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13.1  Introduction

Gross Domestic Product (GDP) is one of the most widely used and cited 
measures of economic activity. Obtaining timely and accurate GDP esti-
mates is essential for policy makers, the private sector, and individuals mak-
ing a wide range of economic decisions. However, the Bureau of Economic 
Analysis (BEA), the agency responsible for producing GDP fi gures, must 
produce its initial estimates of  GDP prior to when some critical source 
data are available. Thus, the reliability of advance estimates and the extent 
to which they capture news rather than noise hinges in part on successfully 
bridging data gaps.
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One approach to bridging data gaps involves working with providers of 
source data to accelerate production of their estimates. For example, the 
US Census Bureau accelerated publication of  the Monthly Retail Trade 
and Sales Survey (MRTS) as an advance publication, which has translated 
into marked reductions in GDP revisions. While eff ective, this solution can 
be costly, may place undue burden on respondents, and may reduce the rate 
of response.

Alternatively, the breadth of timely proprietary data sources has expanded 
signifi cantly in recent decades. The fi nancial sector has relied on such data 
(including credit card transactions, email receipts, search queries, etc.) to 
better forecast economic fundamentals and to anticipate fi nancial perfor-
mance of companies ahead of quarterly earnings reports. These data have 
the potential to do the same for offi  cial statistics. Nevertheless, these sub-
stitute data do suff er from some problems—nontraditional sampling, and 
large numbers of variables—that strain traditional statistical techniques. 
Instead, forecasters have developed sophisticated machine learning (ML) 
techniques in which nonparametric, nonlinear, or otherwise computation-
ally intensive algorithms yield predictions in just this type of environment. 
This combination of alternative data sources and contemporary ML tech-
niques provides a possible bridge for the data availability gaps that producers 
of offi  cial statistics face.

These advancements are not without challenges and the transparency 
of ML is often called into question. Some view ML as a black box, espe-
cially because the techniques may not lend themselves to traditional modes 
of linear interpretation and because modeling decisions in nonparametric 
models may be too voluminous to effi  ciently evaluate. They also represent 
a philosophical shift: ML is aimed at producing predictions ŷi rather than 
parameter estimates ˆ (Mullainathan and Spiess 2017). Without being able 
to understand or interpret coeffi  cients, there are some who argue that we 
can never fully understand the predictions given by ML models. Nonethe-
less, it is not the case that studies that use ML are devoid of  economic 
intuition. In our case, the prediction target is of  economic signifi cance, 
and economic intuition will be preserved through the application of national 
economic accounting principles.

On the data side, newer sources of data can be timelier, but the reliability 
and stability of alternative sources have yet to be proven for offi  cial statisti-
cal purposes as they are only a recent phenomenon.1 The universe captured 
in alternative sources is not typically disclosed, making it challenging to 
evaluate the properties of the data.

In this paper, we explore how ML and alternative data sources can play a 

1. Private sector data sources have been used for many components of the national accounts 
for decades. While the use of private sector data is not new, the availability and types of alterna-
tive data sources have changed dramatically (e.g., credit card data and search queries).



Machine Learning and Alternative Data for Predicting Indicators    375

role in stabilizing offi  cial national statistics when faced with publication lags. 
We focus on Personal Consumption Expenditures Services (PCE Services) 
that account for more than $9.8 trillion of the current dollar estimate in 2018 
(> 45 percent of GDP). Approximately $4.2 trillion of PCE Services is based 
on the Quarterly Service Survey (QSS), which is only fully available 75 days 
after the end of each quarter and informs the third estimate of GDP.2 The 
current estimate revision to quarterly GDP has averaged $27 billion since 
2012, with an average revision of  $14 billion attributable to PCE.3 QSS- 
based estimates contribute the largest share to PCE revisions, averaging 
$11 billion. Thus, by predicting the QSS, estimates using ML and alterna-
tive indicators can deliver economic news earlier in the estimate cycle and 
improve data quality.

Our approach is not to apply an “off - the- shelf” ML algorithm, but rather 
to dedicate signifi cant attention to the unique features of the problem at 
hand, while at the same time advocating broad principles that should apply 
to similar applications. For this purpose, forecasts must be both robust 
and stable, and we must carefully contemplate the way predictive accuracy 
should be defi ned in the national economic accounting context. More spe-
cifi cally, we evaluate potential revisions reductions, (a) for each PCE com-
ponent across all modeling scenarios; (b) for each algorithm across all PCE 
components and other modeling choices (dataset, inclusion criteria, etc.); 
and (c) for combinations of these concepts.

Predicting these types of offi  cial statistics presents a unique challenge that 
guides the approach that we favor. Surveys or censuses are not conducted 
at high frequencies, and the intersection between their observations and the 
observations contained in alternative datasets to which we have access yields 
a rather short time series. The ML paradigm prescribes partitioning data 
into multiple parts: one for estimation, one for model selection, and one for 
testing. We do not have enough observations to subset the data into these 
multiple parts, so we propose a unique approach. Specifi cally, we estimate 
thousands of potential models for every series where each model applies dis-
tinct methods and data. Rather than selecting just the “best” model, which 
may overstate the improved prediction, we report and analyze the full dis-
tribution of predictions across model scenarios for a large cross- section of 
series. This approach has two distinct advantages. First, using the cross- 
section of series allows one to evaluate and identify which modeling deci-
sions result in poor predictions across many series. For example, we fi nd that 
the method of using a four- quarter moving average performs quite poorly 
across data series. A second advantage of this approach is that it avoids the 
overfi tting that might occur by selecting only the best model. Instead, using 

2. The Census Bureau also publishes an advance estimate of QSS at 45 days; however, it is 
a limited subset of all series.

3. The revision is calculated as the third estimate less the advance estimate.
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a distribution of many models for each series, we can determine which series 
show consistent improvement across a sample of model scenarios.4

The paper is organized as follows. Section 13.2 places this work in the 
landscape of  forecasting and nowcasting literature for macroeconomics. 
Section 13.3 describes the process of a prediction horse race and criteria for 
identifying PCE components that can be reliably improved. Section 13.4 
examines prediction results, placing an emphasis on producing rules of 
thumb for modeling and estimating the eff ects of PCE revisions.

13.2  Literature Review

Traditional forecasting typically employs linear time- series models 
wherein theory dictates the appropriate estimators; based, for example, on 
asymptotics and an assumed class of data- generating processes. However, a 
major constraint—especially of linear models—is that the number of vari-
ables that can enter the forecast must be considerably less than the number 
of observations. This reduces the amount of data that can enter the models 
to help inform the prediction. The machine learning techniques applied in 
this paper are not bound by this constraint and allow for the consideration 
of a much larger number of variables.5 The disadvantages associated with 
this approach are in the necessity to put one’s faith in model validation and 
testing.

The popularity of Big Data and machine learning has been growing rap-
idly in the forecasting literature over the last decade. Our paper diff ers from 
many of these studies not so much in the techniques that are applied, but in 
the objects that we are forecasting. To our knowledge, forecasts using Big 
Data for incorporation into offi  cial statistics is a rather unique application. 
The closest application of these techniques in the recent literature has been 
to nowcast Macroeconomic aggregates.

A major benefi t of writing a paper in a fi eld that is growing in popularity is 
the existence of recent, high- quality review articles. Einav and Levin (2013) 
provide an overview of important concepts, data sources, and common fore-

4. This approach is in the spirit of Leamer (1983), who advocated reporting a broad distri-
bution of models as he was concerned that researchers searching for the “correct” specifi ca-
tion may cause a high degree of bias; and more recently Athey and Imbens (2015), who are 
concerned with misspecifi cation uncertainty.

5. It is not impossible to approach problems with more predictors than observations using 
a more traditional paradigm, and many of the important conventions of ML, such as valida-
tion and testing, are not unique thereto. Frequentist approaches applicable to such problems 
include model selection (for a review see Kadane and Lazar 2004), model averaging (some 
recent examples include Hansen 2007, and Hansen and Racine 2012) and factor models (cf. 
Stock and Watson 2006). Bayesian model averaging may also be applied to “wide” data sets, 
using dimensionality- reduction techniques or stochastic searches (Fragoso, Bertoli, and Lou-
zada 2018). ML is thus one among many approaches that could be applied. Nevertheless, it is 
particularly well- suited to this problem based on the sheer number of right- hand- side variable 
combinations that are possible.
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casting techniques. They note that the larger scale, breadth of variables, and 
lack of structure present new opportunities, but also new problems that must 
be dealt with by the researcher. In addition, they note the need for cross- 
validation—a technique that is rarely used by economists but is essential in 
this context. Varian (2014) also off ers an overview and a sort of how- to guide 
in applying machine learning techniques to big data, while identifying where 
these techniques originated in the broader scientifi c literature. Kapetanios 
and Papailias (2018) provide an extensive review of very recent studies that 
have used these techniques, organized by prediction target (unemployment, 
infl ation, output, and fi nancial variables), as well as a detailed discussion of 
many important techniques.

Because in this paper we focus on near- term forecasts of the recent past, 
what we are doing can be called nowcasting. Nowcasting is a portmanteau 
of “now” and “forecasting,” and was defi ned by Giannone, Reichlin, and 
Small (2008) to comprise forecasting of the recent past, present, or near 
future. However, we are not exposed to several problems that are particular 
to nowcasting: “ragged edges” in which because of real- time data fl ow, the 
forecaster does not have access to all data series at all points in time, and 
mixed- frequency data. As such, our application has more of a forecasting 
fl avor.6

The constellation of  big data, machine learning, and nowcasting has 
spawned a literature that is somewhat distinct from the “traditional” now-
casting literature. This is precisely because these two approaches generally 
deal with a distinct collection of complications. Traditional approaches of 
regression and time series analysis have ready- made solutions to the ragged 
edge problem (that use, e.g., a Kalman fi lter), while the machine learning 
literature has generally ignored such considerations. As such, the types of 
Big Data that machine learning typically uses are somewhat diff erent. Never-
theless, there is a recent and growing literature in this fi eld summarized by 
Kapetanios and Papailias (2018). Biau and D’Elia (2012), for example, use 
survey data and a random forest algorithm to nowcast Euro- Area GDP; 
Nyman and Ormerod (2017) use a random forest algorithm to predict reces-
sions; and Choi and Varian (2012) use Google Trends to nowcast several 

6. Earlier nowcasting work relied on regression- based methods, which include what is termed 
“bridging” or “bridge equations” and MIDAS regressions (cf. Bańbura, Giannone, and Reich-
lin 2011 for a review). Bridging uses time aggregation of monthly data combined with regression 
analysis to produce a nowcast, while in MIDAS models (Ghysels, Santa- Clara, and Valkanov 
2004), variables of diff erent frequencies directly enter the regression equation. The ragged edge 
problem is solved with the application of “state- space” models in which variables that are used 
in the nowcast but are missing are themselves forecasted, a process typically implemented via 
a Kalman fi lter. Subsequent attempts to nowcast macroeconomic variables with large datasets 
involved the application of data- reduction techniques—for example, dynamic factor models 
(Bańbura et al. 2013). Bok et al. (2017) describe the New York Fed’s nowcasting approach, 
which synthesizes many of these techniques. This summary does not cover the whole of the 
recent nowcasting literature, and so we refer the reader to Kapetanios and Papailias (2018) for 
a more detailed overview.
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macroeconomic indicators such as auto sales and unemployment claims. 
Rajkumar (2017) compares various algorithms, including a random forest, 
to predict surprises in GDP growth.

Finally, the adoption of  any type of  nowcasting technique for “fi lling 
in” series that are not yet available to be used in offi  cial statistics has few 
examples in the literature. Cavallo et al. (2018) use the “billion prices project” 
data (Cavallo and Rigobon 2016) to produce high- frequency purchasing 
power parities (PPPs), which could be used to bridge the period between 
releases of the World Bank’s Penn World Table’s International Compari-
sons Program’s PPPs. Similar price indices might also be used to replace 
certain headline numbers such as Argentina’s CPI, which is believed to be 
unreliable (Cavallo and Rigobon 2016). B. Chen and Hood (2018) use tra-
ditional nowcasting techniques (bridge equations, bridging with factors) 
combined with model selection to nowcast detailed components of personal 
consumption expenditures on services that go into the calculation of GDP, 
showing the potential for signifi cant reductions in revisions in many of these 
components.

13.3  Methods and Data

13.3.1  Modeling Considerations

The objective of this study is to reduce revisions to GDP by identifying 
predictive approaches that off er consistent improvements. There are chal-
lenges in this task, particularly in how we account for the properties of the 
data and in identifying where prediction can be reliably applied.

The properties of input data that are typically used for national economic 
accounts combined with the properties of alternative data present a unique 
forecasting challenge. Survey or census time series tend to be relatively 
coarse (e.g., monthly, quarterly, or annual). When used in conjunction with 
alternative data (which are a recent phenomenon, as mentioned above), 
the resulting time series tends to be short. The alternative data that we use, 
however, have a very broad cross- sectional dimension. As such, the number 
of variables, k, signifi cantly exceeds the number of observations, n, a situa-
tion that is not a good fi t for traditional statistical analysis. For this type of 
application, the problem with regression- based models is not that they are 
inaccurate (although they may be), but that they cannot even be estimated. 
One solution is to apply theory- driven methods that prune the input vari-
ables so that a model can be estimated, but this has proven to be ineff ective 
for many applications (Stock and Watson 2014). Methods such as stepwise 
regression leave in inputs that are highly correlated with the series being pre-
dicted, but because pruning is based on in- sample correlations, estimation 
often results in overfi tting and poor out- of- sample predictions.

In contrast, many ML techniques are designed for just this purpose, rely-
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ing on a combination of model validation techniques and implicit variable 
selection. Traditional approaches often posit a “true model” that will obtain 
with enough observations, while ML focuses on producing generalizable 
predictions, using fl exible nonlinear approaches such as bootstrap aggrega-
tion or shrinkage to overcome overfi tting, and relying nearly exclusively 
on partitioning to assess fi t and select models. As mentioned above, there 
are some trade- off s, but these types of models are needed to integrate into 
estimates the signal coming from these timely but high- dimensional datasets.

In this application, we are faced with a further problem that not only is 
the number of independent variables relatively large, but also the number of 
observations is small in absolute terms. Having a small sample size reduces 
power. Not only are a model’s opportunities to learn economic patterns 
limited, but it is less likely to be resilient to structural instabilities that cause 
prediction accuracy to erode (Rossi 2013). Model selection also becomes 
challenging. When applying conventional forecast comparison techniques 
such as the Diebold- Mariano Test (Diebold and Mariano 1995), the lack of 
power prevents crowning a winning model. One can imagine a scenario in 
which a forecast model achieves lower error than its alternatives within the 
sample, but the relative performance may not persist as the sample grows. 
This is particularly problematic if  researchers estimate many forecasting 
models and then choose to report only their best- fi tting estimate, which 
results in overfi tting problems and poor out- of- sample performance.

Small sample size is not a problem that ML is specifi cally designed for. 
Standard application of  ML algorithms might involve splitting the data 
into three sets: One for training (estimation), one for validation (in this 
case, model selection), and one for testing (assessment of fi t). Fit (i.e., accu-
racy) cannot be assessed using any part of the sample on which estimation 
or model selection is done, and model selection cannot be done using the 
sample from which the models were estimated. If  we were to divide all 30- 
some quarters into three distinct sets, no inferences could be made with 
reasonable statistical power.

For this reason, we propose to run a prediction “horse- race,” in which we 
estimate a large collection of models for each series. We vary these models 
along several dimensions: algorithm, data, and variable selection. By vary-
ing the conditions and comparing their results through a prediction horse 
race, we can determine which dimensions drive accuracy for each industry. 
If  one modeling choice seems to produce inaccurate predictions in most 
series that are being forecasted, or if  one modeling choice seems to do the 
best on average, we can decide as to which modeling choices can be included 
or excluded from the fi nal ensemble. In our analysis, model performance 
is gauged by pooling the estimates of fi t (root mean squared revision, or 
RMSR) of all models and series into a single dataset. A statistical anal-
ysis is then performed to assess the eff ect of each modeling choice on the 
expected revision.
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In the subsequent subsections, we describe the process of constructing 
thousands of models that are trained under a multitude of modeling sce-
narios (e.g., combinations of algorithms, data, and variable selection pro-
cedures). We then construct measures of revision reductions and a simple 
framework to rate PCE components that are well suited for this prediction 
approach.

13.3.2  Prediction Models

We conduct a horse race between diff erent algorithms, data, and variable 
selection procedures (each individual combination of  the three we call a 
“model”) the results of which are compared with current BEA methodolo-
gies to evaluate the improvement. Each model can be expressed as

yit = fm[gk(Xt)],

where yit is the not seasonally adjusted (NSA) quarterly growth in percent-
ages of a QSS industry i in time t, fm is any one of nine ML algorithms (see 
section 13.1.1), Xt is a matrix of input variables and dependent lags in the 
form of quarterly growths at time t, and gk is the procedure k for variable 
selection that guides how input variables are included (see section 13.3.3).7

13.3.2.1  Algorithms

A diverse array of algorithms is selected that interact with the data in dif-
ferent ways. Some are commonly employed in the social sciences, whereas 
others are used in sectors that rely more heavily on data science techniques. 
We categorize these techniques into two broad buckets: linear methods and 
nonparametric methods.

To represent techniques that overlap with the traditional econometric 
toolkit, we consider four linear methods:

Four- Quarter Moving Average (4QMA). The simplest of the linear meth-
ods is the 4QMA that smooths the univariate series using a one- year slid-
ing window:

ŷit =
1
4 j=1

4 yi,t j

yi,t j 1

, 

where j is an index of  prior quarters. The eff ect is an extrapolation that 
appears to be seasonally adjusted. Its simplicity is also its weakness, pro-
ducing predictions with the risk of carrying forward momentum from prior 
periods and ignoring contemporaneous information.

7. We model growth rates rather than trends or levels because growth rates in the QSS are 
applied to update PCE estimates, not the levels. Moreover, through the benchmarking and revi-
sion process, levels will eventually be replaced with data from more reliable sources.



Machine Learning and Alternative Data for Predicting Indicators    381

Forward Stepwise Regression (Stepwise). Forward stepwise regression is 
an automated variable selection procedure built around linear regression. 
The process adds variables to a regression one at a time, doing so based on 
partial F- tests. Each step of the process is computationally intensive, start-
ing by estimating a null model without predictors, then adding one variable 
at a time starting with the lowest partial F- test that is below a predefi ned 
threshold α. This requires that a set of candidate models is estimated prior 
to adding new variables (Efroymson 1960). We set α = 0.05, requiring ad-
ditional variables to yield partial F- test values below the threshold. In ad-
dition, given the small sample constraints, we place a cap on the number 
of parameters at k = n. The technique has drawbacks, particularly that 
it conducts variable selection in- sample that results in predictions that are 
not generalizable (Copas 1983). In addition, the estimate is constructed 
on unconstrained least squares, so that ill- posed problems where k > n are 
noninvertible.

Ridge Regression and Least Absolute Shrinkage and Selection Operator 
(LASSO). Several challenges with stepwise methods are addressed 
through regularized least squares methods, which introduce a constraint 
that forces sparse solutions in the regression coeffi  cients. We consider two 
varieties: Ridge Regression (Hoerl and Kennard 1970) and Least Absolute 
Shrinkage and Selection Operator (LASSO) regression (Tibshirani 1996).

Ridge regression modifi es least squares by adding a preselected constant 
λ into the coeffi  cient estimator:

ˆ = (X X + I ) 1X Y.

The parameter estimates are obtained by minimizing the penalized sum of 
squares with a l2 norm penalty:

PSS =
i=1

n

yi
j=1

m

xij j

2

+
j=1

m

j
2.

By adding the penalty, we can see that as coeffi  cient βj grows, the cost func-
tion is penalized and places greater preferences for smaller coeffi  cients. The 
value of  λ is tuned through k- fold cross- validation to minimize the cost 
function. A more recent innovation to this method is the LASSO model, 
that makes a simple modifi cation to the penalty—replacing the l2 norm 
with a l1 norm:

PSS =
i=1

n

yi
j=1

m

xij j

2

+
j=1

m

| j | .

Whereas the Ridge regression forces smaller parameter estimates, LASSO 
conducts variable selection by forcing some parameters to the edge case of 
exactly zero. While regularized least squares methods is an improvement on 
least squares, linear methods may not capture nonlinearities and interac-
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tions that nonparametric algorithms can. We thus also consider fi ve non-
parametric techniques that are more fl exible.

Regression Trees (CART). The building block for a number of these non-
parametric techniques is Classifi cation and Regression Trees (CART), 
more specifi cally the regression tree (Breiman et al. 1984). The objective of 
CART is to recursively split a sample into smaller, more homogeneous par-
titions known as nodes. Each split yields two child nodes that are defi ned 
by a threshold θ along variable xj:

I = {i: xj < }

I + = {i: xj },

where I– and I + are sets of observations that are below and above θ. As mul-
tiple values of θ are considered, the best θ minimizes the sum of squares:

SS =
i I

(yi y )2 +
i I+

(yi y+)2,

in which y– and y+ are the mean of yi for candidate partitions above and 
below θ. Each resulting child node (Xi, yi)i I  and (Xi, yi)i I+ is further parti-
tioned until it cannot be split any further or when additional splits do not 
improve the model fi t. Each terminal node is referred to as a leaf c. A fully- 
grown tree minimizes the sum of squares of tree f :

SS =
c=1

C

i=1

n

(yi ŷc)2,

where C are all leaves in the tree, n is the number of observations within a 
leaf c, and ŷc = (1/ n) i=1

n yi.
While we can see that CART implicitly conducts variable selection by 

selecting split thresholds along variables, each node could in theory be split 
until all leaves are n = 1. An overgrown, overly complex CART thus may 
overfi t the data and introduce unnecessary variance into predictions. One 
remedy is to prune the tree to reduce the complexity, choosing a level of 
complexity that minimizes out- of- sample error. In small samples, however, 
these tuning strategies may have minimal eff ect on the quality of predic-
tions as each leaf is an average of a small cell of observations that lend little 
statistically meaningful support.

Random Forests. Regression trees can be improved upon by an ensemble 
method known as random forests (Breiman 2001). The algorithm process 
is simple:

1. Construct B number of samples with replacement with n observations 
and m randomly drawn variables from X.
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2. Train regression tree fb on the sample b.
3. Average the predictions from each fb to obtain ŷi ,

ŷi =
1
B b=1

B

fbm(xi),

where B = 500 in this study and the number of variables m per tree is deter-
mined through tuning.

This technique off ers a couple of gains over regression trees. First, con-
structing many trees under similar but randomly drawn conditions mini-
mizes model variance while keeping bias uniform. Second, the bootstrap-
ping builds in a natural validation sample to calculate the out- of- bag (OOB) 
error for evaluating generalizability of predictions.8 Parameter tuning can 
also take advantage of the OOB error by training random forest algorithms 
under varying conditions such as variables per tree, then comparing the aver-
age OOB error between models.

Gradient Boosting (XG Boost). Another ensemble technique that has 
gained in popularity is gradient boosting. As developed in Friedman 
(2001), gradient boosting generates m- number of base learners fm(x) that 
are trained to correct errors made by prior iterations. Each base learner 
fm(x) is a weak learner—a model that may only have slightly better than 
random predictive power. In this case, we rely on a decision stump, which 
is a regression tree with only one split. Each base learner is generated se-
quentially and added to produce a prediction FM(x),

FM(x) =
m=1

M

fm(x),

where η is a shrinkage parameter between 0 and 1 that controls the rate in 
which the boosting model converges and has been shown to be an eff ective 
way to mitigate overfi tting. As η decreases, the number of  iterations M 
required to converge needs to be increased—these parameters are tuned 
together.

At some iteration m, the loss will have eff ectively converged, meaning 
that the addition of subsequent base learners may add noise to estimates 
and use unnecessary computational resources. For simplicity, we set the 
M = 300 with a learning rate of η = 0.05, but specify an early stopping rule 
that ends training if  15 consecutive iterations fail to improve the model. 
We rely on XGBoost implementation of the technique as described in T. 
Chen and Guestrin (2016).

8. The out- of- bag error is the error based on the observations left out of the bootstrap draw, 
which is commonly applied in ML models.
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Support Vector Regression (SVR). SVR fi ts a linear regression on input 
data that has been mapped using a nonlinear function. The nonlinear func-
tion can take on various functions k(xi, xj), such as a Gaussian radial basis 
function kernel:

k(xi,xj) = exp( | xi xj |2 ).

Here, k(xi, xj) transforms the input variables x into a higher- dimensional 
space to better model patterns in the data. The linear regression yields 
a hyperplane in which each yi resides within a hard margin of  error ε: 
(ŷi ) yi (ŷi + ). Each prediction ŷi is found on this hyperplane. This 
constrained optimization problem can be infeasible as some observations 
may lie beyond the margin; thus, a cost parameter C can “soften” the mar-
gins. A soft margin of error allows some observations to reside beyond the 
margin but penalizes those observations by their distance from the margin 
(i.e., the amount of “slack” they are permitted), thereby regularizing the 
model to reduce the incidence of overfi tting (Drucker et al. 1997).

SVR may require more time to train than other algorithms, thus for cost 
effi  ciency, we tune the cost parameter C along a grid for a sample of industry 
targets, then fi x values of the parameters for all other industries based on 
the optimum.

Multiadaptive Regression Splines (MARS). MARS fi ts k- number of basis 
functions that are combined to produce a prediction (Friedman 1991):

f̂ (x) =
i=1

k

ibi(x),

where each basis function bi is weighted by a coeffi  cient αi learned by mini-
mizing the sum of squared errors. Each basis function bi(x) can take on one 
of three forms: a constant term—or intercept, a hinge function, or the inter-
action of hinge functions. Hinge functions fi t splines to the data—allowing 
a regression line to bend at a threshold along x so that the slopes may vary 
on either side. By taking advantage of a potentially large number of splines, 
MARS molds to the nonlinearities and discontinuities in even highly dimen-
sional datasets, but a potentially large number of basis functions may overfi t 
the data. The technique thus unfolds as a two- step process: a forward stage 
and a backward stage. The forward stage fi ts and weights candidate pairs 
of hinge functions, choosing only to add the pair to the overall model if  it 
reduces training error by the largest margin. The backward pass mitigates 
overfi tting by removing least eff ective terms subject to generalized cross 
validation.

We apply MARS using an open- source implementation called earth 
(Milborrow 2018). The forward pass requires tuning the degree of interac-
tion eff ects among basis functions. The backward pass is also tuned based 
on the number of terms to retain. We conduct a grid search by considering 
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all combinations of interaction eff ects for degrees 1 through 3 and number 
of retained terms (5, 10, 15).

A summary list of the diff erent methods is shown in table 13.1 for refer-
ence.

13.3.2.2  Variable Selection

Models are only as good as their inputs. Too much information may lead 
to an overfi tted model and highly variable predictions. Too little information 
places disproportionate weight on a few variables, thereby introducing bias 
into predictions. In machine learning, a happy medium involves conduct-
ing dimensionality reduction to reduce the number of variables considered, 
while still extracting the key information from the variables. Sample size 
constraints may limit the eff ectiveness of more sophisticated variable selec-
tion techniques.

We instead consider two contrasting approaches that represent the 
extremes of variable selection: cherry picking and kitchen sink. Economic 
intuition tends toward parsimonious specifi cations, including only variables 

Table 13.1 Algorithms considered for the prediction horse race

Technique  Training and tuning procedure

Linear Methods
4- quarter moving average (4QMA) Calculate 4- quarter moving average.

Forward stepwise regression Set max number of parameters k to the square root of the 
sample size.

LASSO regression Leave- one- out cross- validation to fi nd value of lambda that 
minimizes mean squared error.

Ridge regression Leave- one- out cross validation to fi nd value of lambda that 
minimizes mean squared error.

Nonparametric Methods
Regression trees Grow tree to full depth and cross- validate error in each step, then 

select tree complexity that minimizes MSE.

Random forests (RF) Number of trees set to 500. Select the number of variables per 
tree along a grid of possible values choosing the lowest OOB 
error.

Gradient boosting Set maximum iterations to 300, 𝜂𝜂 = 0.05, early stopping if  
model error does not improve after 15 rounds.

Multiadaptive regression splines 
(MARS)

Tune over a search grid of degree of interaction eff ects (1 to 3) 
and number of terms to retain during pruning pass (5, 10, 15).

Support vector regression (SVR) 
with radial basis function (RBF)

Search hyperparameter 𝐶𝐶 along a grid for a sample of industry 
targets, then fi x values of the parameters for all other industries 
based on the optimum.
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that capture economic and behavioral forces. Thus, cherry picking in this 
context is defi ned as the inclusion of input variables that are conceptually 
like the left- hand- side variable. For example, if  physician offi  ces revenue 
(NAICS 6211) is the target, then only medical- related factors are included as 
input variables. However, if  important information is omitted, then models 
are underfi t and can miss the trend.

Alternatively, kitchen sink models include all available data, placing no 
assumption on which variables should be included. This implies that the 
algorithms have the capacity to conduct implicit variable selection and can 
incorporate information without introducing excess noise.

13.3.2.3  Data Sources

National accounts are an amalgam of public and private sources. In fact, 
private source data are incorporated in various areas of  economic mea-
surement such as motor vehicle production and Value Put In Place (VPIP) 
estimates for construction. Alternative private data off er the possibility of 
capturing news that may otherwise be overlooked by indicator series or 
projections, though recognizing that private administrative data are col-
lected with a goal other than national statistics (e.g., profi t maximization). 
Thus, our proposed machine learning–alternative data hybrid should not 
be viewed as a replacement for current projection methods, but rather a 
supplemental source that is run in parallel and assesses the validity of cur-
rent projections.

The target series are 188 industry time series published in the QSS, avail-
able in time for the third estimate of GDP. To ensure predictions produce 
an output that is useful for estimate production, we target NSA percentage 
quarterly growths for both revenue and expenditure series for a 31- quarter 
period—between the second quarter of 2010 and the fi rst quarter of 2018.

We assemble a variety of  input data from traditional and alternative 
sources (for a summary see table 13.2). Among traditional sources are NSA 
aggregates from the Bureau of  Labor Statistics’ (BLS) Current Employ-
ment Survey (CES) and Consumer Price Indexes (CPI). These sources are 
currently used in estimating national indicators, are publicly available and 
constructed on probability samples—in other words, these are generalizable 
samples with known universes and quantifi able biases.

Two alternative data sources are considered. First, credit card transac-
tions are acquired from First Data, which off ers credit card processing ser-
vices for a network of  merchants across the United States. The data are 
available daily within the fi rst 10 days after the end of a month and are pro-
cessed by Palantir using a methodology developed by the Federal Reserve 
Board of  Governors (Aladangady et al., forthcoming). To minimize the 
eff ect of churn, each monthly transaction estimate only includes merchants 
that have been First Data customers within the prior 13 months. These data 
provide a timely view into purchasing behavior, trading representativeness 
off  with timeliness.
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Google Trends is another source of timely, near- real- time data that cov-
ers a wide range of activity. In many respects, trends gauge public interest 
in various economically related issues, as captured through Google’s online 
off erings, including Google Search, Google News, and Froogle. One hun-
dred and sixty keywords were derived from QSS NAICS defi nitions and 
monthly estimates for the period 2003 through 2017 were requested via the 
Google Trends API. The API returned 240 volume indexes that were con-
structed from a simple random sample of search queries, aggregated into a 
time series of proportion of total Google search activity, and indexed to the 
maximum search volume share in the time series.

13.3.2.4  One- Step Ahead Validation

Of the n = 31 observations, n = 12 are set aside for validating performance. 
As our objective is to generalize and apply models, we simulate the PCE 
estimation process using a one- step- ahead model validation. The model 
validation technique is an iterative one, producing each ŷit by training on all 
data t < T, then applying the prediction developed on data points t < T to 
produce a prediction for the observation t = T. For each of the 12 valida-
tion quarters, we retrain each model by growing the data’s time window (see 

Table 13.2 Data sources used for this prediction study

Data  Description  Economic relevance

Census Bureau 
Quarterly Services 
Survey (QSS)

Longitudinal survey of 19,000 US 
businesses operating in the services 
sector.

Key input into BEA’s Personal 
Consumption Expenditure (PCE) 
series.

BLS Current 
Employment Survey 
(CES)

Employment estimates released 
monthly, converted into quarterly 
average. CES is currently relied on for 
national accounting estimates.
Contains 140 industry series.

Employment trends that coincide 
and trend with consumption.

BLS Consumer Price 
Indexes (CPI)

National- level price indices for products 
and are currently relied on for national 
accounting estimates. Each CPI is 
associated to NAICS code based on 
keyword similarity. Contains 600+ series

Price changes of items that are 
consumed alongside services.

First Data credit card 
transactions

Near real- time credit card transaction 
aggregates, converted from Merchant 
Class Codes (MCC) to NAICS. 
Contains 192 industry series.

Contemporaneous measure of 
consumption.

Google Trends Monthly activity indices for search 
queries, Google News topics, and 
Froogle shopping activity. Converted 
from search terms to NAICS based on 
keyword similarity. Contains 240 
industry series.

Gauge of interest and prospective 
buying behavior on the internet.
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fi gure 13.1), thereby producing predictions that are responsive to evolving 
economic patterns. In fi gure 13.1 we start with a prediction for T = 0 and 
use time periods T = –1 and less to form this prediction. We next move one 
step ahead to predict time T = 1 using information in time periods T = 0 
and lower to form the prediction. The predictions in period T = 2 and future 
periods proceed accordingly. While the number of observations per predic-
tion grows with time, we assume that the benefi ts of greater accuracy and 
stability among the predictions should aff ect all models in the same way.

In total, 73,884 model scenarios were trained and produced predictions 
for 12 consecutive validation quarters, resulting in 886,608 model runs and 
predictions.

13.4  Evaluating Performance and Revision Reduction

When a large sample is available, a robust model selection framework 
should include both a model validation step (e.g., one step ahead or k- fold 
cross- validation) to aid in selecting the most generalizable model and a test 
step to revalidate the chosen model’s performance. The sample available for 
this study, however, is not suffi  ciently large to aff ord a test set, thus a model 
chosen from thousands of candidates may run the risk of overfi tting the 
data. We instead take a conservative approach that evaluates performance 
by selecting ensembles of models developed under common conditions. For 
an industry i, for example, all models that were trained using a random for-
est would be considered one ensemble, whereas all models that rely on BLS 
CES would be considered another.

First, we train thousands of models for a cross- section of 188 QSS series 
covering many industries using one- step- ahead validation. QSS predictions 
ŷit are converted into PCE component estimates Ĉm for a model m:

Fig. 13.1 One- step ahead model validation design
Note: The X axis represents both the training set (black) and test set (gray). The Y axis repre-
sents the prediction time periods.
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Ĉm = gc(ŷit),

where gc is BEA’s PCE estimation process that seasonally adjusts and con-
verts available QSS data into components estimates. Note that some PCE 
components rely on only one QSS series while others rely on multiple.

A prediction model applied where revisions are unlikely to reduce revi-
sions will likely add error to offi  cial estimates, so it is important to evaluate 
the reduction in revisions. From the perspective of  data quality, an esti-
mate should only be used if  revision reductions are consistently expected 
across a broad distribution of models. We construct two measures to evalu-
ate revision reduction potential: The Mean Revision Reduction Probability 
(MRRP) and the Proportion of Improved Periods (PIP).

Proportion of Improved Periods (PIP). It is easy to imagine that an en-
semble can reduce revisions on average, but masks generally poor indi-
vidual quarter- to- quarter performance. The PIP is the proportion of the 
test period that would have had a revision reduction had a given model 
been applied. This measure captures the consistency of revision reductions 
over time, placing emphasis on cases where there is a net improvement over 
current BEA methodology:

PIPm =
1
T i=1

T

(|Ĉm,t Cthird,t | < |Ĉcurrent,t Cthird,t | ).

To summarize proportion of improved periods for each component PIPc, 
we calculate the proportion of models that yield improvements in the major-
ity of historical quarters:

PIPc =
1

M m=1

M

(PIPm > 0.5).

In small samples, it may be challenging to distinguish models on their per-
formance and to some extent can be viewed as an arbitrary decision. Thus, 
when PIPc is high, we would have some surety that a model selected at ran-
dom could improve component C at least a majority of the time. Conversely, 
a low PIPc value indicates that a prediction strategy poses an increased risk 
of increasing quarterly revisions in component C.

Mean Revision Reduction Probability (MRRP). Whereas PIP captures re-
vision reductions with respect to time, we also consider how often average 
dollar revision reductions yield improvements to PCE components in the 
long run. MRRP is based on the Root Mean Square Revision (RMSR) 
that compares PCE Ĉm to the actual third estimate of PCE, resulting in

RMSRm =
1
n i=1

n

(Ĉm Cthird)2 .
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Similarly, RMSR is calculated for the current projection methodology:

RMSRcurrent =
1
n i=1

n

(Ĉcurrent Cthird)2 .

Relative revisions (∆RMSRm) are expressed as the dollar diff erence 
between RMSRm and RMSRcurrent, where a negative value indicates a revi-
sion reduction:

RMSRm = RMSRm RMSRcurrent.

Looking across a set of M models, we summarize their collective perfor-
mance as the Mean Revision Reduction Probability (MRRP), defi ned as

MRRPc =
1

M m=1

M

( RMSRm < 0),

in which we are interested in the proportion of models that can achieve a net 
revision reduction. Like PIP, an arbitrary model selected to predict a com-
ponent with a high MRRP value is more likely to yield revision reductions.

Together, PIP and MRRP can be summarized by taking the harmonic 
mean:

k = 2
MRRP PIP
MRRP + PIP

,

where larger values of μk indicate more revision reductions. In samples with 
little power, μk could be used as the basis for identifying the number of com-
ponents that should be included to maximize revision reductions; However, 
in this study, we use μk to examine the revision impacts of applying a predic-
tion strategy at a predefi ned cutoff , namely μk ≥ 0.8.

13.5  Results

13.5.1  QSS Predictions

We sift through the manifold of results to better understand which algo-
rithms, datasets and modeling practices contribute to prediction perfor-
mance. The process generates 393 sets of predictions for each of the 188 QSS 
series, representing possible growth paths under a broad set of assumptions.

Taking a closer look at key industries shown in fi gure 13.2, we see that 
the mass of the out- of- sample predictions tends to follow the variation in 
the target series. The center mass of the predictions over time also tends to 
have a central tendency, which suggests that prediction of the QSS growth 
is generally possible regardless of the modeling scenario.

Each algorithm reacts to data selection in a diff erent way. The predictions 
for the physician offi  ces category are a prime example, shown in fi gure 13.3. 
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Stepwise and CART regressions are prone to overfi tting the data and are 
sensitive to high- leverage data points. Rather than producing a diff use cloud 
of predictions that have correlated movements, they produce a discrete set 
of predictions, many of which perform relatively poorly. In contrast, the XG 
Boost and SVM algorithms produce predictions that are more dispersed. 
However, none of the poorer prediction paths is particularly prominent; in 
some of these cases there are algorithms that seem to be fl atter, but none 

Fig. 13.2 Comparison of actual QSS quarterly growths (black dot) with 393 sets 
of out- of- sample predictions (gray lines)

Fig. 13.3 Comparison of diff erent modeling assumptions applied to physician ser-
vices series
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that show highly variable fl uctuations nowhere near the actual data like the 
CART algorithm does. Rather, the central tendency in these algorithms is 
toward the actual data.

Model selection for prediction use cases is guided by fi nding the model 
with the lowest error: given a series of models, we could choose the model 
that minimizes a squared loss function. This selection paradigm is eff ective 
when the sample size is large; however, as discussed previously, crowning a 
specifi c model champion is a foolhardy task with only n = 12, as the model 
selection process may overfi t the data.

Instead, we take advantage of the sheer number of out- of- sample predic-
tions to identify conditions that generally maximize predictive performance 
across a large cross- section of 188 series that we study. We estimate a simple 
fi xed eff ect regression to extract the average contribution of each modeling 
dimension:

RMSEi,k,m = + i + m + k + i,k,m.

As we would expect, some industries are more predictable than others due 
to sampling variability and volatility in the sector; thus, we control for indus-
try fi xed eff ects αi. γm is a matrix of dummy variables for each model type 
(e.g., extreme gradient boost xg, random forests rf ). ξk represents the data 
and variable selection procedures (e.g., cherry picking, CES, Google). From 
the resulting regressions reported in table 13.3, we can determine which 
modeling strategies tend to perform better in matching the QSS estimates.

13.5.1.1  Algorithms

Aside from the industry fi xed eff ects, the choice of algorithm appears to 
have the greatest overall infl uence on RMSE. Among algorithms, we fi nd 
that tree- based ensemble techniques off er the greatest improvements: rela-
tive to stepwise regression, random forests and gradient boosting reduce 
RMSEs on average −0.56 and −0.43 percentage points, respectively. LASSO 
regression off ers an improvement over stepwise. In contrast, MARS and 
moving averages should be avoided due to their overwhelmingly poor perfor-
mance. It is worth noting that prediction is a game of wins at the margins—if 
a technique does not perform well across industries, there is still a chance 
that it can off er consistent accuracy gains for individual industries. Never-
theless, because we lack the data to assess all of the series individually, we 
have to assess the performance of these models more generally.

13.5.1.2  Data and Variable Selection

The data and variable selection dimensions suggest three takeaways.

• There are diminishing returns to adding additional data sources. For 
example, the coeffi  cients imply that if  First Data is added as a data 
source instead of Google Trends, the reduction in error is −0.81. How-
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ever, if  First Data is added as a second data source, the reduction in 
RMSE is −0.5 (= −0.8 + 0.3). If  First Data is added as a third data 
source, there is an even smaller reduction in RMSE (−0.3 = 0.8 + (0.8 
− 0.3)). Moreover, more data are not necessarily better (e.g., adding 
Google as a second or third data source would increase RMSE).

• Second, models that are constructed on a purely conceptual basis may 
not necessarily translate into statistically accurate results. Cherry- 
picked specifi cations add an average of 0.28 percentage points to the 
RMSE, meaning that specifi cations motivated by conceptual assump-
tions may omit some useful information from predictions or introduce 
noise. Thus, relying on the implicit variable selection of the machine 
learning techniques to surface predictive variables off ers some gains.

• Lastly, the Current Employment Survey and dependent lags of QSS, 
both of which have long been available publicly, on average have the 
greatest infl uence on prediction quality. The CES and CPIs are both 
currently used for the national economic accounts and if  combined with 
machine learning could likely off er improvements in estimates.

Table 13.3 Industry fi xed- eff ect regression results with clustered standard errors

  (1)  (2)  (3)

Constant 5.01 (0.06)*** 6 (0.08)*** 6.01 (0.09)***
Algorithms (Ref = stepwise regression)
4Q moving average 1.97 (0.23)*** 2.16 (0.25)***
Ridge regression 0.04 (0.07) 0.04 (0.07)
LASSO –0.16 (0.04)*** –0.16 (0.04)***
CART 0.69 (0.11)*** 0.69 (0.11)***
Random forest –0.55 (0.05)*** –0.56 (0.06)***
Gradient boosting –0.42 (0.05)*** –0.43 (0.05)***
SVM regression 0.25 (0.1)** 0.25 (0.1)**
MARS 1.47 (0.13)*** 1.48 (0.13)***
Data (Ref = Google)
CES –0.86 (0.1)*** –0.97 (0.11)***
First Data –0.72 (0.08)*** –0.81 (0.09)***
Consumer Price Indexes –0.35 (0.06)*** –0.39 (0.07)***
Dependent lags –0.83 (0.11)*** –0.87 (0.11)***
Variable selection (Ref = kitchen sink)
. . .Cherry Picking 0.22 (0.05)*** 0.28 (0.06)***

Number of data sets (Ref = 1)
2 sets 0.36 (0.05)*** 0.31 (0.05)***
3 sets 0.81 (0.1)*** 0.8 (0.11)***

Fixed eff ects Yes Yes Yes
N 73,884 73,884 73,884
R2 0.64 0.62 0.65
Adjusted R2 0.64 0.62 0.65
Residual standard error  2.75  2.83  2.72



394    J. C. Chen, A. Dunn, K. Hood, A. Driessen & A. Batch

The fi xed eff ects from the above regression also provide estimates of the 
predictability of each QSS industry series. This is important because some 
series may be generally harder to predict than others, across all the methods 
that we consider. The diffi  culty in predicting a series could be related to a 
variety of factors, such as the volatility of an industry or the sampling error 
of the series that we are attempting to predict. To investigate the relation-
ship with sampling error, we compare the average prediction error (β0 + αi ) 
and the Census Bureau–reported average sampling error for the QSS. If  
there were no prediction error, then all the error would come from sampling 
and our prediction error would be directly proportional to sampling error 
(dashed diagonal line), and for a few cases this is nearly the case—such as 
motor vehicle repair and maintenance, spectator sports, and insurance car-
riers. However, as shown in fi gure 13.4, we fi nd that most prediction error is 
higher than the sampling error (as expected). Increases in sampling error are 
problematic for our model predictions; with a 1 percentage point increase 
in the target series’ sampling error, prediction error increases at a rate of 
0.56 percentage points. This serves as a reminder that predictions are only 
as strong as the targets they mimic.

While our goal is to identify the winner of the prediction horse race dis-
cussed above, we do not wish to pare the results down too much based 
only on this regression. We note, however, that algorithm is the single most 
important factor in determining RMSE, with a range of about 2.5 percent-
age points between the best-  and the worst- performing algorithms. Because 

Fig. 13.4 Comparison of survey sampling error vs. prediction error
Note: Each point represents an industry, scaled by its total revenue or expenditure as of  2018- 
Q1. Transparency denotes statistical signifi cance of fi xed eff ect estimate—solid red indicates 
highly signifi cant at the 1% level. Dashed diagonal line is the line of equality.



Machine Learning and Alternative Data for Predicting Indicators    395

along this dimension, the performance is improved by the largest margin, 
we elect in the following exercise to retain all combinations of  all other 
dimensions (dataset, scope), but retain only the most eff ective algorithm 
choice. The random forest algorithm generally seems to perform the best, 
and the second best (grading boosting) is a modifi cation of  the random 
forest algorithm. These two methods are both ensemble techniques, which 
form estimates based on averaging many nonlinear models. Nonlinear mod-
els that are not ensemble methods, such as CART and MARS, perform 
relatively poorly.

In subsequent sections, we evaluate the performance of the optimal mod-
eling strategy based on a collection of 47 random forest models that were 
constructed under a variety of conditions.

13.5.2  Revision Reductions

Upon converting predictions of QSS to PCE estimates, each component 
of  PCE can be evaluated on whether it may lead to revision reductions 
relative to current practice based on our measures of improved fi t (PIP and 
MRRP). We consider 71 PCE services subcomponents—all of which incor-
porate one or more QSS series. We fi nd that there is at least one prediction 
model for each of the 71 components that can improve upon current BEA 
methods. In large samples, this would be a reasonable fi nding. However, this 
is an overly optimistic conclusion for a small sample that lacks statistical 
power.

Instead, as we mentioned previously, we take a more conservative 
approach to evaluate models using measures of revision reductions (PIP and 
MRRP) to identify modeling strategies that on average yield improvements. 
In principle, one would place greater confi dence in predicting a component 
in which 90 percent of models can reduce revisions rather than a compo-
nent in which only 1 percent of  models can meet the task. In low power 
samples, selecting a specifi c model from a pool of alternative models is like 
drawing a model at random. Thus, the chance of overfi tting would arguably 
be less likely in the former case. Comparing across PCE components, the 
bubble chart (fi gure 13.5) shows signifi cant heterogeneity in predictability—
higher scores indicate greater surety that a model is not a random improve-
ment. A component in the larger grey area indicates that one in two models 
can reduce revisions ( p ≥ 50) whereas the smaller box indicates that 8 in 
10 models can reduce revisions (p ≥ 80).

Based on these cutoff s, we fi nd that 20 PCE components have at a least 
a coin fl ip’s chance or better of seeing revision reductions—three of which 
have historically averaged at least $1 billion in revisions per quarter. This is 
not to say that other components are not predictable, but rather there is a 
far smaller margin of error for selecting a reliable model, especially given the 
limited sample size. When reviewing the less predictable components, we fi nd 
evidence that evaluating components on only one loss function could reduce 
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data quality. MRRP alone would overstate the consistency of  revision 
reductions because improvements could be concentrated in only a minority 
of time periods. For example, nearly half  of the models predicting HHH 
(For- Profi t Home Health Care Services) satisfy the condition ∆RMSR < 0, 
but less than 10 percent can improve estimates in at least a majority of test 
periods. Components like HHH have one or two large revision reductions 
that mask suboptimal performance in all other quarters.

The story becomes more nuanced as we evaluate among alternative mod-
eling strategies for each PCE component. Figure 13.6 shows TS and MRRP 
across various modeling strategies for selected components. Generally, the 
consensus, or lack thereof, gives clues about what contributes to accuracy. 
Several components are predictable when applying almost any modeling 
strategy. Physician Services (PHH) and Specialty Outpatient Care (SOH) fall 
into this category, which translates as a need for fi ne- tuning toward optima 
rather that conducting an exhaustive search. Other components like Non- 
Profi t Hospitals (NPH) have little chance of improvement regardless of the 
modeling strategy. These two scenarios may be due to a combination of the 
magnitude in sampling error of the underlying target series and availability 
of input variables. In contrast, modeling strategies for certain components 
fail to achieve consensus, such as in the case of motor vehicle repair and 
maintenance (MVR). However, two algorithms stand apart in their ability to 
reduce revisions. We can infer that accuracy in this case may be more likely 
a matter of identifying the appropriate functional form.

Fig. 13.5 Comparison of MRRP and TS for each PCE services component
Note: Circles are scaled based on average quarterly revisions under current BEA methodology 
and labeled when revisions exceed $1 billion.
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While revision reductions for individual subcomponents can be easily 
evaluated, the ability to achieve revision reductions among top line mea-
sures (e.g., overall PCE and PCE services) is more challenging due to off set-
ting. Given two subcomponents that are added together to estimate a more 
aggregate PCE component, one may have upward revision reductions and 
the other may have downward revision reductions. When added together, the 
revision reductions may partially off set one another, muting the magnitude 
of improvement to top- line measures. We estimate net revision reductions 
for the most versatile modeling strategy, random forest. Only PCE compo-

Fig. 13.6 Comparison of MRRP and TS for four PCE services components by 
modeling component
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nents where μk ≥ 80 are included in the calculations. The impact analysis in 
table 13.4 refl ects the contributions of 20 PCE components, each of which 
has an ensemble of 50 models refl ecting a broad range of assumptions.

Starting from the topline, we fi nd that overall PCE revisions would have 
been reduced on average 12 percent with an ensemble median of 13 per-
cent, translating to approximately $2 billion in net revision reductions. The 
ensemble’s upper shoulder suggests that some of  the better performing 
models within the ensemble could achieve as much as a 21.3 percent revi-
sion reduction ($3.6 billion); however, individual model selection would 
only be possible when statistical power is suffi  ciently large in the validation 
sample. Within PCE services, several components attain even larger revi-
sion reductions, with health care and transportation services leading (in 
absolute terms) with average 11.3 percent and 25.6 percent improvements, 
respectively.

While the shape of growth is matched by the models, the ability to correctly 
anticipate the direction of growth—whether it is positive or negative—has 
apparent eff ects on the levels. Anticipating a deceleration when growth is 
accelerating reduces estimate quality and magnifi es revisions. We evaluate 
the performance of the ensemble average relative to current performance 
using the validation period. As would be expected, current BEA methods 
are able to anticipate direction of  growth in most periods. While we do 
not fi nd improvements among higher aggregate components of PCE, the 
prediction ensemble marginally improves subcomponents with one quarter 
improvement.

Table 13.4 Estimated revision reductions in historical test sample when only applying random 
forest to components that have at least an 80% chance of improvement 

Percent Levels ($Mil) Direction

Component  10th  Mean  Median  90th  Mean  Median  ML  Current

PCE 5.59 12.17 13.11 18.33 2054.75 2213.61 100 100
PCE services 0.2 10.3 11.78 19.72 1552.69 1775.76 100 100

Health care 2.23 11.27 12.64 18.99 1442.62 1618 100 100
Transportation 2.91 25.57 26.7 43.86 1100.38 1149.29 75 67
Recreation 4.28 8.47 8.28 12.75 349.73 341.88 92 83
Education 1.74 3.25 3.11 5.16 17.6 16.83 100 100
Professional and other 1.38 4.2 3.72 7.02 77.84 68.89 75 67
Personal care and 

clothing
21.8 27.37 28.24 31.03 513.85 530.18 92 83

Social services and 
religious

10.29 14.21 14.7 17.82 155.06 160.42 83 83

Household maintenance –24.25 10.94 16.71 34.38 45.49 69.49 100 92
GO NP social services 0.07 0.43 0.47 0.74 9.37 10.2 33 33
GO NP prof advocacy  26.24 36.99  41.03  47.8  235.12 260.79 100 100

Notes: Percent correct direction indicates if  the ensemble mean’s growth accurately anticipates the actual 
series’ direction of growth (positive or negative). GO NP denotes Gross Output for Nonprofi t.
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13.6  Conclusion

In this paper, we illustrate a suitable use of machine learning techniques 
for macroeconomic estimation. We focus on improving data quality by 
reducing revisions to PCE service components. Our proposed approach pro-
vides predictions of advanced estimates using machine learning techniques 
and identifi es PCE components for which prediction- based improvements 
are likely.

In general, nonparametric techniques such as random forest and gradient 
boosting off er marked gains in prediction accuracy and are well adapted 
to conducting implicit variable selection at scale. Furthermore, these tech-
niques can accommodate the typical ill- posed problem, sifting through 
quantities of data without signifi cant loss in prediction quality.

One key evaluation point for macroeconomic prediction is its ability to 
detect economic downturns. As the current incarnation of the QSS does 
not span the 2008–2009 recession, it is not possible to test for downturns 
although it may be applied to anticipating other indicator series. Prior studies 
such Chauvet and Potter (2013) found that commonly used macroeconomic 
techniques for forecasting output, such as autoregressive models of a variety 
of builds, generally perform well during expansions but poorly in recessions. 
While we are unable to test the machine learning models in this context, we 
can foresee the likely performance of these nonparametric techniques dur-
ing recessionary periods by taking note of the core assumptions. Like linear 
models, nonparametric algorithms are designed for stationary processes. 
Unlike linear models, the predicted values ŷi are bounded by the range of y 
in the training sample. In small samples that do not span recessions, we can 
assume that the shape of economic growth can be predicted, but the depth 
of a contraction will likely be understated. A model switching mechanism 
such as a Markov switching model should be incorporated to provide greater 
fl exibility to use both nonparametric and parametric extrapolators.

There are opportunities to improve the stability of  predictions while 
increasing revision reductions. One extension is to train an additional model 
to marshal predictions and cut through the noise of less reliable models. 
Model averaging, as in the case of Hansen (2007), can improve predictions 
subject to a linear constraint. More generally, model stacking techniques 
off er a more fl exible solution in which a supervised machine learning algo-
rithm trains on values of ŷi from the validation set to produce predictions. 
In either case, additional training observations would be required for the 
averaging and stacking model to learn which underlying models are in fact 
predictive. As the sample size is a constraint, we may adopt the leave- one- out 
model validation strategy as described in Cornwall et al. (2019) to expand 
the training sample while meeting Granger causality criteria.

This study also fi nds that prediction error will only grow with sampling 
error, as expected; therefore, industries with large sampling error limit the 
ability for the current strategy to predict highly variable PCE components. 
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One approach to overcome sampling error is to consider a top- down hier-
archical forecasting model (Hyndman et al. 2016), predicting the top- line 
estimates of PCE, then sharing growth by component by modeling condi-
tional probabilities. A benefi t is that each component is logically consistent 
with parent series and has a decent degree of  accuracy among low error 
series, but sampling error and noise may still pose a challenge. An alternative 
but more costly solution involves improving the underlying survey’s sample 
design by oversampling strata with large sampling error. We recognize this 
would incur greater cost relative to a modeling strategy but may be a neces-
sity for estimate quality.

This paper shows that using both traditional and alternative data sources 
can contribute to improved predictions. However, there are issues outside of 
the prediction methodology that should also be considered. For instance, 
while private data sources may lead to better predictions, the cost, qual-
ity, and availability of these data sources may change for external reasons 
(e.g., a company failing or a change in management). Users of alternative 
data sources should be mindful of the long- term availability and stability 
of these sources. Nevertheless, these concerns will be relevant irrespective 
of the methods that are applied, and it is worth noting that a benefi t of the 
ML approach is that it reduces reliance on a single data source.

While the macroeconomic literature incorporating machine learning is 
in its nascent stages, we show that computationally intensive algorithms do 
in fact off er measurable improvements for estimates of the PCE Services 
component of GDP. There is considerable scope for future research to apply 
these techniques to other components of  GDP, as well as other national 
statistics.
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