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The discussion around the recent patterns in aggregate productivity growth 
highlights a seeming contradiction. On the one hand, there are astonishing 
examples of potentially transformative new technologies that could greatly 
increase productivity and economic welfare (see Brynjolfsson and McAfee 
2014). There are some early concrete signs of these technologies’ promise, 
recent leaps in artifi cial intelligence (AI) performance being the most promi-
nent example. However, at the same time, measured productivity growth 
over the past decade has slowed signifi cantly. This deceleration is large, cut-
ting productivity growth by half  or more in the decade preceding the slow-
down. It is also widespread, having occurred throughout the Organisation 
for Economic Co- operation and Development (OECD) and, more recently, 
among many large emerging economies as well (Syverson 2017).1
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1. A parallel, yet more pessimistically oriented debate about potential technological progress 
is the active discussion about robots taking jobs from more and more workers (e.g., Brynjolfs-
son and McAfee 2011; Acemoglu and Restrepo 2017; Bessen 2017; Autor and Salomons 2017).
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We thus appear to be facing a redux of the Solow (1987) paradox: we 
see transformative new technologies everywhere but in the productivity sta-
tistics.

In this chapter, we review the evidence and explanations for the modern 
productivity paradox and propose a resolution. Namely, there is no inher-
ent inconsistency between forward- looking technological optimism and 
backward- looking disappointment. Both can simultaneously exist. Indeed, 
there are good conceptual reasons to expect them to simultaneously exist 
when the economy undergoes the kind of  restructuring associated with 
transformative technologies. In essence, the forecasters of future company 
wealth and the measurers of  historical economic performance show the 
greatest disagreement during times of technological change. In this chap-
ter, we argue and present some evidence that the economy is in such a 
period now.

1.1 Sources of Technological Optimism

Paul Polman, Unilever’s CEO, recently claimed that “The speed of inno-
vation has never been faster.” Similarly, Bill Gates, Microsoft’s cofounder, 
observes that “Innovation is moving at a scarily fast pace.” Vinod Khosla of 
Khosla Ventures sees “the beginnings of . . . [a] rapid acceleration in the next 
10, 15, 20 years.” Eric Schmidt of Alphabet Inc., believes “we’re entering . . . 
the age of abundance [and] during the age of abundance, we’re going to see 
a new age . . . the age of intelligence.”2 Assertions like these are especially 
common among technology leaders and venture capitalists.

In part, these assertions refl ect the continuing progress of information 
technology (IT) in many areas, from core technology advances like further 
doublings of  basic computer power (but from ever larger bases) to suc-
cessful investment in the essential complementary innovations like cloud 
infrastructure and new service- based business models. But the bigger source 
of optimism is the wave of recent improvements in AI, especially machine 
learning (ML). Machine learning represents a fundamental change from the 
fi rst wave of computerization. Historically, most computer programs were 
created by meticulously codifying human knowledge, mapping inputs to 
outputs as prescribed by the programmers. In contrast, machine- learning 
systems use categories of general algorithms (e.g., neural networks) to fi g-
ure out relevant mappings on their own, typically by being fed very large 
sample data sets. By using these machine- learning methods that leverage 
the growth in total data and data- processing resources, machines have made 
impressive gains in perception and cognition, two essential skills for most 

2. http:// www .khoslaventures .com / fi reside -  chat -  with -  google -  co -  founders -  larry -  page -  and
 -  sergey -  brin; https:// en .wikipedia .org / wiki / Predictions _made _by _Ray _Kurzweil #2045: _The
 _Singularity; https:// www .theguardian .com / small -  business -  network / 2017 / jun / 22 / alphabets
 -  eric -  schmidt -  google -  artifi cial -  intelligence -  viva -  technology -  mckinsey.
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types of human work. For instance, error rates in labeling the content of 
photos on ImageNet, a data set of over ten million images, have fallen from 
over 30 percent in 2010 to less than 5 percent in 2016, and most recently 
as low as 2.2 percent with SE- ResNet152 in the ILSVRC2017 competition 
(see fi gure 1.1).3 Error rates in voice recognition on the Switchboard speech 
recording corpus, often used to measure progress in speech recognition, 
have decreased to 5.5 percent from 8.5 percent over the past year (Saon et al. 
2017). The 5 percent threshold is important because that is roughly the per-
formance of humans on each of these tasks on the same test data.

Although not at the level of professional human performance yet, Face-
book’s AI research team recently improved upon the best machine language 
translation algorithms available using convolutional neural net sequence 
prediction techniques (Gehring et al. 2017). Deep learning techniques have 
also been combined with reinforcement learning, a powerful set of  tech-
niques used to generate control and action systems whereby autonomous 
agents are trained to take actions given an environment state to maximize 
future rewards. Though nascent, advances in this fi eld are impressive. In 
addition to its victories in the game of Go, Google DeepMind has achieved 
superhuman performance in many Atari games (Fortunato et al. 2017).

These are notable technological milestones. But they can also change the 
economic landscape, creating new opportunities for business value creation 
and cost reduction. For example, a system using deep neural networks was 
tested against twenty- one board- certifi ed dermatologists and matched their 

Fig. 1.1 AI versus human image recognition error rates

3. http:// image -  net .org / challenges / LSVRC / 2017 / results. ImageNet includes labels for each 
image, originally provided by humans. For instance, there are 339,000 labeled as fl owers, 
1,001,000 as food, 188,000 as fruit, 137,000 as fungus, and so on.
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performance in diagnosing skin cancer (Esteva et al. 2017). Facebook uses 
neural networks for over 4.5 billion translations each day.4

 An increasing number of companies have responded to these opportuni-
ties. Google now describes its focus as “AI fi rst,” while Microsoft’s CEO 
Satya Nadella says AI is the “ultimate breakthrough” in technology. Their 
optimism about AI is not just cheap talk. They are making heavy invest-
ments in AI, as are Apple, Facebook, and Amazon. As of September 2017, 
these companies comprise the fi ve most valuable companies in the world. 
Meanwhile, the tech- heavy NASDAQ composite index more than doubled 
between 2012 and 2017. According to CBInsights, global investment in 
private companies focused on AI has grown even faster, increasing from 
$589 million in 2012 to over $5 billion in 2016.5

1.2 The Disappointing Recent Reality

Although the technologies discussed above hold great potential, there is 
little sign that they have yet aff ected aggregate productivity statistics. Labor 
productivity growth rates in a broad swath of developed economies fell in 
the middle of the fi rst decade of the twenty- fi rst century and have stayed 
low since then. For example, aggregate labor productivity growth in the 
United States averaged only 1.3 percent per year from 2005 to 2016, less 
than half  of  the 2.8 percent annual growth rate sustained from 1995 to 
2004. Fully twenty- eight of the twenty- nine other countries for which the 
OECD has compiled productivity growth data saw similar decelerations. 
The unweighted average annual labor productivity growth rate across these 
countries was 2.3 percent from 1995 to 2004, but only 1.1 percent from 2005 
to 2015.6 What’s more, real median income has stagnated since the late 1990s 
and noneconomic measures of well- being, like life expectancy, have fallen 
for some groups (Case and Deaton 2017).

Figure 1.2 replicates the Conference Board’s analysis of its country- level 
Total Economy Database (Conference Board 2016). It plots highly smoothed 
annual productivity growth rate series for the United States, other mature 
economies (which combined match much of the OECD sample cited above), 
emerging and developing economies, and the world overall. The aforemen-
tioned slowdowns in the United States and other mature economies are clear 
in the fi gure. The fi gure also reveals that the productivity growth acceleration 
in emerging and developing economies during the fi rst decade of the twenty- 

4. https:// code .facebook .com / posts / 289921871474277 / transitioning -  entirely -  to-neural
- machine- translation/.

5. And the number of  deals increased from 160 to 658. See https:// www .cbinsights .com
 / research / artifi cial -  intelligence -  startup -  funding/.

6. These slowdowns are statistically signifi cant. For the United States, where the slowdown 
is measured using quarterly data, equality of the two periods’ growth rates is rejected with a 
t- statistic of 2.9. The OECD numbers come from annual data across the thirty countries. Here, 
the null hypothesis of equality is rejected with a t- statistic of 7.2.
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fi rst century ended around the time of the Great Recession, causing a recent 
decline in productivity growth rates in these countries too.

These slowdowns do not appear to simply refl ect the eff ects of the Great 
Recession. In the OECD data, twenty- eight of  the thirty countries still 
exhibit productivity decelerations if  2008– 2009 growth rates are excluded 
from the totals. Cette, Fernald, and Mojon (2016), using other data, also fi nd 
substantial evidence that the slowdowns began before the Great Recession.

 Both capital deepening and total factor productivity (TFP) growth lead 
to labor productivity growth, and both seem to be playing a role in the slow-
down (Fernald 2014; OECD 2015). Disappointing technological progress 
can be tied to each of these components. Total factor productivity directly 
refl ects such progress. Capital deepening is indirectly infl uenced by techno-
logical change because fi rms’ investment decisions respond to improvements 
in capital’s current or expected marginal product.

These facts have been read by some as reasons for pessimism about the 
ability of new technologies like AI to greatly aff ect productivity and income. 
Gordon (2014, 2015) argues that productivity growth has been in long- run 
decline, with the IT- driven acceleration of  1995 to 2004 being a one- off  
aberration. While not claiming technological progress will be nil in the com-
ing decades, Gordon essentially argues that we have been experiencing the 
new, low- growth normal and should expect to continue to do so going for-
ward. Cowen (2011) similarly off ers multiple reasons why innovation may 
be slow, at least for the foreseeable future. Bloom et al. (2017) document 

Fig. 1.2 Smoothed average annual labor productivity growth (percent) by region
Source: The Conference Board Total Economy DatabaseTM (adjusted version), November 
2016. 
Note: Trend growth rates are obtained using HP fi lter, assuming a 1 = 100.
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that in many fi elds of technological progress research productivity has been 
falling, while Nordhaus (2015) fi nds that the hypothesis of an acceleration 
of technology- driven growth fails a variety of tests.

This pessimistic view of future technological progress has entered into 
long- range policy planning. The Congressional Budget Offi  ce, for instance, 
reduced its ten- year forecast for average US annual labor productivity 
growth from 1.8 percent in 2016 (CBO 2016) to 1.5 percent in 2017 (CBO 
2017). Although perhaps modest on its surface, that drop implies US gross 
domestic product (GDP) will be considerably smaller ten years from now 
than it would in the more optimistic scenario—a diff erence equivalent to 
almost $600 billion in 2017.

1.3 Potential Explanations for the Paradox

There are four principal candidate explanations for the current confl uence 
of  technological optimism and poor productivity performance: (a) false 
hopes, (b) mismeasurement, (c) concentrated distribution and rent dissipa-
tion, and (d) implementation and restructuring lags.7

1.3.1 False Hopes

The simplest possibility is that the optimism about the potential tech-
nologies is misplaced and unfounded. Perhaps these technologies won’t be 
as transformative as many expect, and although they might have modest 
and noteworthy eff ects on specifi c sectors, their aggregate impact might be 
small. In this case, the paradox will be resolved in the future because realized 
productivity growth never escapes its current doldrums, which will force the 
optimists to mark their beliefs to market.

History and some current examples off er a quantum of credence to this 
possibility. Certainly one can point to many prior exciting technologies that 
did not live up to initially optimistic expectations. Nuclear power never 
became too cheap to meter, and fusion energy has been twenty years away 
for sixty years. Mars may still beckon, but it has been more than forty years 
since Eugene Cernan was the last person to walk on the moon. Flying cars 
never got off  the ground,8 and passenger jets no longer fl y at supersonic 
speeds. Even AI, perhaps the most promising technology of  our era, is 
well behind Marvin Minsky’s 1967 prediction that “Within a generation 
the problem of creating ‘artifi cial intelligence’ will be substantially solved” 
(Minsky 1967, 2).

On the other hand, there remains a compelling case for optimism. As we 
outline below, it is not diffi  cult to construct back- of-the- envelope scenarios 

7. To some extent, these explanations parallel the explanations for the Solow paradox (Bryn-
jolfsson 1993).

8. But coming soon? https:// kittyhawk .aero / about/.
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in which even a modest number of  currently existing technologies could 
combine to substantially raise productivity growth and societal welfare. 
Indeed, knowledgeable investors and researchers are betting their money 
and time on exactly such outcomes. Thus, while we recognize the potential 
for overoptimism—and the experience with early predictions for AI makes 
an especially relevant reminder for us to be somewhat circumspect in this 
chapter—we judge that it would be highly preliminary to dismiss optimism 
at this point.

1.3.2 Mismeasurement

Another potential explanation for the paradox is mismeasurement of out-
put and productivity. In this case, it is the pessimistic reading of the empirical 
past, not the optimism about the future, that is mistaken. Indeed, this expla-
nation implies that the productivity benefi ts of the new wave of technologies 
are already being enjoyed, but have yet to be accurately measured. Under 
this explanation, the slowdown of the past decade is illusory. This “mis-
measurement hypothesis” has been put forth in several works (e.g., Mokyr 
2014; Alloway 2015; Feldstein 2015; Hatzius and Dawsey 2015; Smith 2015).

There is a prima facie case for the mismeasurement hypothesis. Many new 
technologies, like smartphones, online social networks, and downloadable 
media involve little monetary cost, yet consumers spend large amounts of 
time with these technologies. Thus, the technologies might deliver substan-
tial utility even if  they account for a small share of GDP due to their low 
relative price. Guvenen et al. (2017) also show how growing off shore profi t 
shifting can be another source of mismeasurement.

However, a set of recent studies provide good reason to think that mis-
measurement is not the entire, or even a substantial, explanation for the 
slowdown. Cardarelli and Lusinyan (2015), Byrne, Fernald, and Reinsdorf 
(2016), Nakamura and Soloveichik (2015), and Syverson (2017), each using 
diff erent methodologies and data, present evidence that mismeasurement is 
not the primary explanation for the productivity slowdown. After all, while 
there is convincing evidence that many of the benefi ts of today’s technologies 
are not refl ected in GDP and therefore productivity statistics, the same was 
undoubtedly true in earlier eras as well.

1.3.3 Concentrated Distribution and Rent Dissipation

A third possibility is that the gains of the new technologies are already 
attainable, but that through a combination of concentrated distribution of 
those gains and dissipative eff orts to attain or preserve them (assuming the 
technologies are at least partially rivalrous), their eff ect on average produc-
tivity growth is modest overall, and is virtually nil for the median worker. For 
instance, two of the most profi table uses of AI to date have been for targeting 
and pricing online ads, and for automated trading of fi nancial instruments, 
both applications with many zero- sum aspects.
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One version of this story asserts that the benefi ts of the new technologies 
are being enjoyed by a relatively small fraction of  the economy, but the 
technologies’ narrowly scoped and rivalrous nature creates wasteful “gold 
rush”- type activities. Both those seeking to be one of the few benefi ciaries, 
as well as those who have attained some gains and seek to block access to 
others, engage in these dissipative eff orts, destroying many of the benefi ts 
of the new technologies.9

Recent research off ers some indirect support for elements of this story. 
Productivity diff erences between frontier fi rms and average fi rms in the same 
industry have been increasing in recent years (Andrews, Criscuolo, and Gal 
2016; Furman and Orszag 2015). Diff erences in profi t margins between the 
top and bottom performers in most industries have also grown (McAfee 
and Brynjolfsson 2008). A smaller number of superstar fi rms are gaining 
market share (Autor et al. 2017; Brynjolfsson et al. 2008), while workers’ 
earnings are increasingly tied to fi rm- level productivity diff erences (Song 
et al. 2015). There are concerns that industry concentration is leading to sub-
stantial aggregate welfare losses due to the distortions of market power (e.g., 
De Loecker and Eeckhout 2017; Gutiérrez and Philippon 2017). Further-
more, growing inequality can lead to stagnating median incomes and associ-
ated socioeconomic costs, even when total income continues to grow.

Although this evidence is important, it is not dispositive. The aggregate 
eff ects of industry concentration are still under debate, and the mere fact that 
a technology’s gains are not evenly distributed is no guarantee that resources 
will be dissipated in trying to capture them—especially that there would be 
enough waste to erase noticeable aggregate benefi ts.

1.3.4  Implementation and Restructuring Lags

Each of the fi rst three possibilities, especially the fi rst two, relies on ex-
plaining away the discordance between high hopes and disappointing statis-
tical realities. One of the two elements is presumed to be somehow “wrong.” 
In the misplaced optimism scenario, the expectations for technology by tech-
nologists and investors are off  base. In the mismeasurement explanation, the 
tools we use to gauge empirical reality are not up to the task of accurately 
doing so. And in the concentrated distribution stories, the private gains for 
the few may be very real, but they do not translate into broader gains for 
the many.

But there is a fourth explanation that allows both halves of the seeming 
paradox to be correct. It asserts that there really is good reason to be optimis-
tic about the future productivity growth potential of new technologies, while 
at the same time recognizing that recent productivity growth has been low. 
The core of this story is that it takes a considerable time—often more than 

9. Stiglitz (2014) off ers a diff erent mechanism where technological progress with concentrated 
benefi ts in the presence of restructuring costs can lead to increased inequality and even, in the 
short run, economic downturns.
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is commonly appreciated—to be able to suffi  ciently harness new technolo-
gies. Ironically, this is especially true for those major new technologies that 
ultimately have an important eff ect on aggregate statistics and welfare. That 
is, those with such broad potential application that they qualify as general 
purpose technologies (GPTs). Indeed, the more profound and far- reaching 
the potential restructuring, the longer the time lag between the initial inven-
tion of the technology and its full impact on the economy and society.

This explanation implies there will be a period in which the technologies 
are developed enough that investors, commentators, researchers, and policy-
makers can imagine their potentially transformative eff ects, even though 
they have had no discernable eff ect on recent productivity growth. It isn’t 
until a suffi  cient stock of  the new technology is built and the necessary 
invention of complementary processes and assets occurs that the promise 
of the technology actually blossoms in aggregate economic data. Investors 
are forward looking and economic statistics are backward looking. In times 
of technological stability or steady change (constant velocity), the disjoint 
measurements will seem to track each other. But in periods of rapid change, 
the two measurements can become uncorrelated.

There are two main sources of the delay between recognition of a new 
technology’s potential and its measurable eff ects. One is that it takes time 
to build the stock of the new technology to a size suffi  cient enough to have 
an aggregate eff ect. The other is that complementary investments are neces-
sary to obtain the full benefi t of the new technology, and it takes time to 
discover and develop these complements and to implement them. While the 
fundamental importance of the core invention and its potential for society 
might be clearly recognizable at the outset, the myriad necessary coinven-
tions, obstacles, and adjustments needed along the way await discovery over 
time, and the required path may be lengthy and arduous. Never mistake a 
clear view for a short distance.

This explanation resolves the paradox by acknowledging that its two 
seemingly contradictory parts are not actually in confl ict. Rather, both parts 
are in some sense natural manifestations of the same underlying phenom-
enon of building and implementing a new technology.

While each of the fi rst three explanations for the paradox might have a 
role in describing its source, the explanations also face serious questions 
in their ability to describe key parts of the data. We fi nd the fourth—the 
implementation and restructuring lags story—to be the most compelling in 
light of the evidence we discuss below. Thus it is the focus of our explorations 
in the remainder of this chapter.

1.4  The Argument in Favor of the Implementation 
and Restructuring Lags Explanation

Implicit or explicit in the pessimistic view of the future is that the recent slow-
down in productivity growth portends slower productivity growth in the fu ture. 
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We begin by establishing one of the most basic elements of the story: that 
slow productivity growth today does not rule out faster productivity growth 
in the future. In fact, the evidence is clear that it is barely predictive at all.

Total factor productivity growth is the component of  overall output 
growth that cannot be explained by accounting for changes in observable 
labor and capital inputs. It has been called a “measure of our ignorance” 
(Abramovitz 1956). It is a residual, so an econometrician should not be 
surprised if  it is not very predictable from past levels. Labor productivity 
is a similar measure, but instead of accounting for capital accumulation, 
simply divides total output by the labor hours used to produce that output.

Figures 1.3 and 1.4 plot, respectively, US productivity indices since 1948 
and productivity growth by decade. The data include average labor produc-
tivity (LP), average total factor productivity (TFP), and Fernald’s (2014) 
utilization- adjusted TFP (TFPua).10

 Productivity has consistently grown in the postwar era, albeit at diff erent 
rates at diff erent times. Despite the consistent growth, however, past pro-
ductivity growth rates have historically been poor predictors of future pro-
ductivity growth. In other words, the productivity growth of the past decade 
tells us little about productivity growth for the coming decade. Looking 
only at productivity data, it would have been hard to predict the decrease 
in productivity growth in the early 1970s or foresee the benefi cial impact of 
IT in the 1990s.

As it turns out, while there is some correlation in productivity growth rates 
over short intervals, the correlation between adjacent ten- year periods is not 
statistically signifi cant. We present below the results from a regression of 
diff erent measures of average productivity growth on the previous period’s 
average productivity growth for ten- year intervals as well as scatterplots 
of  productivity for each ten- year interval against the productivity in the 
subsequent period. The regressions in table 1.1 allow for autocorrelation 
in error terms across years (1 lag). Table 1.2 clusters the standard errors by 
decade. Similar results allowing for autocorrelation at longer time scales are 
presented in the appendix.

In all cases, the R2 of these regressions is low, and the previous decade’s 
productivity growth does not have statistically discernable predictive power 
over the next decade’s growth. For labor productivity, the R2 is 0.009. 
Although the intercept in the regression is signifi cantly diff erent from zero 
(productivity growth is positive, on average), the coeffi  cient on the previous 
period’s growth is not statistically signifi cant. The point estimate is economi-
cally small, too. Taking the estimate at face value, 1 percent higher annual 
labor productivity growth in the prior decade (around an unconditional 
mean of  about 2 percent per year) corresponds to less than 0.1 percent 

10. Available at http:// www .frbsf .org / economic -  research / indicators -  data / total -  factor 
-  productivity -  tfp/.
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Fig. 1.3 US TFP and labor productivity indices, 1948– 2016
Note: 1990 = 100.

Fig. 1.4 US TFP and labor productivity growth (percent) by decade
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Table 1.1 Regressions with Newey- West standard errors

Newey- West regressions (1 lag allowed) 
ten- year average productivity growth  

(1)
Labor 

productivity 
growth  

(2)
Total factor 
productivity 

growth  

(3)
Utilization- adjusted 
productivity growth

Previous ten- year average LP growth 0.0857
(0.177)

Previous ten- year average TFP growth 0.136
(0.158)

Previous ten- year average TFPua 
growth

0.158

(0.187)
Constant 1.949*** 0.911*** 0.910***

(0.398) (0.188) (0.259)
Observations 50 50 50
R- squared  0.009  0.023  0.030

Note: Standard errors in parentheses.
***Signifi cant at the 1 percent level.
**Signifi cant at the 5 percent level.
*Signifi cant at the 10 percent level.

Table 1.2 Regressions with standard errors clustered by decade

Ten- year average productivity growth 
(SEs clustered by decade)  

(1)
Labor 

productivity 
growth  

(2)
Total factor 
productivity 

growth  

(3)
Utilization- adjusted 
productivity growth

Previous ten- year average LP growth 0.0857
(0.284)

Previous ten- year average TFP growth 0.136
(0.241)

Previous ten- year average TFPua 
growth

0.158

(0.362)
Constant 1.949** 0.911** 0.910

(0.682) (0.310) (0.524)
Observations 50 50 50
R- squared  0.009  0.023  0.030

Note: Robust standard errors in parentheses.
***Signifi cant at the 1 percent level.
**Signifi cant at the 5 percent level.
*Signifi cant at the 10 percent level.
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faster growth in the following decade. In the TFP growth regression, the 
R2 is 0.023, and again the coeffi  cient on the previous period’s growth is insig-
nifi cant. Similar patterns hold in the utilization- adjusted TFP regression 
(R2 of 0.03). The lack of explanatory power of past productivity growth is 
also apparent in the scatterplots (see fi gures 1.5, 1.6, and 1.7).

  The old adage that “past performance is not predictive of future results” 
applies well to trying to predict productivity growth in the years to come, 

Fig 1.5 Labor productivity growth scatterplot

Fig. 1.6 Total factor productivity growth scatterplot
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especially in periods of a decade or longer. Historical stagnation does not 
justify forward- looking pessimism.

1.5 A Technology- Driven Case for Productivity Optimism

Simply extrapolating recent productivity growth rates forward is not a 
good way to estimate the next decade’s productivity growth. Does that imply 
we have no hope at all of predicting productivity growth? We don’t think so.

Instead of relying only on past productivity statistics, we can consider 
the technological and innovation environment we expect to see in the near 
future. In particular, we need to study and understand the specifi c technolo-
gies that actually exist and make an assessment of their potential.

One does not have to dig too deeply into the pool of existing technologies 
or assume incredibly large benefi ts from any one of them to make a case 
that existing but still nascent technologies can potentially combine to create 
noticeable accelerations in aggregate productivity growth. We begin by look-
ing at a few specifi c examples. We will then make the case that AI is a GPT, 
with broader implications.

First, let’s consider the productivity potential of autonomous vehicles. 
According to the US Bureau of Labor Statistics (BLS), in 2016 there were 
3.5 million people working in private industry as “motor vehicle operators” 
of one sort or another (this includes truck drivers, taxi drivers, bus driv-
ers, and other similar occupations). Suppose autonomous vehicles were to 
reduce, over some period, the number of drivers necessary to do the current 
workload to 1.5 million. We do not think this is a far- fetched scenario given 
the potential of the technology. Total nonfarm private employment in mid- 

Fig. 1.7 Utilization- adjusted total factor productivity growth scatterplot
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2016 was 122 million. Therefore, autonomous vehicles would reduce the 
number of workers necessary to achieve the same output to 120 million. This 
would result in aggregate labor productivity (calculated using the standard 
BLS nonfarm private series) increasing by 1.7 percent (122/ 120 = 1.017). 
Supposing this transition occurred over ten years, this single technology 
would provide a direct boost of 0.17 percent to annual productivity growth 
over that decade.

This gain is signifi cant, and it does not include many potential productiv-
ity gains from complementary changes that could accompany the diff usion 
of autonomous vehicles. For instance, self- driving cars are a natural comple-
ment to transportation- as-a- service rather than individual car ownership. 
The typical car is currently parked 95 percent of the time, making it readily 
available for its owner or primary user (Morris 2016). However, in locations 
with suffi  cient density, a self- driving car could be summoned on demand. 
This would make it possible for cars to provide useful transportation services 
for a larger fraction of the time, reducing capital costs per passenger- mile, 
even after accounting for increased wear and tear. Thus, in addition to the 
obvious improvements in labor productivity from replacing drivers, capital 
productivity would also be signifi cantly improved. Of course, the speed of 
adoption is important for estimation of the impact of these technologies. 
Levy (2018) is more pessimistic, suggesting in the near term that long dis-
tance truck driver jobs will grow about 2 percent between 2014 and 2024. 
This is 3 percent less (about 55,000 jobs in that category) than they would 
have grown without autonomous vehicle technology and about 3 percent of 
total employment of long distance truck drivers. A second example is call 
centers. As of 2015, there were about 2.2 million people working in more 
than 6,800 call centers in the United States, and hundreds of thousands more 
work as home- based call center agents or in smaller sites.11 Improved voice- 
recognition systems coupled with intelligence question- answering tools like 
IBM’s Watson might plausibly be able to handle 60– 70 percent or more of 
the calls, especially since, in accordance with the Pareto principle, a large 
fraction of call volume is due to variants on a small number of basic queries. 
If  AI reduced the number of workers by 60 percent, it would increase US 
labor productivity by 1 percent, perhaps again spread over ten years. Again, 
this would likely spur complementary innovations, from shopping recom-
mendation and travel services to legal advice, consulting, and real- time per-
sonal coaching. Relatedly, citing advances in AI- assisted customer service, 
Levy (2018) projects zero growth in customer service representatives from 
2014 to 2024 (a diff erence of 260,000 jobs from BLS projections).

Beyond labor savings, advances in AI have the potential to boost total 
factor productivity. In particular, energy effi  ciency and materials usage 
could be improved in many large- scale industrial plants. For instance, a 

11. https:// info .siteselectiongroup .com / blog / how -  big -  is -  the -  us -  call -  center -  industry 
-  compared -  to-india- and- philippines.
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team from Google DeepMind recently trained an ensemble of neural net-
works to optimize power consumption in a data center. By carefully track-
ing the data already collected from thousands of sensors tracking tempera-
tures, electricity usage, and pump speeds, the system learned how to make 
adjustments in the operating parameters. As a result, the AI was able to 
reduce the amount of energy used for cooling by 40 percent compared to 
the levels achieved by human experts. The algorithm was a general- purpose 
framework designed to account complex dynamics, so it is easy to see how 
such a system could be applied to other data centers at Google, or indeed, 
around the world. Overall, data center electricity costs in the United States 
are about $6 billion per year, including about $2 billion just for cooling.12

What’s more, similar applications of machine learning could be imple-
mented in a variety of commercial and industrial activities. For instance, 
manufacturing accounts for about $2.2 trillion of value added each year. 
Manufacturing companies like GE are already using AI to forecast product 
demand, future customer maintenance needs, and analyze performance data 
coming from sensors on their capital equipment. Recent work on training 
deep neural network models to perceive objects and achieve sensorimotor 
control have at the same time yielded robots that can perform a variety 
of hand- eye coordination tasks (e.g., unscrewing bottle caps and hanging 
coat hangers; Levine et al., [2016]). Liu et al. (2017) trained robots to per-
form a number of household chores, like sweeping and pouring almonds 
into a pan, using a technique called imitation learning.13 In this approach, 
the robot learns to perform a task using a raw video demonstration of what 
it needs to do. These techniques will surely be important for automating 
manufacturing processes in the future. The results suggest that artifi cial 
intelligence may soon improve productivity in household production tasks 
as well, which in 2010 were worth as much as $2.5 trillion in nonmarket 
value added (Bridgman et al. 2012).14

Although these examples are each suggestive of nontrivial productivity 
gains, they are only a fraction of the set of applications for AI and machine 
learning that have been identifi ed so far. James Manyika et al. (2017) ana-
lyzed 2,000 tasks and estimated that about 45 percent of the activities that 
people are paid to perform in the US economy could be automated using 
existing levels of AI and other technologies. They stress that the pace of 

12. According to personal communication, August 24, 2017, with Jon Koomey, Arman 
Shehabi, and Sarah Smith of Lawrence Berkeley Lab.

13. Videos of  these eff orts available here: https:// sites .google .com / site / imitationfrom
observation/.

14. One factor that might temper the aggregate impact of AI- driven productivity gains is if  
product demand for the sectors with the largest productivity AI gains is suffi  ciently inelastic. 
In this case, these sectors’ shares of  total expenditure will shrink, shifting activity toward 
slower- growing sectors and muting aggregate productivity growth à la Baumol and Bowen 
(1966). It is unclear what the elasticities of demand are for the product classes most likely to 
be aff ected by AI.
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automation will depend on factors other than technical feasibility, including 
the costs of automation, regulatory barriers, and social acceptance.

1.6 Artifi cial Intelligence Is a General Purpose Technology

As important as specifi c applications of  AI may be, we argue that the 
more important economic eff ects of AI, machine learning, and associated 
new technologies stem from the fact that they embody the characteristics 
of general purpose technologies (GPTs). Bresnahan and Trajtenberg (1996) 
argue that a GPT should be pervasive, able to be improved upon over time, 
and be able to spawn complementary innovations.

The steam engine, electricity, the internal combustion engine, and com-
puters are each examples of important general purpose technologies. Each 
of them increased productivity not only directly, but also by spurring impor-
tant complementary innovations. For instance, the steam engine not only 
helped to pump water from coal mines, its most important initial appli-
cation, but also spurred the invention of more eff ective factory machinery 
and new forms of  transportation like steamships and railroads. In turn, 
these coinventions helped give rise to innovations in supply chains and mass 
marketing, to new organizations with hundreds of thousands of employees, 
and even to seemingly unrelated innovations like standard time, which was 
needed to manage railroad schedules.

Artifi cial intelligence, and in particular machine learning, certainly has 
the potential to be pervasive, to be improved upon over time, and to spawn 
complementary innovations, making it a candidate for an important GPT.

As noted by Agrawal, Gans, and Goldfarb (2017), the current generation 
of machine- learning systems is particularly suited for augmenting or auto-
mating tasks that involve at least some prediction aspect, broadly defi ned. 
These cover a wide range of tasks, occupations, and industries, from driv-
ing a car (predicting the correct direction to turn the steering wheel) and 
diagnosing a disease (predicting its cause) to recommending a product (pre-
dicting what the customer will like) and writing a song (predicting which 
note sequence will be most popular). The core capabilities of perception and 
cognition addressed by current systems are pervasive, if  not indispensable, 
for many tasks done by humans.

Machine- learning systems are also designed to improve over time. Indeed, 
what sets them apart from earlier technologies is that they are designed to 
improve themselves over time. Instead of  requiring an inventor or devel-
oper to codify, or code, each step of a process to be automated, a machine- 
learning algorithm can discover on its own a function that connects a set 
of inputs X to a set of outputs Y as long as it is given a suffi  ciently large set 
of labeled examples mapping some of the inputs to outputs (Brynjolfsson 
and Mitchell 2017). The improvements refl ect not only the discovery of 
new algorithms and techniques, particularly for deep neural networks, but 
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also their complementarities with vastly more powerful computer hardware 
and the availability of much larger digital data sets that can be used to train 
the systems (Brynjolfsson and McAfee 2017). More and more digital data 
is collected as a byproduct of digitizing operations, customer interactions, 
communications, and other aspects of our lives, providing fodder for more 
and better machine- learning applications.15

Most important, machine- learning systems can spur a variety of comple-
mentary innovations. For instance, machine learning has transformed the 
abilities of machines to perform a number of basic types of perception that 
enable a broader set of  applications. Consider machine vision—the abil-
ity to see and recognize objects, to label them in photos, and to interpret 
video streams. As error rates in identifying pedestrians improve from one 
per 30 frames to about one per 30 million frames, self- driving cars become 
increasingly feasible (Brynjolfsson and McAfee 2017).

Improved machine vision also makes practical a variety of factory au-
tomation tasks and medical diagnoses. Gill Pratt has made an analogy to 
the development of vision in animals 500 million years ago, which helped 
ignite the Cambrian explosion and a burst of new species on earth (Pratt 
2015). He also noted that machines have a new capability that no biological 
species has: the ability to share knowledge and skills almost instantaneously 
with others. Specifi cally, the rise of cloud computing has made it signifi -
cantly easier to scale up new ideas at much lower cost than before. This 
is an especially important development for advancing the economic im-
pact of machine learning because it enables cloud robotics: the sharing of 
knowledge among robots. Once a new skill is learned by a machine in one 
location, it can be replicated to other machines via digital networks. Data 
as well as skills can be shared, increasing the amount of data that any given 
machine learner can use.

This in turn increases the rate of improvement. For instance, self- driving 
cars that encounter an unusual situation can upload that information with 
a shared platform where enough examples can be aggregated to infer a pat-
tern. Only one self- driving vehicle needs to experience an anomaly for many 
vehicles to learn from it. Waymo, a subsidiary of  Google, has cars driv-
ing 25,000 “real” autonomous and about 19 million simulated miles each 
week.16 All of the Waymo cars learn from the joint experience of the others. 
Similarly, a robot struggling with a task can benefi t from sharing data and 
learnings with other robots that use a compatible knowledge- representation 
framework.17

When one thinks of AI as a GPT, the implications for output and wel-
fare gains are much larger than in our earlier analysis. For example, self- 
driving cars could substantially transform many nontransport industries. 

15. For example, through enterprise resource planning systems in factories, internet com-
merce, mobile phones, and the “Internet of Things.”

16. http:// ben -  evans .com / benedictevans / 2017 / 8 / 20 / winner -  takes -  all.
17. Rethink Robotics is developing exactly such a platform.
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Retail could shift much further toward home delivery on demand, creating 
consumer welfare gains and further freeing up valuable high- density land 
now used for parking. Traffi  c and safety could be optimized, and insurance 
risks could fall. With over 30,000 deaths due to automobile crashes in the 
United States each year, and nearly a million worldwide, there is an oppor-
tunity to save many lives.18

1.7  Why Future Technological Progress Is Consistent 
with Low Current Productivity Growth

Having made a case for technological optimism, we now turn to explain-
ing why it is not inconsistent with—and in fact may even be naturally related 
to—low current productivity growth.

Like other GPTs, AI has the potential to be an important driver of 
productivity. However, as Jovanovic and Rousseau (2005) point out (with 
additional reference to David’s [1991] historical example), “a GPT does 
not deliver productivity gains immediately upon arrival” (1184). The tech-
nology can be present and developed enough to allow some notion of its 
transformative eff ects even though it is not aff ecting current productivity 
levels in any noticeable way. This is precisely the state that we argue the 
economy may be in now.

We discussed earlier that a GPT can at one moment both be present and 
yet not aff ect current productivity growth if  there is a need to build a suf-
fi ciently large stock of the new capital, or if  complementary types of capital, 
both tangible and intangible, need to be identifi ed, produced, and put in 
place to fully harness the GPT’s productivity benefi ts.

The time necessary to build a suffi  cient capital stock can be extensive. 
For example, it was not until the late 1980s, more than twenty- fi ve years 
after the invention of the integrated circuit, that the computer capital stock 
reached its long- run plateau at about 5 percent (at historical cost) of total 
nonresidential equipment capital. It was at only half  that level ten years 
prior. Thus, when Solow pointed out his now eponymous paradox, the com-
puters were fi nally just then getting to the point where they really could be 
seen everywhere.

David (1991) notes a similar phenomenon in the diff usion of electrifi ca-
tion. At least half  of US manufacturing establishments remained unelectri-
fi ed until 1919, about thirty years after the shift to polyphase alternating 
current began. Initially, adoption was driven by simple cost savings in pro-

18. These latter two consequences of autonomous vehicles, while certainly refl ecting welfare 
improvements, would need to be capitalized in prices of goods or services to be measured in 
standard GDP and productivity measures. We will discuss AI- related measurement issues in 
greater depth later. Of course, it is worth remembering that autonomous vehicles also hold 
the potential to create new economic costs if, say, the congestion from lower marginal costs of 
operating a vehicle is not counteracted by suffi  ciently large improvements in traffi  c management 
technology or certain infrastructure investments.
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viding motive power. The biggest benefi ts came later, when complementary 
innovations were made. Managers began to fundamentally reorganize work 
by replacing factories’ centralized power source and giving every individual 
machine its own electric motor. This enabled much more fl exibility in the 
location of equipment and made possible eff ective assembly lines of mate-
rials fl ow.

This approach to organizing factories is obvious in retrospect, yet it took 
as many as thirty years for it to become widely adopted. Why? As noted 
by Henderson (1993, 2006), it is exactly because incumbents are designed 
around the current ways of doing things and so profi cient at them that they 
are blind to or unable to absorb the new approaches and get trapped in the 
status quo—they suff er the “curse of knowledge.”19

The factory electrifi cation example demonstrates the other contributor to 
the time gap between a technology’s emergence and its measured productiv-
ity eff ects: the need for installation (and often invention) of complementary 
capital. This includes both tangible and intangible investments. The time-
line necessary to invent, acquire, and install these complements is typically 
more extensive than the time- to-build considerations just discussed. Con-
sider the measured lag between large investments in IT and productivity 
benefi ts within fi rms. Brynjolfsson and Hitt (2003) found that while small 
productivity benefi ts were associated with fi rms’ IT investments when one- 
year diff erences were considered, the benefi ts grew substantially as longer 
diff erences were examined, peaking after about seven years. They attributed 
this pattern to the need for complementary changes in business processes. 
For instance, when implementing large enterprise- planning systems, fi rms 
almost always spend several times more money on business process rede-
sign and training than on the direct costs of hardware and software. Hiring 
and other human- resources practices often need considerable adjustment 
to match the fi rm’s human capital to the new structure of production. In 
fact, Bresnahan, Brynjolfsson, and Hitt (2002) fi nd evidence of three- way 
complementarities between IT, human capital, and organizational changes 
in the investment decisions and productivity levels. Furthermore, Brynjolfs-
son, Hitt, and Yang (2002) show each dollar of  IT capital stock is cor-
related with about $10 of market value. They interpret this as evidence of 
substantial IT- related intangible assets and show that fi rms that combine IT 
investments with a specifi c set of organizational practices are not just more 
productive, they also have disproportionately higher market values than 
fi rms that invest in only one or the other. This pattern in the data is consistent 
with a long stream of research on the importance of organizational and even 

19. Atkeson and Kehoe (2007) note manufacturers’ reluctance to abandon their large knowl-
edge stock at the beginning of the transition to electric power to adopt what was, initially, only 
a marginally superior technology. David and Wright (2006) are more specifi c, focusing on “the 
need for organizational and above all for conceptual changes in the ways tasks and products 
are defi ned and structured” (147, emphasis in original).
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cultural change when making IT investments and technology investments 
more generally (e.g., Aral, Brynjolfsson, and Wu 2012; Brynjolfsson and 
Hitt 2000; Orlikowski 1996; Henderson 2006).

But such changes take substantial time and resources, contributing to 
organizational inertia. Firms are complex systems that require an extensive 
web of complementary assets to allow the GPT to fully transform the sys-
tem. Firms that are attempting transformation often must reevaluate and 
reconfi gure not only their internal processes but often their supply and distri-
bution chains as well. These changes can take time, but managers and entre-
preneurs will direct invention in ways that economize on the most expensive 
inputs (Acemoglu and Restrepo 2017). According to LeChatelier’s principle 
(Milgrom and Roberts 1996), elasticities will therefore tend to be greater in 
the long run than in the short run as quasi- fi xed factors adjust.

There is no assurance that the adjustments will be successful. Indeed, 
there is evidence that the modal transformation of GPT- level magnitude 
fails. Alon et al. (2017) fi nd that cohorts of fi rms over fi ve years old con-
tribute little to aggregate productivity growth on net—that is, among estab-
lished fi rms, productivity improvements in one fi rm are off set by produc-
tivity declines in other fi rms. It is hard to teach the proverbial old dog new 
tricks. Moreover, the old dogs (companies) often have internal incentives to 
not learn them (Arrow 1962; Holmes, Levine, and Schmitz 2012). In some 
ways, technology advances in industry one company death at a time.

Transforming industries and sectors requires still more adjustment and 
reconfi guration. Retail off ers a vivid example. Despite being one of  the 
biggest innovations to come out of the 1990s dot- com boom, the largest 
change in retail in the two decades that followed was not e-commerce, but 
instead the expansion of  warehouse stores and supercenters (Hortaçsu 
and Syverson 2015). Only very recently did e-commerce become a force for 
general retailers to reckon with. Why did it take so long? Brynjolfsson and 
Smith (2000) document the diffi  culties incumbent retailers had in adapting 
their business processes to take full advantage of the internet and electronic 
commerce. Many complementary investments were required. The sector 
as a whole required the build out of an entire distribution infrastructure. 
Customers had to be “retrained.” None of this could happen quickly. The 
potential of e-commerce to revolutionize retailing was widely recognized, 
and even hyped in the late 1990s, but its actual share of retail commerce was 
miniscule, 0.2 percent of all retail sales in 1999. Only after two decades of 
widely predicted yet time- consuming change in the industry, is e-commerce 
starting to approach 10 percent of total retail sales and companies like Ama-
zon are having a fi rst- order eff ect on more traditional retailers’ sales and 
stock market valuations.

The case of self- driving cars discussed earlier provides a more prospective 
example of how productivity might lag technology. Consider what happens 
to the current pools of vehicle production and vehicle operation workers 
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when autonomous vehicles are introduced. Employment on production side 
will initially increase to handle research and development (R&D), AI de-
velopment, and new vehicle engineering. Furthermore, learning curve issues 
could well imply lower productivity in manufacturing these vehicles during 
the early years (Levitt, List, and Syverson 2013). Thus labor input in the 
short run can actually increase, rather than decrease, for the same amount 
of vehicle production. In the early years of autonomous vehicle develop-
ment and production, the marginal labor added by producers exceeds the 
marginal labor displaced among the motor vehicle operators. It is only later 
when the fl eet of deployed autonomous vehicles gets closer to a steady state 
that measured productivity refl ects the full benefi ts of the technology.

1.8  Viewing Today’s Paradox through the Lens 
of Previous General Purpose Technologies

We have indicated in the previous discussion that we see parallels between 
the current paradox and those that have happened in the past. It is closely 
related to the Solow paradox era circa 1990, certainly, but it is also tied 
closely to the experience during the diff usion of portable power (combining 
the contemporaneous growth and transformative eff ects of electrifi cation 
and the internal combustion engine).

Comparing the productivity growth patterns of the two eras is instructive. 
Figure 1.8 is an updated version of an analysis from Syverson (2013). It over-
lays US labor productivity since 1970 with that from 1890 to 1940, the period 
after portable power technologies had been invented and were starting to 
be placed into production. (The historical series values are from Kendrick 
[1961].) The modern series timeline is indexed to a value of 100 in 1995 and 

Fig. 1.8 Labor productivity growth in the portable power and IT eras
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is labeled on the upper horizontal axis. The portable power era index has a 
value of 100 in 1915, and its years are shown on the lower horizontal axis.

Labor productivity during the portable power era shared remarkably 
similar patterns with the current series. In both eras, there was an initial 
period of roughly a quarter century of relatively slow productivity growth. 
Then both eras saw decade- long accelerations in productivity growth, span-
ning 1915 to 1924 in the portable power era and 1995 to 2004 more recently.

The late- 1990s acceleration was the (at least partial) resolution of  the 
Solow paradox. We imagine that the late 1910s acceleration could have simi-
larly answered some economist’s query in 1910 as to why one sees electric 
motors and internal combustion engines everywhere but in the productivity 
statistics.20

 Very interesting, and quite relevant to the current situation, the produc-
tivity growth slowdown we have experienced after 2004 also has a parallel 
in the historical data, a slowdown from 1924 to 1932. As can be seen in the 
fi gure, and instructive to the point of whether a new wave of AI and associ-
ated technologies (or if  one prefers, a second wave of IT- based technology) 
could reaccelerate productivity growth, labor productivity growth at the end 
of the portable power era rose again, averaging 2.7 percent per year between 
1933 and 1940.

Of course this past breakout growth is no guarantee that productivity 
must speed up again today. However, it does raise two relevant points. First, 
it is another example of a period of sluggish productivity growth followed 
by an acceleration. Second, it demonstrates that productivity growth driven 
by a core GPT can arrive in multiple waves.

1.9 Expected Productivity Eff ects of an AI- Driven Acceleration

To understand the likely productivity eff ects of AI, it is useful to think 
of AI as a type of capital, specifi cally a type of intangible capital. It can be 
accumulated through investment, it is a durable factor of production, and 
its value can depreciate. Treating AI as a type of capital clarifi es how its 
development and installation as a productive factor will aff ect productivity.

As with any capital deepening, increasing AI will raise labor productivity. 
This would be true regardless of how well AI capital is measured (which we 
might expect it won’t be for several reasons discussed below) though there 
may be lags.

The eff ects of AI on TFP are more complex and the impact will depend 
on its measurement. If  AI (and its output elasticity) were to be measured 
perfectly and included in both the input bundle in the denominator of TFP 

20. We are not aware of anyone who actually said this, and of course today’s system of na-
tional economic statistics did not exist at that time, but we fi nd the scenario amusing, instructive, 
and in some ways plausible.
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and the output bundle in the numerator, then measured TFP will accurately 
refl ect true TFP. In this case, AI could be treated just like any other measur-
able capital input. Its eff ect on output could be properly accounted for and 
“removed” by the TFP input measure, leading to no change in TFP. This 
isn’t to say that there would not be productive benefi ts from diff usion of AI; 
it is just that it could be valued like other types of capital input.

There are reasons why economists and national statistical agencies might 
face measurement problems when dealing with AI. Some are instances of 
more general capital measurement issues, but others are likely to be idiosyn-
cratic to AI. We discuss this next.

1.10 Measuring AI Capital

Regardless of the eff ects of AI and AI- related technologies on actual out-
put and productivity, it is clear from the productivity outlook that the ways 
AI’s eff ects will be measured are dependent on how well countries’ statistics 
programs measure AI capital.

The primary diffi  culty in AI capital measurement is, as mentioned earlier, 
that many of  its outputs will be intangible. This issue is exacerbated by 
the extensive use of AI as an input in making other capital, including new 
types of software, as well as human and organizational capital, rather than 
fi nal consumption goods. Much of  this other capital, including human 
capital, will, like AI itself, be mostly intangible (Jones and Romer 2010).

To be more specifi c, eff ective use of  AI requires developing data sets, 
building fi rm- specifi c human capital, and implementing new business pro-
cesses. These all require substantial capital outlays and maintenance. The 
tangible counterparts to these intangible expenditures, including purchases 
of computing resources, servers, and real estate, are easily measured in the 
standard neoclassical growth accounting model (Solow 1957). On the other 
hand, the value of capital goods production for complementary intangible 
investments is diffi  cult to quantify. Both tangible and intangible capital 
stocks generate a capital service fl ow yield that accrues over time. Real-
izing these yields requires more than simply renting capital stock. After 
purchasing capital assets, fi rms incur additional adjustment costs (e.g., 
business process redesigns and installation costs). These adjustment costs 
make capital less fl exible than frictionless rental markets would imply. Much 
of  the market value of  AI capital specifi cally, and IT capital more gen-
erally, may be derived from the capitalized short- term quasi- rents earned 
by fi rms that have already reorganized to extract service fl ows from new 
investment.

Yet while the stock of  tangible assets is booked on corporate balance 
sheets, expenditures on the intangible complements and adjustment costs 
to AI investment commonly are not. Without including the production and 
use of intangible AI capital, the usual growth accounting decompositions 
of changes in value added can misattribute AI intangible capital deepening 
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to changes in TFP. As discussed in Hall (2000) and Yang and Brynjolfsson 
(2001), this constitutes an omission of a potentially important component 
of capital goods production in the calculation of fi nal output. Estimates of 
TFP will therefore be inaccurate, though possibly in either direction. In the 
case where the intangible AI capital stock is growing faster than output, 
then TFP growth will be underestimated, while TFP will be overestimated 
if  capital stock is growing more slowly than output.

The intuition for this eff ect is that in any given period t, the output of 
(unmeasured) AI capital stock in period t + 1 is a function the input (unmea-
sured) existing AI capital stock in period t. When AI stock is growing rapidly, 
the unmeasured outputs (AI capital stock created) will be greater than the 
unmeasured inputs (AI capital stock used).

Furthermore, suppose the relevant costs in terms of  labor and other 
resources needed to create intangible assets are measured, but the resulting 
increases in intangible assets are not measured as contributions to output. In 
this case, not only will total GDP be undercounted but so will productivity, 
which uses GDP as its numerator. Thus periods of rapid intangible capital 
accumulation may be associated with lower measured productivity growth, 
even if  true productivity is increasing.

With missing capital goods production, measured productivity will only 
refl ect the fact that more capital and labor inputs are used up in producing 
measured output. The inputs used to produce unmeasured capital goods will 
instead resemble lost potential output. For example, a recent report from 
the Brookings Institution estimates that investments in autonomous vehicles 
have topped $80 billion from 2014 to 2017 with little consumer adoption of 
the technology so far.21 This is roughly 0.44 percent of 2016 GDP (spread 
over three years). If  all of  the capital formation in autonomous vehicles 
was generated by equally costly labor inputs, this would lower estimated 
labor productivity by 0.1 percent per year over the last three years since 
autonomous vehicles have not yet led to any signifi cant increase in mea-
sured fi nal output. Similarly, according to the AI Index, enrollment in AI 
and ML courses at leading universities has roughly tripled over the past ten 
years, and the number of venture- back AI- related start-ups has more than 
quadrupled. To the extent that they create intangible assets beyond the costs 
of production, GDP will be underestimated.

Eventually the mismeasured intangible capital goods investments are 
expected to yield a return (i.e., output) by their investors. If  and when mea-
surable output is produced by these hidden assets, another mismeasure-
ment eff ect leading to overestimation of productivity will kick in. When the 
output share and stock of mismeasured or omitted capital grows, the mea-
sured output increases produced by that capital will be incorrectly attributed 
to total factor productivity improvements. As the growth rate of  invest-
ment in unmeasured capital goods decreases, the capital service fl ow from 

21. https:// www .brookings .edu / research / gauging -  investment -  in-self- driving- cars/.
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unmeasured goods eff ect on TFP can exceed the underestimation error from 
unmeasured capital goods.

Combining these two eff ects produces a “J- curve” wherein early produc-
tion of intangible capital leads to underestimation of productivity growth, 
but later returns from the stock of unmeasured capital creates measured 
output growth that might be incorrectly attributed to TFP.

Formally:

(1) Y + zI2 = f A,K1,K2 ,L( )

(2) dY + zdI2 = FAdA + FK1
dK1 + FLdL + FK2

dK2.

Output Y and unmeasured capital goods with price z(zI2) are produced 
with production function f. The inputs of f(·) are the total factor productiv-
ity A, ordinary capital K1, unmeasured capital K2, and labor L. Equation (2) 
describes the total diff erential of output as a function of the inputs to the 
production function. If  the rental price of ordinary capital is r1, the rental 
price of unmeasured capital is r2, and the wage rate is w, we have

(3) Ŝ =
dY
Y

r1K1

Y
dK1

K1

wL
Y

dL
L

and

(4)  S* =
dY
Y

r1K1

Y
dK1

K1

wL
Y

dL
L

r2K2

Y
dK2

K2

+
zI2
Y

dI2
I2

,

where Ŝ is the familiar Solow residual as measured and S∗ is the correct 
Solow residual accounting for mismeasured capital investments and stock.

The mismeasurement is then

(5) Ŝ S* =
r2K2

Y
dK2

K2

zI2
Y

dI2
I2

=
r2K2

Y
gK2

zI2
Y

gI2.

The right side of the equation describes a hidden capital eff ect and a hidden 
investment eff ect. When the growth rate of new investment in unmeasured 
capital multiplied by its share of output is larger (smaller) than the growth 
rate of the stock of unmeasured capital multiplied by its share of output, 
the estimated Solow residual will underestimate (overestimate) the rate of 
productivity growth. Initially, new types of capital will have a high marginal 
product. Firms will accumulate that capital until its marginal rate of return 
is equal to the rate of return of other capital. As capital accumulates, the 
growth rate of net investment in the unmeasured capital will turn negative, 
causing a greater overestimate TFP. In steady state, neither net investment’s 
share of output nor the net stock of unmeasured capital grows and the pro-
ductivity mismeasurement is zero. Figure 1.9 provides an illustration.22

22. The price of new investment (z) and rental price of capital (r) are 0.3 and 0.12, respec-
tively, in this toy economy. Other values used to create the fi gure are included in the appendix.
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 Looking forward, these problems may be particularly stark for AI capital, 
because its accumulation will almost surely outstrip the pace of ordinary 
capital accumulation in the short run. AI capital is a new category of 
capital—new in economic statistics, certainly, but we would argue practi-
cally so as well.

This also means that capital quantity indexes that are computed from 
within- type capital growth might have problems benchmarking size and 
eff ect of AI early on. National statistics agencies do not really focus on mea-
suring capital types that are not already ubiquitous. New capital categories 
will tend to either be rolled into existing types, possibly with lower inferred 
marginal products (leading to an understatement of the productive eff ect 
of the new capital), or missed altogether. This problem is akin to the new 
goods problem in price indexes.

A related issue—once AI is measured separately—is how closely its units 
of measurement will capture AI’s marginal product relative to other capital 
stock. That is, if  a dollar of AI stock has a marginal product that is twice 
as high as the modal unit of non- AI capital in the economy, will the quan-
tity indexes of AI refl ect this? This requires measured relative prices of AI 
and non- AI capital to capture diff erences in marginal product. Measuring 
levels correctly is less important than measuring accurate proportional dif-
ferences (whether intertemporally or in the cross section) correctly. What is 
needed in the end is that a unit of AI capital twice as productive as another 
should be twice as large in the capital stock.

It is worth noting that these are all classic problems in capital measure-
ment and not new to AI. Perhaps these problems will be systematically worse 
for AI, but this is not obvious ex ante. What it does mean is that econo-

Fig. 1.9 The mismeasurement J- curve for an economy accumulating a new kind 
of capital
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mists and national statistical agencies at least have experience in, if  not 
quite a full solution for, dealing with these sorts of limitations. That said, 
some measurement issues are likely to be especially prevalent for AI. For 
instance, a substantial part of the value of AI output may be fi rm- specifi c. 
Imagine a program that fi gures out individual consumers’ product prefer-
ences or price elasticities and matches products and pricing to predictions. 
This has diff erent value to diff erent companies depending on their customer 
bases and product selection, and knowledge may not be transferrable across 
fi rms. The value also depends on companies’ abilities to implement price 
discrimination. Such limits could come from characteristics of a company’s 
market, like resale opportunities, which are not always under fi rms’ control, 
or from the existence in the fi rm of complementary implementation assets 
and/or abilities. Likewise, each fi rm will likely have a diff erent skill mix that 
it seeks in its employees, unique needs in its production process, and a par-
ticular set of supply constraints. In such cases, fi rm- specifi c data sets and 
applications of those data will diff erentiate the machine- learning capabili-
ties of one fi rm from another (Brynjolfsson and McAfee 2017).

1.11 Conclusion

There are plenty of both optimists and pessimists about technology and 
growth. The optimists tend to be technologists and venture capitalists, and 
many are clustered in technology hubs. The pessimists tend to be econo-
mists, sociologists, statisticians, and government offi  cials. Many of them are 
clustered in major state and national capitals. There is much less interaction 
between the two groups than within them, and it often seems as though they 
are talking past each other. In this chapter, we argue that in an important 
sense, they are.

When we talk with the optimists, we are convinced that the recent break-
throughs in AI and machine learning are real and signifi cant. We also would 
argue that they form the core of a new, economically important potential 
GPT. When we speak with the pessimists, we are convinced that productiv-
ity growth has slowed down recently and what gains there have been are 
unevenly distributed, leaving many people with stagnating incomes, declin-
ing metrics of health and well- being, and good cause for concern. People 
are uncertain about the future, and many of the industrial titans that once 
dominated the employment and market value leaderboard have fallen on 
harder times.

These two stories are not contradictory. In fact, in many ways they are 
consistent and symptomatic of an economy in transition. Our analysis sug-
gests that while the recent past has been diffi  cult, it is not destiny. Although 
it is always dangerous to make predictions, and we are humble about our 
ability to foretell the future, our reading of the evidence does provide some 
cause for optimism. The breakthroughs of AI technologies already demon-
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strated are not yet aff ecting much of the economy, but they portend big-
ger eff ects as they diff use. More important, they enable complementary 
innovations that could multiply their impact. Both the AI investments and 
the comple mentary changes are costly, hard to measure, and take time to 
implement, and this can, at least initially, depress productivity as it is cur-
rently measured. Entrepreneurs, managers, and end- users will fi nd powerful 
new applications for machines that can now learn how to recognize objects, 
understand human language, speak, make accurate predictions, solve prob-
lems, and interact with the world with increasing dexterity and mobility.

Further advances in the core technologies of  machine learning would 
likely yield substantial benefi ts. However, our perspective suggests that an 
underrated area of research involves the complements to the new AI tech-
nologies, not only in areas of human capital and skills, but also new processes 
and business models. The intangible assets associated with the last wave of 
computerization were about ten times as large as the direct investments in 
computer hardware itself. We think it is plausible that AI- associated intan-
gibles could be of a comparable or greater magnitude. Given the big changes 
in coordination and production possibilities made possible by AI, the ways 
that we organized work and education in the past are unlikely to remain 
optimal in the future.

Relatedly, we need to update our economic measurement tool kits. As 
AI and its complements more rapidly add to our (intangible) capital stock, 
traditional metrics like GDP and productivity can become more diffi  cult to 
measure and interpret. Successful companies do not need large investments 
in factories or even computer hardware, but they do have intangible assets 
that are costly to replicate. The large market values associated with compa-
nies developing and/or implementing AI suggest that investors believe there 
is real value in those companies. In the case that claims on the assets of the 
fi rm are publicly traded and markets are effi  cient, the fi nancial market will 
properly value the fi rm as the present value of its risk- adjusted discounted 
cash fl ows. This can provide an estimate of the value of both the tangible 
and intangible assets owned by the fi rm. What’s more, the eff ects on living 
standards may be even larger than the benefi ts that investors hope to cap-
ture. It is also possible, even likely, that many people will not share in those 
benefi ts. Economists are well positioned to contribute to a research agenda 
of documenting and understanding the often intangible changes associated 
with AI and its broader economic implications.

Realizing the benefi ts of AI is far from automatic. It will require eff ort 
and entrepreneurship to develop the needed complements, and adaptability 
at the individual, organizational, and societal levels to undertake the associ-
ated restructuring. Theory predicts that the winners will be those with the 
lowest adjustment costs and that put as many of the right complements in 
place as possible. This is partly a matter of good fortune, but with the right 
road map, it is also something for which they, and all of us, can prepare.
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