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4.1 Introduction

Rapid advances in the fi eld of artifi cial intelligence have profound implica-
tions for the economy as well as society at large. These innovations have the 
potential to directly infl uence both the production and the characteristics of 
a wide range of products and services, with important implications for pro-
ductivity, employment, and competition. But, as important as these eff ects 
are likely to be, artifi cial intelligence also has the potential to change the 
innovation process itself, with consequences that may be equally profound, 
and which may, over time, come to dominate the direct eff ect.

Consider the case of Atomwise, a start-up fi rm that is developing novel 
technology for identifying potential drug candidates (and insecticides) by 
using neural networks to predict the bioactivity of candidate molecules. The 
company reports that its deep convolutional neural networks “far surpass” 
the performance of  conventional “docking” algorithms. After appropri-
ate training on vast quantities of  data, the company’s AtomNet product 
is described as being able to “recognize” foundational building blocks of 
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organic chemistry, and is capable of generating highly accurate predictions 
of  the outcomes of  real- world physical experiments (Wallach, Dzamba, 
and Heifels 2015). Such breakthroughs hold out the prospect of substantial 
improvements in the productivity of early stage drug screening. Of course, 
Atomwise’s technology (and that of other companies leveraging artifi cial 
intelligence to advance drug discovery or medical diagnosis) is still at an 
early stage: though their initial results seem to be promising, no new drugs 
have actually come to market using these new approaches. But whether or 
not Atomwise delivers fully on its promise, its technology is representa-
tive of the ongoing attempt to develop a new innovation “playbook,” one 
that leverages large data sets and learning algorithms to engage in precise 
prediction of biological phenomena in order to guide design- eff ective inter-
ventions. Atomwise, for example, is now deploying this approach to the 
discovery and development of  new pesticides and agents for controlling 
crop diseases.

Atomwise’s example illustrates two of the ways in which advances in arti-
fi cial intelligence have the potential to impact innovation. First, though the 
origins of artifi cial intelligence are broadly in the fi eld of computer science, 
and its early commercial applications have been in relatively narrow domains 
such as robotics, the learning algorithms that are now being developed sug-
gest that artifi cial intelligence may ultimately have applications across a very 
wide range. From the perspective of the economics of innovation (among 
others, Bresnahan and Trajtenberg 1995), there is an important distinction 
between the problem of providing innovation incentives to develop tech-
nologies with a relatively narrow domain of  application, such as robots 
purpose- built for narrow tasks, versus technologies with a wide—advocates 
might say almost limitless—domain of application, as may be true of the 
advances in neural networks and machine learning often referred to as “deep 
learning.” As such, a fi rst question to be asked is the degree to which devel-
opments in artifi cial intelligence are not simply examples of new technolo-
gies, but rather may be the kinds of “general purpose technologies” (GPTs) 
that have historically been such infl uential drivers of long- term technologi-
cal progress.

Second, while some applications of artifi cial intelligence will surely consti-
tute lower- cost or higher- quality inputs into many existing production pro-
cesses (spurring concerns about the potential for large job displacements), 
others, such as deep learning, hold out the prospect of not only productivity 
gains across a wide variety of sectors, but also changes in the very nature 
of the innovation process within those domains. As articulated famously 
by Griliches (1957), by enabling innovation across many applications, 
the “invention of a method of invention” has the potential to have much 
larger economic impact than development of any single new product. Here 
we argue that recent advances in machine learning and neural networks, 
through their ability to improve both the performance of end- use technolo-
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gies and the nature of the innovation process, are likely to have a particularly 
large impact on innovation and growth. Thus the incentives and obstacles 
that may shape the development and diff usion of these technologies are an 
important topic for economic research, and building an understanding of 
the conditions under which diff erent potential innovators are able to gain 
access to these tools and to use them in a procompetitive way is a central 
concern for policy.

This chapter begins to unpack the potential impact of advances in arti-
fi cial intelligence on innovation, and to identify the role that policy and 
institutions might play in providing eff ective incentives for innovation, dif-
fusion, and competition in this area. We begin in section 4.2 by highlighting 
the distinctive economics of research tools, of which deep learning applied 
to research and development (R&D) problems is such an intriguing example. 
We focus on the interplay between the degree of generality of application 
of a new research tool and the role of research tools not simply in enhanc-
ing the effi  ciency of research activity, but in creating a new “playbook” for 
innovation itself. We then turn in section 4.3 to briefl y contrast three key 
technological trajectories within artifi cial intelligence (AI)—robotics, sym-
bolic systems, and deep learning. We propose that these often confl ated fi elds 
will likely play very diff erent roles in the future of innovation and techni-
cal change. Work in symbolic systems appears to have stalled and is likely 
to have relatively little impact going forward. And while developments in 
robotics have the potential to further displace human labor in the production 
of many goods and services, innovation in robotics technologies per se has 
relatively low potential to change the nature of innovation itself. By contrast, 
deep learning seems to be an area of research that is highly general purpose 
and has the potential to change the innovation process itself.

We explore whether this might indeed be the case through an examina-
tion of some quantitative empirical evidence on the evolution of diff erent 
areas of artifi cial intelligence in terms of scientifi c and technical outputs 
of AI researchers as measured (imperfectly) by the publication of papers 
and patents from 1990 through 2015. In particular, we develop what we 
believe is the fi rst systematic database that captures the corpus of scientifi c 
paper and patenting activity in artifi cial intelligence, broadly defi ned, and 
divides these outputs into those associated with robotics, symbolic systems, 
and deep learning. Though preliminary in nature (and inherently imperfect 
given that key elements of  research activity in artifi cial intelligence may 
not be observable using these traditional innovation metrics), we fi nd strik-
ing evidence for a rapid and meaningful shift in the application orientation 
of  learning- oriented publications, particularly after 2009. The timing of 
this shift is informative, since it accords with qualitative evidence about the 
surprisingly strong performance of so-called “deep learning” multilayered 
neural networks in a range of tasks including computer vision and other 
prediction tasks.
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Supplementary evidence (not reported here) based on the citation pat-
terns to authors such as Geoff rey Hinton, who are leading fi gures in deep 
learning, suggests a striking acceleration of work in just the last few years 
that builds on a small number of algorithmic breakthroughs related to multi-
layered neural networks.

Though not a central aspect of the analysis for this chapter, we further fi nd 
that, whereas research on learning- oriented algorithms has had a slow and 
steady upward swing outside of the United States, US researchers have had 
a less sustained commitment to learning- oriented research prior to 2009, 
and have been in a “catch-up” mode ever since.

Finally, we begin to explore some of  the organizational, institutional, 
and policy consequences of our analysis. We see machine learning as the 
“invention of a method of invention” whose application depends, in each 
case, on having access not just to the underlying algorithms, but also to 
large, granular data sets on physical and social behavior. Developments in 
neural networks and machine learning thus raise the question of, even if  the 
underlying scientifi c approaches (i.e., the basic multilayered neural networks 
algorithms) are open, prospects for continued progress in this fi eld—and 
commercial applications thereof—are likely to be signifi cantly impacted by 
terms of access to complementary data. Specifi cally, if  there are increasing 
returns to scale or scope in data acquisition (there is more learning to be 
had from the larger data set), it is possible that early or aggressive entrants 
into a particular application area may be able to create a substantial and 
long- lasting competitive advantage over potential rivals merely through 
the control over data rather than through formal intellectual property or 
demand- side network eff ects. Strong incentives to maintain data privately 
has the additional potential downside that data is not being shared across 
researchers, thus reducing the ability of  all researchers to access an even 
larger set of data that would arise from public aggregation. As the competi-
tive advantage of incumbents is reinforced, the power of new entrants to 
drive technological change may be weakened. Though this is an important 
possibility, it is also the case that, at least so far, there seems to be a signifi cant 
amount of entry and experimentation across most key application sectors.

4.2  The Economics of New Research Tools: The Interplay between 
New Methods of Invention and the Generality of Innovation

At least since Arrow (1962) and Nelson (1959), economists have appreci-
ated the potential for signifi cant underinvestment in research, particularly 
basic research or domains of  invention with low appropriability for the 
inventor. Considerable insight has been gained into the conditions under 
which the incentives for innovation may be more or less distorted, both in 
terms of their overall level and in terms of the direction of that research. 
As we consider the potential impact of advances in AI on innovation, two 
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ideas from this literature seem particularly important—the potential for 
contracting problems associated with the development of  a new broadly 
applicable research tool, and the potential for coordination problems aris-
ing from adoption and diff usion of a new “general purpose technology.” 
In contrast to technological progress in relatively narrow domains, such as 
traditional automation and industrial robots, we argue that those areas of 
artifi cial intelligence evolving most rapidly—such as deep learning—are 
likely to raise serious challenges in both dimensions.

First, consider the challenge in providing appropriate innovation incen-
tives when an innovation has potential to drive technological and organiza-
tional change across a wide number of distinct applications. Such general 
purpose technologies (David 1990; Bresnahan and Trajtenberg 1995) often 
take the form of  core inventions that have the potential to signifi cantly 
enhance productivity or quality across a wide number of fi elds or sectors. 
David’s (1990) foundational study of the electric motor showed that this 
invention brought about enormous technological and organizational change 
across sectors as diverse as manufacturing, agriculture, retail, and residential 
construction. Such GPTs are usually understood to meet three criteria that 
distinguish them from other innovations: they have pervasive application 
across many sectors, they spawn further innovation in application sectors, 
and they themselves are rapidly improving.

As emphasized by Bresnahan and Trajtenberg (1995), the presence of a 
general purpose technology gives rise to both vertical and horizontal exter-
nalities in the innovation process that can lead not just to underinvestment 
but also to distortions in the direction of  investment, depending on the 
degree to which private and social returns diverge across diff erent appli-
cation sectors. Most notably, if  there are “innovation complementarities” 
between the general purpose technology and each of the application sectors, 
lack of incentives in one sector can create an indirect externality that results 
in a system- wide reduction in innovative investment itself. While the private 
incentives for innovative investment in each application sector depend on 
its the market structure and appropriability conditions, that sector’s innova-
tion enhances innovation in the GPT itself, which then induces subsequent 
demand (and further innovation) in other downstream application sectors. 
These gains can rarely be appropriated within the originating sector. Lack 
of coordination between the GPT and application sectors, as well as across 
application sectors, is therefore likely to signifi cantly reduce investment 
in innovation. Despite these challenges, a reinforcing cycle of innovation 
between the GPT and a myriad of application sectors can generate a more 
systemic economy- wide transformation as the rate of innovation increases 
across all sectors. A rich empirical literature examining the productivity 
impacts of information technology (IT) point to the role of the microproces-
sor as a GPT as a way of understanding the impact of IT on the economy as 
a whole (among many others, Bresnahan and Greenstein 1999; Brynjolfsson 
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and Hitt 2000; Bresnahan, Brynjolfsson, and Hitt 2002). Various aspects 
of artifi cial intelligence can certainly be understood as a GPT, and learning 
from examples such as the microprocessor are likely to be a useful founda-
tion for thinking about both the magnitude of their impact on the economy 
and associated policy challenges.

A second conceptual framework for thinking about AI is the economics 
of research tools. Within the research sectors some innovations open up new 
avenues of inquiry, or simply improve productivity “within the lab.” Some of 
these advances appear to have great potential across a broad set of domains 
beyond their initial application: as highlighted by Griliches (1957) in his clas-
sic studies of hybrid corn, some new research tools are inventions that do 
not just create or improve a specifi c product—instead, they constitute a new 
way of creating new products with much broader application. In Griliches’s 
famous construction, the discovery of double- cross hybridization “was the 
invention of a method of inventing.” (IMI) Rather than being a means of 
creating a single new corn variety, hybrid corn represented a widely appli-
cable method for breeding many diff erent new varieties. When applied to 
the challenge of creating new varieties optimized for many diff erent locali-
ties (and even more broadly, to other crops), the invention of double- cross 
hybridization had a huge impact on agricultural productivity.

One of the important insights to be gained from thinking about IMIs, 
therefore, is that the economic impact of some types of research tools is not 
limited to their ability to reduce the costs of specifi c innovation activities—
perhaps even more consequentially they enable a new approach to innova-
tion itself, by altering the “playbook” for innovation in the domains where 
the new tool is applied. For example, prior to the systematic understanding 
of  the power of  “hybrid vigor,” a primary focus in agriculture had been 
improved techniques for self- fertilization (i.e., allowing for more and more 
specialized natural varietals over time). Once the rules governing hybridiza-
tion (i.e., heterosis) were systematized, and the performance advantages of 
hybrid vigor demonstrated, the techniques and conceptual approach for 
agricultural innovation was shifted, ushering in a long period of systematic 
innovation using these new tools and knowledge.

Advances in machine learning and neural networks appear to have great 
potential as a research tool in problems of  classifi cation and prediction. 
These are both important limiting factors in a variety of  research tasks, 
and, as exemplifi ed by the Atomwise example, application of  “learning” 
approaches to AI hold out the prospect of  dramatically lower costs and 
improved performance in R&D projects where these are signifi cant chal-
lenges. But as with hybrid corn, AI- based learning may be more usefully 
understood as an IMI than as a narrowly limited solution to a specifi c 
problem. One the one hand, AI- based learning may be able to substantially 
“automate discovery” across many domains where classifi cation and predic-
tion tasks play an important role. On the other, that they may also “expand 
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the playbook” is the sense of opening up the set of problems that can be fea-
sibly addressed, and radically altering scientifi c and technical communities’ 
conceptual approaches and framing of problems. The invention of optical 
lenses in the seventeenth century had important direct economic impact in 
applications such as spectacles. But optical lenses in the form of microscopes 
and telescopes also had enormous and long- lasting indirect eff ects on the 
progress of science, technological change, growth, and welfare: by making 
very small or very distant objects visible for the fi rst time, lenses opened 
up entirely new domains of inquiry and technological opportunity. Leung 
et al. (2016), for example, evocatively characterize machine learning as an 
opportunity to “learn to read the genome” in ways that human cognition 
and perception cannot.

Of course, many research tools are neither IMIs nor GPTs, and their 
primary impact is to reduce the cost or enhance the quality of an existing 
innovation process. For example, in the pharmaceutical industry new kinds 
of materials promise to enhance the effi  ciency of specifi c research processes. 
Other research tools can indeed be thought of as IMIs but are nonetheless 
relatively limited in application. For example, the development of genetically 
engineered research mice (such as the OncoMouse) is an IMI that has had 
a profound impact on the conduct and playbook of biomedical research, 
but has no obvious relevance to innovation in areas such as information 
technology, energy, or aerospace. The challenge presented by advances in 
AI is that they appear to be research tools that not only have the potential 
to change the method of innovation itself, but also have implications across 
an extraordinarily wide range of fi elds. Historically, technologies with these 
characteristics—think of digital computing—have had large and unantici-
pated impacts across the economy and society in general. Mokyr (2002) 
points to the profound impact of IMIs that take the form not of tools per 
se, but innovations in the way research is organized and conducted, such 
as the invention of the university. General purpose technologies that are 
themselves IMIs (or vice versa) are particularly complex phenomena, whose 
dynamics are as yet poorly understood or characterized.

From a policy perspective, a further important feature of research tools is 
that it may be particularly diffi  cult to appropriate their benefi ts. As empha-
sized by Scotchmer (1991), providing appropriate incentives for an upstream 
innovator that develops only the fi rst “stage” of an innovation (such as a 
research tool) can be particularly problematic when contracting is imperfect 
and the ultimate application of  the new products whose development is 
enabled by the upstream innovation is uncertain. Scotchmer and her co-
authors emphasized a key point about a multistage research process: when 
the ultimate innovation that creates value requires multiple steps, providing 
appropriate innovation incentives are not only a question of whether and 
how to provide property rights in general, but also of how best to distribute 
property rights and incentives across the multiple stages of the innovation 
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process. Lack of incentives for early stage innovation can therefore mean 
that the tools required for subsequent innovation do not even get invented; 
strong early stage property rights without adequate contracting opportuni-
ties may result in “hold-up” for later- stage innovators and so reduce the 
ultimate impact of the tool in terms of commercial application.

The vertical research spillovers created by new research tools (or IMIs) are 
not just a challenge for designing appropriate intellectual property policy.1 
They are also exemplars of the core innovation externality highlighted by 
endogenous growth theory (Romer 1990; Aghion and Howitt 1992); a cen-
tral source of underinvestment in innovation is the fact that the intertem-
poral spillovers from innovators today to innovators tomorrow cannot be 
easily captured. While tomorrow’s innovators benefi t from “standing on the 
shoulders of giants,” their gains are not easily shared with their predecessors. 
This is not simply a theoretical idea: an increasing body of evidence sug-
gests that research tools and the institutions that support their development 
and diff usion play an important role in generating intertemporal spillovers 
(among others, Furman and Stern 2011; Williams 2013). A central insight 
of this work is that control—both in the form of physical exclusivity, as well 
as in the form of formal intellectual property rights—over tools and data 
can shape both the level and direction of innovative activity, and that rules 
and institutions governing control over these areas has a powerful infl uence 
on the realized amount and nature of innovation.

Of course, these frameworks cover only a subset of the key informational 
and competitive distortions that might arise when considering whether and 
how to provide optimal incentives for the type of  technological change 
represented by some areas of AI. But these two areas in particular seem 
likely to be important for understanding the implications of  the current 
dramatic advances in AI- supported learning. We therefore turn in the next 
section to a brief  outline of the ways in which AI is changing, with an eye 
toward bringing the framework here to bear on how we might outline a 
research agenda exploring the innovation policy challenges that they create.

4.3  The Evolution of Artifi cial Intelligence: 
Robotics, Symbolic Systems, and Neural Networks

In his omnibus historical account of AI research, Nilsson (2010) defi nes 
AI as “that activity devoted to making machines intelligent, and intelligence 
is that quality that enables an entity to function appropriately and with fore-
sight in its environment.” His account details the contributions of multiple 
fi elds to achievements in AI, including but not limited to biology, linguistics, 
psychology and cognitive sciences, neuroscience, mathematics, philosophy 

1. Challenges presented by AI- enabled invention for legal doctrine and the patent process 
are beyond the scope of this chapter.
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and logic, engineering, and computer science. And, of course, regardless 
of their particular approach, artifi cial intelligence research has been united 
from the beginning by its engagement with Turing (1950) and his discussion 
of the possibility of mechanizing intelligence.

Though often grouped together, the intellectual history of AI as a scien-
tifi c and technical fi eld is usefully informed by distinguishing between three 
interrelated but separate areas: robotics, neural networks, and symbolic 
systems. Perhaps the most successful line of research in the early years of 
AI—dating back to the 1960s—falls under the broad heading of symbolic 
systems. Although early pioneers such as Turing had emphasized the impor-
tance of teaching a machine as one might a child (i.e., emphasizing AI as a 
learning process), the “symbol processing hypothesis” (Newell, Shaw, and 
Simon 1958; Newell and Simon 1976) was premised on the attempt to rep-
licate the logical fl ow of human decision- making through processing sym-
bols. Early attempts to instantiate this approach yielded striking success 
in demonstration projects, such as the ability of  a computer to navigate 
elements of  a chess game (or other board games) or engage in relatively 
simple conversations with humans by following specifi c heuristics and rules 
embedded into a program. However, while research based on the concept 
of  a “general problem solver” has continued to be an area of signifi cant 
academic interest, and there have been periodic explosions of interest in the 
use of such approaches to assist human decision- making (e.g., in the con-
text of early stage expert systems to guide medical diagnosis), the symbolic 
systems approach has been heavily criticized for its inability to meaningfully 
impact real- world processes in a scalable way. It is, of course, possible that 
this fi eld will see breakthroughs in the future, but it is fair to say that while 
symbolic systems continues to be an area of academic research, it has not 
been central to the commercial application of AI. Nor is it at the heart of the 
recent reported advances in AI that are associated with the area of machine 
learning and prediction.

A second infl uential trajectory in AI has been broadly in the area of 
robotics. While the concepts of  “robots” as machines that can perform 
human tasks dates back at least to the 1940s, the fi eld of robotics began 
to meaningfully fl ourish from the 1980s onward through a combination of 
the advances in numerically controlled machine tools and the development 
of more adaptive but still rules- based robotics that rely on the active sens-
ing of a known environment. Perhaps the most economically consequential 
application of  AI to date has been in this area, with large- scale deploy-
ment of “industrial robots” in manufacturing applications. These machines 
are precisely programmed to undertake a given task in a highly controlled 
environment. Often located in “cages” within highly specialized industrial 
processes (most notably automobile manufacturing), these purpose- built 
tools are perhaps more aptly described as highly sophisticated numerically 
controlled machines rather than as robots with signifi cant AI content. Over 
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the past twenty years, innovation in robotics has had an important impact 
on manufacturing and automation, most notably through the introduction 
of more responsive robots that rely on programmed response algorithms 
that can respond to a variety of stimuli. This approach, famously pioneered 
by Rod Brooks (1990), focused the commercial and innovation orientation 
of AI away from the modeling of human- like intelligence toward providing 
feedback mechanisms that would allow for practical and eff ective robotics 
for specifi ed applications. This insight led, among other applications, to the 
Roomba and to other adaptable industrial robots that could interact with 
humans such as Rethink Robotics’ Baxter. Continued innovation in robot-
ics technologies (particularly in the ability of robotic devices to sense and 
interact with their environment) may lead to wider application and adoption 
outside industrial automation.

These advances are important, and the most advanced robots continue 
to capture public imagination when the term AI is invoked. But innova-
tions in robotics are not, generally speaking, IMIs. The increasing auto-
mation of laboratory equipment certainly improves research productivity, 
but advances in robotics are not (yet) centrally connected to the under-
lying ways in which researchers themselves might develop approaches to 
undertake innovation itself  across multiple domains. There are, of course, 
counterexamples to this proposition: robotic space probes have been a very 
important research tool in planetary science, and the ability of automated 
remote sensing devices to collect data at very large scale or in challenging 
environments may transform some fi elds of research. But robots continue to 
be used principally in specialized end- use “production” applications.

Finally, a third stream of research that has been a central element of AI 
since its founding can be broadly characterized as a “learning” approach. 
Rather than being focused on symbolic logic, or precise sense- and- react 
systems, the learning approach attempts to create reliable and accurate 
methods for the prediction of particular events (either physical or logical) 
in the presence of particular inputs. The concept of a neural network has 
been particularly important in this area. A neural network is a program that 
uses a combination of weights and thresholds to translate a set of inputs 
into a set of outputs, measures the “closeness” of these outputs to reality, 
and then adjusts the weights it uses to narrow the distance between outputs 
and reality. In this way, neural networks can learn as they are fed more 
inputs (Rosenblatt 1958, 1962). Over the course of the 1980s, Hinton and 
his coauthors further advanced the conceptual framework on which neural 
networks are based through the development of “back- propagating multi-
layer” techniques that further enhance their potential for supervised learning 
(Rumelhart, Hinton, and Williams 1986).

After being initially heralded as having signifi cant promise, the fi eld of 
neural networks has come in and out of  fashion, particularly within the 
United States. From the 1980s through the middle of the fi rst decade of the 
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twenty- fi rst century, their challenge seemed to be that there were signifi cant 
limitations to the technology that could not be easily fi xed by using larger 
training data sets or through the introduction of additional layers of “neu-
rons.” However, in the early twenty- fi rst century, a small number of new 
algorithmic approaches demonstrated the potential to enhance prediction 
through back propagation through multiple layers. These neural networks 
increased their predictive power as they were applied to larger and larger 
data sets and were able to scale to an arbitrary level (among others, a key 
reference here is Hinton and Salakhutdinov [2006]). These advances exhib-
ited a surprising level of  performance improvement, notably in the con-
text of the ImageNet visual recognition project competition pioneered by 
Fei- Fei Li at Stanford (Krizhevsky, Sutskever, and Hinton 2012).

4.4  How Might Diff erent Fields within 
Artifi cial Intelligence Impact Innovation?

Distinguishing between these three streams of AI is a critical fi rst step 
toward developing a better understanding of how AI is likely to infl uence 
the innovation process going forward, since the three diff er signifi cantly in 
their potential to be either GPTs or IMIs—or both.

First, though a signifi cant amount of public discussion of AI focuses on 
the potential for AI to achieve superhuman performance over a wide range 
of human cognitive capabilities, it is important to note that, at least so far, 
the signifi cant advances in AI have not been in the form of the “general 
problem solver” approaches that were at the core of early work in symbolic 
systems (and that were the motivation for considerations of human reason-
ing such as the Turing test). Instead, recent advances in both robotics and in 
deep learning are by and large innovations that require a signifi cant level of 
human planning and that apply to a relatively narrow domain of problem- 
solving (e.g., face recognition, playing Go, picking up a particular object, 
etc.) While it is, of course, possible that further breakthroughs will lead to 
a technology that can meaningfully mimic the nature of human subjective 
intelligence and emotion, the recent advances that have attracted scientifi c 
and commercial attention are well removed from these domains.

Second, though most economic and policy analysis of AI draws out con-
sequences from the last two decades of automation to consider the future 
economic impact of  AI (e.g., in job displacement for an ever- increasing 
number of tasks), it is important to emphasize that there is a sharp diff erence 
between the advances in robotics that were a primary focus of applications 
of AI research during the fi rst decade of the twenty- fi rst century and the 
potential applications of deep learning that have come to the fore over the 
last few years.

As we suggested earlier, current advances in robotics are by and large 
associated with applications that are highly specialized and that are focused 
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on end- user applications rather than on the innovation process itself, and 
these advances do not seem as of yet to have translated to a more gener-
ally applicable IMI. Robotics is therefore an area where we might focus 
on the impact of innovation (improved performance) and diff usion (more 
widespread application) in terms of job displacement versus job enhance-
ment. We see limited evidence as yet of widespread applications of robotics 
outside industrial automation, or of the scale of improvements in the ability 
to sense, react to, and manipulate the physical environment that the use of 
robotics outside manufacturing probably requires. But there are exceptions: 
developments in the capabilities of “pick and place” robots and rapid pro-
gress in autonomous vehicles point to the possibility for robotics to escape 
manufacturing and become much more broadly used. Advances in robotics 
may well reveal this area of AI be a GPT, as defi ned by the classic criteria.

Some research tools/ IMIs based on algorithms have transformed the 
nature of research in some fi elds, but have lacked generality. These types 
of algorithmic research tools, based on a static set of program instructions, 
are a valuable IMI, but do not appear to have wide applicability outside a 
specifi c domain and do not qualify as GPTs. For example, while far from 
perfect, powerful algorithms to scan brain images (so- called functional mag-
netic resonance imaging [MRI]) have transformed our understanding of the 
human brain, not only through the knowledge they have generated, but also 
by establishing an entirely new paradigm and protocol for brain research. 
However, despite its role as a powerful IMI, fMRI lacks the type of general 
purpose applicability that has been associated with the most important 
GPTs. In contrast, the latest advances in deep learning have the potential to 
be both a general purpose IMI and a classic GPT.

Table 4.1 summarizes these ideas.
 How might the promise of deep learning as a general purpose IMI be 

realized? Deep learning promises to be an enormously powerful new tool 
that allows for the unstructured “prediction” of physical or logical events 
in contexts where algorithms based on a static set of program instructions 
(such as classic statistical methods) perform poorly. The development of this 
new approach to prediction enables a new approach to undertaking scientifi c 
and technical research. Rather than focusing on small well- characterized 
data sets or testing settings, it is now possible to proceed by identifying large 
pools of unstructured data that can be used to dynamically develop highly 
accurate predictions of technical and behavioral phenomena. In pioneering 
an unstructured approach to predictive drug candidate selection that brings 
together a vast array of previously disparate clinical and biophysical data, 
for example, Atomwise may fundamentally reshape the “ideas production 
function” in drug discovery.

If advances in deep learning do represent the arrival of a general purpose 
IMI, it is clear that there are likely to be very signifi cant long- run economic, 
social, and technological consequences. First, as this new IMI diff uses across 
many application sectors, the resulting explosion in technological oppor-
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tunities and increased productivity of research and development (R&D) 
seem likely to generate economic growth that can eclipse any near- term 
impact of AI on jobs, organizations, and productivity. A more subtle impli-
cation of this point is that “past is not prologue”: even if  automation over 
the recent past has resulted in job displacement (e.g., Acemoglu and Restrepo 
2017), AI is likely to have at least as important an impact through its ability to 
enhance the potential for “new tasks” (as in Acemoglu and Restrepo 2018).

Second, the arrival of  a general purpose IMI is a suffi  ciently uncom-
mon occurrence that its impact could be profound for economic growth 
and its broader impact on society. There have been only a handful of pre-
vious general purpose IMIs and each of these has had an enormous impact, 
not primarily through their direct eff ects (e.g., spectacles, in the case of the 
invention of optical lenses), but through their ability to reshape the ideas 
production function itself  (e.g., telescopes and microscopes). It would there-
fore be helpful to understand the extent to which deep learning is, or will, 
cause researchers to signifi cantly shift or reorient their approach in order to 
enhance research productivity (in the spirit of Jones [2009]).

Finally, if  deep learning does indeed prove to be a general purpose IMI, 
it will be important to develop institutions and a policy environment that 
is conductive to enhancing innovation through this approach, and to do so 
in a way that promotes competition and social welfare. A central concern 
here may be the interplay between a key input required for deep learning—
large unstructured databases that provide information about physical or 
logical events—and the nature of competition. While the underlying algo-
rithms for deep learning are in the public domain (and can and are being 
improved on rapidly), the data pools that are essential to generate predic-
tions may be public or private, and access to them will depend on orga-
nizational boundaries, policy, and institutions. Because the performance 
of  deep learning algorithms depends critically on the training data that 
they are created from, it may be possible, in a particular application area, 
for a specifi c company (either an incumbent or start-up) to gain a signifi -
cant, persistent innovation advantage through their control over data that is 
independent of  traditional economies of  scale or demand- side network 
eff ects. This “competition for the market” is likely to have several conse-

Table 4.1 General purpose technologies versus methods of invention

General purpose technology

NO YES

Invention of a 
method of invention

NO
Industrial robots (e.g., 
Fanuc R2000)

“Sense & react robots (e.g., 
autonomous vehicles)

YES Statically coded algorithmic 
tools (e.g., fMRI)

Deep learning
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quences. First, it creates incentives for duplicative racing to establish a data 
advantage in particular application sectors (say, search, autonomous driv-
ing, or cytology) followed by the establishment of durable barriers to entry 
that may be of  signifi cant concern for competition policy. Perhaps even 
more important, this kind of behavior could result in a balkanization of 
data within each sector, not only reducing innovative productivity within the 
sector, but also reducing spillovers back to the deep learning GPT sector, and 
to other application sectors. This suggests that the proactive development 
of institutions and policies that encourage competition, data sharing, and 
openness is likely to be an important determinant of economic gains from 
the development and application of deep learning.

Our discussion so far has been largely speculative, and it would be useful 
to know whether our claim that deep learning may be both a general purpose 
IMI and a GPT, while symbolic logic and robotics are probably not, have 
any empirical basis. We turn in the next section to a preliminary examination 
of the evolution of AI as revealed by bibliometric data, with an eye toward 
answering this question.

4.5 Data

This analysis draws upon two distinct data sets, one that captures a set of 
AI publications from Thompson Reuters Web of Science, and another that 
identifi es a set of AI patents issued by the US Patent and Trademark Offi  ce 
(USPTO). In this section, we provide detail on the assembly of these data 
sets and summary statistics for variables in the sample.

As previously discussed, peer- reviewed and public domain literature on 
AI points to the existence of three distinct fi elds within AI: robotics, learn-
ing systems, and symbol systems, each composed of numerous subfi elds. To 
track development of each of these using this data, we began by identifying 
the publications and patents falling into each of these three fi elds based on 
keywords. Appendix table 4A.1 lists the terms we used to defi ne each fi eld 
and identify the papers and patents belonging to it.2 In short, the robotics 
fi eld includes approaches in which a system engages with and responds to 
environmental conditions; the symbolic systems fi eld attempts to represent 
complex concepts through logical manipulation of  symbolic representa-
tions, and the learning systems fi eld processes data through analytical pro-
grams modeled on neurologic systems.

4.5.1 Publication Sample and Summary Statistics

Our analysis focuses on journal articles and book publications through 
the Web of Science from 1955 to 2015. We conducted a keyword search 
utilizing the keywords described in appendix table 4A.1 (we tried several 

2. Ironically enough, we relied upon human intelligence rather than machine learning to 
develop this classifi cation system and apply it to this data set.
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variants of these keywords and alternative algorithmic approaches, but this 
did not result in a meaningful diff erence in the publication set). We are able 
to gather detailed information about each publication, including publica-
tion year, journal information, topical information, as well as author and 
institutional affi  liations.

This search yields 98,124 publications. We then code each publication into 
one of the three main fi elds of AI, as described earlier. Overall, relative to an 
initial data set of 98,124, we are able to uniquely classify 95,840 publications 
as symbolic systems, learning systems, robotics, or “general” AI (we drop 
papers that involve combinations of these three fi elds). Table 4.2 reports the 
summary statistics for this sample.

 Of the 95,840 publications in the sample, 11,938 (12.5 percent) are clas-
sifi ed as symbolic systems, 58,853 (61.4 percent) as learning, and 20,655 
(21.6 percent) as robotics, with the remainder being in the general fi eld of 
“artifi cial intelligence.” To derive a better understanding of the factors that 
have shaped the evolution of AI, we create indicators for variables of interest 
including organization type (private versus academic), location type (US 
domestic versus international), and application type (computer science ver-
sus other application area, in addition to individual subject spaces, e.g., 
biology, materials science, medicine, physics, economics, etc.).

We identify organization type as academic if  the organization of one of 
the authors on the publication is an academic institution; 81,998 publica-
tions (85.5 percent) and 13,842 (14.4 percent) are produced by academic and 
private- sector authors, respectively. We identify publication location as US 
domestic if  one of the authors on the publication lists the United States as 
his or her primary location; 22,436 publications (25 percent of the sample) 
are produced domestically.

We also diff erentiate between subject matter. Forty- four percent of the 
publications are classifi ed as computer science, with 56 percent classifi ed as 
other applications. Summary statistics on the other applications are pro-
vided in table 4.3. The other subjects with the largest number of publica-
tions in the sample include telecommunications (5.5 percent), mathematics 

Table 4.2 Publication data summary statistics

  Mean  Std. dev.  Min.  Max.

Publication year 2007 6.15 1990 2015
Symbolic systems .12 .33 0 1
Learning systems .61 .48 0 1
Robotics .21 .41 0 1
Artifi cial intelligence .06 .23 0 1
Computer science .44 .50 0 1
Other applications .56 .50 0 1
US domestic .25 .43 0 1
International .75 .43 0 1
Observations  95,840       
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(4.2), neurology (3.8), chemistry (3.7), physics (3.4), biology (3.4), and medi-
cine (3.1).

 Finally, we create indicator variables to document publication quality 
including journal quality (top ten, top twenty- fi ve, and top fi fty journals 
by impact factor)3 and a count variable for cumulative citation counts. Less 
than 1 percent of publications are in a top ten journal, with 2 percent and 
10 percent in top twenty- fi ve and top fi fty journals, respectively. The average 
citation count for a publication in the sample is 4.9.

4.5.2 Patent Sample and Summary Statistics

We undertake a similar approach for gathering a data set of AI patents. 
We start with the public- use fi le of USPTO patents (Marco, Carley, et al. 
2015; Marco, Myers, et al. 2015), and fi lter the data in two ways. First, 
we assemble a subset of  data by fi ltering the USPTO Historical Master-
fi le on the US Patent Classifi cation System (USPC) number.4 Specifi cally, 
USPC numbers 706 and 901 represent “artifi cial intelligence” and “robots,” 
respectively. Within USPC 706, there are numerous subclasses including 
“fuzzy logic hardware,” “plural processing systems,” “machine learning,” 
and “knowledge processing systems,” to name a few. We then use the USPC 
subclass to identify patents in AI fi elds of symbolic systems, learning sys-
tems, and robotics. We drop patents prior to 1990, providing a sample of 
7,347 patents through 2014.

Second, we assemble another subset of AI patents by conducting a title 

Table 4.3 Distribution of publications across subjects

   Mean  Std. dev.  

Biology .034 .18
Economics .028 .16
Physics .034 .18
Medicine .032 .18
Chemistry .038 .19
Mathematics .042 .20
Materials science .029 .17
Neurology .038 .19
Energy .015 .12
Radiology .015 .12
Telecommunications .055 .23
Computer science .44 .50

 Observations  95,840    

3. The rankings are collected from Guide2Research, found here: http:// www .guide2research 
.com/ journals/.

4. We utilized data from the Historical Patent Data Files. The complete (unfi ltered) data sets 
from which we derived our data set are available here: https:// www .uspto .gov/ learning- and
- resources/ electronic- data- products/ historical- patent- data- fi les.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



The Impact of Artifi cial Intelligence on Innovation     131

search on patents, with the search terms being the same keywords used to 
identify academic publications in AI.5 This provides an additional 8,640 AI 
patents. We then allocate each patent into an AI fi eld by associating the rele-
vant search term with one of the overarching fi elds. For example, a patent 
that is found through the search term “neural network,” is then classifi ed as 
a “learning” patent. Some patents found through this search method will be 
duplicative of those identifi ed by USPC search, that is, the USPC class will 
be 706 or 901. We drop those duplicates. Together these two subsets create 
a sample of 13,615 unique AI patents. Summary statistics are provided in 
table 4.4.

 In contrast to the distribution of learning systems, symbolic systems, and 
robotics in the publication data, the three fi elds are more evenly distributed 
in the patent data: 3,832 (28 percent) learning system patents, 3,930 (29 per-
cent) symbolic system patents, and 5,524 (40 percent) robotics patents. The 
remaining patents are broadly classifi ed only as AI.

Using ancillary data sets to the USPTO Historical Masterfi le, we are able 
to integrate variables of interest related to organization type, location, and 
application space. For example, patent assignment data tracks ownership 
of patents across time. Our interest in this analysis relates to upstream inno-
vative work, and for this reason we capture the initial patent assignee by 
organization for each patent in our sample. This data enables the creation of 
indicator variables for organization type and location. We create an indica-
tor for academic organization type by searching the name of the assignee for 
words relating to academic institutions, for example, “university,” “college,” 

Table 4.4 Patent data summary statistics

  Mean  Std. dev.  Min.  Max.

Application year 2003 6.68 1982 2014
Patent year 2007 6.98 1990 2014
Symbolic systems .29 .45 0 1
Learning systems .28 .45 0 1
Robotics .41 .49 0 1
Artifi cial intelligence .04 .19 0 1
Computer science .77 .42 0 1
Other applications .23 .42 0 1
US domestic fi rms .59 .49 0 1
International fi rms .41 .49 0 1
Org. type academic .07 .26 0 1
Org. type private .91 .29 0 1
Observations  13,615       

5. We utilized data from the Document ID Dataset that is complementary to patent assign-
ment data available on the USPTO website. The complete (unfi ltered) data sets from which 
we derived our data set are available here: https:// www .uspto .gov/ learning- and- resources/ 
electronic- data- products/ patent- assignment- dataset.
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or “institution.” We do the same for private- sector organizations, searching 
for “corp.,” “business,” “inc.,” or “co.,” to name a few. We also search for 
the same words or abbreviations utilized in other languages, for example, 
“S.p.A.” Only 7 percent of  the sample is awarded to academic organiza-
tions, while 91 percent is awarded to private entities. The remaining patents 
are assigned to government entities, for example, the US Department of 
Defense.

Similarly, we create indicator variables for patents assigned to US fi rms 
and international fi rms, based on the country of the assignee. The inter-
national fi rm data can also be more narrowly identifi ed by specifi c country 
(e.g., Canada) or region (e.g., European Union). Fifty- nine percent of our 
patent sample is assigned to US domestic fi rms, while 41 percent is assigned 
to international fi rms. Next to the United States, fi rms from non- Chinese, 
Asian nations account for 28 percent of patents in the sample. Firms from 
Canada are assigned 1.2 percent of  the patents, and fi rms from China, 
0.4 percent.

Additionally, the USPTO data includes NBER classifi cation and subclas-
sifi cation for each patent (Hall, Jaff e, and Trajtenberg 2001; Marco, Carley, 
et al. 2015). These subclassifi cations provide some granular detail about 
the application sector for which the patent is intended. We create indicator 
variables for NBER subclassifi cations related to chemicals (NBER subclass 
11, 12, 13, 14, 15, 19), communications (21), computer hardware and soft-
ware (22), computer science peripherals (23), data and storage (24), business 
software (25), medical fi elds (31, 32, 33, and 39), electronics fi elds (41, 42, 
43, 44, 45, 46, and 49), automotive fi elds (53, 54, 55), mechanical fi elds (51, 
52, 59), and other fi elds (remaining). The vast majority of these patents (71 
percent) are in NBER subclass 22, computer hardware and software. Sum-
mary statistics of the distribution of patents across application sectors are 
provided in table 4.5.

Table 4.5 Distribution of patents across application sectors

   Mean  Std. dev. 

Chemicals .007 .08
Communications .044 .20
Computer hardware and software .710 .45
Computer peripherals .004 .06
Data and storage .008 .09
Business software .007 .09
All computer science .773 .42
Medical .020 .14
Electronics .073 .26
Automotive .023 .15
Mechanical .075 .26
Other .029 .16

 Observations  13,615    
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 4.6 Deep Learning as a GPT: An Exploratory Empirical Analysis

These data allow us to begin examining the claim that the technologies 
of deep learning may be the nucleus of a general purpose invention for the 
method of invention.

We begin in fi gures 4.1A and 4.1B with a simple description of the evolu-
tion over time of the three main fi elds identifi ed in the corpus of patents and 

Fig. 4.1A Publications by AI fi eld over time

Fig. 4.1B Patents by AI fi eld over time
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papers. The fi rst insight is that the overall fi eld of AI has experienced sharp 
growth since 1990. While there are only a small handful of papers (less than 
one hundred per year) at the beginning of the period, each of the three fi elds 
now generates more than one thousand papers per year. At the same time, 
there is a striking divergence in activity across fi elds: each start from a similar 
base, but there is a steady increase in the deep learning publications relative 
to robotics and symbolic systems, particularly after 2009. Interestingly, at 
least through the end of 2014, there is more similarity in the patterns for 
all three fi elds in terms of patenting, with robotics patenting continuing to 
hold a lead over learning and symbolic systems. However, there does seem 
to be an acceleration of learning- oriented patents in the last few years of the 
sample, and so there may be a relative shift toward learning over the last few 
years, which will manifest itself  over time as publication and examination 
lags work their way through.

 Within the publication data, there are striking variations across geogra-
phies. Figure 4.2A shows the overall growth in learning publications for the 
United States versus rest- of-world, and fi gure 4.2B maps the fraction of 
publications within each geography that are learning related. In the United 
States, learning is far more variable. Prior to 2000 the United States has a 
roughly equivalent share of learning- related publications, but the United 
States then falls signifi cantly behind, only catching up again around 2013. 
This is consistent with the suggestion in qualitative histories of  AI that 
learning research has had a “faddish” quality in the United States, with the 
additional insight that the rest of the world (notably Canada) seems to have 
taken advantage of this inconsistent focus in the United States to develop 
capabilities and comparative advantage in this fi eld.

Fig. 4.2A Academic institution publication fraction by AI fi eld
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 With these broad patterns in mind, we turn to our key empirical exercise: 
whether late in the fi rst decade of the twenty- fi rst century deep learning 
shifted more toward “application- oriented” research than either robotics or 
symbolic systems. We begin in fi gure 4.3 with a simple graph that examines 
the number of publications over time (across all three fi elds) in computer 
science journals versus application- oriented outlets. While there has actually 
been a stagnation (even a small decline) in the overall number of AI publi-
cations in computer science journals, there has been a dramatic increase in 
the number of AI- related publications in application- oriented outlets. By 
the end of 2015, we estimate that nearly two- thirds of all publications in AI 
were in fi elds beyond computer science.

 In fi gure 4.4 we then look at this division by fi eld. Several patterns are 
worthy of note. First, as earlier, we can see the relative growth through 2009 
of publications in learning versus the two other fi elds. Also, consistent with 
more qualitative accounts of  the fi elds, we see the relative stagnation of 
symbolic systems research relative to robotics and learning. But, after 2009, 
there is a signifi cant increase in application publications in both robotics and 
learning, but that the learning boost is both steeper and more long- lived. 
Over the course of just seven years, learning- oriented application publica-
tions more than double in number, and now represent just under 50 percent 
of all AI publications.6

These patterns are, if  anything, even more striking if  one disaggregates 

Fig. 4.2B Fraction of learning publications by US versus world

6. The precise number of publications for 2015 is estimated from the experience of the fi rst 
nine months (the Web of Science data run through September 30, 2015). We apply a linear 
multiplier for the remaining three months (i.e., estimating each category by 4/ 3).
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them by the geographic origin of  the publication. In fi gure 4.5, we chart 
rates of  publication in computer science versus applications for the United 
States as compared to the rest of  the world. The striking upward swing in 
AI application papers that begins in 2009 turns out to be overwhelmingly 
driven by publications ex United States, though US researchers begin a 
period of  catch-up at an accelerating pace toward the fi nal few years of  the 
sample.

Fig. 4.3 Publications in computer science versus application journals

Fig. 4.4 Publications in computer science versus application journals by AI fi eld
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 Finally, we look at how publications have varied across application sectors 
over time. In table 4.6, we examine the number of publications by applica-
tion fi eld in each of  the three areas of  AI across two three- year cohorts 
(2004– 2006 and 2013– 2015). There are a number of patterns of interest. 
First and most important, in a range of application fi elds including medi-
cine, radiology, and economics, there is a large relative increase in learning- 
oriented publications relative to robotics and symbolic systems. A number 
of other sectors, including neuroscience and biology, realize a large increase 
in both learning- oriented research as well as other AI fi elds. There are also 
some more basic fi elds such as mathematics that have experienced a relative 
decline in publications (indeed, learning- oriented publications in mathe-
matics experienced a small absolute decline, a striking diff erence relative 
to most other fi elds in the sample). Overall, though it would be useful to 
identify more precisely the type of  research that is being conducted and 
what is happening at the level of particular subfi elds, these results are con-
sistent with our broader hypothesis that, alongside the overall growth of 
AI, learning- oriented research may represent a general purpose technology 
that is now beginning to be exploited far more systematically across a wide 
range of application sectors. (See table 4.7.)

 Together, these preliminary fi ndings provide some direct empirical evi-
dence for at least one of  our hypotheses: learning- oriented AI seems to 
have some of the signature hallmarks of a general purpose technology. Bib-
liometric indicators of innovation show that it is rapidly developing, and is 
being applied in many sectors—and these application sectors themselves 
include some of the most technologically dynamic parts of the economy. 

Fig. 4.5 Learning publications in computer science versus applications by United 
States versus ROW
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This preliminary analysis does not trace out the important knowledge spill-
overs between innovation in the GPT and innovation and application sec-
tors, but it is probably far too early to look for evidence of this.

4.7  Deep Learning as a General Purpose Invention in the Method of 
Invention: Considerations for Organizations, Institutions, and Policy

With these results in mind, we now consider the potential implications for 
innovation and innovation policy if  deep learning is indeed a general pur-
pose technology (GPT) and/or a general purpose invention in the method 
of invention (IMI). If  deep learning is merely a GPT, it is likely to generate 
innovation across a range of applications (with potential for spillovers both 
back to the learning GPT and also to other application sectors), but will not 
itself  change the nature of the innovation production function. If  it is also 
a general purpose IMI, we would expect it to have an even larger impact 
on economy- wide innovation, growth, and productivity as dynamics play 
out—and to trigger even more severe short- run disruptions of labor markets 
and the internal structure of organizations.

Widespread use of deep learning as a research tool implies a shift toward 
investigative approaches that use large data sets to generate predictions for 
physical and logical events that have previously resisted systematic empirical 
scrutiny. These data are likely to have three sources: prior knowledge (as in 
the case of “learning” of prior literatures by IBM’s Watson), online transac-
tions (e.g., search or online purchasing behavior), and physical events (e.g., 
the output from various types of sensors or geolocation data). What would 
this imply for the appropriate organization of innovation, the institutions 
we have for training and conducting research over time, and for policy, par-
ticularly, as we think about private incentives to maintain proprietary data 
sets and application- specifi c algorithms?

Table 4.7 Herfi ndahl- Hirschman index for application sectors

 Application   H = PatShare2  

Chemical applications 153.09
Communications 140.87
Hardware and software 86.99
Computer science peripherals 296
Data and storage 366.71
Computer science business models 222
Medical applications 290.51
Electronic applications 114.64
Automotive applications 197.03
Mechanical applications 77.51

 Other  129.20  
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4.7.1 The Management and Organization of Innovation

Perhaps most immediately, the rise of  general purpose predictive ana-
lytics using large data sets seems likely to result in a substitution toward 
capital and away from labor in the research production process. Many types 
of R&D and innovation more generally are eff ectively problems of labor- 
intensive search with high marginal cost per search (Evenson and Kislev 
[1976], among others). The development of  deep learning holds out the 
promise of sharply reduced marginal search costs, inducing R&D organiza-
tions to substitute away from highly skilled labor toward fi xed cost invest-
ments in AI. These investments are likely to improve performance in existing 
“search- intensive” research projects, as well as to open up new opportuni-
ties to investigate social and physical phenomena that have previously been 
considered intractable or even as beyond the domain of systematic scientifi c 
and empirical research.

It is possible that the ability to substitute away from specialized labor 
and toward capital (that in principle could be rented or shared) may lower 
the “barriers to entry” in certain scientifi c or research fi elds—particularly 
those in which the necessary data and algorithms are freely available—while 
erecting new barriers to entry in other areas (e.g., by restricting access to 
data and algorithms). As of yet, there are few, if  any, organized markets for 
“trained” research tools or services based on deep learning, and few stan-
dards to evaluate alternatives. Our analysis suggests that the development 
of markets for shared AI services and the widespread availability of relevant 
data may be a necessary precursor to the broad adoption and dissemination 
of deep learning.

At the same time, the arrival of this new research paradigm is likely to 
require a signifi cant shift in the management of innovation itself. For ex-
ample, it is possible that the democratization of  innovation will also be 
accompanied by a lack of investment by individual researchers in special-
ized research skills and specialized expertise in any given area, reducing 
the level of theoretical or technical depth in the workforce. This shift away 
from career- oriented research trajectories toward the ability to derive new 
fi ndings based on deep learning may undermine long- term incentives for 
breakthrough research that can only be conducted by people who are at the 
research frontier. There is also the possibility that the large- scale replace-
ment of  skilled technical labor in the research sector by AI will “break 
science” in some fi elds by disrupting the career ladders and labor markets 
that support the relatively long periods of training and education required 
in many scientifi c and technical occupations.

Finally, it is possible that deep learning will change the nature of scien-
tifi c and technical advance itself. Many fi elds of science and engineering are 
driven by a mode of inquiry that focuses on identifying a relatively small 
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number of causal drivers of underlying phenomena built upon an under-
lying theory (the parsimony principle as restated by Einstein states that 
theory should be “as simple as possible but no simpler.”) However, deep 
learning off ers an alternative paradigm based on the ability to predict com-
plex multicausal phenomena using a “black box” approach that abstracts 
away from underlying causes, but does allow for a singular prediction index 
that can yield sharp insight. De- emphasizing the understanding of causal 
mechanisms and abstract relationships may come at a cost: many major 
steps forward in science involve the ability to leverage an understanding 
of  “big picture” theoretical structure to make sense of, or recognize the 
implications of, smaller discoveries. For example, it is easy to imagine a 
deep learning system trained on a large amount of x-ray diff raction data 
quickly “discovering” the double helix structure of DNA at very low mar-
ginal cost, but it would likely require human judgment and insight about a 
much broader biological context to notice that the proposed structure sug-
gests a direct mechanism for heredity.

4.7.2 Innovation and Competition Policy and Institutions

A second area of impact, beyond the organization of individual research 
projects or the nature of what counts as “science” in a particular fi eld, will 
be on the appropriate design and governance of institutions governing the 
innovation process. Three implications stand out.

First, as discussed earlier, research over the past two decades has empha-
sized the important role played by institutions that encourage cumulative 
knowledge production through low- cost independent access to research 
tools, materials, and data (Furman and Stern 2011; Murray and O’Mahony 
2007). However, to date there has only been a modest level of attention to 
the questions of  transparency and replicability within the deep learning 
community. Grassroots initiatives to encourage openness organized through 
online hubs and communities support knowledge production. But it is useful 
to emphasize that there is likely to be a signifi cant gap between the private 
and social incentives to share and aggregate data—even among academic 
researchers or private- sector research communities. One implication of this 
divergence may be that to the degree any single research result depends on 
the aggregation of data from many sources, it will be important to develop 
rules of credit and attribution, as well as to develop mechanisms to replicate 
the results.

This implies that it will be particularly important to pay attention to 
the design and enforcement of formal intellectual property rights. On the 
one hand, it will be important to think carefully about the laws that cur-
rently surround the ownership of data. Should the data about, for example, 
my shopping and travel behavior belong to me or to the search engine or 
ride- sharing company that I use? Might consumers have a strong collective 
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interest in ensuring that these data (suitably blinded, of course) are in the 
public domain so that many companies can use them in the pursuit of inno-
vation?

On the other hand, the advent of deep learning has signifi cant implica-
tions for the patent system. Though there has so far been relatively little 
patenting of deep learning innovations, historical episodes such as the dis-
covery and attempted wholesale patenting of  express sequence tags and 
other kinds of genetic data suggests that breakthroughs in research tools—
often combined with a lack of capacity at patent offi  ces and confl icting court 
decisions—can result in long periods of uncertainty that has hampered the 
issuing of new patents, and this in turn has led to lower research productiv-
ity and less competition. Deep learning also presents diffi  cult questions of 
legal doctrine for patent systems that have been built around the idea of 
creative authors and inventors. For example, “inventorship” has a specifi c 
meaning in patent law, with very important implications for ownership and 
control of the claimed invention. Can an AI system be an inventor in the 
sense envisaged by the drafters of the US Constitution? Similarly, standards 
for determining the size of the inventive step required to obtain a patent 
are driven by a determination of whether the claimed invention would or 
would not be obvious to a “person having ordinary skill in the art.” Who 
this “person” might be, and what constitutes “ordinary skill” in an age of 
deep learning systems trained on proprietary data are questions well beyond 
the scope of this chapter.

In addition to these traditional innovation policy questions, the pros-
pect for deep learning raises a wide variety of other issues, including issues 
relating to privacy, the potential for bias (deep learning has been found to 
reinforce stereotypes already present in society), and consumer protection 
(related to areas such as search, advertising, and consumer targeting and 
monitoring). The key is that, to the extent that deep learning is general 
purpose, the issues that arise across each of these domains (and more) will 
play out across a wide variety of sectors and contexts and at a global rather 
than local level. Little analysis has been conducted that can help design 
institutions that will be responsive at the level of application sectors that 
also internalize the potential issues that may arise with the fact that deep 
learning is likely to be a GPT.

Finally, the broad applicability of deep learning (and possibly robotics) 
across many sectors is likely to engender a race within each sector to establish 
a proprietary advantage that leverages these new approaches. As such, the 
arrival of deep learning raises issues for competition policy. In each appli-
cation sector there is the possibility of fi rms that are able to establish an 
advantage at an early stage, and in doing so position themselves to be able to 
generate more data (about their technology, about customer behavior, about 
their organizational processes), and will be able to erect a deep- learning- 
driven barrier to entry that will ensure market dominance over at least the 
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medium term. This suggests that rules ensuring data accessibility are not 
only a matter of  research productivity or aggregation, but also speak to 
the potential to guard against lock-in and anticompetitive conduct. At the 
present moment there seem to be a large number of individual companies 
attempting to take advantage of AI across a wide variety of domains (e.g., 
there are probably more than twenty fi rms engaging in signifi cant levels of 
research in autonomous vehicles, and no fi rm has yet to show a decisive 
advantage), but this high level of activity likely refl ects an expectation for 
the prospects for signifi cant market power in the future. Ensuring that deep 
learning does not enhance monopolization and increase barriers to entry 
across a range of sectors will be a key topic going forward.

4.8 Concluding Thoughts

The purpose of this exploratory chapter has not been to provide a sys-
tematic account or prediction of the likely impact of AI on innovation, nor 
clear guidance for policy or the management of innovation. Instead, our 
goal has been to raise a specifi c possibility—that deep learning represents a 
new general purpose invention of a method of invention—and to draw out 
some preliminary implications of that hypothesis for management, institu-
tions, and policy.

Our preliminary analysis highlights a few key ideas that have not been 
central to the economics and policy discussion so far. First, at least from the 
perspective of innovation, it is useful to distinguish between the signifi cant 
and important advances in fi elds such as robotics from the potential of a 
general purpose method of invention based on application of multilayered 
neural networks to large amounts of digital data to be an invention in the 
method of invention. Both the existing qualitative evidence and our pre-
liminary empirical analysis documents a striking shift since 2009 toward 
deep learning- based application- oriented research that is consistent with 
this possibility. Second, and relatedly, the prospect of a change in the innova-
tion process raises key issues for a range of policy and management areas, 
ranging from how to evaluate this new type of science to the potential for 
prediction methods to induce new barriers to entry across a wide range of 
industries. Proactive analysis of the appropriate private and public policy 
responses toward these breakthroughs seems like an extremely promising 
area for future research.
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Appendix

Table 4A.1 Artifi cial intelligence keyword allocation

Symbols  Learning  Robotics

Natural language processing Machine learning Computer vision
Image grammars Neural networks Robot
Pattern recognition Reinforcement learning Robots
Image matching Logic theorist Robot systems
Symbolic reasoning Bayesian belief  networks Robotics
Symbolic error analysis Unsupervised learning Robotic
Pattern analysis Deep learning Collaborative systems
Symbol processing Knowledge representation and reasoning Humanoid robotics
Physical symbol system Crowdsourcing and human computation Sensor network
Natural languages Neuromorphic computing Sensor networks
Pattern analysis Decision- making Sensor data fusion
Image alignment Machine intelligence Systems and control theory
Optimal search Neural network Layered control systems
Symbolic reasoning
Symbolic error analysis     
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Comment Matthew Mitchell

In their very interesting chapter, Cockburn, Henderson, and Stern make the 
case that artifi cial intelligence (AI) might serve as a general purpose tech-
nology in the production of innovations. My discussion centers on what this 
might mean for policy, and especially policies surrounding intellectual prop-
erty (IP) protection. In particular, AI is likely to bring up new questions that 
are familiar from old IP debates about the balance between rewarding inno-
vation and fears that this protection might in turn deter future innovation.

Is AI a Technology for Innovation or Imitation?

It is not obvious whether AI is a general purpose technology for innova-
tion or a very effi  cient method of  imitation. The answer has direct rele-
vance for policy. A technology that made innovation cheaper would often 
(but not always) imply less need for strong IP protection, since the balance 
would swing toward limiting monopoly power and away from compensating 
innovation costs. To the extent that a technology reduces cost of imitation, 
however, it typically necessitates greater protection.

New technology is often useful for both innovation and imitation. For 
instance technologies like plastic molds, which can off er the possibility of 
new designs and therefore foster innovation, also lead to greater possibili-
ties for reverse engineering. Machine learning is, in a sense, a sophisticated 
sort of mimicking; it sees what “works” (by some criterion) and fi nds ways 
to exploit that relationship. Therefore it seems that AI might be a general 
purpose technology for either innovation or imitation.

Consider a news aggregator. Many of these aggregators work because 
of some form of machine learning; they match the user to news stories that 
are predicted to be of interest. This is clearly a service that generates value, 
and would not exist in anything like its realized form in the absence of the 
underlying AI technology. But some news sites have argued that this con-
stitutes infringement of their copyright. Semantically there is a question: Is 
the aggregator technology an innovation or is it imitation?
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