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3.1 Introduction

There is widespread discussion regarding the impact of  machines on 
employment (see Autor 2015). In some sense, the discussion mirrors a long- 
standing literature on the impact of the accumulation of capital equipment 
on employment; specifi cally, whether capital and labor are substitutes or 
complements (Acemoglu 2003). But the recent discussion is motivated by 
the integration of software with hardware and whether the role of machines 
goes beyond physical tasks to mental ones as well (Brynjolfsson and McAfee 
2014). As mental tasks were seen as always being present and essential, 
human comparative advantage in these was seen as the main reason why, at 
least in the long term, capital accumulation would complement employment 
by enhancing labor productivity in those tasks.

The computer revolution has blurred the line between physical and men-
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tal tasks. For instance, the invention of the spreadsheet in the late 1970s 
fundamentally changed the role of  bookkeepers. Prior to that invention, 
there was a time- intensive task involving the recomputation of outcomes in 
spreadsheets as data or assumptions changed. That human task was substi-
tuted by the spreadsheet software that could produce the calculations more 
quickly, cheaply, and frequently. However, at the same time, the spreadsheet 
made the jobs of  accountants, analysts, and others far more productive. 
In the accounting books, capital was substituting for labor, but the mental 
productivity of labor was being changed. Thus, the impact on employment 
critically depended on whether there were tasks the “computers cannot do.”

These assumptions persist in models today. Acemoglu and Restrepo 
(2017) observe that capital substitutes for labor in certain tasks while at the 
same time technological progress creates new tasks. They make what they 
call a “natural assumption” that only labor can perform the new tasks as 
they are more complex than previous ones.1 Benzell et al. (2015) consider 
the impact of software more explicitly. Their environment has two types of 
labor—high- tech (who can, among other things, code) and low- tech (who 
are empathetic and can handle interpersonal tasks). In this environment, 
it is the low- tech workers who cannot be replaced by machines while the 
high- tech ones are employed initially to create the code that will eventually 
displace their kind. The results of the model depend, therefore, on a class 
of worker who cannot be substituted directly for capital, but also on the 
inability of workers themselves to substitute between classes.

In this chapter, our approach is to delve into the weeds of what is hap-
pening currently in the fi eld of artifi cial intelligence (AI). The recent wave 
of  developments in AI all involve advances in machine learning. Those 
advances allow for automated and cheap prediction; that is, providing a 
forecast (or nowcast) of a variable of interest from available data (Agrawal, 
Gans and Goldfarb 2018b). In some cases, prediction has enabled full auto-
mation of tasks—for example, self- driving vehicles where the process of 
data collection, prediction of behavior and surroundings, and actions are 
all conducted without a human in the loop. In other cases, prediction is a 
standalone tool—such as image recognition or fraud detection—that may 
or may not lead to further substitution of human users of such tools by 
machines. Thus far, substitution between humans and machines has focused 
mainly on cost considerations. Are machines cheaper, more reliable, and 
more scalable (in their software form) than humans? This chapter, however, 
considers the role of prediction in decision- making explicitly and from that 
examines the complementary skills that may be matched with prediction 
within a task.

1. To be sure, their model is designed to examine how automation of tasks causes a change 
in factor prices that biases innovation toward the creation of  new tasks that labor is more 
suited to.
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Our focus, in this regard, is on what we term judgment. While judgment 
is a term with broad meaning, here we use it to refer to a very specifi c skill. 
To see this, consider a decision. That decision involves choosing an action, 
x, from a set, X. The payoff  (or reward) from that action is defi ned by a 
function, u(x, �) where � is a realization of an uncertain state drawn from 
a distribution, F(�). Suppose that, prior to making a decision, a prediction 
(or signal), s, can be generated that results in a posterior, F(�|s). Thus, the 
decision maker would solve

 max x X u x,( )dF s( ).
In other words, a standard problem of choice under uncertainty. In this 
standard world, the role of prediction is to improve decision- making. The 
payoff , or utility function, is known.

To create a role for judgment, we depart from this standard set-up in 
statistical decision theory and ask how a decision maker comes to know the 
function, u(x, �)? We assume that this is not simply given or a primitive of the 
decision- making model. Instead, it requires a human to undertake a costly 
process that allows the mapping from (x, �) to a particular payoff  value, u, to 
be discovered. This is a reasonable assumption given that beyond some rudi-
mentary experimentation in closed environments, there is no current way for 
an AI to impute a utility function that resides with humans. Additionally, 
this process separates the costs of providing the mapping for each pair, (x, �). 
(Actually, we focus, without loss in generality, on situations where u(x, �) ≠ 
u(x) for all � and presume that if  a payoff  to an action is state independent 
that payoff  is known.) In other words, while prediction can obtain a signal 
of the underlying state, judgment is the process by which the payoff s from 
actions that arise based on that state can be determined. We assume that 
this process of determining payoff s requires human understanding of the 
situation: it is not a prediction problem.

For intuition on the diff erence between prediction and judgment, consider 
the example of credit card fraud. A bank observes a credit card transaction. 
That transaction is either legitimate or fraudulent. The decision is whether 
to approve the transaction. If  the bank knows for sure that the transaction 
is legitimate, the bank will approve it. If  the bank knows for sure that it is 
fraudulent, the bank will refuse the transaction. Why? Because the bank 
knows the payoff  of approving a legitimate transaction is higher than the 
payoff  of refusing that transaction. Things get more interesting if  the bank 
is uncertain about whether the transaction is legitimate. The uncertainty 
means that the bank also needs to know the payoff  from refusing a legitimate 
transaction and from approving a fraudulent transaction. In our model, 
judgment is the process of determining these payoff s. It is a costly activity, 
in the sense that it requires time and eff ort.

As the new developments regarding AI all involve making prediction 
more readily available, we ask, how does judgment and its endogenous appli-
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cation change the value of prediction? Are prediction and judgment sub-
stitutes or complements? How does the value of prediction change mono-
tonically with the diffi  culty of applying judgment? In complex environments 
(as they relate to automation, contracting, and the boundaries of the fi rm), 
how do improvements in prediction aff ect the value of judgment?

We proceed by fi rst providing supportive evidence for our assumption that 
recent developments in AI overwhelmingly impact the costs of prediction. 
We then use the example of radiology to provide a context for understand-
ing the diff erent roles of prediction and judgment. Drawing inspiration from 
Bolton and Faure- Grimaud (2009), we then build the baseline model with 
two states of  the world and uncertainty about payoff s to actions in each 
state. We explore the value of judgment in the absence of any prediction 
technology, and then the value of prediction technology when there is no 
judgment. We fi nish the discussion of the baseline model with an explora-
tion of the interaction between prediction and judgment, demonstrating 
that prediction and judgment are complements as long as judgment isn’t too 
diffi  cult. We then separate prediction quality into prediction frequency and 
prediction accuracy. As judgment improves, accuracy becomes more impor-
tant relative to frequency. Finally, we examine complex environments where 
the number of potential states is large. Such environments are common in 
economic models of automation, contracting, and boundaries of the fi rm. 
We show that the eff ect of improvements in prediction on the importance 
of judgment depend a great deal on whether the improvements in prediction 
enable automated decision- making.

3.2 AI and Prediction Costs

We argue that the recent advances in artifi cial intelligence are advances 
in the technology of prediction. Most broadly, we defi ne prediction as the 
ability to take known information to generate new information. Our model 
emphasizes prediction about the state of the world.

Most contemporary artifi cial intelligence research and applications come 
from a fi eld now called “machine learning.” Many of the tools of machine 
learning have a long history in statistics and data analysis, and are likely 
familiar to economists and applied statisticians as tools for prediction and 
classifi cation.2 For example, Alpaydin’s (2010) textbook Introduction to 
Machine Learning covers maximum likelihood estimation, Bayesian esti-
mation, multivariate linear regression, principal components analysis, clus-
tering, and nonparametric regression. In addition, it covers tools that may 
be less familiar, but also use independent variables to predict outcomes: 

2. We defi ne prediction as known information to generate new information. Therefore, clas-
sifi cation techniques such as clustering are prediction techniques in which the new information 
to be predicted is the appropriate category or class.
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regression trees, neural networks, hidden Markov models, and reinforce-
ment learning. Hastie, Tibshirani, and Friedman (2009) cover similar topics. 
The 2014 Journal of Economic Perspectives symposium on big data covered 
several of  these less familiar prediction techniques in articles by Varian 
(2014) and Belloni, Chernozhukov, and Hansen (2014).

While many of these prediction techniques are not new, recent advances 
in computer speed, data collection, data storage, and the prediction methods 
themselves have led to substantial improvements. These improvements have 
transformed the computer science research fi eld of artifi cial intelligence. The 
Oxford English Dictionary defi nes artifi cial intelligence as “[t]he theory and 
development of computer systems able to perform tasks normally requiring 
human intelligence.” In the 1960s and 1970s, artifi cial intelligence research 
was primarily rules- based, symbolic logic. It involved human experts gen-
erating rules that an algorithm could follow (Domingos 2015, 89). These 
are not prediction technologies. Such systems became very good chess 
players and they guided factory robots in highly controlled settings; how-
ever, by the 1980s, it became clear that rules- based systems could not deal 
with the complexity of many nonartifi cial settings. This led to an “AI winter” 
in which research funding artifi cial intelligence projects largely dried up 
(Markov 2015).

Over the past ten years, a diff erent approach to artifi cial intelligence has 
taken off . The idea is to program computers to “learn” from example data 
or experience. In the absence of  the ability to predetermine the decision 
rules, a data- driven prediction approach can conduct many mental tasks. 
For example, humans are good at recognizing familiar faces, but we would 
struggle to explain and codify this skill. By connecting data on names to 
image data on faces, machine learning solves this problem by predicting 
which image data patterns are associated with which names. As a prominent 
artifi cial intelligence researcher put it, “Almost all of AI’s recent progress is 
through one type, in which some input data (A) is used to quickly generate 
some simple response (B)” (Ng 2016). Thus, the progress is explicitly about 
improvements in prediction. In other words, the suite of technologies that 
have given rise to the recent resurgence of interest in artifi cial intelligence 
use data collected from sensors, images, videos, typed notes, or anything 
else that can be represented in bits to fi ll in missing information, recognize 
objects, or forecast what will happen next.

To be clear, we do not take a position on whether these prediction tech-
nologies really do mimic the core aspects of human intelligence. While Palm 
Computing founder Jeff  Hawkins argues that human intelligence is—in 
essence—prediction (Hawkins 2004), many neuroscientists, psychologists, 
and others disagree. Our point is that the technologies that have been given 
the label artifi cial intelligence are prediction technologies. Therefore, in 
order to understand the impact of  these technologies, it is important to 
assess the impact of prediction on decisions.
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3.3 Case: Radiology

Before proceeding to the model, we provide some intuition of how predic-
tion and judgment apply in a particular context where prediction machines 
are expected to have a large impact: radiology. In 2016, Geoff  Hinton—one 
of the pioneers of deep learning neural networks—stated that it was no lon-
ger worth training radiologists. His strong implication was that radiologists 
would not have a future. This is something that radiologists have been con-
cerned about since 1960 (Lusted 1960). Today, machine- learning techniques 
are being heavily applied in radiology by IBM using its Watson computer 
and by a start-up, Enlitic. Enlitic has been able to use deep learning to detect 
lung nodules (a fairly routine exercise)3 but also fractures (which is more 
complex). Watson can now identify pulmonary embolism and some other 
heart issues. These advances are at the heart of  Hinton’s forecast, but have 
also been widely discussed among radiologists and pathologists (Jha and 
Topol 2016). What does the model in this chapter suggest about the future 
of radiologists?

If  we consider a simplifi ed characterization of the job of a radiologist, 
it would be that they examine an image in order to characterize and clas-
sify that image and return an assessment to a physician. While often that 
assessment is a diagnosis (i.e., “the patient has pneumonia”), in many cases, 
the assessment is in the negative (i.e., “pneumonia not excluded”). In that 
regard, this is stated as a predictive task to inform the physician of  the 
likelihood of the state of the world. Using that, the physician can devise a 
treatment.

These predictions are what machines are aiming to provide. In particular, 
it might provide a diff erential diagnosis of the following kind:

Based on Mr Patel’s demographics and imaging, the mass in the liver has a 
66.6 percent chance of being benign, 33.3 percent chance of being malignant, 
and a 0.1 percent of not being real.4

The action is whether some intervention is needed. For instance, if  a 
potential tumor is identifi ed in a noninvasive scan, then this will inform 
whether an invasive examination will be conducted. In terms of identifying 
the state of the world, the invasive exam is costly but safe—it can deduce a 
cancer with certainty and remove it if  necessary. The role of a noninvasive 
exam is to inform whether an invasive exam should be forgone. That is, it 
is to make physicians more confi dent about abstaining from treatment and 
further analysis. In this regard, if  the machine improves prediction, it will 
lead to fewer invasive examinations.

3. “You did not go to medical school to measure lung nodules.” http:// www .medscape .com
/ viewarticle/ 863127#vp_2.

4. http:// www .medscape .com/ viewarticle/ 863127#vp_3.
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Judgment involves understanding the payoff s. What is the payoff  to con-
ducting a biopsy if  the mass is benign, malignant, or not real? What is the 
payoff  to not doing anything in those three states? The issue for radiologists 
in particular is whether a trained specialist radiologist is in the best position 
to make this judgment or will it occur further along the chain of decision- 
making or involve new job classes that merge diagnostic information such 
as a combined radiologist/ pathologist (Jha and Topol 2016). Next, we for-
malize these ideas.

3.4 Baseline Model

Our baseline model is inspired by the “bandit” environment considered by 
Bolton and Faure- Grimaud (2009), although it departs signifi cantly in the 
questions addressed and base assumptions made. Like them, in our base-
line model, we suppose there are two states of the world, {�1,�2} with prior 
probabilities of {�,1 – �}. There are two possible actions: a state indepen-
dent action with known payoff  of S (safe) and a state dependent action with 
two possible payoff s, R or r, as the case may be (risky).

As noted in the introduction, a key departure from the usual assump-
tions of rational decision- making is that the decision maker does not know 
the payoff  from the risky action in each state and must apply judgment to 
determine that payoff .5 Moreover, decision makers need to be able to make 
a judgment for each state that might arise in order to formulate a plan that 
would be the equivalent of  payoff  maximization. In the absence of  such 
judgment, the ex ante expectation that the risky action is optimal in any state 
is v (which is independent between states). To make things more concrete, 
we assume R > S > r.6 Thus, we assume that v is the probability in any state 
that the risky payoff  is R rather than r. This is not a conditional probability 
of the state. It is a statement about the payoff , given the state.

In the absence of knowledge regarding the specifi c payoff s from the risky 
action, a decision can only be made on the basis of prior probabilities. Then 
the safe action will be chosen if

 μ vR + (1 v)r( ) + 1 μ( ) vR + (1 v)r( ) = vR + (1 v)r S.

5. Bolton and Faure- Grimaud (2009) consider this step to be the equivalent of a thought 
experiment where thinking takes time. To the extent that our results can be interpreted as a 
statement about the comparative advantage of humans, we assume that only humans can do 
judgment.

6. Thus, we assume that the payoff  function, u, can only take one of three values, {R, r, S}. 
The issue is which combinations of state realization and action lead to which payoff s. However, 
we assume that S is the payoff  from the safe action regardless of state and so this is known to the 
decision maker. As it is the relative payoff s from actions that drive the results, this assumption 
is without loss in generality. Requiring this property of the safe action to be discovered would 
just add an extra cost. Implicitly, as the decision maker cannot make a decision in complete 
ignorance, we are assuming that the safe action’s payoff  can be judged at an arbitrarily low cost.
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So that the payoff  is: V0 = max{vR + (1 – v)r, S}. To make things simpler, we 
will focus our attention on the case where the safe action is—in the absence 
of prediction or judgment—the default. That is, we assume that

(A1) (Safe Default) vR + (1 – v)r ≤ S.

This assumption is made for simplicity only and will not change the quali-
tative conclusions.7 Under (A1), in the absence of knowledge of the payoff  
function or a signal of the state, the decision maker would choose S.

3.4.1 Judgment in the Absence of Prediction

Prediction provides knowledge of the state. The process of judgment pro-
vides knowledge of the payoff  function. Judgment therefore allows the deci-
sion maker to understand which action is optimal for a given state should 
it arise. Suppose that this knowledge is gained without cost (as it would be 
assumed to do under the usual assumptions of economic rationality). In 
other words, the decision maker has knowledge of optimal action in a given 
state. Then the risky action will be chosen (a) if  it is the preferred action in 
both states (which arises with probability v2); (b) if  it is the preferred action 
in �1 but not �2 and �R + (1 – �)r > S (with probability v(1 – v)); or (c) if  it is 
the preferred action in �2 but not �1 and �r + (1 – �)R > S (with probability 
v(1 – v)). Thus, the expected payoff  is

 

v2R + v(1 v)max μR + (1 μ)r,S{ }
+ v(1 v)max μr + (1 μ)R,S{ } + (1 v)2S.

Note that this is greater than V0. The reason for this is that, when there is 
uncertainty, judgment is valuable because it can identify actions that are 
dominant or dominated—that is, that might be optimal across states. In 
this situation, any resolution of uncertainty does not matter as it will not 
change the decision made.

A key insight is that judgment itself  can be consequential.
Result 1: If max{�R + (1 – �)r, �r + (1 – �)R} > S, it is possible that 

judgment alone can cause the decision to switch from the default action (safe) 
to the alternative action (risky).

As we are motivated by understanding the interplay between prediction 
and judgment, we want to make these consequential. Therefore, we make the 
following assumption to ensure prediction always has some value:

(A2) (Judgment Insuffi  cient) max{�R + (1 – �)r, �r + (1 – �)R} ≤ S.

Under this assumption, if  diff erent actions are optimal in each state and 
this is known, the decision maker will not change to the risky action. This, 
of course, implies that the expected payoff  is

7. Bolton and Faure- Grimaud (2009) make the opposite assumption. Here, as our focus is on 
the impact of prediction, it is better to consider environments where prediction has the eff ect 
of reducing uncertainty over riskier actions.
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 v2R + (1 v2 )S.

Note that, absent any cost, full judgment improves the decision maker’s 
expected payoff .

Judgment does not come for free. We assume here that it takes time 
(although the formulation would naturally match with the notion that it 
takes costly eff ort). Suppose the discount factor is 	 < 1. A decision maker 
can spend time in a period determining what the optimal action is for a par-
ticular state. If  they choose to apply judgment with respect to state �i, then 
there is a probability 
i that they will determine the optimal action in that 
period and can make a choice based on that judgment. Otherwise, they can 
choose to apply judgment to that problem in the next period.

It is useful, at this point, to consider what judgment means once it has 
been applied. The initial assumption we make here is that the knowledge 
of the payoff  function depreciates as soon as a decision is made. In other 
words, applying judgment can delay a decision (and that is costly) and it 
can improve that decision (which is its value) but it cannot generate experi-
ence that can be applied to other decisions (including future ones). In other 
words, the initial conception of judgment is the application of thought rather 
than the gathering of experience.8 Practically, this reduces our examination 
to a static model. However, in a later section, we consider the experience 
formulation and demonstrate that most of the insights of the static model 
carry over to the dynamic model.

In summary, the timing of the game is as follows:

1. At the beginning of  a decision stage, the decision maker chooses 
whether to apply judgment and to what state or whether to simply choose 
an action without judgment. If  an action is chosen, uncertainty is resolved 
and payoff s are realized and we move to a new decision stage.

2. If  judgment is chosen, with probability, 1 – 
i, they do not fi nd out 
the payoff s for the risky action in that state, a period of time elapses and 
the game moves back to 1. With probability 
i, the decision maker gains 
this knowledge. The decision maker can then take an action, uncertainty 
is resolved and payoff s are realized, and we move to a new decision stage 
(back to 1). If  no action is taken, a period of time elapses and the current 
decision stage continues.

3. The decision maker chooses whether to apply judgment to the other 
state. If  an action is chosen, uncertainty is resolved and payoff s are realized 
and we move to a new decision stage (back to 1).

4. If  judgment is chosen, with probability, 1 – 
– i, they do not fi nd out 
the payoff s for the risky action in that state, a period of time elapses and 
the game moves back to 1. With probability 
– i, the decision maker gains 
this knowledge. The decision maker then chooses an action, uncertainty 

8. The experience frame is considered in Agrawal, Gans, and Goldfarb (2018a).
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is resolved and payoff s are realized, and we move to a new decision stage 
(back to 1).

When prediction is available, it will become available prior to the begin-
ning of a decision stage. The various parameters are listed in table 3.1.

 Suppose that the decision maker focuses on judging the optimal action 
(i.e., assessing the payoff ) for �i. Then the expected present discount payoff  
from applying judgment is

 i vR + (1 v)S( ) + (1 i ) i vR + (1 v)S( ) +
t=2

(1 i )
t t

i vR + (1 v)S( )

 = i

1 (1 i )
vR + (1 v)S( ).

The decision maker eventually can learn what to do and will earn a higher 
payoff  than without judgment, but will trade this off  against a delay in the 
payoff .

This calculation presumes that the decision maker knows the state—that 
�i is true—prior to engaging in judgment. If  this is not the case, then the 
expected present discounted payoff  to judgment on, say, �1 alone is

 1

1 (1 1)
max v μR + (1 μ) vR + (1 v)r( )( )+ (1 v) μr + (1 μ) vR + (1 v)r( )( ),S{ }( )

 = 1

1 (1 1)
max v μR + (1 μ) vR + (1 v)r( )( ),S{ } + (1 v)S( ),

where the last step follows from equation (A1). To make exposition simpler, 
we suppose that 
1 =
2 = 
. In addition, let ˆ = / 1 – (1 – )( ); ˆ  can be 
given a similar interpretation to 
, the quality of judgment.

If  the strategy were to apply judgment on one state only and then make 
a decision, this would be the relevant payoff  to consider. However, because 
judgment is possible in both states, there are several cases to consider.

First, the decision maker might apply judgment to both states in sequence. 
In this case, the expected present discounted payoff  is

Table 3.1 Model parameters

Parameter  Description

S Known payoff  from the safe action
R Potential payoff  from the risky action in a given state
r Potential payoff  from the risky action in a given state
θi Label of state i ∈ {1,2}
� Probability of state 1
v Prior probability that the payoff  in a given state is R
λi Probablilty that decision maker learns the payoff  to the risky action θi if  

judgment is applied for one period
δ  Discount factor
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ˆ 2(v2R + v(1 v)max μR + (1 μ)r,S{ }

 + v(1 v)max μr + (1 μ)R,S{ } + (1 v)2S )
 = ˆ 2 v2R + (1 v2 )S( ),

where the last step follows from equation (A1).
Second, the decision maker might apply judgment to, say, �1 fi rst and then, 

contingent on the outcome there, apply judgment to �2. If  the decision maker 
chooses to pursue judgment on �2 if  the outcome for �1 is that the risky action 
is optimal, the payoff  becomes

ˆ (v ˆ vR + (1 v)max μR + (1 μ)r,S{ }( )

+ (1 v)max μr + (1 μ) vR + (1 v)r( ),S{ })
 = ˆ v ˆ vR + (1 v)S( ) + (1 v)S( ).
If  the decision maker chooses to pursue judgment on �2 after determining 
that the outcome for �1 is that the safe action is optimal, the payoff  becomes

ˆ (vmax μR + (1 μ) vR + (1 v)r( ),S{ }

+ (1 v) ˆ vmax μr + (1 μ)R,S{ } + (1 v)S( ))
 = ˆ vmax μR + (1 μ) vR + (1 v)r( ),S{ } + (1 v) ˆS( ).
Note that this is option is dominated by not applying further judgment at 
all if  the outcome for �1 is that the safe action is optimal.

Given this we can prove the following:

Proposition 1:  Under (A1) and (A2), and in the absence of any signal 
about the state, (a) judging both states and (b) continuing after the discovery 
that the safe action is preferred in a state are never optimal.

Proof: Note that judging two states is optimal if

 ˆ > S
vmax μr + (1 μ)R,S{ } + (1 v)S

 ˆ >
μR + (1 μ) vR + (1 v)r( )

vR + (1 v)max μR + (1 μ)r,S{ }
.

As (A2) implies that �r + (1 – �)R ≤ S, the fi rst condition reduces to 
ˆ  > 1. Thus, (a) judging two states is dominated by judging one state and 
continuing to explore only if  the risk is found to be optimal in that state.

Turning to the strategy of  continuing to apply judgment only if  the 
safe action is found to be preferred in a state, we can compare this to the 
payoff  from applying judgment to one state and then acting immediately. 
Note that
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 ˆ vmax μR + (1 μ) vR + (1 v)r( ),S{ } + (1 v) ˆS( )
 > ˆ vmax μR + (1 μ) vR + (1 v)r( ),S{ } + (1 v)S( ).

This can never hold, proving that (b) is dominated.

The intuition is similar to Propositions 1 and 2 in Bolton and Faure- 
Grimaud (2009). In particular, applying judgment is only useful if  it is going 
to lead to the decision maker switching to the risky action. Thus, it is never 
worthwhile to unconditionally explore a second state as it may not change 
the action taken. Similarly, if  judging one state leads to knowledge the safe 
action continues to be optimal in that state, in the presence of uncertainty 
about the state, even if  knowledge is gained of the payoff  to the risky action 
in the second state, that action will never be chosen. Hence, further judgment 
is not worthwhile. Hence, it is better to choose immediately at that point 
rather than delay the inevitable.

Given this proposition, there are only two strategies that are potentially 
optimal (in the absence of prediction). One strategy (we will term here J1) 
is where judgment is applied to one state and if  the risky action is optimal, 
then that action is taken immediately; otherwise, the safe default is taken 
immediately. The state where judgment is applied fi rst is the state most likely 
to arise. This will be state 1 if  � > 1/ 2. This strategy might be chosen if

 ˆ vmax μR + (1 μ) vR + (1 v)r( ),S{ } + (1 v)S( ) > S

 ˆ > ˆ
J1

S
vmax μR + (1 μ) vR + (1 v)r( ),S{ } + (1 v)S

,

which clearly requires that �R + (1 – �)(vR + (1 – v)r) > S.
The other strategy (we will term here J2) is where judgment is applied to 

one state and if  the risky action is optimal, then judgment is applied to the 
next state; otherwise, the safe default is taken immediately. Note that J2 is 
preferred to J1 if

ˆ v ˆ vR + (1 v)S( ) + (1 v)S( )
 > ˆ vmax μR + (1 μ) vR + (1 v)r( ),S{ } + (1 v)S( )
  ˆv vR + (1 v)S( ) > vmax μR + (1 μ) vR + (1 v)r( ),S{ }

 ˆ >
max μR + (1 μ) vR + (1 v)r( ),S{ }

vR + (1 v)S
.

This is intuitive. Basically, it is only when the effi  ciency of judgment is suf-
fi ciently high that more judgment is applied. However, for this inequality to 
be relevant, J2 must also be preferred to the status quo yielding a payoff  of 
S. Thus, J2 is not dominated if
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 ˆ > ˆ
J2 max

max μR + (1 μ) vR+(1 v)r( ),S{ }
vR + (1 v)S

,
S 4v2R+S(1+2v 3v2)( ) (1 v)S

2v vR + (1 v)S( )
,

where the fi rst term is the range where J2 dominates J1, while the second 
term is where J2 dominates S alone; so for J2 to be optimal, it must exceed 
both. Note also that as � →(S – r)/ (R – r) (its highest possible level consistent 
with [A1] and [A2]), then ˆ J 2 → 1.

If  �R + (1 – �)(vR + (1 – v)r) > S, note that

 ˆ
J2 >

ˆ
J1

μR+ (1 μ) vR+ (1 v)r( )
vR+ (1 v)S

>
S

v μR+ (1 μ) vR+ (1 v)r( )( )+ (1 v)S

 (1 v)S μR+ (1 μ) vR+ (1 v)r( ) S( )>v RS μR+ (1 μ) vR+ (1 v)r( )( )2( ),
which may not hold for v suffi  ciently high. However, it can be shown that 
when ˆ

J2 + ˆ
J1, then the two terms of  ˆ

J2 are equal and the second term 
exceeds the fi rst when ˆJ2 ˆJ1. This implies that in the range where ˆJ2 < ˆJ1, 
J2 dominates J1.

This analysis implies there are two types of regimes with judgment only. 
If  ˆ

J2 > ˆ
J1, then easier decisions (with high ˆ) involve using J2, the next 

tranche of  decisions use J1 (with intermediate ˆ) while the remainder 
in volves no exercise of judgment at all. On the other hand, if  ˆJ2 < ˆJ1, then 
the easier decisions involve using J2 while the remainder do not involve 
judgment at all.

3.4.2 Prediction in the Absence of Judgment

Next, we consider the model with prediction but no judgment. Suppose 
that there exists an AI that can, if  deployed, identify the state prior to a 
decision being made. In other words, prediction, if  it occurs, is perfect; an 
assumption we will relax in a later section. Initially, suppose there is no 
judgment mechanism to determine what the optimal action is in each state.

Recall that, in the absence of prediction or judgment, (A1) ensures that 
the safe action will be chosen. If  the decision maker knows the state, then 
the risky action in a given state is chosen if

 vR + (1 – v)r > S.

This contradicts (A1). Thus, the expected payoff  is

 VP = S,

which is the same outcome if  there is no judgment or prediction.

3.4.3 Prediction and Judgment Together

Both prediction and judgment can be valuable on their own. The question 
we next wish to consider is whether they are complements or substitutes.

While perfect prediction allows you to choose an action based on the 
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actual rather than expected state, it also aff ords the same opportunity with 
respect to judgment. As judgment is costly, it is useful not to waste con-
sidering what action might be taken in a state that does not arise. This was 
not possible when there was no prediction. But if  you receive a prediction 
regarding the state, you can then apply judgment exclusively to actions in 
relation to that state. To be sure, that judgment still involves a cost, but at 
the same time does not lead to any wasted cognitive resources.

Given this, if  the decision maker were the apply judgment after the state 
is predicted, their expected discounted payoff  would be

 VPJ = max ˆ vR + (1 v)S( ),S{ }.

This represents the highest expected payoff  possible (net of  the costs of 
judgment). A necessary condition for both prediction and judgment to be 
optimal is that: ˆ  ≥ ˆ

PJ ≡ s/ [vR + (1 – v)S]. Note that ˆPJ ≤ ˆJ1, ˆJ2.

3.4.4 Complements or Substitutes?

To evaluate whether prediction and judgment are complements or sub-
stitutes, we adopt the following parameterization for the eff ectiveness of 
prediction: we assume that with probability e an AI yields a prediction, while 
otherwise, the decision must be made in its absence (with judgment only). 
With this parameterization, we can prove the following:

Proposition 2:  In the range of 
 where ˆ  < ˆJ2, e and 
 are complements, 
otherwise they are substitutes.

Proof: Step 1. Is ˆJ2 > R/ [2(vR + (1 – v)S)]? First, note that

 
max μR + (1 μ) vR + (1 v)r( ),S{ }

vR + (1 v)S
>

R
2 vR + (1 v)S( )

 max μR + (1 μ) vR + (1 v)r( ),S{ } > 1
2
R.

Note that by (A2) and since � > (1/ 2), S > �R + (1 – �)r > (1/ 2)R so this 
inequality always holds.

Second, note that

 
S 4v2R + S(1+ 2v 3v2 )( ) (1 v)S

2v vR + (1 v)S( )
>

R
2 vR + (1 v)S( )

 S 4v2R + S(1+ 2v 3v2 )( ) > vR + (1 v)S( )2

 S(S 2R) > v(R2 6RS + S 2),

which holds as the left- hand side is always positive while the right- hand side 
is always negative.

Step 2: Suppose that �R + (1 – �)(vR + (1 – v)r) ≤ S; then J1 is never 
optimal. In this case, the expected payoff  is
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 eVPJ + (1 e)VJ 2 = eˆ vR + (1 v)S( ) + (1 e) ˆ v ˆ vR + (1 v)S( ) + (1 v)S( ).
This mixed partial derivative with respect to (e, ˆ) is v(R – 2 ˆ(vR + 

(1 – v)S)). This is positive if  R/ [2(vR + (1 – v)S)] ≥ ˆ . By Step 1, this implies 
that for ˆ  < ˆJ2, prediction and judgment are complements; otherwise, they 
are substitutes.

Step 3: Suppose that that �R + (1 – �)(vR + (1 – v)r) > S. Note that for 
ˆ

J1 ˆ  < ˆJ2, J1 is preferred to J2. In this case, the expected payoff  to prediction 
and judgment is

 eˆ vR + (1 v)S( )+ (1 e) ˆ v max μR+ (1 μ) vR + (1 v)r( ),S{ } + (1 v)S( ).
This mixed partial derivative with respect to (e, ˆ) is v(R – max{�R + 
(1 – �)(vR + (1 – v)r), S}) > 0. By Step 1, this implies that for ˆ  < ˆJ2, predic-
tion and judgment are complements; otherwise, they are substitutes.

The intuition is as follows. When ˆ  < ˆJ2, then, in the absence of prediction 
either no judgment is applied or, alternatively, strategy J1 (with one round 
of judgment) is optimal; e parameterizes the degree of diff erence between 
the expected value with both prediction and judgment and the expected 
value without prediction with an increase in 
, increasing both. However, 
with one round of judgment, the increase when judgment is used alone is 
less than that when both are used together. Thus, when ˆ  < ˆJ2, prediction 
and judgment are complements.

By contrast, when ˆ  > ˆJ2, then strategy J2 (with two rounds of judgment) 
is used in the absence of prediction. In this case, increasing 
 increases the 
expected payoff  from judgment alone disproportionately more because judg-
ment is applied on both states, whereas under prediction and judgment it 
is only applied on one. Thus, improving the quality of judgment reduces 
the returns to prediction. And so, when ˆ  > ˆJ2, prediction and judgment are 
substitutes.

3.5 Complexity

Thus far, the model illustrates the interplay between knowing the reward 
function ( judgment) and prediction. While those results show that predic-
tion and judgment can be substitutes, there is a sense in which they are 
more naturally complements. The reason is this: what prediction enables is a 
form of state- contingent decision- making. Without a prediction, a decision 
maker is forced to make the same choice regardless of the state that might 
arise. In the spirit of Herbert Simon, one might call this a heuristic. And in 
the absence of prediction, the role of judgment is to make that choice. More-
over, that choice is easier—that is, more likely to be optimal—when there 
exists dominant (or “near dominant”) choices. Thus, when either the state 
space or the action space expand (as it may in more complex situations), it is 
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less likely that there will exist a dominant choice. In that regard, faced with 
complexity, in the absence of prediction, the value of judgment diminishes 
and we are more likely to see decision makers choose default actions that, 
on average, are likely to be better than others.

Suppose now we add a prediction machine to the mix. While in our 
model such a machine, when it renders a prediction, can perfectly signal 
the state that will arise, let us consider a more convenient alternative that 
may arise in complex situations: the prediction machine can perfectly signal 
some states (should they arise), but for other states no precise prediction is 
possible except for the fact that one of those states is the correct one. In 
other words, the prediction machine can sometimes render a fi ne prediction 
and otherwise a coarse one. Here, an improvement in the prediction machine 
means an increase in the number of states in which the machine can render 
a fi ne prediction.

Thus, consider an N- state model where the probability of  state i is �i. 
Suppose that states {1, . . ., m} can be fi nely predicted by an AI, while the 
remainder cannot be distinguished. Suppose that in the states that cannot 
be distinguished applying judgment is not worthwhile so that the optimal 
choice is the safe action. Also, assume that when a prediction is available, 
judgment is worthwhile; that is, ˆ  ≥ s/  [vR + (1 – v)S]. In this situation, the 
expected present discounted value when both prediction and judgment are 
available is

 VPJ = ˆ
i=1

m

μ i vR + (1 v)S( ) +
i=m+1

N

μ iS.

Similarly, it is easy to see that VP = VJ = S = V0 as vR + (1 – v)r ≤ S. Note 
that as m increases (perhaps because the prediction machine learns to predict 
more states), then the marginal value of better judgment increases. That is, 
ˆμm vR + (1 v)S( ) μmS is increasing in ˆ .

What happens as the situation becomes more complex (that is, N in-
creases)? An increase in N will weakly lead to a reduction in �i for any given 
i. Holding m fi xed (and so the quality of the prediction machine does not 
improve with the complexity of the world), this will reduce the value of pre-
diction and judgment as greater weight is placed on states where prediction 
is unavailable; that is, it is assumed that the increase in complexity does not, 
ceteris paribus, create a state where prediction is available. Thus, complexity 
appears to be associated with lower returns to both prediction and judg-
ment. Put diff erently, an improvement in prediction machines would mean 
m increases with N fi xed. In this case, the returns to judgment rise as greater 
weight is put on states where prediction is available.

This insight is useful because there are several places in the economics 
literature where complexity has interacted with other economic decisions. 
These include automation, contracting, and fi rm boundaries. We discuss 
each of these in turn, highlighting potential implications.
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3.5.1 Automation

The literature on automation is sometimes synonymous with AI. This 
arises because AI may power new robots that are able to operate in open 
environments thanks to machine learning. For instance, while automated 
trains have been possible for some time since they run on tracks, automated 
cars are new because they need to operate in far more complex environments. 
It is prediction in those open environments that has allowed the emergence 
of environmentally fl exible capital equipment. Note that leads to the impli-
cation that as AI improves, tasks in more complex environments can be 
handled by machines (Acemoglu and Restrepo 2017).

However, this story masks the message that emerges from our analysis that 
recent AI developments are all about prediction. Why prediction enables 
automated vehicles is because it is relatively straightforward to describe (and 
hence, program) what those vehicles should do in diff erent situations. In 
other words, if  prediction enables “state contingent decisions,” then auto-
mated vehicles arise because someone knows what decision is optimal in 
each state. In other words, automation means that judgment can be encoded 
in machine behavior. Prediction added to that means that automated capital 
can be moved into more complex environments. In that respect, it is perhaps 
natural to suggest that improvements in AI will lead to a substitution of 
humans for machines as more tasks in more complex environments become 
capable of being programmed in a state- contingent manner.

That said, there is another dimension of substitution that arises in com-
plex environments. As noted above, when states cannot be predicted (some-
thing that for a given technology is more likely to be the case in more complex 
environments), then the actions chosen are more likely to be defaults or the 
results of heuristics that perform, on average, well. Many, including Acemo-
glu and Restrepo (2017), argue that it is for more complex tasks that humans 
have a comparative advantage relative to machines. However, this is not at 
all obvious. If  it is known that a particular default or heuristic should be 
used, then a machine can be programmed to undertake this. In this regard, 
the most complex tasks—precisely because little is known regarding how 
to take better actions given that the prediction of the state is coarse—may 
be more, not less, amenable to automation.

If  we had to speculate, imagine that states were ordered in terms of dimin-
ished likelihood (i.e., �i ≥ �j for all i < j). The lowest index states might be 
ones that, because they arrive frequently, there is knowledge of what the 
optimal action is in each and so they can be programmed to be handled by a 
machine. The highest index states similarly, because the optimal action that 
cannot be determined can also be programmed. It is the intermediate states 
that arise less frequently but not infrequently where, if  a reliable prediction 
existed, could be handled by humans applying judgment when those states 
arose. Thus, the payoff  could be written
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 VPJ =
i=1

k

μ i vR + (1 v)S( ) + ˆ
i=k+1

m

μ i vR + (1 v)S( ) +
i=m+1

N

μ iS,

where tasks 1 through k are automated using prediction because there is 
knowledge of  the optimal action. If  this was the matching of  tasks to 
machines and humans, then it is not at all clear whether an increase in com-
plexity would be associated with more or less human employment.

That said, the issue for the automation literature is not subtleties over 
the term “complex tasks,” but as AI becomes more prevalent, where might 
the substitution of machines for humans arise. As noted above, an increase 
in AI increases m. At this margin, humans are able to come into the mar-
ginal tasks and, because a prediction machine is available, use judgment to 
conduct state- contingent decisions in those situations. Absent other eff ects, 
therefore, an increase in AI is associated with more human labor on any 
given task. However, as the weight on those marginal tasks is falling in the 
level of complexity, it may not be the more complex tasks that humans are 
performing more of. On the other hand, one can imagine that in a model 
with a full labor market equilibrium that an increase in AI that enables 
more human judgment at the margin may also create opportunities to study 
that judgment to see if  it can be programmed into lower index states and 
be handled by machines. So, while the AI does not necessarily cause more 
routine tasks to be handled by machines, it might create the economic con-
ditions that lead to just that.

3.5.2 Contracting

Contracting shares much with programming. Here is Jean Tirole (2009, 
265) on the subject:

Its general thrust goes as follows. The parties to a contract (buyer, seller) 
initially avail themselves of an available design, perhaps an industry stan-
dard. This design or contract is the best contract under existing knowl-
edge. The parties are unaware, however, of the contract’s implications, but 
they realize that something may go wrong with this contract; indeed, they 
may exert cognitive eff ort in order to fi nd out about what may go wrong 
and how to draft the contract accordingly: put diff erently, a contingency 
is foreseeable (perhaps at a prohibitively high cost), but not necessarily 
foreseen. To take a trivial example, the possibility that the price of  oil 
increases, implying that the contract should be indexed on it, is perfectly 
foreseeable, but this does not imply that parties will think about this possi-
bility and index the contract price accordingly.

Tirole argues that contingencies can be planned for in contracts using cogni-
tive eff ort (akin to what we have termed here as judgment), while others may 
be optimally left out because the eff ort is too costly relative to the return 
given, say, the low likelihood that contingency arises.

This logic can assist us in understanding what prediction machines might 
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do to contracts. If  an AI becomes available then, in writing contracts, it is 
possible, because fi ne state predictions are possible, to incur cognitive costs 
to determine what the contingencies should be if  those states should arise. 
For other states, the contract will be left incomplete—perhaps for a default 
action or alternatively some renegotiation process. A direct implication of 
this is that contracts may well become less incomplete.

Of course, when it comes to employment contracts, the eff ects may be 
diff erent. As Herbert Simon (1951) noted, employment contracts diff er from 
other contracts precisely because it is often not possible to specify what 
actions should be performed in what circumstance. Hence, what those con-
tracts often allocate are diff erent decision rights.

What is of  interest here is the notion that contacts can be specifi ed 
clearly—that is, programmed—but also that prediction can activate the 
use of human judgment. That latter notion means that actions cannot be 
easily contracted—by defi nition, contractibility is programming and need-
ing judgment implies that programming was not possible. Thus, as predic-
tion machines improve and more human judgment is optimal, then that 
judgment will be applied outside of objective contract measures—including 
objective performance measures. If  we had to speculate, this would favor 
more subjective performance processes, including relational contracts 
(Baker, Gibbons, and Murphy 1999).9

3.5.3 Firm Boundaries

We now turn to consider what impact AI may have on fi rm boundaries 
(that is, the make or buy decision). Suppose that it is a buyer (B) who receives 
the value from a decision taken—that is, the payoff  from the risky or safe 
action as the case may be. To make things simple, let’s assume that �i = � 
for all i, so that V = k vR + (1 v)S( ) + ˆ (m k) vR + (1 v)S( ) + (N m)S.

We suppose that the tasks are undertaken by a seller (S). The tasks 
{1, . . . , k} and {m + 1, . . . , N ) can be contracted upon, while the inter-
mediate tasks require the seller to exercise judgment. We suppose that the 
cost of providing judgment is a function c( ˆ), which is nondecreasing and 
convex. (We write this function in terms of  ˆ  just to keep the notation 
simple.) The costs can be anticipated by the buyer. So if  one of the inter-
mediate states arises, the buyer can choose to give the seller a fi xed price 
contract (and bear none of the costs) or a cost- plus contract (and bear all 
of them).

Following Tadelis (2002), we assume that the seller market is competitive 
and so all surplus accrues to the buyer. In this case, the buyer return is

9. A recent paper by Dogan and Yildirim (2017) actually considers how automation might 
impact on worker contracts. However, they do not examine AI per se, and focus on how it might 
change objective performance measures in teams moving from joint performance evaluation 
to more relative performance evaluation.
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 k vR+ (1 v)S( )+max ˆ (m k) vR + (1 v)S( ),S{ } + (N m)S p zc ˆ( ),

while the seller return is: p – (1 – z)c( ˆ). Here p + zc( ˆ) is the contract price 
and z is 0 for a fi xed price contract and 1 for a cost- plus contract. Note that 
only with a cost- plus contract does the seller exercise any judgment. Thus, 
the buyer chooses a cost- plus over a fi xed price contract if

 k vR + (1 v)S( ) + max ˆ (m k) vR + (1 v)S( ),S{ } + (N m)S c ˆ( )

 > k vR + (1 v)S( ) + (N k)S.

It is easy to see that as m rises (i.e., prediction becomes cheaper), a cost- plus 
contract is more likely to be chosen. That is, incentives fall as prediction 
becomes more abundant.

Now we can consider the impact of integration. We assume that the buyer 
can choose to make the decisions themselves, but at a higher cost. That is, 
c( ˆ ,I) > c( ˆ) where I denotes integration. We also assume that ∂c( ˆ ,I)/ ∂ ˆ  > 
c( ˆ ) / ˆ( ). Under integration, the buyer’s value is

 k vR + (1 v)S( ) + ˆ *(m k) vR + (1 v)S( ) + (N m)S c( ˆ *, I )

where ˆ * maximizes the buyer payoff  in this case. Given this, it can easily be 
seen that as m increases, the returns to integration rise.

By contrast, notice that as k increases, the incentives for a cost- plus con-
tract are diminished and the returns to integration fall. Thus, the more pre-
diction machines allow for the placement of contingencies in a contract (the 
larger m- k), the higher powered will seller incentives be and the more likely 
there is to be integration.

Forbes and Lederman (2009) showed that airlines are more likely to ver-
tically integrate with regional partners when scheduling is more complex: 
specifi cally, where bad weather is more likely to lead to delays. The impact of 
prediction machines will depend on whether they lead to an increase in the 
number of states where the action can be automated in a state- contingent 
manner (k) relative to the increase in the number of states where the state 
becomes known but the action cannot be automated (m). If  the former, then 
we will see more vertical integration with the rise of prediction machines. If  
the latter, we will see less. The diff erence is driven by the need for more costly 
judgment in the vertically integrated case as m- k rises.

3.6 Conclusions

In this chapter, we explore the consequences of recent improvements in 
machine- learning technology that have advanced the broader fi eld of artifi -
cial intelligence. In particular, we argue that these advances in the ability of 
machines to conduct mental tasks are driven by improvements in machine 
prediction. In order to understand how improvements in machine prediction 
will impact decision- making, it is important to analyze how the payoff s of 
the model arise. We label the process of learning payoff s “judgment.”
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By modeling judgment explicitly, we derive a number of useful insights 
into the value of prediction. We show that prediction and judgment are gen-
erally complements, as long as judgment is not too diffi  cult. We also show 
that improvements in judgment change the type of prediction quality that 
is most useful: better judgment means that more accurate predictions are 
valuable relative to more frequent predictions. Finally, we explore the role of 
complexity, demonstrating that, in the presence of complexity, the impact of 
improved prediction on the value of judgment depends on whether improved 
prediction leads to automated decision- making. Complexity is a key aspect 
of economic research in automation, contracting, and the boundaries of 
the fi rm. As prediction machines improve, our model suggests that the con-
sequences in complex environments are particularly fruitful to study.

There are numerous directions research in this area could proceed. First, 
the chapter does not explicitly model the form of the prediction—includ-
ing what measures might be the basis for decision- making. In reality, this 
is an important design variable and impacts on the accuracy of  predic-
tions and decision- making. In computer science, this is referred to as the 
choice of surrogates, and this appears to be a topic amenable for economic 
theoretical investigation. Second, the chapter treats judgment as largely a 
human- directed activity. However, we have noted that it can else be encoded, 
but have not been explicit about the process by which this occurs. Endogenis-
ing this—perhaps relating it to the accumulation of experience—would be 
an avenue for further investigation. Finally, this is a single- agent model. It 
would be interesting to explore how judgment and prediction mix when each 
is impacted upon by the actions and decisions of other agents in a game 
theoretic setting.
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Comment Andrea Prat

One of the key activities of organizations is to collect, process, combine, 
and utilize information (Arrow 1974). A modern corporation exploits 
the vast amounts of data that it accumulates from marketing, operations, 
human resources, fi nance, and other functions to grow faster and be more 
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