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23.1 Introduction

For millennia, markets have played a key role in providing individuals and 
businesses with the opportunity to gain from trade. More often than not, 
markets require structure and a variety of intuitional support to operate 
effi  ciently. For example, auctions have become a commonly used mechanism 
to generate gains from trade when price discovery is essential. Research in 
the area now commonly referred to as market design, going back to Vickrey 
(1961), demonstrated that it is critical to design auctions and market institu-
tions more broadly in order to achieve effi  cient outcomes (see, e.g., Milgrom 
2017; Roth 2015).

Any market designer needs to understand some fundamental details of 
the transactions that are expected to be consummated in order to design the 
most eff ective and effi  cient market structure to support these transactions. 
For example, the National Resident Matching Program, which matches doc-
tors to hospital residencies, was originally designed in an era when nearly all 
doctors were men and wives followed them to their residencies. It needed to 
be redesigned in the 1990s to accommodate the needs of couples, when men 
and women doctors could no longer be assigned jobs in diff erent cities. Even 
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something as mundane as the sale of a farm when a farmer dies requires 
knowledge of the structure and decisions about whether to sell the whole 
farm as a unit, or to separate the house for sale as a weekend retreat while 
selling the land to neighboring farmers, or selling the forest separately to a 
wildlife preservation fund.

In complex environments, it can be diffi  cult to understand the underlying 
characteristics of transactions, and it is challenging to learn enough about 
them in order to design the best institutions to effi  ciently generate gains 
from trade. For example, consider the recent growth of online advertising 
exchanges that match advertisers with online ads. Many ads are allocated 
to advertisers using real- time auctions. But how should publishers design 
these auctions in order to make the best use of their advertising space, and 
how can they maximize the returns to their activities? Based on the early 
theoretical auction design work of Myerson (1981), Ostrovsky and Schwartz 
(2017) have shown that a little bit of market design in the form of setting 
better reserve prices can have a dramatic impact on the profi ts an online ad 
platform can earn.

But how can market designers learn the characteristics necessary to set 
optimal, or at least better, reserve prices? Or, more generally, how can market 
designers better learn the environment of their markets? In response to these 
challenges, artifi cial intelligence (AI) and machine learning are emerging as 
important tools for market design. Retailers and marketplaces such as eBay, 
TaoBao, Amazon, Uber, and many others are mining their vast amounts of 
data to identify patterns that help them create better experiences for their 
customers and increase the effi  ciency of  their markets. By having better 
prediction tools, these and other companies can predict and better manage 
sophisticated and dynamic market environments. The improved forecasting 
that AI and machine- learning algorithms provide help marketplaces and 
retailers better anticipate consumer demand and producer supply as well as 
help target products and activities to fi ner segmented markets.

Turning back to markets for online advertising, two- sided markets such 
as Google, which match advertisers with consumers, are not only using AI 
to set reserve prices and segment consumers into fi ner categories for ad tar-
geting, but they also develop AI- based tools to help advertisers bid on ads. 
In April 2017 Google introduced “Smart Bidding,” a product based on AI 
and machine learning that helps advertisers bid automatically on ads based 
on ad conversions so they can better determine their optimal bids. Google 
explained that the algorithms use vast amounts of  data and continually 
refi ne models of users’ conversion to better spend an advertiser’s dollars to 
where they bring in the highest conversion.

Another important application of AI’s strength in improving forecasting 
to help markets operate more effi  ciently is in electricity markets. To operate 
effi  ciently, electricity market makers such as California’s Independent Sys-
tem Operator must engage in demand and supply forecasting. An inaccurate 
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forecast in the power grid can dramatically aff ect market outcomes causing 
high variance in prices, or worse, blackouts. By better predicting demand 
and supply, market makers can better allocate power generation to the most 
effi  cient power sources and maintain a more stable market.

As the examples above demonstrate, the applications of AI algorithms 
to market design are already widespread and diverse. Given the infancy of 
the technology, it is a safe bet that AI will play a growing role in the design 
and implementation of markets over a wide range of applications. In what 
follows, we describe several less obvious ways in which AI has played a key 
role in the operation of markets.

23.2 Machine Learning and the Incentive Auction

In the fi rst part of the twentieth century, the most important infrastruc-
ture projects for the United States related to transportation and energy infra-
structure. By the early twenty- fi rst century, however, it was not just people 
and goods that needed to be transported in high volumes, but also informa-
tion. The emergence of mobile devices, WiFi networks, video on demand, 
the Internet of Things, services supplied through the cloud, and much more 
has already created the need for major investments in the communication 
network, and with 5G technologies just around the corner, more is coming.

Wireless communications, however, depend on infrastructure and other 
resources. The wireless communication rate depends on the channel capac-
ity, which in turn depends jointly on the communication technology used 
and the amount of radio spectrum bandwidth devoted to it. To encourage 
growth in bandwidth and the rapid develop of new uses, the Obama White 
House in 2010 issued its National Broadband Plan. That plan set a goal of 
freeing a huge amount of bandwidth from older, less productive uses to be 
used instead as part of the modern data highway system.

In 2016– 2017, the US Federal Communications Commission (FCC) 
designed and ran an auction market to do part of that job. The radio spec-
trum licenses that it sold in that auction raised about $20 billion in gross 
revenue. As part of the process of making room for those new licenses, the 
FCC purchased TV broadcast rights for about $10 billion, and incurred 
nearly $3 billion in costs to move other broadcasters to new TV channels. 
Some 84MHz of spectrum was made available in total, including 70MHz for 
wireless broadband and 14MHz for unlicensed uses. This section describes 
the processes that were used, and the role of AI and machine learning to 
improve the underlying algorithms that supported this market.

Reallocating spectrum from one use to another is, in general, neither easy 
nor straightforward, in either the planning or the implementation (Leyton- 
Brown, Milgrom, and Segal 2017). Planning such a change can involve sur-
prisingly hard computational challenges, and the implementation requires 
high levels of  coordination. In particular, the reallocation of  a portion 
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of the spectrum band that had been used for UHF broadcast television 
required deciding how many channels to clear, which stations would cease 
broadcasting (to make room for the new uses), what TV channels would 
be assigned to the remaining stations that continued to broadcast, how to 
time the changes to avoid interference during the transition, and to assure 
that the TV tower teams, which would replace the old broadcast equipment, 
had suffi  cient capacity, and so on. Several of  the computations involved 
are, in principle, nondeterministic polynomial time (NP)- hard, making this 
a particularly complex market- design problem. One of  the most critical 
algorithms used for this process—the “feasibility checker”—was developed 
with the aid of  machine- learning methods.

But why reallocate and reassign TV stations at all? Broadcast television 
changed enormously in the late twentieth century. In the early days of tele-
vision, all viewing was of  over- the- air broadcasts using an analog tech-
nology. Over the decades that followed, cable and satellite services expanded 
so much that, by 2010, more than 90 percent of  the US population was 
reached by these alternative services. Standard defi nition TV signals were 
replaced by high defi nition and, eventually, 4K signals. Digital television 
and tuners reduced the importance of  channel assignments, so that the 
channel used by consumers/ viewers did not need to match the channel used 
by the broadcaster. Digital encoding made more effi  cient use of the band 
and it became possible to use multiplexing, so that what was once a single 
standard- defi nition broadcast channel could carry multiple high- defi nition 
broadcasts. Marginal spectrum had fallen in value compared to the alterna-
tive uses.

Still, the reallocation from television broadcasting would be daunting and 
beyond what an ordinary market mechanism could likely achieve. The signal 
from each of thousands of TV broadcast towers across the United States 
can interfere with potential uses for about 200 miles in every direction, so 
all of the broadcasts in any frequency needed to be cleared to make the fre-
quencies available for new uses. Not only would it be necessary to coordinate 
among diff erent areas of the United States, but coordination with Canada 
and Mexico would improve the allocation, too; most of the population of 
Canada lives, and most of its TV stations operate, within 200 miles of the 
US border. Because a frequency is not usable until virtually all of the rele-
vant broadcasters have ceased operation, effi  ciency would demand that these 
changes would need to be coordinated in time, too; they should be roughly 
simultaneous. In addition, there needed to be coordination across frequen-
cies. The reason is that we need to know in advance which channels will be 
cleared before the frequencies can be effi  ciently divided between uplink uses 
and downlink uses.

Among the many issues to be resolved, one would be how to determine 
which stations would continue to broadcast after the transition. If  the goal 
were effi  ciency, then the problem can be formulated as maximizing the total 
value of the TV stations that continue to broadcast after the auction. Let N 
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be the set of all currently broadcasting TV stations and let S ⊆ N be a subset 
of those TV stations. Let C be the set of available channels to which to assign 
stations after the auction, and let ∅ denote the null assignment for a station 
that does not continue to broadcast. A channel assignment is a mapping 
A : N → C ∪ {∅}. The constraints on the channels available for assignment 
are to ones that rule out interference between pairs of TV stations, taking 
the form: A(n1) = c1 ⇒ A(n2) ≠ c2 for some (c1,c2) ∈ C2. Each such constraint 
is described by a fourtuple: (n1,c1n2,c2). There were more than a million such 
constraints in the FCC’s problem. A channel assignment is feasible if  it sat-
isfi es all the interference constraints; let A denote the feasible set of assign-
ments. A set of stations Sʹ can be feasibly assigned to continue broadcasting, 
which we denote by Sʹ ∈ F(C ), if  there exists some feasible channel assign-
ment A ∈ A such that ∅ ∉ A(Sʹ).

Most of  the interference constraints took a special form. Those con-
straints assert that no two stations that are geographic neighbors can be 
assigned to the same channel. Let us call such stations “linked” and denote 
the relationship by (n1,n2) ∈ L. For such a pair of stations, the constraint can 
be written as: A(n1) = A(n2) ⇒ A(n1) = ∅. These are the cochannel interference 
constraints. One can think of (N,L) as defi ning a graph with nodes N and 
arcs L. If  the cochannel constraints were the only ones, then determining 
whether Sʹ ∈ F would amount to deciding whether there exists a way to 
assign channels in C to the stations in N so that no two linked nodes are on 
the same channel.

Figure 23.1 shows the graph of the cochannel interference constraints for 
the United States and Canada. The constraint graph is most dense in the 
eastern half  of the United States and along the Pacifi c Coast.

 In the special case of cochannel constraints, the problem of checking the 
feasibility of  a set of  stations is a standard graph- coloring problem. The 
problem is to decide whether it is possible to assign a color (channel) to each 
node (station) in the graph so that no two linked nodes are given the same 
color. Graph- coloring is in the class of NP- complete problems, for which 
there is no known algorithm that is guaranteed to be fast, and for which it is 
commonly hypothesized1 that worst- case solution time grows exponentially 
in the problem size. Since the general station assignment problem includes 
the graph coloring problem, it, too, is NP- complete, and can become intrac-
table at scales such as that of the FCC’s problem.

The problem that the FCC would ideally like to solve using an auction is 
to maximize the value of the stations that remain on- air to broadcast, given 
the reduced set of channels C. If  the value of station j is vj, the problem can 
be formulated as follows:

 max
S F C( ) j S

v j.

1. The standard computer science hypothesis that P ≠ NP implies that no fast algorithm 
exists for NP- complete problems.
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This problem is very hard. Indeed, as we have just argued, even checking the 
condition S ∈ F(C) is NP- complete, and solving exactly the related optimi-
zation is even harder in practice. Computational experiments suggest that 
with weeks of computation approximate optimization is possible, but with 
an optimization shortfall that can be a few percent.

For a TV station owner, it would be daunting to formulate a bid in an 
auction in which even the auctioneer, with all the bids in hand, would fi nd it 
challenging to determine the winners. Faced with such a problem, some sta-
tion owners might choose not to participate. That concern led the FCC staff  
to prefer a strategy- proof design, in which the optimal bid for the owner of a 
single station is relatively simple, at least in concept: compute your station’s 
value and bid that amount. As is well known, there is a unique strategy- 
proof auction that optimizes the allocation and pays zero to the losers: the 
Vickrey auction. According to the Vickrey rules, if  the auctioneer purchases 
the broadcast rights from station j, it must pay the owner this price:

 pi = max
S F (C )

j S

vj max
S F C( )
i S

j S

vj .

For a winning station i, the Vickrey price pi will be larger than the station 
value. With roughly 2,000 stations to include in the optimization, a 1 per-
cent error in either of the two maximizations would result in a pricing error 
for pi equal to about 2,000 percent of the value of an average station. Such 
huge potential pricing errors would likely raise hackles among some of the 
potential bidders.

One way to put the problem of the Vickrey auction into sharp relief  is to 
imagine the letter that the FCC might write to broadcasters to encourage 
their participation:

Dear Mr. Broadcaster:
We have heard your concerns about the complexity of the spectrum 

reallocation process. You may even be unsure about whether to participate 
or how much to bid. To make things as easy as possible for you, we have 
adopted a Nobel Prize– winning auction procedure called the “Vickrey 
auction.” In this auction, all you need to do is to tell us what your broad-
cast rights are worth to you. We’ll fi gure out whether you are a winner and, 
if  so, how much to pay to buy your rights. The rules will ensure that it is in 
your interest to report truthfully. That is the magic of the Vickrey auction!

The computations that we do will be very hard ones, and we cannot 
guarantee that they will be exactly correct.

Such a letter would leave many stations owners uncomfortable and unsure 
about whether to participate. The FCC decided to adopt a diff erent design.

What we describe here is a simplifi ed version of the design, in which the 
broadcasters’ only choices are whether to sell their rights or to reject the 
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FCC’s off er and continue to broadcast. Each individual broadcaster was 
comforted by the assurance that it could bid this way, even if  it had addi-
tional options, too. 2

In the simplifi ed auction, each bidder i was quoted a price pi(t) at each 
round t of  the auction that decreased from round- to-round. In each round, 
the bidder could “exit,” rejecting the current price and keeping its broadcast 
rights, or it could accept the current price. After a round t of bidding, sta-
tions were processed one at a time. When station i was processed, the auction 
software would use its feasibility checker to attempt to determine whether it 
could feasibly assign station i to continue broadcasting, given the other sta-
tions that had already exited and to which a channel must be assigned. This is 
the generalized graph- coloring problem, mentioned earlier. If  the software 
timed out, or if  it determined that it is impossible to assign the station, then 
the station would become a winner and be paid pi(t – 1). Otherwise, its price 
would be reduced to pi(t) and it would exit or continue, according to the bid-
der’s instructions. It would be obvious to a station owner that, regardless of 
the pricing formula and of how the software performed, its optimal choice 
when its value is vi is to exit if  pi(t) < vi and otherwise to continue.3

The theory of clock auctions of this sort for problems with hard compu-
tations has been developed by Milgrom and Segal (2017), who also report 
simulations showing high performance in terms of effi  ciency and remarkably 
low costs of procuring TV broadcast rights.

The performance of this descending auction design depends deeply on 
the quality of the feasibility checker. Based on early simulations, our rough 
estimate was the each 1 percent of failures in feasibility checking would add 
about 1.5 percent—or about $150 million—to the cost of  procuring the 
broadcast rights. So, solving most of the problems very fast became a high 
priority for the auction- design team.

As a theoretical proposition, any known algorithm for feasibility checking 
in the spectrum- packing problem has worst- case performance that grows 
exponentially in the size of the problem. Nevertheless, if  we know the dis-
tribution of likely problems, there can still be algorithms that are fast with 

2. In the actual auction, some broadcasters also had the option to switch from a UHF TV 
channel to a channel in the high VHF band, or one in the low VHF band (the so-called HVHF 
and LVHF options).

3. The pricing formula that the FCC used for each station was pi(t) = (PopiLinksi)
0.5q(t). In 

this formula, q(t) is the “base clock price” that scaled the price off ers to all the bidders. This price 
began at a high level q(0) to encourage participation, and it declined round- by- round during 
the auction; Popi denotes the population of the area served by the station, which stands in for 
the value of the station. By linking prices to population served, the auctioneer is able to off er 
higher prices to valuable stations in high- population areas that it might need to acquire for a 
successful auction; Linksi measured the number of other stations to which station i was linked 
in the interference graph. It was hoped that, by including this term in the pricing formula, the 
auction would be able to off er higher prices to and buy the rights of stations that pose particu-
larly diffi  cult problems by interfering with many other stations.
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high probability. But how can we know the distribution and how can such 
an algorithm be found?

The FCC auction used a feasibility checker developed by a team of Auc-
tionomics researchers at the University of British Columbia, led by Pro-
fessor Kevin Leyton- Brown. There were many steps in the development, 
as reported by Newman, Fréchette, and Leyton- Brown (forthcoming), but 
here we emphasize the role of machine learning. Auctionomics’ goal was to 
be able to solve 99 percent of the problem instances in one minute or less.

The development eff ort began by simulating the planned auction to gen-
erate feasibility problems like those that might be encountered in a real 
auction. Running many simulations generated about 1.4 million problem 
instances that could be used for training and testing a feasibility- checking 
algorithm. The fi rst step of the analysis was to formulate the problem as 
mixed integer programs and test standard commercial software—CPLEX 
and Gurobi—to see how close those could come to meeting the performance 
objectives. The answer was: not close. Using a 100-seconds cutoff , Gurobi 
could solve only about 10 percent of the problems and CPLEX only about 
25 percent. These were not nearly good enough for decent performance in 
a real- time auction.

Next, the same problems were formulated as satisfi ability problems and 
tested using seventeen research solvers that had participated in recent SAT- 
solving tournaments. These were better, but none could solve as many as 
two- thirds of  the problems within the same 100-second cutoff . The goal 
remained 99 percent in sixty seconds.

The next step was to use automated algorithm confi guration, a proce-
dure developed by Hutter, Hoos, and Leyton- Brown (2011) and applied in 
this setting by Leyton- Brown and his students at the University of British 
Columbia. The idea is to start with a highly parameterized algorithm for 
solving satisfi ability problems4 and to train a random forest model of the 
algorithm performance, given the parameters. To do that, we fi rst ran simu-
lated auctions with what we regarded as plausible behavior by the bidders 
to generate a large data set of  representative problems. Then, we solved 
those problems using a variety of diff erent parameter settings to determine 
the distribution of solution times for each vector of parameters. This gen-
erated a data set with parameters and performance measures. Two of the 
most interesting performance characteristics were the median run time and 

4. There are no known algorithms for NP- complete problems that are guaranteed to be fast, 
so the best existing algorithms are all heuristics. These algorithms weight various characteristics 
of the problem to decide about such things as the order in which to check diff erent branches of 
a search tree. These weights are among the parameters that can be set and adapted to work well 
for a particular class of problems, such as those that arise in the incentive auction application. 
The particular software algorithm that we used was CLASP, which had more than 100 exposed 
parameters that could be modifi ed.
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the fraction of instances solved within one minute. Then, using a Bayesian 
model, we incorporated uncertainty in which the experimenter “believes” 
that the actual performance is normally distributed with a mean determined 
by the random forest and a variance that depends on the distance of the 
parameter vector from the nearest points in the data set. Next, the system 
identifi es the parameter vector that maximizes the expected improvement in 
performance, given the mean and variance of the prior and the performance 
of  the best- known parameter vector. Finally, the system tests the actual 
performance for the identifi ed parameters and adds that as an observation 
to the data set. Proceeding iteratively, the system identifi es more parameters 
to test, investigates them, and adds them to the data to improve the model 
accuracy until the time budget is exhausted.

Eventually, this machine- learning method leads to diminishing returns to 
time invested. One can then create a new data set from the instances on which 
the parameterized algorithm was “slow,” for example, taking more than fi f-
teen seconds to solve. By training a new algorithm on those instances, and 
running the two parameterized algorithms in parallel, the machine- learning 
techniques led to dramatic improvements in performance.

For the actual auction, several other problem- specifi c tricks were also 
applied to contribute to the speed-up. For example, to some extent it proved 
possible to decompose the full problem into smaller problems, to reuse old 
solutions as starting points for a search, to store partial solutions that might 
help guide solutions of further problems, and so on. In the end, the full set 
of techniques and tricks resulted in a very fast feasibility checker that solved 
all but a tiny fraction of the relevant problems within the allotted time.

23.3 Using AI to Promote Trust in Online Marketplaces

Online marketplaces such as eBay, Taobao, Airbnb, and many others 
have grown dramatically since their inception just over two decades ago, 
providing businesses and individuals with previously unavailable opportu-
nities to purchase or profi t from online trading. Wholesalers and retailers 
can market their goods or get rid of excess inventory; consumers can easily 
search marketplaces for whatever is on their mind, alleviating the need for 
businesses to invest in their own e-commerce website; individuals transform 
items they no longer use into cash; and more recently, the so called “gig 
economy” is comprised of marketplaces that allow individuals to share their 
time or assets across diff erent productive activities and earn extra income.

The amazing success of online marketplaces was not fully anticipated, 
primarily because of the hazards of anonymous trade and asymmetric infor-
mation. Namely, how can strangers who have never transacted with one 
another, and who may be thousands of miles apart, be willing to trust each 
other? Trust on both sides of the market is essential for parties to be willing 
to transact and for a marketplace to succeed. The early success of eBay is 
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often attributed to the innovation of introducing its famous feedback and 
reputation mechanism, which was adopted in one form or another by practi-
cally every other marketplace that came after eBay. These online feedback 
and reputation mechanisms provide a modern- day version of more ancient 
reputation mechanisms used in the physical marketplaces that were the 
medieval trade fairs of Europe (see Milgrom, North, and Weingast 1990).

Still, recent studies have shown that online reputation measures of  mar-
ketplace sellers, which are based on buyer- generated feedback, don’t accu-
rately refl ect their actual performance. Indeed, a growing literature has 
shown that user- generated feedback mechanisms are often biased, suff er 
from “grade infl ation,” and can be prone to manipulation by sellers.5 For 
example, the average percent positive for sellers on eBay is about 99.4 per-
cent, with a median of  100 percent. This causes a challenge to interpret the 
true levels of  satisfaction on online marketplaces.

A natural question emerges: Can online marketplaces use the treasure 
trove of data it collects to measure the quality of a transaction and predict 
which sellers will provide a better service to their buyers? It has become 
widely known that all online marketplaces, as well as other web- based ser-
vices, collect vast amounts of data as part of the process of trade. Some 
refer to this as the “exhausts data” generated by the millions of transactions, 
searches, and browsing that occur on these marketplaces daily. By leverag-
ing this data, marketplaces can create an environment that would promote 
trust, not unlike the ways in which institutions emerged in the medieval trade 
fairs of Europe that helped foster trust. The scope for market design goes 
far beyond the more mainstream application like setting rules of bidding 
and reserve prices for auctions or designing tiers of services, and in our view, 
includes the design of mechanisms that help foster trust in marketplaces. 
What follows are two examples from recent research that show some of the 
many ways that marketplaces can apply AI to the data they generate to help 
create more trust and better experiences for their customers.

23.3.1 Using AI to Assess the Quality of Sellers

One of the ways that online marketplaces help participants build trust 
is by letting them communicate through online messaging platforms. For 
example, on eBay buyers can contact sellers to ask them questions about 
their products, which may be particularly useful for used or unique products 
for which buyers may want to get more refi ned information than is listed. 
Similarly, Airbnb allows potential renters to send messages to hosts and ask 
questions about the property that may not be answered in the original listing.

Using Natural Language Processing (NLP), a mature area in AI, market-

5. On bias and grade infl ation see, for example, Nosko and Tadelis (2015), Zervas, Proser-
pio, and Byers (2015), and Filippas, Horton, and Golden (2017). On seller manipulation of 
feedback scores see, for example, Mayzlin, Dover, and Chevalier (2014) and Xu et al. (2015).
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places can mine the data generated by these messages in order to better 
predict the kind of features that customers value. However, there may also 
be subtler ways to apply AI to manage the quality of  marketplaces. The 
messaging platforms are not restricted to pretransaction inquiries, but also 
off er the parties to send messages to each other after the transaction has been 
completed. An obvious question then emerges: How could a marketplace 
analyze the messages sent between buyers and sellers post the transaction to 
infer something about the quality of the transaction that feedback doesn’t 
seem to capture?

This question was posed and answered in a recent paper by Masterov, 
Mayer, and Tadelis (2015) using internal data from eBay’s marketplace. The 
analysis they performed was divided into two stages. In the fi rst stage, the 
goal was to see if  NLP can identify transactions that went bad when there 
was an independent indication that the buyer was unhappy. To do this, they 
collected internal data from transactions in which messages were sent from 
the buyer to the seller after the transaction was completed, and matched it 
with another internal data source that recorded actions by buyers indicat-
ing that the buyer had a poor experience with the transactions. Actions that 
indicate an unhappy buyer include a buyer claiming that the item was not 
received, or that the item was signifi cantly not as described, or leaves nega-
tive or neutral feedback, to name a few.

The simple NLP approach they use creates a “poor- experience” indica-
tor as the target (dependent variable) that the machine- learning model will 
try to predict, and uses the messages’ content as the independent variables. 
In its simplest form and as a proof of concept, a regular expression search 
was used that included a standard list of negative words such as “annoyed,” 
“dissatisfi ed,” “damaged,” or “negative feedback” to identify a message as 
negative. If  none of the designated terms appeared, then the message was 
considered neutral. Using this classifi cation, they grouped transactions into 
three distinct types: (a) no posttransaction messages from buyer to seller, 
(b) one or more negative messages, or (c) one or more neutral messages with 
no negative messages.

Figure 23.2, which appears in Masterov, Mayer, and Tadelis (2015), 
describes the distribution of transactions with the diff erent message classi-
fi cations together with their association with poor experiences. The x-axis of 
fi gure 23.1 shows that approximately 85 percent of transactions fall into the 
benign fi rst category of no posttransaction messages. Buyers sent at least one 
message in the remaining 15 percent of all transactions, evenly split between 
negative and neutral messages. The top of the y- axis shows the poor expe-
rience rate for each message type. When no messages are exchanged, only 
4 percent of buyers report a poor experience. Whenever a neutral message is 
sent, the rate of poor experiences jumps to 13 percent, and if  the message’s 
content was negative, over one- third of buyers express a poor experience.

 In the second stage of the analysis, Masterov, Mayer, and Tadelis (2015) 
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used the fact that negative messages are associated with poor experiences 
to construct a novel measure of seller quality based on the idea that sellers 
who receive a higher frequency of negative messages are worse sellers. For 
example, imagine that seller A and seller B both sold 100 items and that seller 
A had fi ve transactions with at least one negative message, while seller B had 
eight such transactions. The implied quality score of seller A is then 0.05 
while that of seller B is 0.08, and the premise is that seller B is a worse seller 
than seller A. Masterov, Mayer, and Tadelis (2015) show that the relation-
ship between this ratio, which is calculated for every seller at any point in 
time using aggregated negative messages from past sales, and the likelihood 
that a current transaction will result in a poor experience, is monotonically 
increasing.

This simple exercise is a proof of concept that shows that by using the 
message data and a simple natural language processing AI procedure, they 
were able to better predict which sellers will create poor experiences than one 
can infer from the very infl ated feedback data. eBay is not unique in allowing 
the parties to exchange messages and the lessons from this research are easily 
generalizable to other marketplaces. The key is that there is information in 

Fig. 23.2 Message content and poor experiences on eBay
Source: Masterov et al. 2015. ©2015 Association for Computing Machinery, Inc. Reprinted 
by permission. https://doi.org/10.1145/2764468.2764499.
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communication between market participants, and past communication can 
help identify and predict the sellers or products that will cause buyers poor 
experiences and negatively impact the overall trust in the marketplace.

23.2.2 Using AI to Create a Market for Feedback

Aside from the fact that feedback is often infl ated as described earlier, 
another problem with feedback is that not all buyers choose not to leave 
feedback at all. In fact, through the lens of mainstream economic theory, it 
is surprising that a signifi cant fraction of online consumers leave feedback. 
After all, it is a selfl ess act that requires time, and it creates a classic free- rider 
problem. Furthermore, because potential buyers are attracted to buy from 
sellers or products that already have an established good track record, this 
creates a “cold- start” problem: new sellers (or products) with no feedback 
will face a barrier- to-entry in that buyers will be hesitant to give them a fair 
shot. How could we solve these free- rider and cold- start problems?

These questions were analyzed in a recent paper by Li, Tadelis, and Zhow 
(2016) using a unique and novel implementation of a market for feedback 
on the huge Chinese marketplace Taobao where they let sellers pay buyers 
to leave them feedback. Naturally, one may be concerned about allowing 
sellers to pay for feedback as it seems like a practice in which they will only 
pay for good feedback and suppress any bad feedback, which would not add 
any value in promoting trust. However, Taobao implemented a clever use 
of NLP to solve this problem: it is the platform, using an NLP AI model, 
that decides whether feedback is relevant and not the seller who pays for the 
feedback. Hence, the reward to the buyer for leaving feedback was actually 
managed by the marketplace, and was handed out for informative feedback 
rather than for positive feedback.

Specifi cally, in March 2012, Taobao launched a “Rebate- for- Feedback” 
(RFF) feature through which sellers can set a rebate value for any item 
they sell (cash back or store coupon) as a reward for a buyer’s feedback. 
If  a seller chooses this option, then Taobao guarantees that the rebate will 
be transferred from the seller’s account to a buyer who leaves high- quality 
feedback. Importantly, feedback quality only depends on how informative it 
is, rather than whether the feedback is positive or negative. Taobao measures 
the quality of feedback with a NLP algorithm that examines the comment’s 
content and length and fi nds out whether key features of the item are men-
tioned. Hence, the marketplace manages the market for feedback by forcing 
the seller to deposit at Taobao a certain amount for a chosen period, so that 
funds are guaranteed for buyers who meet the rebate criterion, which itself  
is determined by Taobao.6

6. According to a Taobao survey (published in March 2012), 64.8 percent of buyers believed 
that they will be more willing to buy items that have the RFF feature, and 84.2 percent of buyers 
believed that the RFF option will make them more likely to write detailed comments.
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Taobao’s motivation behind the RFF mechanism was to promote more 
informative feedback, but as Li, Tadelis, and Zhow (2016) noted, economic 
theory off ers some insights into how the RFF feature can act as a potent 
signaling mechanism that will further separate higher- from lower- quality 
sellers and products. To see this, recall the literature launched by Nelson 
(1970) who suggested that advertising acts as a signal of quality. According 
to the theory, advertising—which is a form of burning money—acts as a 
signal that attracts buyers who correctly believe that only high- quality sellers 
will choose to advertise. Incentive compatibility is achieved through repeat 
purchases: buyers who purchase and experience the products of advertisers 
will return in the future only if  the goods sold are of high enough quality. 
The cost of advertising can be high enough to deter low- quality sellers from 
being willing to spend the money and sell only once because those sellers 
will not attract repeat customers, and still low enough to leave profi ts for 
higher- quality sellers. Hence, ads act as signals that separate high- quality 
sellers, and in turn attract buyers to their products.

As Li, Tadelis, and Zhow (2016) argue, the RFF mechanism plays a 
similar signaling role as ads do. Assuming that consumers express their ex-
periences truthfully in written feedback, any consumer who buys a product 
and is given incentives to leave feedback will leave positive feedback only 
if  the buying experience was satisfactory. Hence, a seller will off er RFF 
incentives to buyers only if  the seller expects to receive positive feedback, 
and this will happen only if  the seller will provide high quality. If  a seller 
knows that their goods and services are unsatisfactory, then paying for feed-
back will generate negative feedback that will harm the low- quality seller. 
Equilibrium behavior then implies that RFF, as a signal of  high quality, will 
attract more buyers and result in more sales. The role of  AI was precisely 
to reward buyers for information, not for positive feedback.

Li, Tadelis, and Zhou (2016) proceeded to analyze data from the period 
where the RFF mechanism was featured and confi rmed that fi rst, as ex-
pected, more feedback was left in response to the incentives provided by the 
RFF feature. More important, the additional feedback did not exhibit any 
biases, suggesting that the NLP algorithms used were able to create the kind 
of screening needed to select informative feedback. Also, the predictions of 
the simple signaling story were borne out in the data, suggesting that using 
NLP to support a novel market for feedback did indeed solve both the free- 
rider problem and the cold- start problem that can hamper the growth of 
online marketplaces.

23.4 Using AI to Reduce Search Frictions

An important application of AI and machine learning in online market-
places is the way in which potential buyers engage with the site and proceed 
to search for products or services. Search engines that power the search of 
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products online are based on a variety of AI algorithms that are trained 
to maximize what the provider believes to be the right objective. Often this 
boils down to conversion, under the belief  that the sooner a consumer con-
verts a search to a purchase, the happier the consumer is both in the short 
and the long run. The rationale is simply that search itself  is a friction, and 
hence, maximizing the successful conversion of search activity to a purchase 
reduces this friction.

This is not inconsistent with economic theory that has modeled search 
as an inevitable costly process that separates consumers from the products 
they want. The canonical search models in economics either build on the 
seminal work of  Stigler (1961), who assumes that consumers sample a fi xed 
number of  stores and choose to buy the lowest priced item, or more often, 
on the models of  McCall (1970) and Mortensen (1970), who posit that 
a model of  sequential search is a better description of  consumer search 
behavior. In both modeling approaches consumers know exactly what they 
wish to buy.

However, it turns out that unlike the simplistic models of search employed 
in economic theory, where consumers know what they are looking for and 
the activity of search is just a costly friction, in reality, people’s search behav-
ior is rich and varied. A recent paper by Blake, Nosko, and Tadelis (2016) 
uses comprehensive data from eBay to shed light on the search process with 
minimal modeling assumptions. Their data show that consumers search 
signifi cantly more than other studies—which had limited access to search 
behavior over time—have suggested.

Furthermore, search often proceeds from the vague to the specifi c. For 
example, early in a search a user may use the query “watch,” then refi ne it to 
“men’s watch,” and later add further qualifying words such as color, shape, 
strap type, and more. This suggests that consumers often learn about their 
own tastes, and what product characteristics exist, as part of  the search 
process. Indeed, Blake et al. (2016) show that the average number of terms 
in the query rises over time, and the propensity to use the default- ranking 
algorithm declines over time as users move to more focused searches like 
price sorting.

These observations suggest that marketplaces and retailers alike could 
design their online search algorithms to understand search intent so as to 
better serve their consumers. If  a consumer is in the earlier, exploratory 
phases of the search process, then off ering some breadth will help the con-
sumer better learn their tastes and the options available in the market. But 
when the consumer is driven to purchase something particular, off ering a 
narrower set of products that match the consumer’s preferences would be 
better. Hence, machine learning and AI can play an instrumental role in 
recognizing customer intent.

Artifi cial intelligence and machine learning cannot only help predict a 
customer’s intent, but given the large heterogeneity on consumer tastes, AI 
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can help a marketplace or retailer better segment the many customers into 
groups that can be better served with tailored information. Of course, the 
idea of using AI for more refi ned customer segmentation, or even personal-
ized experiences, also raises concerns about price discrimination. For ex-
ample, in 2012 the Wall Street Journal reported that “Orbitz Worldwide Inc. 
has found that people who use . . . Mac computers spend as much as 30% 
more a night on hotels, so the online travel agency is starting to show them 
diff erent, and sometimes costlier, travel options than Windows visitors see. 
The Orbitz eff ort, which is in its early stages, demonstrates how tracking 
people’s online activities can use even seemingly innocuous information—in 
this case, the fact that customers are visiting Orbitz .com from a Mac—to 
start predicting their tastes and spending habits.”7

Whether these practices of employing consumer data and AI will help or 
harm consumers is not obvious, as it is well known from economic theory 
that price discrimination can either increase or reduce consumer welfare. If, 
on average, Mac users prefer staying at fancier and more expensive hotels 
because owning a Mac is correlated with higher income and tastes for luxury, 
then the Orbitz practice is benefi cial because it shows people what they want 
to see and reduces search frictions. However, if  this is just a way to extract 
more surplus from consumers who are less price sensitive, but do not neces-
sarily care for the snazzier hotel rooms, then it harms these consumers.

There is currently a lot of interest in policy circles regarding the poten-
tial harms to consumers from AI- based price discrimination and market 
segmentation. McSweeny and O’Dea (2017) suggest that once AI is used to 
create more targeted market segments, this may not only have implications 
only for consumer welfare, but for antitrust policy and market defi nitions for 
mergers. But, as Gal and Elkin- Koren (2017) suggest, the same AI- targeting 
tools used by retailers and marketplaces to better segment consumers may 
be developed into tools for consumers that will help them shop for better 
deals and limit the ways in which marketplaces and retailers can engage in 
price discrimination.

23.5 Concluding Remarks

In its early years, classical economic theory paid little attention to market 
frictions and treated information and computation as free. That theory led 
to conclusions about effi  ciency, competitive prices for most goods, and full 
employment of valuable resources. To address the failures of that theory, 
economists began to study models with search frictions, which predicted that 
price competition would be attenuated, that some workers and resources 

7. See “On Orbitz, Mac Users Steered to Pricier Hotels,” Dana Mattioli, The Wall Street 
Journal, Aug. 23, 2012. https:// www .wsj .com/ articles/ SB1000142405270230445860457748882
2667325882.
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could remain unemployed, and that it could be costly to distinguish reliable 
trading partners from others. They also built markets for complex resource- 
allocation problems in which computations and some communications were 
centralized, lifting the burden of coordination from individual market par-
ticipants.

With these as the key frictions in the traditional economy, AI holds enor-
mous potential to improve effi  ciency. In this chapter, we have described 
some of  the ways that AI can overcome computational barriers, reduce 
search frictions, and distinguish reliable partners. These are among the most 
important causes of ineffi  ciency in traditional economies, and there is no 
longer any question that AI is helping to overcome them, with the promise 
of widespread benefi ts for all of us. As Roth (2002) noted, market designers 
“cannot work only with the simple conceptual models used for theoretical 
insights into the general working of markets. Instead, market design calls 
for an engineering approach.” Artifi cial intelligence has already proven to 
be a valuable tool in the economist- as-engineer tool box.
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