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5.1 Introduction

While lacking a universally agreed upon definition, precision medicine is 
broadly understood to be an approach to disease treatment and prevention 
that takes into account variability in environment, lifestyle, and genes for 
each person.1 Although the concept of  targeted interventions for certain 
types of patients has a long history across the practice of medicine, recent 
technological advancements in genetic sequencing, large- scale data storage 
and analysis, and computing power have made it increasingly possible to 
tailor the development and utilization of medical technologies. This possi-
bility has drawn attention and funding from beyond traditionally interested 
parties such as firms and investors in the biotech and pharmaceutical indus-
tries. For example, in early 2015, the White House announced a “bold new 
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research effort to revolutionize how we improve health and treat disease,” 
and launched a Precision Medicine Initiative with a $215 million investment 
in 2016.2 Other countries such as France and China have also announced 
major public investments ranging from the equivalent of several hundreds 
of millions to several billions of US dollars over the coming years. Major 
investments to advance precision medicine have also been announced by 
a number of US research institutions such as Harvard University and the 
University of California, San Francisco.3

Below, we consider a subset of the broad set of practices encompassed 
by precision medicine and focus specifically on the clinical development of 
precision medicines, that is, those therapies focused on biomarker- defined 
patient subgroups. Precision medicines—therapies that rely on genetic, epi-
genetic, and protein biomarkers—can help patients by using identifiable 
biological features (biomarkers) to define disease subtypes. The technol-
ogy to rapidly and accurately sequence genes has increasingly facilitated an 
understanding of the “- omic” (i.e., genomic and proteomic) characteristics 
of disease in recent years. This, in turn, has broadened the scope for drug 
development focusing on targeted therapies for newly identifiable subgroups 
of  patients. Notably, the public efforts noted above have lagged private 
endeavors in this area: the pharmaceutical industry4 has already commer-
cialized almost 150 drugs with pharmacogenomic information in their label, 
according to the US Food and Drug Administration (FDA),5 suggesting 
there are already substantial economic incentives for private firms to invest 
in the development of precision medicines.

We focus on precision medicines because in theory they allow for a bet-
ter match between individuals with specific disease subtypes and medica-
tions that are more effective for those subtypes. While the science underlying 
these medicines is broadly interesting and is the subject of a growing body 
of research, the ability to (more) precisely match patients and medications 
based on likely efficacy also fundamentally changes many of the economic 
incentives that pharmaceutical manufacturers face in the drug develop-
ment process. Given the growing importance of these medicines, changing 

2. https:// www .whitehouse .gov /the -  press -  office /2015 /01 /30 /fact -  sheet -  president -  obama -  s 
-  precision -  medicine -  initiative.

3. http:// solidarites -  sante .gouv .fr /IMG /pdf /genomic _medicine _france _2025 .pdf; https:// 
www .genomeweb .com /clinical -  translational /france -  plans -  invest -  670m -  genomics -  personalized 
-  medicine; https:// www .whitehouse .gov /the -  press -  office /2015 /01 /30 /fact -  sheet -  president 
-  obama -  s -  precision -  medicine -  initiative; http:// www .nature .com /news /china -  embraces 
-  precision -  medicine -  on -  a -  massive -  scale -  1 .19108; http:// www .hbs .edu /news /releases /Pages 
/kraft -  family -  foundation -  establishes -  endowment .aspx; https:// www .ucsf .edu /news /2015 /08 
/131341 /new -  center -  will -  advance -  life -  saving -  genome -  based -  diagnostic -  tools.

4. Throughout the chapter, reference to the pharmaceutical industry and pharmaceutical 
manufacturers refers to all firms developing drugs to treat medical conditions, including phar-
maceutical and biotechnology firms.

5. http:// www .personalizedmedicinecoalition .org /Userfiles /PMC -  Corporate /file /pmc 
_personalized _medicine _by _the _numbers .pdf.
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incentives can have far- reaching implications on the entire pharmaceutical 
industry.

Perhaps most importantly, the ability to develop more targeted prod-
ucts may influence the decision process that determines which new drugs 
firms attempt to bring to market. These decisions will then subsequently be 
reflected in the equilibrium prices and availability of new pharmaceutical 
products. For example, almost by definition, precision medicines tend to tar-
get smaller patient populations than more traditional medicines. This may 
mean that manufacturers will shift their attention to the subset of products 
able to command high(er) prices, all else equal—and thus are more likely 
to justify the fixed costs of developing the medication. These higher- priced 
products are likely to include those with large clinical benefits, which may be 
more apparent in readily identifiable patient populations. In addition, since 
these drugs are more efficacious within a smaller patient population, the 
marginal customer is expected to have a greater willingness to pay, allowing 
for higher profit- maximizing prices on the part of manufacturers. These two 
factors together provide an economic rationale for the broadly higher prices 
observed for precision medicines.

Economic incentives could also, all else held equal, result in some products 
no longer being brought to market because manufacturers do not believe 
they can reasonably expect to recuperate their research and development 
(R&D) expenditures from the relatively small target patient populations. 
For example, with increasingly small patient populations we might expect a 
decrease in brand- brand competition for particular patients as new poten-
tial entrants find the prospects of competing for a small(er) market to be 
an unattractive economic opportunity. Perhaps more concerning for price 
competition, a similar dynamic could exist for the eventual generic and bio-
similar markets for precision medicines, which would extend the period of 
pricing power far beyond the period of patent protection.

Potentially counteracting this effect is manufacturers’ ability to create 
identifiable subgroups of  patients based on their willingness to pay, so- 
called indication- based pricing. Such an ability on the part of manufacturers 
increases the scope for future price discrimination as manufacturers could, 
theoretically, more easily charge higher prices for high- value indications and 
lower prices for indications or patients where therapies will work less well 
(Chandra and Garthwaite 2017). This would (weakly) increase the profits 
from any particular product with an existing biomarker and increase the 
subset of early stage products that pharmaceutical manufacturers would 
consider as candidates for commercialization.

In addition, greater expected therapeutic benefit may result in smaller 
and/or shorter clinical trials because fewer patients would be needed and/
or shorter periods of time would be sufficient for demonstrating statistically 
significant improvements in outcomes. Smaller and/or faster trials would 
both decrease the costs of bringing a drug to market and could increase the 
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drug’s effective patent length,6 increasing the set of pipeline drugs considered 
as potentially worthwhile R&D investments. These factors together, along 
with innovations in clinical trial designs—such as adaptive platform trials, 
which are particularly well- suited to precision medicine approaches—could 
counteract some of the negative entry incentives that might be created by 
small patient populations, however the costs associated with trial recruit-
ing are likely to be higher than traditional “all- comers” trials that include a 
broad set of patients with a given disease.

Despite the potential for precision medicines to both reduce some of the 
costs of drug development and also increase the patient value created by 
new products, markets for some medicines may still be so small that private 
firms will lack the necessary incentives for bringing therapies to market. 
This would create a potential role for government funding of research in 
these areas from sources such as the National Institutes of Health (NIH).

Finally, the emergence of a new technology could create opportunities for 
additional specialization of firms into different stages of the development 
process and/or create new markets for mergers and acquisitions (M&A) 
among pharmaceutical companies. This could, for example, lead to early 
stage drug discovery being increasingly pursued by a subset of highly spe-
cialized (e.g., small, research- focused) firms. More generally, it is possible 
that the emergence of precision medicines will shift the division of labor 
between small biotechnology companies and large pharmaceutical compa-
nies across different stages of the R&D process.

To help understand this collection of potential economic implications of 
precision medicines, we aim to provide a detailed characterization of the 
existing drug development efforts in this area. We begin at a broad level by 
examining the aggregate patterns in development efforts of likely precision 
medicines (LPMs), those pipeline drugs whose clinical trials have signa-
ture features of  precision medicine R&D. We identify and report on the 
frequency of clinical trials for such products by therapeutic area and over 
time. Since cancers represent a set of diseases in which precision therapies 
are already successfully used, and since cancer applications of  precision 
medicine are expected to grow rapidly over the coming years, we separately 
characterize cancer LPMs. Understanding the nature of these innovations 
provides first- order information on the wide- ranging health care spending 
implications of these emerging medications.

6. Patent life for a drug in the United States is generally twenty years from the date the 
application is filed, and manufacturers can file a patent application any time before or during a 
drug’s development process. Therefore, the time that a drug spends in clinical trials (i.e., before 
the drug can be marketed) is typically counted against the twenty- year patent life. Market-
ing exclusivity is different from patent life and is granted by the FDA upon drug approval. 
Exclusivity typically lasts for five years, though there are extensions to exclusivity for certain 
cases, such as orphan drugs and pediatric indications. (https:// www .fda .gov /downloads /drugs 
/developmentapprovalprocess /smallbusinessassistance /ucm447307 .pdf).
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We then examine other aspects of clinical trials that provide additional 
insight into the economic mechanisms of drug development that are shaping 
the nature of innovation in this area. We consider the characteristics (e.g., 
geography, indication, sponsorship) of clinical research between LPM ver-
sus non- LPM trials over the years covered in our data. Finally, we consider 
the types of firms pursuing clinical trials in LPMs, considering how LPM 
R&D activities have evolved over recent years.

5.2 Precision Medicines and the Drug Development Process

As discussed above, we focus here on the development of  precision 
medicines—those products that use biomarkers to target particular sub-
groups of patients. To better understand how these products are defined 
and developed, we begin by providing some background information on 
the science of biomarkers and their use by various economic actors in the 
drug development process.

5.2.1 Precision Medicines and Biomarkers

The FDA defines a “biomarker” as “a characteristic that is objectively 
measured and evaluated as an indicator of  normal biological processes, 
pathogenic processes, or biological responses to a therapeutic intervention.”7 
A familiar example can be seen in the common medical practice of using 
glycated hemoglobin (HbA1c), an indicator of average blood glucose levels 
over time, as a measure of the effectiveness of a therapeutic agent in con-
trolling diabetes. In this example, the biomarker (which indicates therapeu-
tic efficacy) is HbA1c. However, biomarkers can also be used to carve out 
patient subtypes of diseases, as a treatment may work differently in patients 
who vary in their biomarker subtypes. In this case, a biomarker can be used 
predictively to determine ex ante how likely a given patient is to benefit from 
a therapy. For example, among patients with non- small cell lung cancer, 
those with the ALK (anaplastic lymphoma kinase) gene mutation will ben-
efit more from therapies like alectinib (Alecensa) than patients without this 
mutation. Similarly, the cystic fibrosis transmembrane conductance regula-
tor (CFTR) modulator ivacaftor (Kalydeco) has been approved for people 
with cystic fibrosis (CF) who have at least one of thirty- eight CF mutations 
out of more than 1,700 mutations in the gene that causes the disease. This 
amounts to approximately 3,500 potential patients in the United States.8

Many of  the biomarkers that are associated with the use of  precision 

7. https:// www .fda .gov /Drugs /NewsEvents /ucm424545 .htm.
8. Since ivacaftor (Kalydeco) was initially approved in 2012 for patients with the G551D 

mutation, the FDA has subsequently approved its use for patients with any one of thirty- eight 
mutations. According to the Cystic Fibrosis Foundation, recent approvals in May 2017 and 
August 2017 added an estimated 900 and 600 patients in the United States to the estimated 2,000 
who were already eligible for treatment with ivacaftor. (https:// www .cff .org /News).
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medicines are genomic in nature. The FDA defines a genomic biomarker 
as “a measurable DNA and/or RNA characteristic that is an indicator of 
normal biologic processes, pathogenic processes, and/or response to thera-
peutic or other interventions” and can be a measurement of the expression, 
function, or regulation of a gene (FDA 2008). In recent years, there have 
been large- scale public gene sequencing efforts—for example, the NIH’s 
funding of The Cancer Genome Atlas.9 At the same time, a host of new 
genomics companies have sprung up providing genetic sequencing technol-
ogies, including both software and hardware. An early 2017 report found 
that companies in genomics and sequencing raised more money in 2016 than 
any other category of digital health companies (Rock Health 2017).

In response to the growing therapeutic market and the scientific and 
regulatory knowledge needed to commercialize such technologies, public- 
funding organizations and regulators have joined forces to harmonize lan-
guage around biomarkers; in 2015, the joint leadership council of the FDA 
and NIH identified “the harmonization of terms used in translational sci-
ence and medical product development . . . with a focus on terms related 
to study endpoints and biomarkers” as a priority need. One product of 
this effort was the publication of the BEST (Biomarkers, EndpointS, and 
other Tools) Resource in December 2016 (FDA and NIH 2016). Appendix 
A (http:// www .nber .org /data -  appendix /c13994 /appendix .pdf) lists the bio-
marker definitions established to date by the FDA- NIH Biomarker Working 
group.

Yet these broad discussions about biomarkers often fail to differentiate 
among a diverse set of  biomarker applications, each of  which may have 
different economic implications. Biomarkers can reveal useful information 
about disease diagnosis and prognosis. They can also be used to predict 
the treatment efficacy or toxicity of a therapy, serve as markers of disease 
progression, and can serve as auxiliary (or so- called surrogate) endpoints in 
clinical trials. Further, some biomarkers can be used in more than one way, 
while others have just one known role.10

Other work has discussed how different parties in the US health care 
system are (or are not) incentivized to develop biomarkers—including dis-
covery and establishment (see, e.g., Stern, Alexander, and Chandra 2018). 
While all of these applications of biomarkers have the potential to shape the 
practice of personalized medicine and may help improve drug development 
and clinical practice, only a small subset will have the potential to assist in 
the development of precision medicines, those therapies targeted at specific 
patient populations who are more likely to benefit. For the development of 

9. https:// cancergenome .nih .gov.
10. Biomarkers come in many types (genomic, proteomic, cellular, biochemical, structural, 

etc.) and can take on a range of roles (uses) in both drug development and clinical practice. 
These are explained below and listed in tables 5.2 and 5.3.
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precision medicines, it is useful to consider which subset of biomarkers are 
likely to be of value to pharmaceutical innovators in bringing new therapies 
to market—either because the use of biomarkers will lead to a higher prob-
ability of drug approval or higher expected profits, given approval. In both 
cases, these tend to be the types of biomarkers that can be used for diagnosis 
and prognosis as well as predictive biomarkers, which are those that can be 
“used to identify individuals who are more likely than similar individuals 
without the biomarker to experience a favorable or unfavorable effect from 
exposure to a medical product” (FDA- NIH 2016). It is these latter groups of 
biomarkers—and the clinical trials driven by their use—that we specifically 
consider in the empirical analysis below.

A key opportunity in precision medicine is therapeutic innovation. As we 
improve our understanding of the genetic and cellular basis of disease, it will 
be possible to use genetic and protein biomarkers to classify patients into 
increasingly more specific subtypes where specific medicines will be more 
effective. In addition, biomarkers that can serve as surrogate endpoints can 
lead to faster completion of clinical trials, which may influence decisions 
about whether to pursue treatments for specific diseases (Budish, Roin, and 
Williams 2015). However, the development of drugs that rely on biomarkers 
can also introduce challenges to the traditional clinical trial process, such 
as increased difficulty in trial recruitment due to smaller and harder- to- find 
target patient populations. Additionally, trial design and execution can be 
significantly more complex when a companion diagnostic (used to mea-
sure and/or identify the biomarker itself ) needs to be approved alongside 
the drug (Fridlyand et al. 2013). Regardless of the specific application, an 
increase in the use of biomarkers has the potential to markedly change the 
development and approval process for pharmaceutical innovation.

5.2.2 The Drug Development Pipeline

To describe the drug development pipeline for precision medicines, we 
characterize all phases of development- oriented clinical trials for new drug 
candidates over twenty- two recent years. Clinical trials oriented toward drug 
development typically consist of three main phases, which commence fol-
lowing a manufacturer’s successful completion of preclinical studies and 
submission of an Investigational New Drug (IND) application. Phase I is 
primarily designed to assess product safety and appropriate dosage. Phase I 
trials run for several months and typically include 20–100 healthy volunteers 
or individuals with the target disease. Phase II trials are much larger, enroll-
ing up to several hundred individuals with the target disease and typically 
lasting between several months to two years. Phase II trials are intended to 
study drug efficacy and side effects. Phase III trials—usually the final stage 
of premarket clinical research—are the largest, enrolling anywhere from a 
few hundred to a few thousand individuals with the target disease. These 
trials are designed to study clinical efficacy and to monitor and collect data 

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



122    Amitabh Chandra, Craig Garthwaite, and Ariel Dora Stern

on adverse reactions to new drugs. Sometimes also referred to as “pivotal 
studies,” Phase III trials typically take one to four years to run, but can take 
far longer (or shorter) depending on the normal progression of the disease 
studied.11 Once Phase III results are available, manufacturers submit a New 
Drug Application (NDA) or Biologics License Application (BLA) to the 
FDA that includes the full set of results from the product’s preclinical and 
clinical studies. The FDA then has up to ten months to review the applica-
tion and determine whether to grant marketing approval.12

5.2.3 The Role of Major Pharmaceutical R&D Actors

Clinical trials can be funded by private companies—both small privately 
financed and large publicly listed organizations—as well as by universities/
academic medical centers, and by public actors such as the NIH. The latter 
has historically been more focused on early stage research, with a particular 
focus on basic science.13 This focus stems from the economic role of the NIH 
as not only the world’s largest funder of biomedical research (with nearly 
$32.3 billion invested in 2016),14 but also a provider of public goods in the 
form of investments in basic research.15

How might we expect patterns of investment to differ among LPM tri-
als? The LPM trials may be more innovative and closer to the frontier of 
biomedical research, a fact that should increase their likelihood of being 
supported by a competitive research grant. On the other hand, in many 
cases, these trials are sponsored by for- profit companies looking to com-
mercialize targeted therapies, which can potentially be sold at higher prices, 
making even small markets more financially attractive (Stern, Alexander, 
and Chandra 2017). In this case, private market interest in R&D projects 
for LPMs may amplify any additional propensity for such projects to receive 

11. https:// www .fda .gov /ForPatients /Approvals /Drugs /ucm405622 .htm.
12. In recent decades, the FDA has introduced several expedited approval programs for drugs 

intended to treat serious conditions. The “Fast Track” designation allows for frequent meetings 
with an FDA review team and is for drugs for which there is evidence of addressing an unmet 
medical need or treating an infectious disease. The “Breakthrough Therapy” designation is 
given for drugs that have preliminary clinical evidence indicating substantial improvement over 
available therapies and guarantees intensive guidance from the FDA as early as Phase I, while 
also providing several opportunities for expedited and rolling review of results. The “Acceler-
ated Approval” pathway is used for drugs that demonstrate an effect on a surrogate endpoint 
that is reasonably likely to predict clinical benefit and provides the potential for approval based 
on that surrogate endpoint or an intermediate clinical endpoint. Finally, “Priority Review” 
requires the FDA to review marketing applications within six months rather than the standard 
ten, and is available in a number of  circumstances. https:// www .fda .gov /downloads /Drugs 
/Guidances /UCM358301 .pdf.

13. Therefore, to the extent NIH- funded studies lead to drug development projects, one 
would expect NIH support to be more likely to appear in the context of earlier- stage clinical 
trials. https:// nexus .od .nih .gov /all /2016 /03 /25 /nihs -  commitment -  to -  basic -  science/.

14. https:// www .hhs .gov /about /budget /budget -  in -  brief /nih /index .html.
15. The stated mission of the NIH is “to seek fundamental knowledge about the nature and 

behavior of living systems and the application of that knowledge to enhance health, lengthen 
life, and reduce illness and disability.”
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other sources of funding. Further, as trials target increasingly specific sub-
populations of patients, the operational costs and complexity of running 
clinical trials may increase, either of which could further shift small com-
panies toward specializing in early stage R&D activities and letting larger, 
more established (e.g., publicly listed) companies focus on the final stages 
of regulatory approval and product commercialization. We study the role 
played by large firm actors in the development of LPMs and ask if  these 
roles have changed over recent decades.

5.3 The Economics of Precision Medicine

As previously noted, not all biomarker uses are associated with precision 
medicines. Here, we outline some simple economics of precision medicine to 
better understand how and why biomarkers are important for understand-
ing the potential future of the pharmaceutical market.

Biomarkers that constitute surrogate endpoints help manufacturers by 
speeding up clinical trials—for example, through the use of the FDA’s accel-
erated approval process, whereby a product can be approved on the basis of 
intermediate patient outcomes that are a good proxy for a therapy’s ultimate 
effectiveness.16 This increase in the speed of clinical trials may provide the 
incentive for pharmaceutical manufacturers to target drugs for different 
conditions, thus potentially bringing new innovation to the market (Budish, 
Roin, and Williams 2015). Conditional on approval, however, such drugs 
may be priced lower because the evidence base for their approval was less 
certain.17 For the most part, the effect of the types of biomarkers that can 
be used as surrogate trial endpoints has been and is likely to remain limited 
to changes in the length of the drug development process (via the ability to 
run shorter clinical trials).18

In contrast, biomarkers that predict treatment benefit (by defining the 
subset of  patients who are most appropriate for therapy) can have far- 
reaching consequences. These include the ability to run faster trials, since a 
therapeutic effect will be easier to detect as a result of the greater putative 
efficacy in the indicated population, as well as a tendency to change expected 
market sizes once the frequency of that biomarker in the broader disease 
population is known. Further, as we have noted elsewhere, such biomark-
ers could facilitate indication- based pricing, which could expand access to 

16. https:// www .fda .gov /drugs /resourcesforyou /healthprofessionals /ucm313768 .htm.
17. This may be particularly true, for example, in cases where precision medicines are 

approved based on limited data and/or surrogate endpoints. Additional evidence substantiat-
ing their benefit on actual patient outcomes is likely to be required before clinicians and health 
organizations adopt these medications and reimbursement levels are determined (Dzau and 
Ginsburg 2016).

18. For a detailed discussion of how the use of surrogate endpoints impacts drug develop-
ment incentives, see Budish, Roin, and Williams (2015).
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some patients, but would also mean that higher prices could be charged 
for patients with a biomarker that indicates the drug will be more effective 
(Chandra and Garthwaite 2017).

In this setting, biomarkers can facilitate a drug market being segmented 
into identifiable groups based on the expected efficacy of the product, and 
as a result a segmentation of patients by willingness to pay for the product. 
When pharmaceutical manufacturers are able to charge only a single price, 
the existence of known, distinct patient subgroups would effectively allow 
firms to choose which patients to serve. For example, where the popula-
tion receiving lower (but positive) value is quite large, the manufacturer 
may choose to set a low price and sell to a larger market. However, when 
the lower- value population is quite small, the manufacturer may instead 
choose a higher price and forgo sales to those patients who derive the least 
value from the product. Economists will note that this represents the clas-
sic monopolist’s dilemma, where pharmaceutical firms trade margins for 
quantity.

For this reason, firms often attempt to find ways to sell the same product 
to different customers based on their valuation—a strategy known as price 
discrimination. If  firms develop a mechanism for charging indication- based 
prices, the existence of well- established, readily identifiable biomarkers will 
become an important tool for facilitating price discrimination. When such 
price discrimination is feasible, the most extreme outcome is that a manu-
facturer would be able to capture all of the surplus as profits. Depending 
on the distribution of patients, this could (but need not) expand access to 
lower- value indications.

In a world where a product with a biomarker exists, an indication- 
based pricing strategy weakly increases the profits of  firms. As a result, 
the expanded use of  biomarkers has the potential to provide additional 
incentives to develop products that would otherwise not be commercial-
ized. The broad contours of this type of price discrimination are illustrated 
through a fictional example presented in appendix B (http:// www .nber .org 
/data -  appendix /c13994 /appendix .pdf).19

However, the profit implications of the decision to pursue a biomarker- 
based product in the first place is more complicated. First, it is important to 
note that the assumption that price discrimination is weakly profit maximiz-
ing for an innovator firm is based on the fact that this firm always has the 
ability to abandon a price discrimination scheme if  it proves to be unprofit-
able. However, a firm cannot as easily discard information about the efficacy 
of a product that is commercialized through a biomarker- driven trial. Thus, 

19. This figure depicts the monetary value of  a hypothetical product for three different 
indications (e.g., patient populations defined by the presence of biomarkers), the size of the 
patient populations affected by each indication, and the prices charged for the product under 
different pricing regimes.
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depending on the distribution of customers and the relative efficacy of the 
drug across subpopulations, it could be that ex post a firm finds that the 
use of a biomarker as part of its R&D strategy decreases the profits from 
a drug compared to a counterfactual where the drug was only priced based 
on the average efficacy of the product in the broad patient population (i.e., 
one where the knowledge from the biomarker did not exist).

Yet firms must choose whether or not to pursue use of a biomarker for 
patient selection under some degree of uncertainty about its likely conse-
quences. As a result, the set of trials that use biomarkers in pursuit of new 
therapeutic approvals is likely to be a systemically selected subset of  the 
possible trials that could have used biomarkers for patient selection, as firms 
make educated guesses about how the use of  a biomarker will affect the 
size of their eligible patient population and the probability of new product 
approval—where the two factors are likely to work in opposite directions.

This type of  trade- off is not simply a theoretic point; a situation with 
many of these features has played out in recent development projects for 
PD- 1 inhibitors pembrolizumab (Keytruda) and nivolumab (Opdivo), 
anticancer immunotherapies from Merck and Bristol- Myers Squibb 
(BMS), respectively.20 Bristol- Myers Squibb pursued “all- comers” trials for 
nivolumab—that is, the firm decided to forgo biomarker selection in favor 
of broader indications. Merck, however, opted to commercialize pembro-
lizumab through a series of  biomarker- enriched trials (the trials selected 
for patients with positive PD- L1 expression). Ultimately, Merck’s drug has 
been more successful—in part due to a series of blanket approvals by the 
FDA in mid- 2017 for patients with any cancer with a specific molecular 
signature, the FDA’s “first tissue/site agnostic indication” approval.21 Thus, 
although the use of biomarkers for selection led to a more profitable drug for 
Merck, it was not clear, ex ante that this would be the case. More generally, 
personalization may, in certain cases, ultimately reduce profitability—but 
not necessarily costs—of some therapies.

Pricing aside, biomarkers that predict treatment efficacy reduce market 
size, which in turn may reduce some of the incentives for innovation. At 
the same time, some biomarkers could allow manufacturers to more easily 
qualify for an “orphan drug” designation through the Orphan Drug Act of 
1983 (ODA) by focusing on developing a therapy for a disease subpopula-

20. PD- 1 is a checkpoint protein, which prevents a patient’s T- cells from attacking cancer and 
other cells in the body. PD- 1 is described as being something like an “off switch,” which binds to 
PD- L1, a protein that is on both normal and cancer cells. Monoclonal antibodies can be used 
therapeutically to bind to either the PD- 1 checkpoint protein or PD- L1, preventing binding and 
allowing the immune system to target cancer cells. https:// www .cancer .org /treatment /treatments 
-  and -  side -  effects /treatment -  types /immunotherapy /immune -  checkpoint -  inhibitors .html).

21. https:// www .fda .gov /drugs /informationondrugs /approveddrugs /ucm560040 .htm. For 
a detailed account of the pembrolizumab development process, see: https:// www .forbes .com 
/sites /davidshaywitz /2017 /07 /26 /the -  startling -  history -  behind -  mercks -  new -  cancer -  blockbuster 
/ #7ef5cbb8948d.
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tion of fewer than 200,000 patients. If  a medicine receives FDA approval 
for a new drug (a “new molecular entity”) that treats an orphan condition, 
it receives tax credits equaling 50 percent of clinical trial expenses and seven 
years of marketing exclusivity (two years longer than the standard five years 
granted for nonorphan drugs). These incentives have been shown to be pow-
erful: more than 516 medicines for over 450 different rare diseases have been 
approved through the ODA,22 and in 2015 alone 47 percent of novel drugs 
approved were orphan drugs.23 When an approval happens, it will also raise 
spending and reduce price competition over the medium term due to the 
(extended) protections from generic competition offered by the ODA, and 
the fact that smaller markets will attract less follow- on competition.24 In 
particular, in small markets, brand- brand competition will likely be far less 
robust than in large markets, as potential entrants see little expected benefit 
in competing. To some extent this phenomenon has already been observed in 
early biosimilar competition in the European Union (Scott Morton, Stern, 
and Stern 2018; Berndt and Trusheim 2015). Thus, even after exclusivity 
periods end, there may not be a large enough market to stimulate price com-
petition through follow- on (i.e., generic or biosimilar) entry.25 As a result, a 
major shift in new therapeutics toward precision medicines could result in 
less price competition through a meaningful decline in the attractiveness of 
follow- on competition and, as a result, a meaningful increase in total drug 
spending.

While conventional wisdom suggests that the use of biomarkers will lead 
to smaller target markets, we note that there are settings in which the use of 
biomarkers might serve to expand the size of the potential patient market. 
This would happen if  a drug has side effects that discourage physicians 
from using it, but a biomarker identifies patients who do not suffer these 
side effects or in whom the drug is particularly effective. Such approvals are 
likely to become more common through the growth and adoption of new 
clinical trial designs such as “basket trials.” In a basket trial, patients are 
enrolled based on a shared mutation, regardless of their disease type—that 
is, patients with colon and lung cancer, as well as the same mutation in a 
particular gene, would be included in the same trial (West 2017). When a 
certain mutation or protein expression is relatively common across cancers 
or autoimmune diseases, biomarker- enriched trials may ultimately serve 
to drive additional indications, or faster approvals. Both would increase 

22. https:// www .accessdata .fda .gov /scripts /opdlisting /oopd /index .cfm.
23. http:// www .fda .gov /Drugs /DevelopmentApprovalProcess /DrugInnovation /ucm474696 

.htm.
24. For additional discussion of the implications of the ODA, see Bagley et al. (forthcoming).
25. Competition in follow- on drug markets has been discussed by a number of researchers 

(e.g., Scott Morton 1999) and in recent years by Berndt, Conti, and Murphy (2017), Scott Mor-
ton, Stern, and Stern (2018), and others. More generally, larger markets attract more entrants 
while smaller markets have been shown to attract less competition, all else equal (DuBois et al. 
2015; Acemoglu and Linn 2004). 
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market size because manufacturers will not have to seek indications on an 
individual basis. However, such “market expanding” precision therapies are 
still relatively rare (notably, the FDA’s first tissue/site agnostic indication 
only occurred in 2017). While biomarker- driven market expansion may be 
important looking ahead, we expect the LPM development pipeline in the 
years we study here to mostly be characterized by the types of products that 
are likely to shrink rather than expand target patient populations.

Finally, the complexity of developing products in this space combined 
with the use of new and emerging technologies may result in greater special-
ization within stages of the drug development process. This could involve a 
greater share of products beginning their life cycle at small, research- focused 
firms than would be true in more traditional segments of the pharmaceuti-
cal industry.

5.4 Data

We use data from the Cortellis Competitive Intelligence Clinical Tri-
als Database (Cortellis), which is compiled by Clarivate (and formerly by 
Thomson Reuters). The database includes over 270,000 global and US- 
based clinical trials. Cortellis includes full coverage of twenty- four clinical 
trial registries from around the world, including ClinicalTrials .gov, which is 
maintained by the National Institutes of Health (NIH) and the European 
Clinical Trials Database (EudraCT), which is maintained by the European 
Medicines Agency (EMA). Biomedical researchers are strongly encouraged 
to register trials for publication in medical journals and, as of  2005, tri-
als must be registered to an approved public clinical trial registry prior to 
patient enrollment in order to be considered for publication in any Interna-
tional Committee of Medical Journal Editors (ICMJE) member journals 
(De Angelis et al. 2004).

Because both publication and registration are integral parts of the new 
drug development process, the set of  registered trials included in Cortel-
lis should capture relevant development efforts—in particular, in the years 
since 2005, after which time the ICMJE required trial registration in order 
to publish the results of clinical trials in member journals.26 Cortellis has full 
coverage of all ICMJE- approved trial registries (Clinical Trial Registration 
2016) and Cortellis data have been used in several published studies in peer- 

26. We believe that coverage of registered trials is comprehensive and we further expect a 
high share of trials to be registered in the post- 2004 period (De Angelis et al. 2004). However, 
we note that certain types of trials—for example, smaller trials without regulatory oversight—
may still be missing in our data. Kao (2017) describes these types of trials and how they may 
be designed to signal “off- label usability” to physicians. While an understanding of these types 
of unregistered trials is important for understanding pharmaceutical firm strategy, we do not 
believe they are likely to be the types of trials that we attempt to identify in this study, which 
are those specifically intended to commercialize targeted therapies.
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reviewed biomedical journals such as Lancet Infectious Disease (Phyo et al. 
2016) and Nature Reviews Drug Discovery (Bespalov et al. 2016). Appendix 
C (http:// www .nber .org /data -  appendix /c13994 /appendix .pdf) includes a 
detailed timeline of important dates related to the registration of clinical tri-
als and the establishment of the US clinical trial registry (clinicaltrials .gov).

5.4.1 Data Composition and Summary Statistics

We queried the Cortellis database for all clinical trials with a launch date 
between January 1, 1995, and December 31, 2016, for a total of  twenty- 
two calendar years of clinical trial starts. We identify the full set of known 
Phase I, II, and III27 clinical trials, along with other detailed information 
associated with each trial. A few facts are notable: first, the total number of 
registered trials worldwide has grown over time for each phase of clinical 
research (figure 5.1), and in particular for Phase II trials.28 In 2016, roughly 
6,000 Phase II trials were launched globally, nearly double the number of 
registered trials launched a decade earlier in 2006.

For each trial, the Cortellis database also provides information on the 
trial’s intended disease indication(s), any biomarkers used in the trial, and 
the trial’s sponsors. In addition, we are able to classify trials according to a 
broad set of descriptive categories—in particular, the presence (or absence) 
of one or more biomarker(s) used in the trial. For each biomarker, we are 
separately able to categorize its type and use (role). We also capture key 
information about the clinical trial’s sponsors. Trial sponsors are identified 
by name and type, including academic investigators, government, nongov-
ernment, company, and other sponsors. A complete list of the descriptive 
variables we consider and their frequencies in the clinical trials data set are 
provided in table 5.1.

To aggregate the detailed indications reported in the Cortellis database 
into more usable categories, we used a data set29 of standardized indications 
matched to International Classification of Diseases (ICD)- 9 codes to link 
each trial in our data set to a three- digit ICD- 9 code. The matched indication 
ICD- 9 data set was independently checked for accuracy by three research 

27. For the simplest classification of trials into phases, we assign combined trials (e.g., com-
bined Phase II & Phase III) to the lower of the two phases involved. For example, a combined 
Phase II/Phase III trial would be classified as having started as Phase II in the year that the trial 
launched. In robustness tests, we create separate subcategories for combined Phase I/II and 
II/III trials and include controls for these combined trials in regression analyses. Subsequent 
regression results are not sensitive to this distinction, so we use the simplified three- phase clas-
sification in tables and figures for simplicity.

28. The recent spike in the number of global clinical trials (and Phase II trials in particular) is 
driven by growth in non- US trials (see appendix tables for a version of figure 5.1 that presents 
only US trials; http:// www .nber .org /data -  appendix /c13994 /appendix .pdf).

29. We are grateful to Manuel Hermosilla, Craig Garthwaite, and David Dranove, who 
generously shared their version of a three- digit ICD- 9 crosswalk data set with us. This data set 
was assembled through the use of two independent medical coders separately constructing a 
crosswalk. Discrepancies were adjudicated by a third expert and additional outside research.
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assistants using an online ICD- 9 medical coding reference manual,30 and 
any discrepancies between their matches were resolved by a fourth research 
assistant. Each indication was ultimately assigned to one ICD- 9 code, cor-
responding to a total of sixty- five ICD- 9 subchapters (listed in appendix D; 
http:// www .nber .org /data -  appendix /c13994 /appendix .pdf). Trials with any 
indications matching ICD- 9 codes 140–239 were classified as cancer trials.

The categorical variable “biomarker type” indicates the biological fea-
ture that a given biomarker identifies. Biomarker types include genomic, 
proteomic, biochemical, cellular, physiological, structural, and anthropo-
morphic biomarkers. Definitions of biomarker types and their frequencies 
of  use in clinical trials both (a) overall and (b) over time are reported in 
table 5.2. Importantly, these types are not mutually exclusive since a given 

30. ICD9Data .com.

A

B

Fig. 5.1 Clinical trials over time. A, number of registered Phase I–III trials (1995–
2016); B, growth in number of registered Phase I–III trials since 1995.
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Table 5.1 Summary statistics for selected variables

All trials US trials

  Mean  Observations  Mean  Observations

Uses biomarker 0.4092 131,971 0.4619 49,540
Generous LPM 0.0643 131,971 0.0907 49,540
Restrictive LPM 0.0581 131,971 0.0813 49,540
Phase I clinical (includes Phase I/Phase II trials) 0.3305 131,971 0.3653 49,540
Phase II clinical (includes Phase II/Phase III trials) 0.4367 131,971 0.4263 49,540
Phase III clinical 0.2328 131,971 0.2083 49,540
Trial site in United States 0.4368 113,410 1.0000 49,540
Publicly listed firm (lower bound) 0.2903 131,971 0.3436 49,540
Publicly listed firm (upper bound) 0.3977 131,971 0.4588 49,540
Drug indication for neoplasm (cancer) 0.3352 131,971 0.4002 49,540
Biomarker role: disease 0.0842 131,971 0.1145 49,540
Biomarker role: toxic effect 0.0496 131,971 0.0699 49,540
Biomarker role: therapeutic effect 0.3371 131,971 0.3758 49,540
Biomarker role: not determined 0.0023 131,971 0.0024 49,540
Biomarker type: anthropomorphic 0.0350 131,971 0.0400 49,540
Biomarker type: biochemical 0.1248 131,971 0.1300 49,540
Biomarker type: cellular 0.0308 131,971 0.0424 49,540
Biomarker type: genomic 0.2321 131,971 0.2845 49,540
Biomarker type: physiological 0.0849 131,971 0.0865 49,540
Biomarker type: proteomic 0.2426 131,971 0.2942 49,540
Biomarker type: structural (imaging) 0.0177 131,971 0.0200 49,540
Biomarker role (detailed): diagnosis 0.2948 117,180 0.3448 43,777
Biomarker role (detailed): differential diagnosis 0.1829 117,180 0.2041 43,777
Biomarker role (detailed): predicting drug resistance 0.0624 117,180 0.0778 43,777
Biomarker role (detailed): predicting treatment 

efficacy 0.2568 117,180 0.3060 43,777
Biomarker role (detailed): predicting treatment 

toxicity 0.0474 117,180 0.0493 43,777
Biomarker role (detailed): screening 0.0523 117,180 0.0547 43,777
Biomarker role (detailed): selection for therapy 0.0938 117,180 0.1111 43,777
Biomarker role (detailed): disease profiling 0.1909 117,180 0.2269 43,777
Biomarker role (detailed): monitoring disease 

progression 0.1293 117,180 0.1394 43,777
Biomarker role (detailed): monitoring treatment 

efficacy 0.2998 117,180 0.3481 43,777
Biomarker role (detailed): monitoring treatment 

toxicity 0.0464 117,180 0.0469 43,777
Biomarker role (detailed): not determined 0.0090 117,180 0.0114 43,777
Biomarker role (detailed): prognosis 0.2375 117,180 0.2797 43,777
Biomarker role (detailed): prognosis—risk 

stratification 0.0564 117,180 0.0660 43,777
Biomarker role (detailed): risk factor 0.2407 117,180 0.2770 43,777
Biomarker role (detailed): staging 0.1103 117,180 0.1280 43,777
Biomarker role (detailed): toxicity profiling 0.0085 117,180 0.0082 43,777

N    131,971    49,540
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biomarker—for example, a receptor such as EGFR (epidermal growth 
factor receptor)—can be both a genomic and proteomic biomarker. This 
is because genomic characteristics will lead to differential expressions of 
EGFR, making it a biomarker of particular genomic features, but EGFR is 
itself  a protein and therefore a proteomic biomarker as well. For this reason, 
there can be correlation in the presence of biomarkers types across trials.

5.4.2 Biomarker Data and Defining Pipeline Precision Medicines

The Cortellis data include fairly broad categories of biomarker uses as 
they relate to clinical trials. These include disease markers, toxic effect mark-
ers, and therapeutic effect markers. Disease- related biomarkers indicate if  
a disease already exists (diagnostic biomarker), or how such a disease may 
develop in an individual case regardless of the type of treatment (prognostic 
biomarker). Therapeutic effect- related biomarkers provide an indication of 
the progress of  a product on the patient during treatment. Toxic effect- 
related biomarkers indicate a treatment- related adverse reaction. Other 
biomarker roles are “not determined” because they do not have any of the 
roles described in a particular trial. In practice, we are interested in a subset 
of the trials that use disease- related biomarkers—namely, those in which 
we observe the unambiguous features of products that would likely come 
to market as targeted therapeutics upon successful progression through the 
R&D process. This is because this subset of biomarkers facilitates ad hoc 
patient selection for therapy.

Our working definition of LPMs is that they encompass the set of pipe-
line products that are being developed using the types of  disease- related 
biomarkers that are relevant for identifying subpopulations that are likely 
to be more (or less) responsive to medications. We therefore employ a sec-
ond, biomarker- specific database from Clarivate in order to link biomarkers 
to their detailed roles in clinical trials. The detailed biomarkers database 
(DBD) from Clarivate includes additional detail (in the form of “detailed 
biomarker roles”) on all known clinical biomarkers and their paired uses 
and indications in clinical research. For example, human epidermal growth 
factor receptor 2 (HER2) is a (genomic) biomarker that can be used for 
(a) selection for therapy and (b) predicting treatment efficacy. In the data-
base, both of these are included as detailed biomarker roles for using the 
biomarker HER2 in studies of breast cancer (the indication). In the Cortellis 
database, we can then link DBD data as follows: given a trial’s breast cancer 
indication and knowing that the HER2 biomarker was used in that clinical 
trial, one can assign both a biomarker type and a detailed biomarker role 
(or, in some cases, more than one) to that trial. In this way, assignment of 
biomarker roles (from the DBD) to trials (in Cortellis) is achieved via a 
matching algorithm that requires a precise match between both the indica-
tion and biomarker. For example, in order to link trial x to biomarker role 
y, we would match as follows:
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trialx + biomarkerBIO + indicationIND ßà biomarkerBIO + indicationIND + biomarker roley

where the terms on the left represent variables in the Cortellis database, the 
terms on the right represent variables in the DBD, and the underlined terms 
(indicationIND and biomarkerBIO) are used as exact matching criteria.

Definitions of detailed biomarker roles and the frequencies of their use 
in clinical trials are reported in table 5.3. A biomarker may have multiple 
associated uses, making it important to correctly link a biomarker associated 
with a given clinical trial and indication to its use in that setting. Therefore, 
the process of matching a biomarker- indication pair from the Cortellis clini-
cal trials data with a biomarker- indication pair from the DBD is a crucial 
step in correctly assigning biomarker roles to individual clinical trials. We 
define LPMs in two ways using these detailed biomarker roles. These clas-
sifications are consistent with the FDA- NIH definitions of biomarkers and 
how they are employed.31

In the first, “generous” definition of LPMs, we identify trials using bio-
markers whose roles include diagnosis, differential diagnosis, predicting 
drug resistance, predicting treatment efficacy, predicting treatment toxicity, 
screening, and selection for therapy. The rationale for the generous definition 
is that all of these biomarkers can be used in the development of targeted 
therapeutics and are likely to be associated with the development of preci-
sion medicines. In the second, “restrictive” definition of LPMs, we identify 
the subset of “generous” trials that specifically employ biomarkers for pre-
diction (these include biomarkers whose roles include predicting drug resis-
tance, predicting treatment efficacy, and predicting treatment toxicity) with 
the vast majority of these trials identified as LPM trials due to the use of 
biomarkers that can help predict treatment efficacy (table 5.3). To be clear, 
both definitions measure likely precision- medicine trials, but the former, 
more inclusive definition includes trials in which biomarkers were used to 
define and select patient populations for the trial and this role may not fit 
everyone’s perception of a precision medicine trial (e.g., selecting patients 
with a certain disease type or patients whose presentation of a biomarker, 
such as a protein, is measured as above/below a cutoff relevant to disease 
diagnosis).

5.5 Characterizing the LPM Development Pipeline

We characterize the number and type of drugs using biomarkers in their 
clinical trials as well as those that can be considered LPMs by therapeutic 
area and over time. Since cancers represent a set of diseases in which preci-
sion therapies are already successfully used, and since cancer applications 

31. The classification definitions were also separately discussed with an oncologist, who at 
the time of writing was serving as the principal investigator on a biomarker- driven clinical trial.
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Characterizing the Drug Development Pipeline for Precision Medicines    135

of precision medicine are expected to grow in coming years, we separately 
characterize the cancer applications of pipeline precision medicines in detail.

5.5.1 Biomarkers and LPMs in Clinical Trials

We begin at perhaps the broadest point, by first identifying all trials that 
use one or more biomarker(s) of any kind (figure 5.2). Notably, both the 
share and total number of clinical trials employing biomarkers has increased 
markedly over recent decades. We next focus only on the subset of trials 
with biomarker uses that are associated with LPMs, by both the generous 
and restrictive definitions (figure 5.3). Both the number and percentage of 
LPM trials increased over our period of observation, as seen in figure 5.3. 
We further note that the two definitions of LPMs track each other closely 
over time—both in figure 5.3 as well as in the subsequent subsample analyses 
described below. Table 5.4 presents the count (column [1]) and percentage 

A

B

Fig. 5.2 Clinical trials employing biomarkers. A, number of registered Phase I–III 
trials using at least one biomarker; B, share of trials using at least one biomarker.
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Table 5.4 Likely precision medicine (LPM) trials (1995–2016)

Generous definition

All All P1 P1 P2 P2 P3 P3
  count  (%)  count  (%)  count  (%)  count  (%)

1995 12 1.39 4 1.20 2 .63 6 2.79
1996 25 2.58 6 1.77 10 2.53 9 3.81
1997 37 2.80 11 2.44 16 3.13 10 2.77
1998 56 3.29 10 1.72 31 4.43 15 3.54
1999 75 3.12 26 3.03 37 3.94 12 1.96
2000 95 3.62 27 3.03 48 4.57 20 2.93
2001 114 3.81 41 4.13 50 4.05 23 3.01
2002 144 3.87 46 3.99 70 4.46 28 2.81
2003 166 3.96 45 3.55 85 4.82 36 3.10
2004 234 4.49 68 4.48 126 5.68 40 2.71
2005 263 4.10 67 3.63 143 5.09 53 3.03
2006 299 4.17 74 3.44 167 5.40 58 3.00
2007 407 5.39 109 4.62 231 6.96 67 3.57
2008 408 5.09 116 4.34 229 6.69 63 3.28
2009 563 6.63 178 5.95 300 8.22 85 4.57
2010 563 6.44 185 5.97 311 8.52 67 3.37
2011 642 7.14 214 6.88 361 9.34 67 3.32
2012 699 7.54 231 7.60 381 9.13 87 4.24
2013 781 8.55 257 8.44 396 9.86 128 6.18
2014 836 8.85 337 9.95 388 9.40 111 5.76
2015 1,009 9.55 368 10.50 482 9.89 159 7.23
2016 1,057  8.69  417  10.30  501  8.44  139  6.35

Restrictive definition

1995 9 1.04 3 .89 2 .63 4 1.86
1996 23 2.37 5 1.47 9 2.28 9 3.81
1997 34 2.57 9 2.00 15 2.94 10 2.77
1998 53 3.11 9 1.55 30 4.29 14 3.30
1999 70 2.91 23 2.68 35 3.73 12 1.96
2000 90 3.43 25 2.80 46 4.38 19 2.78
2001 105 3.51 36 3.63 46 3.72 23 3.01
2002 133 3.58 41 3.56 66 4.21 26 2.61
2003 152 3.63 37 2.92 80 4.54 35 3.01
2004 212 4.06 60 3.95 112 5.05 40 2.71
2005 240 3.75 58 3.14 131 4.66 51 2.91
2006 275 3.83 64 2.98 156 5.04 55 2.85
2007 370 4.90 89 3.78 218 6.56 63 3.35
2008 380 4.74 104 3.89 217 6.34 59 3.07
2009 502 5.91 148 4.95 274 7.51 80 4.31
2010 514 5.88 165 5.33 285 7.81 64 3.22
2011 592 6.58 188 6.04 343 8.87 61 3.02
2012 645 6.96 209 6.88 355 8.50 81 3.94
2013 720 7.88 231 7.59 369 9.19 120 5.79
2014 748 7.92 306 9.03 343 8.31 99 5.13
2015 883 8.35 322 9.21 417 8.56 144 6.55
2016 914  7.52  346  8.56  442  7.45  126  5.76
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(column [2]) of LPMs in clinical trials in each year of our data. Columns 
[3]–[8] present the same results by clinical trial phase. Even by the most 
restrictive definition of LPM trials, by 2016 approximately 7.5 percent of 
trials were for LPMs, roughly double the percentage observed a decade ear-
lier (3.8 percent).

The LPM trials are associated with the use of different types of biomark-
ers, and the relative and absolute frequencies of these types have evolved 
over time. Biomarker types are not mutually exclusive; for example, there is 
extremely high overlap between proteomic and genomic biomarkers, since 
the vast majority of genomic mutations (e.g., in cancer) manifest themselves 
through differences in protein expression. Figure 5.4 shows how these types 
were represented in each phase over our years of observation. Genomic/
proteomic biomarkers were the most commonly used in recent years and 
featured in the vast majority of LPM trials, a fact that is consistent with 
LPMs being driven primarily by understanding gene and protein expression 
and how these factors predict the likely success of medications.

5.5.2 Pipeline Precision Cancer Therapies

Figure 5.5 and table 5.5 present data on the frequency of LPMs in can-
cer trials only. Several features of these trials are notable, especially when 
compared with one another. First, LPM trials are more than an order of 
magnitude more common in cancer indications; in 2015 and 2016, roughly 
25 percent (or more) of  all cancer drug trials were LPM trials, but only 
1–2 percent of trials for noncancer indications were LPM trials. In regres-
sion analysis (table 5.8), we also see that a cancer indication is a strong statis-
tical predictor of an LPM trial and the growth of LPMs among cancer drugs 
explains the lion’s share of growth in LPM trials over the past two decades. 
These results accord with the commonly held belief  that the majority of 
applications of precision medicines in coming years will be in the context 
of targeted therapies for cancer.

5.5.3 Institutional Factors

Next, we consider the LPM development pipeline in light of a number 
of other institutional factors. We consider US- based versus non- US- based 
trials. The United States is by far the world’s largest pharmaceutical con-
sumer (International Trade Administration 2016), and it would therefore 
be reasonable to expect trials for LPMs to be driven by both local demand 
(Costinot et al. 2016) and local regulations (FDA 2004). Figure 5.6 shows 
the number and share of  US LPM trials. The total number of  LPM tri-
als conducted within the United States is comparable to the total number 
conducted abroad, but the share of LPM trials among US trials is roughly 
double that of international trials. This finding is consistent with the fact 
that US drug prices are typically higher than those of other countries (Kana-
vos et al. 2013), making it more appealing for pharmaceutical manufacturers 
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B

C

Fig. 5.4 Types of biomarkers used in LPM trials. A, number of Phase I LPM tri-
als (generous definition) by biomarker types used; B, number of Phase II LPM trials 
(generous definition) by biomarker types used; C, number of Phase III LPM trials 
(generous definition) by biomarker types used; D, number of Phase I LPM trials (re-
strictive definition) by biomarker types used; E, number of Phase II LPM trials  
(restrictive definition) by biomarker types used; F, number of Phase III LPM trials 
(restrictive definition) by biomarker types used.
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Fig. 5.4 (cont.)

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



A B

C D

F
ig

. 5
.5

 
C

lin
ic

al
 tr

ia
ls

 fo
r 

L
P

M
s,

 c
an

ce
r 

in
di

ca
ti

on
s 

on
ly

. A
, n

um
be

r 
of

 re
gi

st
er

ed
 L

P
M

 (g
en

er
ou

s 
de

fin
it

io
n)

 tr
ia

ls
 b

y 
ph

as
e:

 c
an

ce
r 

tr
ia

ls
; B

, s
ha

re
 o

f 
ca

nc
er

 d
ru

g 
tr

ia
ls

 w
it

h 
L

P
M

 b
io

m
ar

ke
rs

 (g
en

er
ou

s 
de

fin
it

io
n)

; C
, n

um
be

r 
of

 re
gi

st
er

ed
 L

P
M

 (r
es

tr
ic

tiv
e 

de
fin

it
io

n)
 

tr
ia

ls
 b

y 
ph

as
e:

 c
an

ce
r 

tr
ia

ls
; D

, s
ha

re
 o

f 
ca

nc
er

 d
ru

g 
tr

ia
ls

 w
it

h 
L

P
M

 b
io

m
ar

ke
rs

 (r
es

tr
ic

tiv
e 

de
fin

it
io

n)
.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



Table 5.5 Likely precision medicine (LPM) trials: cancer only (1995–2016)

Generous definition

All All P1 P1 P2 P2 P3 P3
  count  (%)  count  (%)  count  (%)  count  (%)

1995 8 2.33 3 2.38 2 1.39 3 4.05
1996 24 5.30 6 3.57 10 5.21 8 8.60
1997 34 5.81 11 4.89 13 5.10 10 9.52
1998 54 6.26 10 3.15 30 7.52 14 9.52
1999 67 6.41 21 5.34 35 7.26 11 6.47
2000 86 6.62 24 4.75 45 7.56 17 8.50
2001 104 7.74 39 7.39 45 7.28 20 10.2
2002 137 8.77 44 7.76 68 8.66 25 11.9
2003 142 8.53 34 5.72 80 9.41 28 12.7
2004 204 10.2 61 8.93 113 10.5 30 12.6
2005 226 9.89 55 6.67 130 10.8 41 15.8
2006 261 10.7 64 7.62 154 11.8 43 14.5
2007 363 14.2 87 9.60 217 16.1 59 19.4
2008 368 14.2 98 10.2 221 16.6 49 16.3
2009 507 18.0 162 14.4 275 19.8 70 22.9
2010 509 18.0 164 14.6 289 20.5 56 19.4
2011 572 19.8 189 16.7 332 22.4 51 18.8
2012 620 21.4 211 18.9 341 23.0 68 22.7
2013 680 24.8 226 21.6 356 25.6 98 31.8
2014 713 26.5 296 25.6 332 26.7 85 28.9
2015 855 29.5 319 27.0 410 30.5 126 34.3
2016 899  27.1  375  27.0  410  26.1  114  31.4

Restrictive definition

1995 8 2.33 3 2.38 2 1.39 3 4.05
1996 22 4.86 5 2.98 9 4.69 8 8.60
1997 31 5.30 9 4.00 12 4.71 10 9.52
1998 52 6.03 9 2.84 29 7.27 14 9.52
1999 64 6.12 20 5.09 33 6.85 11 6.47
2000 83 6.38 22 4.36 44 7.39 17 8.50
2001 100 7.45 35 6.63 45 7.28 20 10.2
2002 129 8.26 41 7.23 65 8.28 23 11.0
2003 132 7.93 29 4.88 76 8.94 27 12.2
2004 190 9.51 56 8.20 104 9.67 30 12.6
2005 213 9.32 50 6.07 122 10.1 41 15.8
2006 249 10.2 59 7.02 147 11.3 43 14.5
2007 340 13.3 77 8.50 207 15.3 56 18.4
2008 352 13.6 91 9.48 212 15.9 49 16.3
2009 467 16.6 138 12.3 259 18.6 70 22.9
2010 479 17.0 155 13.8 270 19.2 54 18.7
2011 544 18.9 172 15.2 323 21.8 49 18.0
2012 598 20.7 200 18.0 332 22.4 66 22.1
2013 654 23.8 212 20.3 347 25.0 95 30.8
2014 673 25.0 278 24.0 311 25.0 84 28.6
2015 791 27.3 291 24.6 378 28.1 122 33.2
2016 820  24.7  326  23.5  383  24.4  111  30.6
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to conduct clinical research in order to bring drugs to market in the United 
States as soon as possible. These facts are also reflected in our regression 
analysis (table 5.8), which indicates that US trials are, on average, roughly 1 
percentage point more likely to involve LPMs at any point in time relative to 
their non- US counterparts in the same year, all else equal. Off of a relatively 
low overall share of  LPM trials, this difference represents a double- digit 
percentage increase in the likelihood of observing an LPM trial.

In addition, we briefly consider whether LPM trials appear to be related 
to disease severity.32 We use the Institute for Health Metrics and Evaluation’s 
Global Health Data Exchange to collect data on “global burden of disease” 
for all cancers.33 For both the United States (alone) as well as globally, we 
assemble data on years of life lost (YLL) due to each cancer.34 For all cancers, 
we identify the relevant ICD- 9 code and match YLL to the cancer trials in 
our data (as described above and in the eleven cancer ICD- 9 sub chapters pre-
sented in appendix D; http:// www .nber .org /data -  appendix /c13994 /appendix 
.pdf). Table 5.6 presents results from two sets of  t- tests of  differences in 
means with unequal variances. We find evidence that among cancer trials, 
LPM trials are associated with significantly more US and global YLL for 
the product’s intended indication than non- LPM trials, on average.

Finally, we consider the types of firms—namely publicly listed companies 
versus (typically smaller) privately held firms—engaging in the development 
of  LPMs (figure 5.7 and tables 5.7A and 5.7B). The correct assignment 
of individual trials to their sponsor firms (and according to firm types) is 
both difficult and fundamental for our analysis. Because acquisitions are 
common and firm ownership may change over time, we use imputation to 
assign each trial in our data set to the firm that sponsored the trial and its 
type (e.g., publicly listed vs. privately held) at the time the trial was launched. 
Although we are not able to assign these types with complete accuracy, we 
are mathematically able to construct upper and lower bounds for whether 
each sponsor firm was publicly listed at the time of  a trial. Aggregating 

32. We are grateful to NBER conference participants for this suggestion.
33. These data are publicly available at http:// www .healthdata .org /gbd.
34. We use this measure because it is one of the only metrics that has yearly data dating 

back to the 1990s.

Table 5.6 Burden of disease: millions of years of life lost for associated diseases 
(average)

   United States only  Global  

Non- LPM 11.66 188.20
LPM 14.65 202.03

 t- statistic  19.30  5.57  
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B

C

Fig. 5.7 Public versus privately held firms (representation in LPM trials). A, share 
of Phase I LPM trials with public firm involvement; B, share of Phase I non- LPM 
trials with public firm involvement; C, share of Phase II LPM trials with public firm 
involvement; D, share of Phase II non- LPM trials with public firm involvement;  
E, share of Phase III LPM trials with public firm involvement; F, share of Phase III 
non- LPM trials with public firm involvement.
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Fig. 5.7 (cont.)
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Table 5.7A Likely precision medicine LPM trials: publicly listed firm (upper bound) 
involvement (1995–2016)

Generous definition

All All P1 P1 P2 P2 P3 P3
  count  (%)  count  (%)  count  (%)  count  (%)

1995 3 25.0 1 25.0 0 0.00 2 33.3
1996 1 4.00 1 16.7 0 0.00 0 0.00
1997 6 16.2 1 9.09 5 31.3 0 0.00
1998 8 14.3 3 30.0 4 12.9 1 6.67
1999 8 10.7 2 7.69 5 13.5 1 8.33
2000 11 11.6 3 11.1 4 8.33 4 20.0
2001 32 28.1 12 29.3 14 28.0 6 26.1
2002 40 27.8 12 26.1 20 28.6 8 28.6
2003 56 33.7 7 15.6 35 41.2 14 38.9
2004 65 27.8 15 22.1 39 31.0 11 27.5
2005 106 40.3 27 40.3 52 36.4 27 50.9
2006 126 42.1 28 37.8 72 43.1 26 44.8
2007 164 40.3 45 41.3 92 39.8 27 40.3
2008 152 37.3 47 40.5 80 34.9 25 39.7
2009 259 46.0 80 44.9 130 43.3 49 57.6
2010 234 41.6 80 43.2 113 36.3 41 61.2
2011 290 45.2 95 44.4 154 42.7 41 61.2
2012 307 43.9 107 46.3 144 37.8 56 64.4
2013 347 44.4 116 45.1 150 37.9 81 63.3
2014 426 51.0 170 50.4 182 46.9 74 66.7
2015 476 47.2 186 50.5 186 38.6 104 65.4
2016 439  41.5  169  40.5  198  39.5  72  51.8

Restrictive definition

1995 2 22.2 1 33.3 0 0.00 1 25.0
1996 1 4.35 1 20.0 0 0.00 0 0.00
1997 5 14.7 0 0.00 5 33.3 0 0.00
1998 8 15.1 3 33.3 4 13.3 1 7.14
1999 8 11.4 2 8.70 5 14.3 1 8.33
2000 11 12.2 3 12.0 4 8.70 4 21.1
2001 30 28.6 11 30.6 13 28.3 6 26.1
2002 37 27.8 11 26.8 18 27.3 8 30.8
2003 55 36.2 7 18.9 34 42.5 14 40.0
2004 65 30.7 15 25.0 39 34.8 11 27.5
2005 97 40.4 25 43.1 47 35.9 25 49.0
2006 122 44.4 27 42.2 70 44.9 25 45.5
2007 150 40.5 39 43.8 86 39.4 25 39.7
2008 144 37.9 44 42.3 77 35.5 23 39.0
2009 241 48.0 73 49.3 123 44.9 45 56.3
2010 218 42.4 74 44.8 104 36.5 40 62.5
2011 273 46.1 88 46.8 146 42.6 39 63.9
2012 289 44.8 101 48.3 135 38.0 53 65.4
2013 331 46.0 113 48.9 141 38.2 77 64.2
2014 388 51.9 163 53.3 159 46.4 66 66.7
2015 435 49.3 172 53.4 168 40.3 95 66.0
2016  395  43.2  150  43.4  179  40.5  66  52.4
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Table 5.7B Likely precision medicine LPM trials: publicly listed firm (lower bound) 
involvement (1995–2016)

Generous definition

All All P1 P1 P2 P2 P3 P3
  count  (%)  count  (%)  count  (%)  count  (%)

1995 1 8.33 0 0.00 0 0.00 1 16.7
1996 1 4.00 1 16.7 0 0.00 0 0.00
1997 3 8.11 1 9.09 2 12.5 0 0.00
1998 3 5.36 2 20.0 0 0.00 1 6.67
1999 3 4.00 0 0.00 2 5.41 1 8.33
2000 5 5.26 0 0.00 2 4.17 3 15.0
2001 23 20.2 10 24.4 8 16.0 5 21.7
2002 27 18.8 6 13.0 15 21.4 6 21.4
2003 40 24.1 4 8.89 24 28.2 12 33.3
2004 51 21.8 10 14.7 31 24.6 10 25.0
2005 74 28.1 16 23.9 39 27.3 19 35.8
2006 103 34.4 21 28.4 60 35.9 22 37.9
2007 124 30.5 34 31.2 66 28.6 24 35.8
2008 114 27.9 35 30.2 60 26.2 19 30.2
2009 216 38.4 68 38.2 105 35.0 43 50.6
2010 196 34.8 65 35.1 93 29.9 38 56.7
2011 228 35.5 73 34.1 119 33.0 36 53.7
2012 248 35.5 93 40.3 112 29.4 43 49.4
2013 285 36.5 92 35.8 117 29.5 76 59.4
2014 345 41.3 139 41.2 142 36.6 64 57.7
2015 378 37.5 148 40.2 141 29.3 89 56.0
2016 326  30.8  129  30.9  140  27.9  57  41.0

Restrictive definition

1995 0 0.00 0 0.00 0 0.00 0 0.00
1996 1 4.35 1 20.0 0 0.00 0 0.00
1997 2 5.88 0 0.00 2 13.3 0 0.00
1998 3 5.66 2 22.2 0 0.00 1 7.14
1999 3 4.29 0 0.00 2 5.71 1 8.33
2000 5 5.56 0 0.00 2 4.35 3 15.8
2001 21 20.0 9 25.0 7 15.2 5 21.7
2002 24 18.0 5 12.2 13 19.7 6 23.1
2003 40 26.3 4 10.8 24 30.0 12 34.3
2004 51 24.1 10 16.7 31 27.7 10 25.0
2005 69 28.8 16 27.6 34 26.0 19 37.3
2006 101 36.7 21 32.8 59 37.8 21 38.2
2007 112 30.3 29 32.6 61 28.0 22 34.9
2008 111 29.2 34 32.7 59 27.2 18 30.5
2009 201 40.0 62 41.9 100 36.5 39 48.8
2010 182 35.4 59 35.8 86 30.2 37 57.8
2011 213 36.0 68 36.2 111 32.4 34 55.7
2012 232 36.0 87 41.6 104 29.3 41 50.6
2013 271 37.6 89 38.5 110 29.8 72 60.0
2014 319 42.6 137 44.8 123 35.9 59 59.6
2015 345 39.1 137 42.5 128 30.7 80 55.6
2016  296  32.4  118  34.1  125  28.3  53  42.1
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our data, we are able to construct upper and lower bounds for the share of  
publicly listed firms over time and across phases (figure 5.7). Appendix E 
(http:// www .nber .org /data -  appendix /c13994 /appendix .pdf) presents details 
about how these bounds were calculated and a short proof of the bounding 
exercise. Overall, we find that publicly listed firms are significantly more 
likely to pursue LPM trials, regardless of whether we use the upper or lower 
bound for the measure for whether or not a firm was (already) publicly listed 
at the time of a given trial’s launch.

We conclude with regression analyses (tables 5.8A, 5.8B, and 5.9).35 We are 
circumspect in interpreting our regression results; the coefficients calculated 
are not causally estimated, rather they represent differences between catego-
ries in our sample, controlling for other factors. However, the coefficients 
are useful in that they allow for interpretation of multivariate associations. 
Tables 5.8A and 5.8B present linear probability models using facets of trials 
to predict the likelihood that any given trial is an LPM using the generous 
and restrictive definitions as binary outcomes, respectively.

Through both panels, a set of statistical relationships emerge. For example, 
the linear probability models presented in tables 5.8A and 5.8B indicate that 
the total share of LPM trials has been increasing over time by between 0.3 
and 0.5 percentage points per year, with slightly higher point estimates from 
models focusing on the most recent twelve years of data only. We also find 
that precision trials are likely to be spread across all phases of trial devel-
opment (it is not the case that they are significantly less common in later 
phases relative to their frequency in Phase I trials). Other relationships seen 
in the trends presented in earlier tables and figures are also apparent. Most 
prominent among these is the importance of cancer trials; trials for cancer 
indications are 13–15 percentage points more likely to be LPM trials than 
those for noncancer indications. Off of an average share of LPM trials that 
only first reached 10 percent in recent years, this means that conditional 
on having a cancer trial, the probability that the trial is for an LPM more 
than doubles. Indeed, the coefficient on the binary indicator for whether a 
trial is a cancer trial is an order of magnitude larger than the association 
between time, location, trial phase, or firm type. Trials with US sites are more 
likely than non- US trials to be LPM trials, but only by about 1 percentage 
point—in other words, comparing this result to the overall time trend in the 
data, US trials seem to be about two to three years ahead of non- US trials in 
their inclusion of LPMs. We also find that the role of publicly listed firms is  
similar in magnitude and direction; trials pursued by publicly listed firms are 

35. As noted above, in our analyses we assign combined trials (e.g., combined Phase II & 
Phase III) to the lower of the two phases involved. In robustness tests, we create separate sub-
categories for combined Phase I/II and II/III trials and include controls for these combined 
trials in regression analyses. Results are not sensitive to this distinction, so we use the more 
parsimonious three- phase classification in tables and figures for simplicity.
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1–2 percentage points more likely to be LPM trials than those of privately 
held firms, all else equal.

We conclude our regression analysis by briefly considering predictors of 
trial duration. One implication of precision medicine is that trials themselves 
can be conducted more efficiently, if  effect sizes are expected to be large. 
Efficiency improvements could occur on the dimension of enrollment (fewer 
patients required) or on the dimension of trial duration (less time needed 
to draw statistically sound evidence); we consider only the latter possibility 
here. Table 5.9 presents results from a set of linear regression models pre-
dicting trial duration. These models include a number of trial features as 
regressors and present multivariate associations in our data set. As above, 
these coefficients cannot be interpreted causally; rather, they represent aver-
age associations between features of clinical trials and the amount of time 
required for trial completion.

The first three columns of table 5.9 present models predicting trial dura-
tion in LPM trials, while the last three columns present identical models 
in non- LPM trials. A number of interesting differences emerge. First, we 
note the difference in the coefficient on the intercept in the two sets of linear 
models; LPM trials take roughly twenty months longer to complete relative 
to nonprecision trials, all else equal. This may be due to the challenges of 
enrolling patients with less common subtypes of a disease, as well as the 
fact that nonprecision trials include a number of shorter studies (e.g., for 
antibiotics) that can be run extremely quickly, thereby lowering the average 
time to completion in the second group of trials. As in tables 8A and 8B, 
Phase I trials are the omitted category in all models. For LPM trials, Phase II 
trials are, all else equal, only about two months longer than Phase I trials, on 
average, and this difference is not statistically significant in any of the three 
specifications. This is quite different than what is observed in nonprecision 
trials, where Phase II studies take five to six months longer than Phase I  
studies to complete. Among LPM trials, Phase III studies have durations 
over a year longer than their Phase I and Phase II counterparts, a bigger 
difference than among nonprecision trials, where Phase III studies are only 
seven to nine months longer, on average. This suggests that although LPM 
trials may be longer on average, the use of biomarkers may be able to close 
the gap between Phase I and later phases to some extent.

Interestingly, although cancer trials appear to always take longer to com-
plete, on average, than noncancer trials, the additional trial length associ-
ated with LPM cancer trials is six to seven months less than the additional 
trial length associated with nonprecision cancer trials in these models. One 
interpretation of this is that precision medicines perhaps speed up cancer 
trials because of surrogate endpoints or enrichment. We are cautious not to 
overinterpret this relationship, because it does not hold up when examined 
in further detail; in appendix table III (http:// www .nber .org /data -  appendix 
/c13994 /appendix .pdf) we consider the same sets of models for cancer trials 
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alone and show similar patterns across many coefficients in the regression 
models, but differences in the estimated constants between LPM trials versus 
nonprecision trials in cancer. Finally, we note that as economic incentives 
would predict, trials sponsored by publicly listed firms have shorter dura-
tions, on average (e.g., such firms are likely under pressure from investors 
to bring products to market). While none of these facts provide conclusive 
evidence on the causes of  differences in trial length, the associations are 
intriguing and suggest the value of future research into the determinants of 
clinical trial length—especially since clinical trials represent a significant 
component of both the time and financial cost associated with new drug 
development.

5.6 Conclusion

By taking a detailed view of the global clinical trial pipeline over recent 
decades, we are able to describe a number of  trends and industry- level 
changes. Beyond growth in the number of registered clinical trials, we docu-
ment a number of patterns that have implications for cost growth in health 
care and pharmaceutical pricing. First, we show that the use of biomarkers 
in clinical trials has grown significantly, with an important subset represent-
ing the types of biomarkers that have the potential to be used in the devel-
opment of targeted therapies. Such therapies are likely to be more effective, 
but will also frequently come with higher prices. Although the raw num-
bers of trials using biomarkers in the development of precision medicines 
is still dwarfed by the total number of clinical trials for new therapeutics, 
the growth in likely precision medicine trials has been large in percentage 
terms, approximately doubling every decade over the past twenty- two years.

Our results should be interpreted with a number of  caveats. First, the 
findings presented here are only as representative as the global registries on 
which our primary clinical trial data set is based. While we have noted that 
there are good reasons to believe that these registries are representative of 
the set of pipeline drugs pursuing regulatory approvals in the dozen most 
recent years of our data, there may be more selection in trial reporting in 
earlier years. In particular, we believe that the data in the years after 2004 
are more likely to capture most clinical trials conducted in pursuit of new 
product approvals, due to changes in trial registration requirements for aca-
demic journal publication (discussed above). Unfortunately, we do not have 
a tractable way of estimating the type and direction of selection into trial 
registries that may have occurred.

Second, we note that our characterization of trials as either LPM or non- 
LPM trials is, by nature, probabilistic, based on observable features of these 
trials and the biomarkers employed in them. While the categories we use 
are unambiguously more conservative than simply considering any use of 
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biomarkers in clinical trials, they may still capture some trials and pipeline 
products that do not, in fact, represent precision medicines.

Finally, and perhaps most importantly, we have characterized the drug 
development pipeline, which is not necessarily synonymous with character-
izing the actual set of products that are subsequently commercialized. If  
failure rates in clinical research are endogenously determined with other 
characteristics related to commercialization strategies (e.g., single- product 
vs. multiproduct firms, as seen in Guedj and Scharfstein [2004]), character-
izing trials may not accurately reflect the future products that emerge from 
those trials. To the extent that there is selection in R&D project discontinua-
tions based on features that are not included in our analysis, the set of prod-
ucts that ultimately comes to market may look different than the late- stage 
clinical trial pipeline would suggest.36

Yet we believe that we have also made progress in characterizing recent 
trends and developments in clinical research related to precision medicines. 
By taking a big- picture view of global clinical trials, we can observe how 
trials for LPMs have grown in number and share over recent decades. We can 
also bring empirical data to bear on predictions from medicine and econom-
ics, which would suggest that certain types of drugs (e.g., for cancers) and 
certain markets (e.g., in the United States) are likely to have a greater share 
of LPMs. Within LPMs, we see a large and growing share of products that 
incorporate genomic and proteomic biomarkers in their development, sug-
gesting the growing importance of sequencing technologies for both R&D 
and patient care. Further, recent trajectories have implications for health 
care spending; to the extent that precision medicines grow in market share, 
they will drive up costs for many of the drugs that target specific groups of 
patients and also open up opportunities for previously difficult- to- implement 
firm strategies such as indication- based pricing. Such developments will 
also underscore the impact of strategic decisions regarding when and how 
to run biomarker- driven clinical trials during the therapeutic development  
process.

Appendix

Appears online at http:// www .nber .org /data -  appendix /c13994 /appendix .pdf.

36. On average, the success rate for a drug entering clinical trials is approximately 10 percent. 
This rate is even lower for oncology therapeutics, at roughly 5 percent. (https:// www .bio .org 
/sites /default /files /Clinical %20Development %20Success %20Rates %202006–2015%20- %20
BIO,%20Biomedtracker,%20Amplion%202016.pdf.)
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