series of all available aggregates

Z:(0)=3 VZrsu @1

i=1

Given Zmr, Zmr-1, -+-» since Zp(¢) is the optimal
forecast of Zy, ., we have :

E(Zrse=ZHO)P=E(Zr1e= Y, @3Zn1-31)?
j=1

sE(Z”(—JZ RyZmr-5+1?
=1
=E(Zr ~Z(E)) 22)

where

Q, fj=1,2,...m
R;={Q, ifj=m+1, ..., 2m
etc.

Thus, the basic model also gives a better precision in
forecasting the future aggregates than the aggregate model
does.

More explicitly, the variance of the forecast error, based
on the aggregate model is

R -1
Var(Zry~Zr(€))=0% ; N4 (23)
=0

where ¥,=1 and ¥’s are obtained from the relationship
a(BIN(B)(1- B (1-B)? ( 3= ¥ %’)=v( B)B(BS)

SECTION vy
On the other hand, model (1) can be written g

Z:=(Z;o lb,B’)ab where =1 and the y’s are obtaineq
from the relationship

o BYB(BY1-B*)(1-BY" ( 3, %B’)=0(B)ﬁ(8’)
Hence,
X.=( 3 B’) ( 3 ([:‘B*)a,=( >z, d),Bf) a
where
Q=2

The variance of the forecast error, based on the basic
model, is, hence,

Var(Zy, o~ 24(6))
. . fm-1 '
=Var(Xprime—Xmr(me))*=o2 Y @} 24
=0

The efficiency of forecasting future aggregates using the
aggregate model can be measured by the variance ratio

=Var( Zr*rir(())
var(Zr,~Z.(¢))

tm, ) 5)

Since Z,(¢) and Z;(¢) are obviously unbiased forecasts
for Zr,., (22) implies that 0<{(m, £)<1.

Some Remarks

1. For a general model (1), it has been pointed out in
the section on model structure of temporal aggregates
that when the number of aggregation components m
becomes large, the limiting aggregate model tends to
a process of white noise or an IMA process, depend-
ing on whether the basic series is stationary or
nonstationary. In the first case, when the basic series
is stationary, Amemiya and Wu [1] and Tiao [9]
showed that the limiting efficiency ¢(€)=Ilim

s

{(m, €)=1 for all ¢£. In the second case, when the
basic series is nonstationary, Tiao [9] showed that
the limiting efficiency {(¢) is a small number, much
less than 1. It approaches 1 only when é—x,

2. When p=d=q=0, the basic model (1) becomes a
purely seasonal model

ap(B*)(1-B*Yz,=Bo(BYa, 20
As shown in the section on model structure of tempord

aggregates, for the number of aggregation components
be such that s=mS$ for some integer S, which is usually s0
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for economic and business applications, the aggregate
model becomes

e (BN~ BV Zr=Ba(BIC @n

where C;’s are i.i.d. N(0, mo2). By applying (23) and
(24), it is readily shown that in this case {(m, ¢)=1 for all
m and ¢.

Summarizing the above results, we have theorem 2:

Suppose the basic series z, follows a model in (1) and
let Z; be the temporal aggregate defined in (7). Let
Z:(6) and Z,(!) be the optimal forecasts of Zr+e at
time T, based on the past history of the basic series z,
and aggregate series Z;, respectively. Define
{m, O=Var (Zr,e~27(O)/Var(Zrye~27()). Then—

1. 0=sg(m, £)<1 for all m and ¢.
2. (&)= lim {(m, ¢)=1 for all ¢, if d=0.
m—sm
3. £(£)<<1 and {(¢)—1 only when £— if d>0.
4. {(m, €)=1for all m and ¢ if p=d=qg=0 and s=mS
for some integer S.

In other words, what the theorem says is that, insofar
as forecasting the future aggregates is concerned, the loss
in efficiency through aggregation can still be substantial if
the nonseasonal component of the model is nonstationary.
It is not so serious for long-term forecasting particularly
wheén the nonseasonal component is stationary. There is
no loss in efficiency due to aggregation if the basic model
is a purely seasonal process.

INFORMATION LOSS DUE TO AGGREGATION IN
PARAMETER ESTIMATION

Parameter Estimation of a Seasonal Model

Assume that the set of N =(n+d+Ds) observations z,,
Zg, --., Zy are generated by a general multiplicative
seasonal model of order (p, d, q) x (P, D, Q),, given in
(1). Note that the model can be parameterized in terms of
the zeroes of ¢,(B), ap(B®), 6,(B), and Bq(B?), so that
the process can be rewritten as

]'[ (1-§,B) H (1-T,B8%)w,

J=1

—H (1-h,B) H (1-H,B%)a, (28)

i=1

where
w,=(1-B*)°(1-B)%,,

&.(B)=11{,(1-,B),
ap(B8°)=IIf.,(1-T';B),

0q(8)=I1§,(1-h,B) and
Ba(B*)=MIfy(1-H,B°)
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Let §=[81, ceey 8,,]’, r=[r1, ceey Fp]’! _’.1=[hls ey hq],’
and H=[H,, ..., Hql'. Under the normality assumption of

a/'s, the likelihood function for the parameters 8’s, s,
h’s, and H’s is given by

L(3 L b H gilw)

1
202

=(2H)-"’(o-§)"‘”exp[ 2 at@. T, h, H)] (29)

(L]
where

,Wn] aﬂd(ﬂ(a F h H) E[a¢| H W]

tv=[W,, .

denotes the expectation of a, conditional on §, I,h H
and w. i

For moderate and large values of n, the likelihood
function in (29) is dominated by the sum of squares
function given by :

S(8,T,h, H)=X a¥3,T, h, H) (30
=1
and a,(§, T, {z H) can be explicitly written as
ﬁt@» !:,!l )=E{w—Awey ... =ApspWi-pepnt
Ti -1t . .+ Tor@s—g+an} 31

where E (w)=w, fort=1, 2, ..., n and is the back forecast
for w, for =0, and A’s are functions of 8's and I'’s, and
7’s are functions of #’s and H’s, obtained by the relation

we=Awey ... "Ap+Psw!—(p+Pl)=n;,-l(1‘818 )H;:I( 1-T;B*)w,
and
a—T\a¢-y- .. -7'0+Gsat—(q+03)=nr=l(l_hJB) Hla=1(] -H,B%a,

The least squares estimates obtained by minimizing the
sum of squares in (30) will usually provide a good
approximation to the maximum likelihood estimates. How-
ever, it can be easily seen from (31) that the calculation of
a, depends on (p+Ps) values of the w’s and (g+Qs)
values of a’s prior to the commencement of the w series.
One solution is to start the recursive calculation of the a’s
at r=max. (p+Ps, q+(Qs), setting previous a’s equal to
zero. An alternative solution to this starting value problem
is to note that the model in (28) can also be written as

H (1-8F) II (1-T,F*)w,

=1

1T 4P H (1-H,F e, (32)

=1
where ¢,’s are i.i.d N (0, a2).Thus,
W =AWy oo FAp W e T

Ti€t+1 - - - —Te+QsCt+ia+an (33)
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By letting é=Eled8, T, h, H]=0 for t=n—(p+Ps) and
given observations w,, Wn-y, ..., Wz, wy, We can use (33)
to backforecast the conditional expectation é¢ s and,
hence, to calculate the backforecast of w, for r=<0. The
desired terms d,'s can then be obtained from (31). The
details of this technique can be found in Box and Jenkins
2, 212-220]

Let n'= =8, ', ', H'1=[n, ..., nxl, where K=p+
P+q+Q and let n be the estimator of 7, based on the
basic model (28). It is known that, under fairly general
conditions, the large sample variance-covariance matrix of
this estimator is given by V(-Q)=lz‘(vl), where l¢(7_;)=

2
E(20§)“[%’%?'-)] and S(m=S@, T, h, H). It is readily
10m;
seen that 14(n) is, in fact, equal to E(U'U)a;?, where U
is the n XK matrix of derivatives given by

g‘;:—_(l-SiB) s

g‘;__(l B9 'a,,

g%'—(l—h‘B) a¢—y

%—(I—H,B’) s (34)

A Measure of Information Loss Due to Aggregation

Given the basic model in (1), the corresponding aggre-
gate model has been derived in (15), which can be
rewritten in terms of the zeros of A, (&), ap(%°), v.(RB),
and Bq(%°) as’

P _ P
[l a-5®) [] a-r,@)v,
=1 =1

—H (1-h,$)H(1-H,%S)CT 35)

=1

where
Vi=(1-B5Y(1-B)*Zr, ap(B)=I{(1-;B9),
Ba(BS)=TIL,(1-H ;BS), A\,(B)=T1§.,(1-5,B),
v, (B)=TTj-,(1-h; B)

and §,’'s and ;s are functions of 8,’s and h;'s.

Hopefully, by using the estimation procedure in the
subsection on parameter estimation of a seasonal model,
we would also be able to obtain the estimator y of 1 and
find V(-n)—l ;‘(n) where /(1) is the large sample infor-
mation matrix, based on the aggregate model in (35).
Define

f(m)-—-l-det V_(f!)= _ det/,(n) (36)
det V' ( ) det/4(n)

ﬂ“‘w’ .

SECTION Vi1

We can then use £(m) to assess the information loss in
estimation due to aggregation. Unfortunately, the relation-
ship between the parameters &'s and i's in the aggregate
model and 8’s and 4’s in the basic model is so confounded
that it is almost impossible to locate &’s and h’s through
&’s and h's. However, by considering some common
parameters in the basic model (28) and aggregate mode)
(35), such as I''s and H's, £&(m) can still give us an idea
how serious is the information loss in estimation. due to
aggregation.

Minimum Information Loss in Estimation Due to
Aggregation

We have shown that, insofar as forecasting future
aggregates is concerned, there is no loss in information if
the basic model is a purely seasonal model and the number
of aggregation components m be such that s=mS for some
integer S. The result is not that surprising, because, in this
case, the aggregate model has exactly the same form as
the given basic model. This represents the best situation
we can have under temporal aggregation. It is of interest
to know whether this result also remains true in the case
of parameter estimation.

If p=d=q=0, the model (28) becomes

4 Q
[Ta-T,89w=[10-H,8a. 37)
=1 =1

where a,’s are i.i.d. N (0, o). The large sample informa-

‘tion matrix for I';’s and H;'s, based on the basic model,

can be shown through (34) to be

a-rp- (A-f)=t - (=T ~(-[H)™" - - (1= H)™ i

|

. N 1

lap)=n | (-T L) Q-[L)" - -+ Q-TH  -(1-TH)" - - - -(1-THe)™ i
-(1-H,[)" ~(1-H\[)™" - - - —(1-H [,y (1-HD™! - (1-H H™

-(l-h.r.)-' ~(=Hgl)™ - - - =(U=-Holp)™" (I-HoH)™'- - - (1-H{™ |

The corresponding aggregate model (35) in this case
becomes

P Q
I1 a-r@5v.=[la-H,3%C, (39)
j=1 =1

where C;’s are i.i.d. N(0, mo2). The large sample
information matrix for I"’s and H’s, based on this aggre-
gate model, is then easily seen to be 10(13)/m. Thus,

Em)=1-m-#+@ (40)

To see the implication of (40), assume P=1, 0=0, and
the basic series is a monthly series with s=12, we have
ER)=1/2, £3)=2/3, £(6)=5/6, and £(12)=11/12. In estimat-
ing the parameters in the basic model, temporal aggrega-
tion, hence, leads to a tremendous loss in information. In
fact, £(m) in (40) is an increasing function of m and the
number of parameters in the model. The larger the m and

WEI
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the more parameters in the model, the more information
loss is caused by aggregation.

APPLICATION OF ANALYSIS

In this section, we illustrate the results discussed in
previous sections through a simple example, using the
monthly data of the U.S. employed civilian workers from
January 1949 through December 1974 as our basic series
z,. The aggregate series Z; is the quarterly observations of
the employment data during the same period. The data are
given in the appendix. However, in order to compare the
actual forecasting performance between the basic monthly
model and the aggregate quarterly model, we use the data
from 1949 to 1973 as our basis to identify the underlying
process and estimate its parameters.

Identification of Basic Monthly Model

Table 1 shows the sample autocorrelations of 300
monthly observations from 1949 through 1973. By
applying the three-stage iterative procedure, proposed by
Box and Jenkins [2, 18], the monthly model would be
©,1,1) X (0, 1, 1)y,

(1-B'2)(1-B)z,=(1-6BX1-HB"?)a, Q2))

where a,'s are independently and identically distributed as
N(0, o2).

Let w,=(1-B2)(1-B)z,. Since G (B2)=(-HF"1?+
(1+H*»)-HB") and g(B)=(-6F+(1+6*)-6B), (5) and (6)
imply that the autocovariance generating function of {w}
is given by

Yuo{B)=0% X y.B*

L b=—x

“2)

where y,=(1+H2)(1+6?%), y,=-0(1+H?), yy=v13=6H,
vie=—H (1+6?) and y,=0 otherwise.

Aggregate Quarterly Model

For a basic model of order (0, 1, 1) x (0, 1, 1),, and
m=3, theorem 1 implies that the quarterly model should
be of order (0, 1, 1) x (0, 1, 1),

(1-BY1-B)Zr=(1-vBY1-H BYC 43)

where Cr’s are i.i.d. N(0, o%). The parameters H in both
(41) and (43) are the same, while the parameters v and o%
are related to the basic parameters 6 and o2 through (16)
as follows:

o2 (1+1%)=0%(1962~320+19)
—atu=a}(402~ 110+4) 44)

Table 2 shows the sample autocorrelations of 100
quarterly observations from 1949 through 1973. Applying,
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again, the Box-Jenkins three-stage iterative procedure, we
would come up with a model of order (0, 1, 1) x (0, i, 1),,
which confirms the theoretical model implied by theorem
1.

Estimation of Parameters in Monthly and Quarterly
Models

If the parameters 6, H, and o2 in the monthly model
(41) are known, the parameters v, H, and o% in the
quarterly model can be easily obtained from (44). Since
these parameters ‘in both models are actually unknown,
they are estimated by the nonlinear least squares proce-
dure, subject to some starting values discussed in the
subsection on the parameter estimation of a seasonal
model. More specifically, & and A in the monthly model
(41) are estimated by minimizing Y 3%, d$(6, H), where
a,=w,+6a,,+Ha, ,-0Ha,_,; and a,=0 for t=<13. The
estimates and confidence intervals for § and H in
this case are

Estimate 95-percent

P eter (standard error) confidence interval
0 0.21 (.05918) [0.09, 0.32]
H 0.664 (.04647) [0.57, 0.75]

Similarly, by letting ¥V, =(1-B*1-B)Z;, v and H in the
quarterly model (43) are estimated by minimizing
2'}&06 %, where CT=VT+UCT_l+HCT_4—UHCT_5 and
Cr=0 for T=5. The estimates and confidence intervals for
v and H in this case are

Param Estimate 95-percent
eter (standard error) confidence interval
v -0.32 (0.10106) (-0.52, -0.12]
H 0.659 (.08137) [ 050, 0.82]

Also, we have 6,=374.71 and 6,=1292 4.

It should be noted that, other than direct estimation
from the quarterly model the estimates of v, H, and o
can also be obtained through 6, H,4, and &, from (44) and
the fact that H in both models are the same. Thus, given
G,=374.71, 6=0.21, and H,=0.66, we have H,=0.66, v=
-0.15, and 6,=1343.05. As expected, they are very close
to the direct estimation result through the quarterly model.

As pointed out in the subsection on a measure of
information loss due to aggregation, to obtain a rough idea
of information loss through aggregation in terms of param-
eter estimation, we can compare the efficiencies of esti-
mates of the common parameter H in monthly and
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Table 1. AUTOCORRELATIONS OF THE MONTHLY EMPLOYMENT DATA
Series Lags 1 2 3 4 5 6 7 8 9 10 1" 12
z, 1-12 0.98 0.96 0.94 0.93 0.91 0.89 0.88 0.87 0.87 0.86 0.86 0.86
ST. E. .06 .10 13 .15 A7 .18 .20 21 22 .23 .24 .25
13-24 .82 .82 .80 .79 77 .76 .75 74 74 .74 .74 73
ST.E. .26 27 .28 .29 .29 .30 31 31 32 32 33 33
25-26 72 .70 .69 87 .66 .65 .64 .64 .64 .64 .63 .63
ST. E. 34 35 35 .35 36 .36 37 37 37 38 .38 .38
(1-B) z4 1-12 .22 .07 -19 .02 -35 -39 -31 -.01 -17 .04 .28 77
ST. E. .06 .06 .06 .06 .07 .08 .08 .08 .08 .08 .08 .08
13-24 .26 .06 -20 -.01 -36 -35 -33 .04 -20 .06 24 .74
ST.E. 1 11 11 1 1 N 12 12 A2 12 12 12
25-36 25 .05 -18 -03 -33 -36 -28 .02 -16 .06 24 I
ST. E. 14 14 .14 14 .14 14 14 .15 .15 .15 .15 .15
(1-8'?)
(1-B)z; 1-12 -.30 A7 -.06 .16 .04 -.08 A7 -24 21 -.19 21 "-49
ST.E. .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .08
13-24 14 -.01 -09 -03 -18 A7 -23 21 -17 .03 -.08 .04
ST. E. 09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09
25-36 .03 -12 .08 -.04 12 -14 A7 -12 .03 .07 .02 -.04
ST.E. .09 .09 .09 .10 10 10 .10 .10 10 .10 10 .10
Table 2. AUTOCORRELATIONS OF QUARTERLY EMPLOYMENT DATA
Series Lags 1 2 3 4 5 6 7 8 9 10 11 12
27 1-12 0.95 0.90 0.87 0.86 0.81 0.76 0.74 0.73 0.69 0.65 0.64 0.63
ST.E. .10 A7 .21 .24 .27 .29 31 .33 .35 36 37 38
(1-B)Z-r 1-12 -.08 --.65 -1 .89 -12 -.64 -1 .84 -.13 -.61 -.09 .81
ST.E. .10 .10 .14 14 .19 .19 21 21 24 .24 .26
(1-8%)
(1-B)ZT 1-12 .46 13 -12 -42 -31 -.20 -.15 -.08 -.03 .10 .08 -.04
ST.E .10 12 12 .12 .14 .14 .15 .15 .15 .15 .15 .15
Table 3. FORECASTS OF THE 1974 EMPLOYMENT DATA
) Actual Forecast from Forecast from
Lead Time (quarter) observation quarterly model monthly model '
1 253260 | 255040.0 (0.007) 254189.07 (0.004) 0.27
2 . e 258144 260823.4 (.010) 259967.70 (.007) 46
K 261832 264890.4 (.012) 264026.76 (.008) .51
4. ... 257191 264358.2 (.028) 263484.26 (.025) 77

L B o B e T e

]

Jer

act
tim
popi
the 1
befo
on
obse
will
wor

temr

mo:
tior

Age



wr T YW v W e wWoW W W U W

ot e 1 e d

quarterly models. We first recall from the subsection on
minimum information loss in estimation due to aggregation
that if the monthly model is of order (0, 0, 0) x (0, 1, 1),
then ¢(3)=2/3=0.6666. Now
0.3263=0.6737. Thus, in the present case, in terms of
parameter estimation, aggregation causes at least a 67-
percent loss in efficiency.

Forecasting Efficiency of Monthly and Quarterly Models

If we are interested in forecasting the quarterly employ-
ment figures in 1974, we can either utilize the monthly
model to forecast 1974 monthly figures and then aggregate
them to obtain the quarterly forecasts or use quarterly
model to forecast the desired quarterly values directly.

Table 3 shows the result for these forecasts. The values
in parentheses are percentages of actual forecast error,

e., {E(Zy,|past history)=Z.c}/Z e Also shown in
the table is the ratio of forecast error squares
between monthly and quarterly models, i.e., r=
(ZA6)- Z”()’/(Z,{() Z,.0%. It shows that, even in fore-
casting quarterly figures, the monthly model gives much
more accurate results than the quarterly model. This is
especially so if the forecasting lead time ¢ is small. In
terms of forecasting future aggregates, the loss of infor-
mation becomes negligible only when the forecasting lead
time ¢ becomes large, as predicted by our theory in the
section on the effect of aggregation on forecasting.

SUMMARY AND CONCLUDING REMARKS

Since Box and Jenkins developed the so-called Box-
Jenkins approach to time series analysis about a decade
ago, because of its represemtation for a wide variety of
actual series, the general multiplicative stochastic seasonal
time series model, introduced in (1), has become a very
popular tool in applied time series analysis, especially in
the field of economic and business applications. However,
before getting into actual analysis, one must decide first
on the time unit he is going to use for his basic
observations.  The aggregation problem, hence, naturally
will come to the mind of any conscientious research
worker.

In this paper, we have studied the consequences of
temporal aggregation in stochastic seasonal time series
model. These results are shown in the following subsec-
tions.

Aggregation Effect on Model Structure

1. Given a stochastic time series model of order (p, d,
q) X (P, D, Q)s, the corresponding model for the
aggregates of m-component nonoverlapping sum is of
order (p, d, r) x (P, D, Q)s where s=mS for some

integer § and r=|p +d+1 +f1—p’;d—1].

a0 2 VR AT A ST e i R BN

1-V(H)IV(H)=1-
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2. Aggregation contaminates the model structure only
through its nonseasonal component. In fact, the order
of the process is changed only through the moving
average order of the nonseasonal component. Thus,
based on the order of the process obtained from
modeling time aggregates, the proper limit of the
order of the underlying basic series can be obtained.

3. Temporal aggregation will, in general, complicate the
model structure. However, as the number of aggre-
gation components m becomes larger, it tends to
simplify the model form.

Aggregation Effect on Forecasting

1. The most serious information loss in forecasting due
to aggregation is that, while basic series can be used
to forecast any desired future aggregates, temporal
aggregates cannot be used to predict desired future
disaggregates.

2. As far as forecasting future aggregates is concerned,
the loss in efficiency through aggregation depends on
the structure of the nonseasonal component of the
process. This is expected, because aggregation con-
taminates model structure only through this compo-
nent.

3. In forecasting future aggregates, aggregation causes a
substantial loss in efficiency when the nonseasonal
component of the series is nonstationary; the loss in
efficiency is relatively small for long-term forecasting,
particularly when the nonseasonal component of the
basic model is stationary; there is no loss in effi-
ciency if the basic series is a purely seasonal model.

Aggregation Effect on Parameter Estimation

1. Given an invertible basic process, there exists a
unique set of parameters of the corresponding inver-
tible aggregate model. However, in general, it is
almost impossible to locate the parameters of the
basic model from the parameters of an aggregate
model.

2. In terms of parameter estimation, aggregation causes
a tremendous loss in efficiency, regardless of the
given model. The larger the number of aggregation
components and the more parameters in the model,
the more serious information loss is caused by
aggregation.

The above results have been supported both by the
theory and the numerical results from an empirical appli-
cation to U.S. employment data.

It is hoped that the results will be useful to time series
analysts who are concerned about the implications of
temporal aggregation in stochastic time series models.
More importantly, it is hoped that the ‘results will bring
attention to some research workers who use aggregated
data in their statistical analysis and inferences, while being
unconscious of the consequences of temporal aggregation.
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444 : SECTION VII
Table A-2. U.S. EMPLOYED CIVILIAN WORKERS, BY QUARTER

Year 1st quarter 2d quarter 3d quarter 4th quarter
1949............ 169,615 172,829 174,999 174,378
1950, ........ ... 169,119 176,528 181,032 180,373
1961, ........... 175,634 179,798 182,504 181,622
1962, ........... 176,630 180,470 182,809 183,134
1953, ........... 181,279 183,984 185,986 182,903
1954, ........... 176,823 180,054 182,333 182,101
1955. . .......... 178,540 185,209 191,049 191,246
1966. ........... 185,994 191,754 ) 194,856 193,003
1957. ... v v e v e 187,620 : 192,862 195,504 192,839
1968. ........... 184,340 188,866 ) 191,594 191,636
1959............ 187,158 195,201. 197,504 195,695
1960. ........... 190,853 199,080 201,135 198,244
1961. ........... 192,366 197,939 199,975 198,665
1962, ........... 194,508 200,075 203,566 201,481
1963............ 197,016 204,068 206,844 205,266
1964. ........... 201,360 209,347 211,364 209,582
1965. . ... v v v el 206,310 213,796 217,196 215,755
1966. ........... 212,149 218,722 222,568 221,339
1967............ 217,226 222,476 227,022 225,735
1968. . .......... 221,903 : 228,347 231,118 229,672
1969. ........... 228,057 233,300 237,287 236,176
1970. ........... 232,759 236,147 238,440 236,171
1971, . ... il 231,990 236,391 240,596 240,456
1972, .. ......... 238,667 244,479 248,984 248,291
1973. .. ......... 245,694 252,624 257,129 257,466 .
1974. . . ......... 253,260 258,144 261,832 : 257,191
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COMMENTS ON “SOME CONSEQUENCES OF TEMPORAL AGGREGATION IN SEASONAL
TIME SERIES MODELS”’ BY WILLIAM W. S. WEI

P. M. Robinson
Harvard University

The scheme used here for incorporating seasonal and
nonstationary affects in a time series model is a convenient
one and certainly facilitates study of the affects of tem-
poral aggregation. The model that the author investigates
was considered by Box and Jenkins [1, 305]. It is one in
which the basic series can be regarded as the output
obtained from passing white noise through two filters;
both filters have rational frequency response, but one
(responsible for the stationary and nonstationary seasonal
effects) is restricted to be a rational function of A* (where
s is the seasonal period). The composite model is then the
author’s autoregressive integrated moving average
(ARIMA) model (1);! although other approaches to the
modeling problem are certainly possible, a great body of
knowledge about ARIMA models, and their estimation, is
available, and they are relatively easy to use in forecasting.
An autoregressive moving average (ARMA) model for a
stationary, detrended, series can be justified on theoretical
grounds in that its spectral density provides an arbitrarily
good uniform approximation to any continuous spectral
density. Moreover, the aggregate series Z, is formed by
passing z; through a simple moving average filter, and,
thus, Z, is also an ARIMA process. Indeed, as Wei notes,
some previous authors have obtained results on the
relationship between similar models for z; and Z,. Unfor-
tunately, these authors found also that, except in simple
cases, the relation between the parameters in the two
models is complicated and tedious to derive, involving the
solution of a polynomial, and this greatly hinders Wei’s
study of information loss in estimation and forecasting.
However, Wei obtains some perspicuous results that
confirm one’s expectations that, in many important cases,
the effects of aggregation on parameter estimates and
forecasts are likely to be substantial.

In the practical application in the section on application
and analysis, Wei finds that the method of Box and
Jenkins [1, 18] for identifying the degree of an ARIMA
model works well, in that the model suggested for the
aggregated series is the same as that which is obtained

'To avoid identifiability problems, one must assume that the
polynomial operators in (1) are of minimal order; in a practical sense
this problem seems to be taken care of by the method in {1, 18] that
the author uses to identify the most economical model. Also, in order
for the decomposition into a(B%) and ¢.(B) on the one hand, and
B BS) and 64 B) on the other, to be unique, o, and Bq are presumably
assumed to be of maximal order.

after using the Box-Jenkins method on the disaggregated
series, and then applying the theory of the present paper.
The relative efficiency provided by the two models is then
considered. In a situation in which the disaggregated
values are not available, however, the extent of the
efficiency loss will be less easy to estimate, even in simple
models. It seems unlikely that support for a particular
model for z, will often be available from economic theory,
and, thus, there may be little theoretical basis for modeling
Z,. Moreover, there may be doubt about how to choose
the basic time unit for z;. The aggregation operation may,
in practice, be more complicated than the author’s simple
sum (7). In these circumstances, a natural interval to be
used in specifying the underlying model for z, may
sometimes be suggested by the nature of the economic
transactions involved, but not always. If z, is regarded as
defined continuously in time, a continuous time model
would seem more appropriate. This might be a stochastic
differential equation model of a type considered by a
number of authors. It might alternatively be a difference
equation model in which the spans are known or unknown
real numbers of which the aggregate time interval m is not
necessarily an integer multiple; the only statistical treat-
ment of such a model, of which I am aware, is in
Robinson [3]. Any of these continuous time models will,
however, raise problems that are similar to, but somewhat
more difficult than, Wei’s discrete time model.

It should also be mentioned that loss in efficiency may,
in practice, turn out to be even greater than Wei suggests.
In the subsection on a measure of information loss due to
aggregation, Wei states the model for Z,, in terms of the
roots 8, I';, hy, and H;. The 3, h; are functions of the &,
h;, which are the roots in the model for z,. As Wei
acknowledges in this subsection, these functions are very
complicated. Therefore, it seems quite possible that one
will simply estimate the coefficients of the model for Z,,
i.e., the coefficients ay, B;in

P+PS p

- P
1+ [] eyB=]] (1-8,B) [] (1-T;B%)
=1 =1 i=1

T+QS r

_ Q
1+ [1 8=[] (1-a,B)[1(1-H B
=1 =1 j=1

Research supported, in part, by NSF Grant Soc.
75-13436.

445




446

(see (35)), without attempting to deduce the underlying
model. Although knowledge of S and the degrees P and Q
of the seasonal factors may allow us to take some of the
ay, B; to be zero a priori, we may still be estimating rather
more parameters than the p+P+g+Q parameters 5;, '},
h;, and H,; of the underlying model. Even if the nonsea-
sonal moving average order, g, in the underlying model is
zero, when m is an integral divisor of S, the nonseasonal
moving average order, r, in the aggregate model is

[ivaen(z=)].

which is nonzero whenever (p+d)(m-1)=1. Therefore,
the inefficiency stems not only from the fact that relatively
few pieces of data are being used, but also from the fact
that relatively many parameters are being estimated,
although one would expect that the former source will
usually predominate.

It should also be said that the measure of efficiency
employed is somewhat arbitrary. Wei defines a measure
of the information loss in estimation due to aggregation to
be

_, detl,(n)
)= et T

(See (36).) There are P+p+Q +q elements in 7, and, thus,
when the parameter space is large an alternative measure,
such as

det 1,,(13)] V(P+p+Q+q)
det 1,(n)

will produce numbers that are somewhat less horrifying."
Whether one tries to estimate the model in terms of the
8;, u; or in terms of the §;, u;, it seems that something can
be added to Wei’s treatment of the estimation problem in
the section on information loss due to aggregation in
parameter estimation. He sets up the exact normal?
likelihood in the subsection on parameter estimation of a
seasonal model and approximates it by a sum of squares
function (30) with no loss in asymptotic efficiency. He
recommends that (30) be minimized. This can probably be
done by utilizing a computer package for iterative optimi-
zation or, if the model is small like the one in his
numerical example, by brute force scanning of (30).
However, it may be possible to obtain estimates that are
asymptotically as efficient without recourse to such nu-
merical methods. For example, Hannan (2, 377] describes
a three-step procedure that would estimate the structural
coefficients a;, B; in the model for Z,. But, as earlier
noted, there may be more oy, 8; than §;, I';, h;, and H;. An
efficient two-step procedure for estimating quantities cor-
responding to the §; in a stochastic differential equation

é(m)=1-[

2]t may be noted that his normality assumption in the section on
model structure of temporal aggregates is not of great importance.
Certainly, it motivates the likelihood criterion, and, certainly, it
justifies using only autocovariances in the estimation procedure. But,
the parameter estimates will have the same asymptotic distribution
without the normality assumption as they will if normality is imposed.
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driven by pure noise was described by Robinson [4].2 It
involves finding an initial consistent, but inefficient esti-
mate, in a relatively simple fashion and then making a
suitable correction to achieve efficiency. This approach
seems capable of adaptation to Wei’s discrete time model.
It should be added that the methods in both [2, 377] and
(4] employ Fourier transformed data, and they do not
involve the somewhat messy starting value problem dealt
with in the subsection on parameter estimation of a
seasonal model of Wei's paper. They are, only approxi-
mately nonlinear least squares (NLLS) or maximum
likelihood (ML) methods, therefore. In small samples, the
various methods may give substantially different results,
In the absence of information on finite sample properties,
however, it is not clear to me that there are significant
grounds for preferring NLLS or ML over other methods
that are just as efficient asymptotically.

It is of some interest to analyze Wei’s model (1) in the
frequency domain. Consider the case of a simple purely
seasonal process

2=8z¢pta, 1=1,2, - - -, 5I<I

where the a, are white noise, with E (a?) =o2. This process
has spectral density

1 o )
f(h)'—‘i;; z E(2@e+s)e 8

j=—w

=m, -m<A=T (l)

The function f is periodic of period /6. When 60, it
has stationary points only at the frequencies mj/12,
Jj=-11, ..., 12. When 8>0, those at the seasonal frequen-
cies \;=mj/6, j=-5, ..., 6, are maximum points, while
those at the intermediate /12 are minimums. The ampli-
tudes of the peaks vary directly with 8, and (1) can be
thought of as the Abel sum of the Fourier series (see
Zygmund (5, 96]) of the limiting generalized function g (A)
that gives delta function weight to the A;, while giving zero
weight to all other frequencies. The function g (A) corre-
sponds to a purely periodic process, and (1) can be
thought of as a smooth approximation to it. This suggests
that one might use alternative methods of approximate
summation of the Fourier series of g(\) to represent
seasonal peaks in the spectrum. However, most of these,
unlike the author’s, could not be very conveniently
incorporated in a time domain model.

The effect of passing a purely seasonal process through
the nonseasonal filter 6,(B)/¢d(B) is to modify the location
and amplitude of the seasonal peaks to a greater or lesser
extent. There is an alternative, additive model, considered
by Hannan [2, 174], that can also employ the ARMA idea.
It might have been interesting if Wei had considered the

3]t may be noted that, whereas the coefficients in a,(B%), ¢x(B),
64 B), and By(B) are real, in general, some of the 3, T, h,, and H,
will be in complex conjugate pairs in which case the distribution in
the central limit theorem for the estimates will be complex multivariate
normal.
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effects of temporal aggregation on this model also and
investigated its performance on the data. One writes

2=qFrots,

where ‘N r,, and s, are unobservables, such that g, is a
trend, r, is a stationary (possibly ARMA) process, and s,
is an evolving seasonal process with representation
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S= z (ajcos At +Bysin \;t)
j=1

where the A; are as previously mentioned, and oy and B
are stationary (possibly ARMA) processes that are inco-
herent for all j, k, and ay,, B, have identical autocovariance
properties for each j.
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