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24.1 Introduction

This chapter describes three highly speculative ideas about how artifi cial 
intelligence (AI) and behavioral economics may interact, particular in future 
developments in the economy and in research frontiers. First note that I will 
use the terms AI and machine learning (ML) interchangeably (although AI 
is broader) because the examples I have in mind all involve ML and predic-
tion. A good introduction to ML for economists is Mullainathan and Spiess 
(2017), and other chapters in this volume.

The fi rst idea is that ML can be used in the search for new “behavioral”- 
type variables that aff ect choice. Two examples are given, from experimen-
tal data on bargaining and on risky choice. The second idea is that some 
common limits on human prediction might be understood as the kinds of 
errors made by poor implementations of machine learning. The third idea 
is that it is important to study how AI technology used in fi rms and other 
institutions can both overcome and exploit human limits. The fullest under-
standing of this tech- human interaction will require new knowledge from 
behavioral economics about attention, the nature of assembled preferences, 
and perceived fairness.

24.2 Machine Learning to Find Behavioral Variables

Behavioral economics can be defi ned as the study of natural limits on 
computation, willpower, and self- interest, and the implications of  those 
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limits for economic analysis (market equilibrium, IO, public fi nance, etc.). 
A diff erent approach is to defi ne behavioral economics more generally, as 
simply being open- minded about what variables are likely to infl uence eco-
nomic choices.

This open- mindedness can be defi ned by listing neighboring social 
sciences that are likely to be the most fruitful source of explanatory variables. 
These include psychology, sociology (e.g., norms), anthropology (cultural 
variation in cognition), neuroscience, political science, and so forth. Call this 
the “behavioral economics trades with its neighbors” view.

But the open- mindedness could also be characterized even more gener-
ally, as an invitation to machine- learn how to predict economic outcomes 
from the largest possible feature set. In the “trades with its neighbors” view, 
features are constructs that are contributed by diff erent neighboring sciences. 
These could be loss aversion, identity, moral norms, in-group preference, 
inattention, habit, model- free reinforcement learning, individual polygenic 
scores, and so forth.

But why stop there?
In a general ML approach, predictive features could be—and should 

be—any variables that predict. (For policy purposes, variables that could 
be controlled by people, fi rms, and governments may be of special interest.) 
These variables can be measurable properties of choices, the set of choices, 
aff ordances and motor interactions during choosing, measures of  atten-
tion, psychophysiological measures of biological states, social infl uences, 
properties of individuals who are doing the choosing (SES, wealth, moods, 
personality, genes), and so forth. The more variables, the merrier.

From this perspective, we can think about what sets of features are con-
tributed by diff erent disciplines and theories. What features does textbook 
economic theory contribute? Constrained utility maximization in its most 
familiar and simple form points to only three kinds of variables—prices, 
information (which can inform utilities), and constraints.

Most propositions in behavioral economics add some variables to this 
list of features, such as reference- dependence, context- dependence (menu 
eff ects), anchoring, limited attention, social preference, and so forth.

Going beyond familiar theoretical constructs, the ML approach to behav-
ioral economics specifi es a very long list of candidate variables (= features) 
and include all of  them in an ML approach. This approach has two advan-
tages: First, simple theories can be seen as bets that only a small number of 
features will predict well; that is, some eff ects (such as prices) are hypoth-
esized to be fi rst- order in magnitude. Second, if  longer lists of features pre-
dict better than a short list of theory- specifi ed features, then that fi nding 
establishes a plausible upper bound on how much potential predictability 
is left to understand. The results are also likely to create raw material for 
theory to fi gure out how to consolidate the additional predictive power into 
crystallized theory (see also Kleinberg, Liang, and Mullainathan 2015).
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If  behavioral economics is recast as open- mindedness about what vari-
ables might predict, then ML is an ideal way to do behavioral economics 
because it can make use of a wide set of variables and select which ones 
predict. I will illustrate it with some examples.

Bargaining. There is a long history of  bargaining experiments trying to 
predict what bargaining outcomes (and disagreement rates) will result from 
structural variables using game- theoretic methods. In the 1980s there was 
a sharp turn in experimental work toward noncooperative approaches in 
which the communication and structure of  bargaining was carefully struc-
tured (e.g., Roth 1995 and Camerer 2003 for reviews). In these experiments 
the possible sequence of  off ers in the bargaining are heavily constrained 
and no communication is allowed (beyond the off ers themselves). This 
shift to highly structured paradigms occurred because game theory, at the 
time, delivered sharp, nonobvious new predictions about what outcomes 
might result depending on the structural parameters—particularly, costs 
of  delay, time horizon, the exogenous order of  off ers and acceptance, and 
available outside options (payoff s upon disagreement). Given the diffi  culty 
of  measuring or controlling these structural variables in most fi eld settings, 
experiments provided a natural way to test these structured- bargaining 
theories.1

Early experiments made it clear that concerns for fairness or outcomes 
of others infl uenced utility, and the planning ahead assumed in subgame 
perfect theories is limited and cognitively unnatural (Camerer et al. 1994; 
Johnson et al. 2002; Binmore et al. 2002). Experimental economists became 
wrapped up in understanding the nature of apparent social preferences and 
limited planning in structured bargaining.

However, most natural bargaining is not governed by rules about structure 
as simple as those theories, and experiments became focused from 1985 to 
2000 and beyond. Natural bargaining is typically “semi- structured”—that 
is, there is a hard deadline and protocol for what constitutes an agreement, 
and otherwise there are no restrictions on which party can make what off ers 
at what time, including the use of natural language, face- to-face meetings 
or use of agents, and so on.

The revival of experimental study of unstructured bargaining is a good 
idea for three reasons (see also Karagözoğlu, forthcoming). First, there are 
now a lot more ways to measure what happens during bargaining in labora-
tory conditions (and probably in fi eld settings as well). Second, the large 
number of features that can now be generated are ideal inputs for ML to 
predict bargaining outcomes. Third, even when bargaining is unstructured 
it is possible to produce bold, nonobvious precise predictions (thanks to the 
revelation principle). As we will see, ML can then test whether the features 

1. Examples include Binmore, Shaked, and Sutton (1985, 1989); Neelin, Sonnenschein, and 
Spiegel (1988); Camerer et al. (1994); and Binmore et al. (2002).
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predicted by game theory to aff ect outcomes actually do, and how much 
predictive power other features add (if  any).

These three properties are illustrated by experiments of Camerer, Nave, 
and Smith (2017).2 Two players bargain over how to divide an amount of 
money worth $1– $6 (in integer values). One informed (I ) player knows the 
amount; the other, uninformed (U) player, doesn’t know the amount. They 
are bargaining over how much the uninformed U player will get. But both 
players know that I knows the amount.

They bargain over ten seconds by moving cursors on a bargaining number 
line (fi gure 24.1). The data created in each trial is a time series of cursor loca-
tions, which are a series of step functions coming from a low off er to higher 
ones (representing increases in off ers from I ) and from higher demands to 
lower ones (representing decreasing demands from U ).

 Suppose we are trying to predict whether there will be an agreement or 
not based on all variables that can be observed. From a theoretical point 
of view, effi  cient bargaining based on revelation principle analysis predicts 
an exact rate of disagreement for each of the amounts $1– 6, based only on 
the diff erent amounts available. Remarkably, this prediction is process- free.

2. This paradigm builds on seminal work on semistructured bargaining by Forsythe, Ken-
nan, and Sopher (1991).

Fig. 24.1 A, initial off er screen (for informed player I, white bar); B, example cur-
sor locations after three seconds (indicating amount off ered by I, white, or demanded 
by U, dark gray); C, cursor bars match which indicates an off er, consummated at six 
seconds; D, feedback screen for player I. Player U also receives feedback about pie 
size and profi t if a trade was made (otherwise the profi t is zero).
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However, from an ML point of view there are lots of features represent-
ing what the players are doing that could add predictive power (besides the 
process- free prediction based on the amount at stake). Both cursor locations 
are recorded every twenty- fi ve msec. The time series of cursor locations is 
associated with a huge number of features—how far apart the cursors are, 
the time since last concession (= cursor movement), size of last concession, 
interactions between concession amounts and times, and so forth.

Figure 24.2 shows an ROC curve indicating test- set accuracy in predicting 
whether a bargaining trial ends in a disagreement (= 1) or not. The ROC 
curves sketch out combinations of  true positive rates, P(disagree|predict 
disagree) and false positive rates P(agree|predict disagree). An improved 
ROC curve moves up and to the left, refl ecting more true positives and fewer 
false positives. As is evident, predicting from process data only is about as 
accurate as using just the amount (“pie”) sizes (the ROC curves with black 
circle and empty square markers). Using both types of data improves predic-
tion substantially (curve with empty circle markers).

 Machine learning is able to fi nd predictive value in details of  how the 
bargaining occurs (beyond the simple, and very good, prediction based 
only on the amount being bargained over). Of course, this discovery is the 

Fig. 24.2 ROC curves showing combinations of false and true positive rates in pre-
dicting bargaining disagreements
Notes: Improved forecasting is represented by curves moving to the upper left. The combina-
tion of process (cursor location features) and “pie” (amount) data are a clear improvement 
over either type of data alone.
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beginning of the next step for behavioral economics. It raises questions that 
include: What variables predict? How do emotions,3 face- to-face commu-
nication, and biological measures (including whole- brain imaging)4 infl u-
ence bargaining? Do people consciously understand why those variables are 
important? Can ML methods capture the eff ects of motivated cognition in 
unstructured bargaining, when people can self- servingly disagree about case 
facts?5 Can people constrain expression of variables that hurt their bargain-
ing power? Can mechanisms be designed that record these variables and 
then create effi  cient mediation, into which people will voluntarily participate 
(capturing all gains from trade)?6

Risky Choice. Peysakhovich and Naecker (2017) use machine learning to 
analyze decisions between simple fi nancial risks. The set of risks are ran-
domly generated triples ($y, $x, 0) with associated probabilities ( p_x, p_y, 
p_0). Subjects give a willingness- to-pay (WTP) for each gamble.

The feature set is the fi ve probability and amount variables (excluding the 
$0 payoff ), quadratic terms for all fi ve, and all two- and three- way inter-
actions among the linear and quadratic variables. For aggregate- level esti-
mation this creates 5 + 5 + 45 + 120 = 175 variables.

Machine learning predictions are derived from regularized regression 
with a linear penalty (LASSO) or squared penalty (ridge) for (absolute) 
coeffi  cients. Participants were N = 315 MTurk subjects who each gave ten 
useable responses. The training set consists of 70 percent of the observa-
tions, and 30 percent are held out as a test set.

They also estimate predictive accuracy of a one- variable expected utility 
model (EU, with power utility) and a prospect theory (PT) model, which 
adds one additional parameter to allow nonlinear probability weighting 
(Tversky and Kahneman 1992) (with separate weights, not cumulative ones). 
For these models there are only one or two free parameters per person.7

The aggregate data estimation uses the same set of  parameters for all 
subjects. In this analysis, the test set accuracy (mean squared error) is almost 
exactly the same for PT and for both LASSO and ridge ML predictions, even 
though PT uses only two variables and the ML methods use 175 variables. 
Individual- level analysis, in which each subject has their own parameters 
has about half  the mean squared error as the aggregate analysis. The PT and 
ridge ML are about equally accurate.

The fact that PT and ML are equally accurate is a bit surprising because 
the ML method allows quite a lot of  fl exibility in the space of  possible 

3. Andrade and Ho (2009).
4. Lohrenz et al. (2007) and Bhatt et al. (2010).
5. See Babcock et al. (1995) and Babcock and Loewenstein (1997).
6. See Krajbich et al. (2008) for a related example of using neural measures to enhance effi  -

ciency in public good production experiments.
7. Note, however, that the ML feature set does not exactly nest the EU and PT forms. For 

example, a weighted combination of the linear outcome X and the quadratic term X2 does not 
exactly equal the power function X�.
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predictions. Indeed, the authors’ motivation was to use ML to show how 
a model with a huge amount of fl exibility could fi t, possibly to provide a 
ceiling in achievable accuracy. If  the ML predictions were more accurate 
than EU or PT, the gap would show how much improvement could be had 
by more complicated combinations of outcome and probability parameters. 
But the result, instead, shows that much busier models are not more accurate 
than the time- tested two- parameter form of PT, for this domain of choices.

Limited Strategic Thinking. The concept of subgame perfection in game 
theory presumes that players look ahead in the future to what other players 
might do at future choice nodes (even choice nodes that are unlikely to be 
reached), in order to compute likely consequences of their current choices. 
This psychological presumption does have some predictive power in short, 
simple games. However, direct measures of attention (Camerer at al. 1994; 
Johnson et al. 2002) and inference from experiments (e.g., Binmore et al. 
2002) make it clear that players with limited experience do not look far 
ahead.

More generally, in simultaneous games, there is now substantial evi-
dence that even highly intelligent and educated subjects do not all process 
information in a way that leads to optimized choices given (Nash) “equi-
librium” beliefs—that is, beliefs that accurately forecast what other players 
will do. More important, two general classes of theories have emerged that 
can account for deviations from optimized equilibrium theory. One class, 
quantal response equilibrium (QRE), are theories in which beliefs are sta-
tistically accurate but noisy (e.g., Goeree, Holt, and Palfrey 2016). Another 
type of theory presumes that deviations from Nash equilibrium result from 
a cognitive hierarchy of levels of strategic thinking. In these theories there 
are levels of thinking, starting from nonstrategic thinking, based presumably 
on salient features of strategies (or, in the absence of distinctive salience, 
random choice). Higher- level thinkers build up a model of  what lower- 
level thinkers do (e.g., Stahl and Wilson 1995; Camerer, Ho, and Chong 
2004; Crawford, Costa-Gomes, and Iriberri 2013). These models have been 
applied to hundreds of experimental games with some degree of imperfect 
cross- game generality, and to several fi eld settings.8

Both QRE and CH/ level- k theories extend equilibrium theory by adding 
parsimonious, precise specifi cations of departures from either optimization 
(QRE) or rationality of beliefs (CH/ level- k) using a small number of behav-
ioral parameters. The question that is asked is: Can we add predictive power 
in a simple, psychologically plausible9 way using these parameters?

A more general question is: Are there structural features of payoff s and 

8. For example, see Goldfarb and Xiao 2011, Östling et al. 2011, and Hortacsu et al. 2017.
9. In the case of CH/ level- k theories, direct measures of visual attention from Mouselab 

and eyetracking have been used to test the theories using a combination of  choices and visual 
attention data. See Costa- Gomes, Crawford, and Broseta 2001; Wang, Spezio, and Camerer 
2010; and Brocas et al. 2014. Eyetracking and moused- based methods provide huge data 
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strategies that can predict even more accurately than QRE or CH/ level- k? 
If  the answer is “Yes” then the new theories, even if  they are improvements, 
have a long way to go.

Two recent research streams have made important steps in this direction. 
Using methods familiar in computer science, Wright and Leyton- Brown 
(2014) create a “meta- model” that combines payoff  features to predict what 
the nonstrategic “level 0” players seem to, in six sets of two- player 3 × 3 
normal form games. This is a substantial improvement on previous specifi ca-
tions, which typically assume random behavior or some simple action based 
on salient information.10

Hartford, Wright, and Leyton- Brown (2016) go further, using deep learn-
ing neural networks (NNs) to predict human choices on the same six data 
sets. The NNs are able to outpredict CH models in the hold- out test sample 
in many cases. Importantly, even models in which there is no hierarchical 
iteration of strategic thinking (“layers of action response” in their approach) 
can fi t well. This result—while preliminary—indicates that prediction purely 
from hidden layers of structural features can be successful.

Coming from behavioral game theory, Fudenberg and Liang (2017) 
explore how well ML over structural properties of  strategies can predict 
experimental choices. They use the six data sets from Wright and Leyton- 
Brown (2014) and also collected data on how MTurk subjects played 200 
new 3 × 3 games with randomly drawn payoff s. Their ML approach uses 
eighty- eight features that are categorical structural properties of strategies 
(e.g., Is it part of a Nash equilibrium? Is the payoff  never the worst for each 
choice by the other player?).

The main analysis creates decision trees with k branching nodes (for k 
from 1 to 10) that predict whether a strategy will be played or not. Analysis 
uses tenfold test validation to guard against overfi tting. As is common, the 
best- fi tting trees are simple; there is a substantial improvement in fi t going 
from k = 1 to k = 2, and then only small improvements for bushier trees. In 
the lab game data, the best k = 2 tree is simply what is called level 1 play in 
CH/ level- k; it predicts the strategy that is a best response to uniform play 
by an opponent. That simple tree has a misclassifi cation rate of 38.4 per-
cent. The best k = 3 tree is only a little better (36.6 percent) and k = 5 is very 
slightly better (36.5 percent).

The model classifi es rather well, but the ML feature- based models do a 

sets. These previous studies heavily fi lter (or dimension- reduce) those data based on theory 
that requires consistency between choices and attention to information necessary to execute 
the value computation underlying the choice (Costa- Gomes, Crawford, and Broseta 2001; 
Costa-Gomes and Crawford 2006). Another approach that has never been tried is to use ML 
to select features from the huge feature set, combining choices and visual attention, to see 
which features predict best.

10. Examples of nonrandom behavior by nonstrategic players include bidding one’s private 
value in an auction (Crawford and Iriberri 2007) and reporting a private state honestly in a 
sender- receiver game (Wang, Spezio, and Camerer 2010; Crawford 2003).
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little better. Table 24.1 summarizes results for their new random games. The 
classifi cation by Poisson cognitive hierarchy (PCH) is 92 percent of the way 
from random to “best possible” (using the overall distribution of  actual 
play) in this analysis. The ML feature model is almost perfect (97 percent).

 Other analyses show less impressive performance for PCH, although it 
can be improved substantially by adding risk aversion, and also by trying to 
predict diff erent data set- specifi c τ values.

Note that the FL “best possible” measure is the same as the “clairvoyant” 
model upper bound used by Camerer, Ho, and Chong (2004). Given a data 
set of actual human behavior, and assuming that subjects are playing people 
chosen at random from that set, the best they can do is to have somehow 
accurately guessed what those data would be and chosen accordingly.11 (The 
term “clairvoyant” is used to note that this upper bound is unlikely to be 
reached except by sheer lucky guessing, but if  a person repeatedly chooses 
near the bound it implies they have an intuitive mental model of how others 
choose, which is quite accurate.)

Camerer, Ho, and Chong (2004) went a step further by also computing 
the expected reward value from clairvoyant prediction and comparing it with 
how much subjects actually earn and how much they could have earned if  
they obeyed diff erent theories. Using reward value as a metric is sensible 
because a theory could predict frequencies rather accurately, but might not 
generate a much higher reward value than highly inaccurate predictions 
(because of the “fl at maximum” property).12 In fi ve data sets they studied, 
Nash equilibrium added very little marginal value and the PCH approach 

Table 24.1 Frequency of prediction errors of various theoretical and ML models for 
new data from random- payoff  games (from Fudenberg and Liang 2017)

  Error  Completeness

Naïve benchmark 0.6667 1
Uniform Nash 0.4722 51.21%

(0.0075)
Poisson cognitive hierarchy model 0.3159 92.36%

(0.0217)
Prediction rule based on game features 0.2984 96.97%

(0.0095)
“Best possible”  0.2869  0

11. In psychophysics and experimental psychology, the term “ideal observer” model is used 
to refer to a performance benchmark closely related to what we called the clairvoyant upper 
bound.

12. This property was referred to as the “fl at maximum” by von Winterfeldt and Edwards 
(1973). It came to prominence much later in experimental economics when it was noted that 
theories could badly predict, say, a distribution of choices in a zero- sum game, but such an 
inaccurate theory might not yield much less earnings than an ideal theory.
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added some value in three games and more than half  the maximum achiev-
able value in two games.

24.3 Human Prediction as Imperfect Machine Learning

24.3.1  Some Pre- History of Judgment Research 
and Behavioral Economics

Behavioral economics as we know it and describe it nowadays, began to 
thrive when challenges to simple rationality principles (then called “anoma-
lies”) came to have rugged empirical status and to point to natural improve-
ments in theory (?). It was common in those early days to distinguish anoma-
lies about “preferences” such as mental accounting violations of fungibility 
and reference- dependence, and anomalies about “judgment” of likelihoods 
and quantities.

Somewhat hidden from economists, at that time and even now, was the 
fact that there was active research in many areas of judgment and decision- 
making (JDM). The JDM research proceeded in parallel with the emergence 
of behavioral economics. It was conducted almost entirely in psychology 
departments and some business schools, and rarely published in econom-
ics journals. The annual meeting of the S/ JDM society was, for logistical 
effi  ciency, held as a satellite meeting of  the Psychonomic Society (which 
weighted attendance toward mathematical experimental psychology).

The JDM research was about general approaches to understanding judg-
ment processes, including “anomalies” relative to logically normative 
benchmarks. This research fl ourished because there was a healthy respect 
for simple mathematical models and careful testing, which enabled regu-
larities to cumulate and gave reasons to dismiss weak results. The research 
community also had one foot in practical domains too (such as judgments 
of natural risks, medical decision- making, law, etc.) so that generalizability 
of lab results was always implicitly addressed.

The central ongoing debate in JDM from the 1970s on was about the 
cognitive processes involved in actual decisions, and the quality of those pre-
dictions. There were plenty of careful lab experiments about such phenom-
ena, but also an earlier literature on what was then called “clinical versus 
statistical prediction.” There lies the earliest comparison between primitive 
forms of ML and the important JDM piece of behavioral economics (see 
Lewis 2016). Many of the important contributions from this fertile period 
were included in the Kahneman, Slovic, and Tversky (1982) edited volume 
(which in the old days was called the “blue- green bible”).

Paul Meehl’s (1954) compact book started it all. Meehl was a remarkable 
character. He was a rare example, at the time, of a working clinical psychia-
trist who was also interested in statistics and evidence (as were others at Min-
nesota). Meehl had a picture of Freud in his offi  ce, and practiced clinically 
for fi fty years in the Veteran’s Administration.
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Meehl’s mother had died when he was sixteen, under circumstances which 
apparently made him suspicious of how much doctors actually knew about 
how to make sick people well.

His book could be read as pursuit of such a suspicion scientifi cally: he col-
lected all the studies he could fi nd—there were twenty- two—that compared 
a set of  clinical judgments with actual outcomes, and with simple linear 
models using observable predictors (some objective and some subjectively 
estimated).

Meehl’s idea was that these statistical models could be used as a bench-
mark to evaluate clinicians. As Dawes and Corrigan (1974, 97) wrote, “the 
statistical analysis was thought to provide a fl oor to which the judgment of 
the experienced clinician could be compared. The fl oor turned out to be a 
ceiling.”

In every case the statistical model outpredicted or tied the judgment accu-
racy of the average clinician. A later meta- analysis of 117 studies (Grove 
et al. 2000) found only six in which clinicians, on average, were more accurate 
than models (and see Dawes, Faust, and Meehl 1989).

It is possible that in any one domain, the distribution of clinicians con-
tains some stars who could predict much more accurately. However, later 
studies at the individual level showed that only a minority of clinicians were 
more accurate than statistical models (e.g., Goldberg 1968, 1970). Kleinberg 
et al.’s (2017) study of machine- learned and judicial detention decisions is 
a modern example of the same theme.

In the decades after Meehl’s book was published, evidence began to 
mount about why clinical judgment could be so imperfect. A common theme 
was that clinicians were good at measuring particular variables, or suggest-
ing which objective variables to include, but were not so good at combining 
them consistently (e.g., Sawyer 1966). In a recollection Meehl (1986, 373) 
gave a succinct description of this theme:

Why should people have been so surprised by the empirical results in my 
summary chapter? Surely we all know that the human brain is poor at 
weighting and computing. When you check out at a supermarket, you 
don’t eyeball the heap of purchases and say to the clerk, “Well it looks 
to me as if  it’s about $17.00 worth; what do you think?” The clerk adds it 
up. There are no strong arguments, from the armchair or from empirical 
studies of  cognitive psychology, for believing that human beings can 
assign optimal weights in equations subjectively or that they apply their 
own weights consistently, the query from which Lew Goldberg derived 
such fascinating and fundamental results.

Some other important fi ndings emerged. One drawback of the statistical 
prediction approach, for practice, was that it requires large samples of high- 
quality outcome data (in more modern AI language, prediction required 
labeled data). There were rarely many such data available at the time.

Dawes (1979) proposed to give up on estimating variable weights through 
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a criterion- optimizing “proper” procedure like ordinary least squares 
(OLS),13 using “improper” weights instead. An example is equal- weighting 
of standardized variables, which is often a very good approximation to OLS 
weighting (Einhorn and Hogarth 1975).

An interesting example of improper weights is what Dawes called “boot-
strapping” (a completely distinct usage from the concept in statistics of 
bootstrap resampling). Dawes’s idea was to regress clinical judgments on 
predictors, and use those estimated weights to make prediction. This is 
equivalent, of course, to using the predicted part of the clinical- judgment 
regression and discarding (or regularizing to zero, if  you will) the residual. 
If  the residual is mostly noise then correlation accuracies can be improved 
by this procedure, and they typically are (e.g., Camerer 1981a).

Later studies indicated a slightly more optimistic picture for the clinicians. 
If  bootstrap- regression residuals are pure noise, they will also lower the 
test- retest reliability of clinical judgment (i.e., the correlation between two 
judgments on the same cases made by the same person). However, analysis 
of the few studies that report both test- retest reliability and bootstrapping 
regressions indicate that only about 40 percent of the residual variance is 
unreliable noise (Camerer 1981b). Thus, residuals do contain reliable subjec-
tive information (though it may be uncorrelated with outcomes). Blattberg 
and Hoch (1990) later found that for actual managerial forecasts of product 
sales and coupon redemption rate, residuals are correlated about .30 with 
outcomes. As a result, averaging statistical model forecasts and managerial 
judgments improved prediction substantially over statistical models alone.

24.3.2 Sparsity Is Good for You but Tastes Bad

Besides the then- startling fi nding that human judgment did reliably worse 
than statistical models, a key feature of the early results was how well small 
numbers of  variables could fi t. Some of this conclusion was constrained 
by the fact that there were not huge feature sets with truly large number of 
variables in any case (so you couldn’t possibly know, at that time, if  “large 
numbers of variables fi t surprisingly better” than small numbers).

A striking example in Dawes (1979) is a two- variable model predicting 
marital happiness: the rate of lovemaking minus the rate of fi ghting. He 
reports correlations of .40 and .81 in two studies (Edwards and Edwards 
1977; Thornton 1977).14

In another more famous example, Dawes (1971) did a study about admit-
ting students to the University of Oregon PhD program in psychology from 
1964 to 1967. He compared and measured each applicant’s GRE, under-
graduate GPA, and the quality of the applicant’s undergraduate school. The 

13. Presciently, Dawes also mentions using ridge regression as a proper procedure to maxi-
mize out- of-sample fi t.

14. More recent analyses using transcribed verbal interactions generate correlations for 
divorce and marital satisfaction around .6– .7. The core variables are called the “four horse-
men” of criticism, defensiveness, contempt, and “stonewalling” (listener withdrawal).
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variables were standardized, then weighted equally. The outcome variable 
was faculty ratings in 1969 of how well the students they had admitted suc-
ceeded. (Obviously, the selection eff ect here makes the entire analysis much 
less than ideal, but tracking down rejected applicants and measuring their 
success by 1969 was basically impossible at the time.)

The simple three- variable statistical model correlated with later success 
in the program more highly (.48, cross- validated) than the admissions com-
mittee’s quantitative recommendation (.19).15 The bootstrapping model of 
the admissions committee correlated .25.

Despite Dawes’s evidence, I have never been able to convince any gradu-
ate admissions committee at two institutions (Penn and Caltech) to actually 
compute statistical ratings, even as a way to fi lter out applications that are 
likely to be certain rejections.

Why not?
I think the answer is that the human mind rebels against regularization 

and the resulting sparsity. We are born to overfi t. Every AI researcher knows 
that including fewer variables (e.g., by giving many of them zero weights in 
LASSO, or limiting tree depth in random forests) is a useful all- purpose 
prophylactic for overfi tting a training set. But the same process seems to be 
unappealing in our everyday judgment.

The distaste for sparsity is ironic because, in fact, the brain is built to do 
a massive amount of fi ltering of sensory information (and does so remark-
ably effi  ciently in areas where optimal effi  ciency can be quantifi ed, such as 
vision; see Doi et al. [2012]). But people do not like to explicitly throw away 
information (Einhorn 1986). This is particularly true if  the information is 
already in front of us—in the form of a PhD admissions application, or a 
person talking about their research in an AEA interview hotel room. It takes 
some combination of  willpower, arrogance, or what have you, to simply 
ignore letters of recommendation, for example. Another force is “illusory 
correlation,” in which strong prior beliefs about an association bias encod-
ing or memory so that the prior is maintained, incorrectly (Chapman and 
Chapman 1969; Klayman and Ha 1985).

The poster child for misguided sparsity rebellion is personal short face- 
to-face interviews in hiring. There is a mountain of evidence that such inter-
views do not predict anything about later work performance, if  interviewers 
are untrained and do not use a structured interview format, that isn’t better 
predicted by numbers (e.g., Dana, Dawes, and Peterson 2013).

A likely example is interviewing faculty candidates with new PhDs in 
hotel suites at the ASSA meetings. Suppose the goal of such interviews is 
to predict which new PhDs will do enough terrifi c research, good teaching, 

15. Readers might guess that the quality of  econometrics for inference in some of these 
earlier papers is limited. For example, Dawes (1971) only used the 111 students who had been 
admitted to the program and stayed enrolled, so there is likely scale compression and so forth. 
Some of the faculty members rating those students were probably also initial raters, which could 
generate consistency biases, and so forth.
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and other kinds of service and public value to get tenure several years later 
at the interviewers’ home institution.

That predictive goal is admirable, but the brain of an untrained inter-
viewer has more basic things on its mind. Is this person well dressed? Can 
they protect me if  there is danger? Are they friend or foe? Does their accent 
and word choice sound like mine? Why are they stifl ing a yawn?—they’ll 
never get papers accepted at Econometrica if  they yawn after a long tense day 
slipping on ice in Philadelphia rushing to avoid being late to a hotel suite!

People who do these interviews (including me) say that we are trying to 
probe the candidate’s depth of understanding about their topic, how prom-
ising their new planned research is, and so forth. But what we really are 
evaluating is probably more like “Do they belong in my tribe?”

While I do think such interviews are a waste of time,16 it is conceivable 
that they generate valid information. The problem is that interviewers may 
weight the wrong information (as well as overweighting features that should 
be regularized to zero). If  there is valid information about long- run tenure 
prospects and collegiality, the best method to capture such information is 
to videotape the interview, combine it with other tasks that more closely 
resemble work performance (e.g., have them review a diffi  cult paper), and 
machine learn the heck out of that larger corpus of information.

Another simple example of where ignoring information is counterintui-
tive is captured by the two modes of forecasting that Kahneman and Lovallo 
(1993) wrote about. They called the two modes the “inside” and “outside” 
view. The two views were in the context of  forecasting the outcome of a 
project (such as writing a book, or a business investment). The inside view 
“focused only on a particular case, by considering the plan and its obstacles 
to completion, by constructing scenarios of future progress” (25). The out-
side view “focuses on the statistics of a class of cases chosen to be similar 
in relevant respects to the current one” (25).

The outside view deliberately throws away most of the information about 
a specifi c case at hand (but keeps some information): it reduces the rele-
vant dimensions to only those that are present in the outside view reference 
class. (This is, again, a regularization that zeros out all the features that are 
not “similar in relevant respects.”)

In ML terms, the outside and inside views are like diff erent kinds of cluster 
analyses. The outside view parses all previous cases into K clusters; a current 
case belongs to one cluster or another (though there is, of course, a degree 
of cluster membership depending on the distance from cluster centroids). 
The inside view—in its extreme form—treats each case, like fi ngerprints 
and snowfl akes, as unique.

16. There are many caveats, of course, to this strong claim. For example, often the school is 
pitching to attract a highly desirable candidate, not the other way around.
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24.3.3  Hypothesis: Human Judgment Is Like 
Overfi tted Machine Learning

The core idea I want to explore is that some aspects of everyday human 
judgment can be understood as the type of errors that would result from 
badly done machine learning.17 I will focus on two aspects: overconfi dence 
and how it increases, and limited error correction.

In both cases, I have in mind a research program that takes data on human 
predictions and compares them with machine- learned predictions. Then 
deliberately re- do the machine learning badly (e.g., failing to correct for 
overfi tting) and see whether the impaired ML predictions have some of the 
properties of human ones.

Overconfi dence. In a classic study from the early days of JDM, Oskamp 
(1965) had eight experienced clinical psychologists and twenty- four gradu-
ate and undergraduate students read material about an actual person, in 
four stages. The fi rst stage was just three sentences giving basic demograph-
ics, education, and occupation. The next three stages were one and a half  
to two pages each about childhood, schooling, and the subject’s time in the 
army and beyond. There were a total of fi ve pages of material.

The subjects had to answer twenty- fi ve personality questions about the 
subject, each with fi ve multiple- choice answers18 after each of the four stages 
of reading. All these questions had correct answers, based on other evidence 
about the case. Chance guessing would be 20 percent accurate.

Oskamp learned two things: First, there was no diff erence in accuracy 
between the experienced clinicians and the students.

Second, all the subjects were barely above chance, and accuracy did not 
improve as they read more material in the three stages. After just the fi rst 
paragraph, their accuracy was 26 percent; after reading all fi ve additional 
pages across the three stages, accuracy was 28 percent (an insignifi cant dif-
ference from 26 percent). However, the subjects’ subjective confi dence in 
their accuracy rose almost linearly as they read more, from 33 percent 
to 53 percent.19

This increase in confi dence, combined with no increase in accuracy, is 
reminiscent of the diff erence between training set and test set accuracy in 
AI. As more and more variables are included in a training set, the (unpe-
nalized) accuracy will always increase. As a result of overfi tting, however, 
test- set accuracy will decline when too many variables are included. The 

17. My intuition about this was aided by Jesse Shapiro, who asked a well- crafted question 
pointing straight in this direction.

18. One of the multiple choice questions was “Kid’s present attitude toward his mother is one 
of: (a) love and respect for her ideals, (b) aff ectionate tolerance for her foibles,” and so forth.

19. Some other results comparing more and less experienced clinicians, however, have also 
confi rmed the fi rst fi nding (experience does not improve accuracy much), but found that experi-
ence tends to reduce overconfi dence (Goldberg 1959).
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resulting gap between training- and test- set accuracy will grow, much as 
the overconfi dence in Oskamp’s subjects grew with the equivalent of more 
“variables” (i.e., more material on the single person they were judging).

Overconfi dence comes in diff erent fl avors. In the predictive context, we 
will defi ne it as having too narrow a confi dence interval around a prediction. 
(In regression, for example, this means underestimating the standard error 
of a conditional prediction P(Y|X ) based on observables X.)

My hypothesis is that human overconfi dence results from a failure to win-
now the set of predictors (as in LASSO penalties for feature weights). Over-
confi dence of this type is a consequence of not anticipating overfi tting. High 
training- set accuracy corresponds to confi dence about predictions. Overcon-
fi dence is a failure to anticipate the drop in accuracy from training to test.

Limited Error Correction. In some ML procedures, training takes place 
over trials. For example, the earliest neural networks were trained by making 
output predictions based on a set of node weights, then back- propagating 
prediction errors to adjust the weights. Early contributions intended for this 
process to correspond to human learning—for example, how children learn 
to recognize categories of natural objects or to learn properties of language 
(e.g., Rumelhart and McClelland 1986).

One can then ask whether some aspects of adult human judgment corre-
spond to poor implementation of error correction. An invisible assumption 
that is, of course, part of neural network training is that output errors are 
recognized (if  learning is supervised by labeled data). But what if  humans 
do not recognize error or respond to it inappropriately?

One maladaptive response to prediction error is to add features, particu-
larly interaction eff ects. For example, suppose a college admissions direc-
tor has a predictive model and thinks students who play musical instru-
ments have good study habits and will succeed in the college. Now a student 
comes along who plays drums in the Dead Milkmen punk band. The student 
gets admitted (because playing music is a good feature), but struggles in 
college and drops out.

The admissions director could back- propagate the predictive error to 
adjust the weights on the “plays music” feature. Or she could create a new 
feature by splitting “plays music” into “plays drums” and “plays nondrums” 
and ignore the error. This procedure will generate too many features and 
will not use error- correction eff ectively.20

Furthermore, note that a diff erent admissions director might create two 
diff erent subfeatures, “plays music in a punk band” and “plays nonpunk 
music.” In the stylized version of this description, both will become con-
vinced that they have improved their mental models and will retain high 
confi dence about future predictions. But their inter- rater reliability will have 

20. Another way to model this is as the refi nement of a prediction tree, where branches are 
added for new feature when predictions are incorrect. This will generate a bushy tree, which 
generally harms test- set accuracy.
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gone down, because they “improved” their models in diff erent ways. Inter- 
rate reliability puts a hard upper bound on how good average predictive 
accuracy can be. Finally, note that even if  human experts are mediocre at 
feature selection or create too many interaction eff ects (which ML regular-
izes away), they are often more rapid than novices (for a remarkable study 
of actual admissions decisions, see Johnson 1980, 1988). The process they 
use is rapid, but the predictive performance is not so impressive. But AI 
algorithms are even faster.

24.4 AI Technology as a Bionic Patch, or Malware, for Human Limits

We spend a lot of time in behavioral economics thinking about how po-
litical and economic systems either exploit bad choices or help people make 
good choices. What behavioral economics has to off er to this general discus-
sion is to specify a more psychologically accurate model of human choice 
and human nature than the caricature of constrained utility- maximization 
(as useful as it has been).

Artifi cial intelligence enters by creating better tools for making inferences 
about what a person wants and what a person will do. Sometimes these tools 
will hurt and sometimes they will help.

Artifi cial Intelligence Helps. A clear example is recommender systems. 
Recommender systems use previous data on a target person’s choices and ex 
post quality ratings, as well as data on many other people, possible choices, 
and ratings, to predict how well the target person will like a choice they have 
not made before (and may not even know exists, such as movies or books 
they haven’t heard of). Recommender systems are a behavioral prosthetic 
to remedy human limits on attention and memory and the resulting incom-
pleteness of preferences.

Consider Netfl ix movie recommendations. Netfl ix uses a person’s viewing 
and ratings history, as well as opinions of others and movie properties, as 
inputs to a variety of algorithms to suggest what content to watch. As their 
data scientists explained (Gomez- Uribe and Hunt 2016):

a typical Netfl ix member loses interest after perhaps 60 to 90 seconds of 
choosing, having reviewed 10 to 20 titles (perhaps 3 in detail) on one or 
two screens. . . . The recommender problem is to make sure that on those 
two screens each member in our diverse pool will fi nd something compel-
ling to view, and will understand why it might be of interest.

For example, their “Because You Watched” recommender line uses a 
video- video similarity algorithm to suggest unwatched videos similar to 
ones the user watched and liked.

There are so many interesting implications of  these kinds of  recom-
mender systems for economics in general, and for behavioral economics 
in particular. For example, Netfl ix wants its members to “understand why 
it (a recommended video) might be of interest.” This is, at bottom, a ques-
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tion about interpretability of AI output, how a member learns from recom-
mender successes and errors, and whether a member then “trusts” Netfl ix 
in general. All these are psychological processes that may also depend heav-
ily on design and experience features (UD, UX).

Artifi cial Intelligence “Hurts.”21 Another feature of AI- driven personal-
ization is price discrimination. If people do know a lot about what they want, 
and have precise willingness- to-pay (WTP), then companies will quickly 
develop the capacity to personalize prices too. This seems to be a concept 
that is emerging rapidly and desperately needs to be studied by industrial 
economists who can fi gure out the welfare implications.

Behavioral economics can play a role by using evidence about how people 
make judgments about fairness of prices (e.g., Kahneman, Knetsch, and 
Thaler 1986), whether fairness norms adapt to “personalized pricing,” and 
how fairness judgments infl uence behavior.

My intuition (echoing Kahneman, Knetsch, and Thaler 1986) is that 
people can come to accept a high degree of variation in prices for what is 
essentially the same product as long as there is either (a) very minor prod-
uct diff erentiation22 or (b) fi rms can articulate why diff erent prices are fair. 
For example, price discrimination might be framed as cross- subsidy to help 
those who can’t aff ord high prices.

It is also likely that personalized pricing will harm consumers who are 
the most habitual or who do not shop cleverly, but will help savvy consum-
ers who can hijack the personalization algorithms to look like low WTP 
consumers and save money. See Gabaix and Laibson (2006) for a carefully 
worked- out model about hidden (“shrouded”) product attributes.

24.5 Conclusion

This chapter discussed three ways in which AI, particularly machine learn-
ing, connect with behavioral economics. One way is that ML can be used 
to mine the large set of  features that behavioral economists think could 
improve prediction of choice. I gave examples of simple kinds of ML (with 
much smaller data sets than often used) in predicting bargaining outcomes, 
risky choice, and behavior in games.

The second way is by construing typical patterns in human judgment as 
the output of implicit machine- learning methods that are inappropriately 
applied. For example, if  there is no correction for overfi tting, then the gap 

21. I put the word “hurts” in quotes here as a way to conjecture, through punctuation, that 
in many industries the AI- driven capacity to personalize pricing will harm consumer welfare 
overall.

22. A feature of their fairness framework is that people do not mind price increases or sur-
charges if  they are even partially justifi ed by cost diff erentials. I have a recollection of Kahne-
man and Thaler joking that a restaurant could successfully charge higher prices on Saturday 
nights if  there is some enhancement, such as a mariachi band—even if  most people don’t like 
mariachi.
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between training set accuracy and test- set accuracy will grow and grow if  
more features are used. This could be a model of human overconfi dence.

The third way is that AI methods can help people “assemble” preference 
predictions about unfamiliar products (e.g., through recommender systems) 
and can also harm consumers by extracting more surplus than ever before 
(through better types of price discrimination).
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Comment Daniel Kahneman

Below is a slightly edited version of Professor Kahneman’s spoken remarks.
During the talks yesterday, I couldn’t understand most of what was going 

on, and yet I had the feeling that I was learning a lot. I will have some 
remarks about Colin (Camerer) and then some remarks about the few things 
that I noticed yesterday that I could understand.

Colin had a lovely idea that I agree with. It is that if  you have a mass of 
data and you use deep learning, you will fi nd out much more than your 
theory is designed to explain. And I would hope that machine learning can 
be a source of hypotheses. That is, that some of these variables that you 
identify are genuinely interesting.

At least in my fi eld, the bar for successful publishable science is very low. 
We consider theories confi rmed even when they explain very little of  the 
variance so long as they yield statistically signifi cant predictions. We treat 
the residual variance as noise, so a deeper look into the residual variance, 
which machine learning is good at, is an advantage. So as an outsider, actu-
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