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3.1 Introduction

As the climate system continues to warm, episodes of drought and extreme 
precipitation are more likely to occur in North America (Christensen et al. 
2013). Questions about changes in local temperature and precipitation events 
have been a practical concern to most of society (Brooks 2013). Agricultural 
productivity and profi tability are of particular importance due to their direct 
connection to weather (e.g., Deschênes and Greenstone 2007; Fisher et al. 
2012; Moore and Lobell 2014). Extreme weather events—including exces-
sive heat, drought, and precipitation—are known to cause harmful impacts 
on crop yields (Schlenker and Roberts 2009; Lobell et al. 2014; Urban et al. 
2015). According to the “smart farmer” hypothesis (Mendelsohn, Nord-
haus, and Shaw 1994), however, farmers adapt to weather variation and can 
adapt to climate change to mitigate these impacts. Yet we know little about 
the mechanism(s) of adaptation: Is it through crop choice, deployment of 
farm labor, or timing of production activities? Another possibility is that 
farmers manage weather risk through crop insurance. As with all insur-
ance markets, crop insurance raises the prospect of market failure through 
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adverse selection and moral hazard. The limited evidence on crop insurance 
suggests that, when treated with extreme heat, production areas with higher 
levels of insurance generate lower crop yields—that is, insurance may create 
a moral- hazard incentive for less adaptation (Annan and Schlenker 2015). 
Once again, the mechanisms underlying this outcome remain unstudied.

In this chapter, we study farmers’ crop choice and crop insurance take- up 
in response to preplant precipitation from the perspectives of adaptation, 
moral hazard, and selection on moral hazard. Crop choices are analyzed 
as land use—hereafter labeled “cropping pattern,” or how many acres of 
cropland are allocated to various crops. Cropping pattern is a possible adap-
tive strategy to preplant precipitation, as crops vary in their physiological 
requirements for water (Anderson, Wang, and Zhao 2012). At the same time, 
cropping pattern is potentially susceptible to the moral- hazard incentive of 
insurance. In addition to deciding on cropping pattern in early spring (Haigh 
et al. 2015), farmers in the US Midwest make crop insurance decisions by a 
March 15 deadline for corn and soybeans. Insurance is purchased by crop- 
specifi c acreage, and farmers decide on what percentage of yield to insure 
up to a maximum of 85 percent of the crop’s historical average yield (where 
85 percent coverage translates into a 15 percent deductible). Our variable for 
preplant precipitation includes precipitation from October 1 of the previous 
year through the March 15 insurance deadline. Our identifi cation strategy 
relies on exogenous variation in this variable—that is, interannual variation 
in preplant precipitation is plausibly random within a given spatial unit, as 
with other weather variables (Dell et al. 2014).

In tandem with the weather experiment, we exploit a quasi experiment 
created by a federal agricultural policy from 2009 to 2011—the Supple-
mental Revenue Assistance Payments (SURE) program—to examine moral 
hazard in cropping pattern and selection on moral hazard in insurance take-
 up. The SURE program augmented private crop insurance (at no charge 
to the farmer) with what was termed a “shallow loss” provision (Glauber 
2013)—that is, a provision to insure against relatively small reductions in 
crop yields that normally are part of the deductible. The provision substan-
tially reduced deductibles on crop insurance, to 10 percent (Shields 2010; 
USDA- FSA 2009), thereby increasing the incentive for moral hazard in 
farmer decision- making (Smith and Watts 2010).1 From the vantage point 
of an insurance agent, a farmer’s hidden action was not merely planting a 
particular crop. Rather, it was planting a particular crop under conditions 
of extreme preplant precipitation. By interacting the SURE program and 
preplant precipitation, we estimate the treatment eff ect of SURE’s reduced 
deductibles on cropping pattern to generate evidence on moral hazard.

Selection on moral hazard is the idea that an individual’s selection of 

1. Deductibles are a well- known feature of insurance policy design for reducing moral haz-
ard—that is, reducing the incentive provided by insurance for risk- taking in relation to an 
uncertain outcome (Varian 1992).
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insurance coverage is aff ected by the expected behavioral response to the 
coverage (Einav et al. 2013). Einav et al. show, for example, that individuals 
with a greater behavioral response to a health insurance contract purchase 
greater coverage. The issue in our study is whether farmers who increase 
(decrease) a crop’s acreage under the SURE program purchase higher 
(lower) insurance coverage on the crop; this is moral hazard followed by 
selection on moral hazard. Higher coverage, notably, will generate a larger 
payout for a given crop yield. We investigate insurance take- up in a similar 
way to cropping pattern. By interacting the program and preplant precipi-
tation, we estimate the treatment eff ect of SURE’s reduced deductibles on 
insurance take- up to generate evidence on selection on moral hazard.

We investigate these topics using data from four large agricultural states 
in the US Midwest: Illinois, Iowa, Nebraska, and North Dakota. Illinois 
and Iowa are included in their entirety, while only the rain- fed, agricultural 
regions of North Dakota and Nebraska are included (i.e., irrigated agri-
culture is excluded as in Schlenker et al. 2005). We apply high- resolution 
spatial data on land use (crops) and weather.2 We apply county- level data 
on insurance take- up and prepare county- level weather data to match the 
insurance data. Insurance take- up is measured using farmers’ expenditures 
on insurance premiums, as in Deryugina and Kirwan (2018). The study 
spans 2001 to 2014. With SURE being a short- lived program (2009 to 2011), 
both the beginning and end of the program are subject to analysis. A key 
question is, After program termination, does cropping- pattern adaptation 
to preplant precipitation return to its preprogram status? To implement this, 
we interact preplant precipitation with both the policy change in 2009 and 
its termination after 2011.

We estimate piecewise linear regressions, by state and crop, to allow for het-
erogeneous eff ects of preplant precipitation across states. Illinois and Iowa 
are dominated by corn and soybean production, whereas several crops are 
planted in North Dakota and Nebraska, which suggests that farmers in the 
latter states may have more options for crop substitution. Previous research 
has found a strong nonlinearity in the relationship between precipitation 
during the growing season and crop yields (Schlenker and Roberts 2009; 
Annan and Schlenker 2015; Burke and Emerick 2016). The piecewise linear 
approach, following Schlenker and Roberts (2009) and Burke and Emerick 
(2016), allows us to identify the eff ects of both a risk of water defi cit and a 
risk of excess water on farmers’ cropping patterns and insurance take- up 
responses to preplant precipitation.3 In this setting of exogenous variation 
in preplant precipitation, unobserved characteristics of farms and farmers 

2. With Minnesota and South Dakota included, the study area would encompass a block of 
six contiguous states. They are not included, however, because their high- resolution cropland 
data do not begin until 2006.

3. Both drought and excess precipitation are frequent entries in the Causes of Loss database 
on crop insurance claims, which is maintained by the RMA (http:// www .rma .usda .gov /data
 /cause .html).
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may be correlated with both cropping pattern and preplant precipitation. 
For instance, in a semiarid area that typically experiences low precipitation 
as part of its climate, farmers may have adjusted in various ways (e.g., with 
farm machinery or tillage practices) to the higher probability of low pre-
cipitation. We control for this time- invariant unobserved heterogeneity with 
fi xed eff ects. By using fi ne- scale spatial data, we pair a panel of crop- level 
land uses with preplant precipitation from 2001 to 2014 at a one- square- 
mile level, containing 640 acres. These one- square- mile blocks of farmland, 
called sections, tend to have only one or a few owners per section according 
to the Public Land Survey System (PLSS).4 We employ section fi xed eff ects 
in the land- use regressions, as in Holmes and Lee (2012).5 We employ county 
fi xed eff ects in the insurance take- up regressions.

Our results show heterogeneity across states in cropping- pattern adapta-
tion to preplant precipitation from 2001 to 2007.6 Farmers in North Dakota 
and Nebraska are much more responsive than those in Iowa and Illinois. 
When preplant precipitation is too little or too much, they plant fewer acres 
in corn, which is relatively water- sensitive, and more acres in soybeans, 
grassland, and/or wheat. In Illinois, although farmers are less responsive, 
the adaptation eff ects are nevertheless statistically signifi cant for their three 
crops (corn, soybeans, and grassland). Iowa appears to combine the ideal 
climatic and soil conditions for growing corn and soybeans such that they 
are optimal choices under a wide range of preplant precipitation conditions.

During the SURE regime from 2009 to 2011, farmers in all four states 
changed cropping patterns in response to SURE’s reduced deductibles. 
Farmers in North Dakota and Nebraska planted more acres in corn and 
fewer acres in wheat, soybeans, and grassland crops when facing extreme 
preplant precipitation. Although less responsive in magnitude, statistically 
signifi cant eff ects were also found for corn and soybeans in Illinois and Iowa. 
Moral hazard under the SURE program provides a clear explanation for 
this risk- taking in cropping pattern. Farmers apparently were substituting 
crop insurance for adaptation as a means of managing risk.

Notably, after the program’s termination from 2012 to 2014, farmers 
largely reversed course, returning cropping patterns close to the original, 
preprogram patterns of 2001 to 2007.

4. A section contains four quarter sections of 160 acres apiece. The quarter section is the 
land unit that was distributed for free under the 1862 Homestead Act to individuals who agreed 
to settle and farm the land. It is the original foundation of private ownership. We do not use 
a quarter section as the analytical unit because it does not cover all parts of North Dakota 
and Iowa.

5. In addition to accounting for unobserved heterogeneity at a fi ne scale, using the section 
as the spatial unit of analysis takes advantage of high- resolution weather data, thus avoiding 
the problem of generating aggregated precipitation variables with relatively small variation. 
We discuss this further in the “Data” subsection in section 3.3.

6. We omit data from 2008 in generating the main results, as there is some ambiguity about 
whether the SURE program was operating prior to the March 15 deadline for crop insurance 
decisions in 2008.
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We fi nd limited evidence of selection on moral hazard in expenditures 
on crop insurance premiums in response to preplant precipitation. In both 
Iowa and Illinois, the SURE treatment eff ects for both corn insurance pre-
miums and corn acres have the same sign and (in seven of eight cases) are 
highly statistically signifi cant. That is, farmers are increasing (decreasing) 
insurance expenditures on corn when they increase (decrease) corn acres. 
The results for expenditures on soybean insurance premiums in both Iowa 
and Illinois are somewhat weaker, as they follow soybeans acres in sign and 
signifi cance on one side of the precipitation thresholds, but not both sides, 
in the piecewise linear regressions. Precipitation varies more spatially than 
does temperature such that the use of county- level data on preplant precipi-
tation in the insurance regressions may explain these few diff erences across 
the acreage and insurance results. Insurance regressions are not estimated 
for Nebraska and North Dakota, as the crop insurance data are problematic 
for those states.7

Our chapter is related to three strands of literature: adaptation to weather 
variation and climate change, risk- taking behavior as a moral hazard of 
insurance, and selection on moral hazard in insurance coverage. A grow-
ing literature addresses adaptation to climate change by economic agents 
in various sectors—for example, agriculture, energy consumption, and 
human health.8 As in our chapter, most of  this research uses historical 
data to estimate the impact of  extreme weather as a basis to understand 
prospective adaptation to future climate change. In the agricultural sector, 
negative eff ects on crop yields are caused by extreme heat during the grow-
ing season (Schlenker and Roberts 2009), drought (Lobell et al. 2014), and 
extremely wet planting conditions (Urban et al. 2015). Our study diff ers in 
three regards: (i) it examines cropping patterns as a mechanism of adapta-
tion9 instead of crop yield as an outcome of adaptation; (ii) it focuses on an 
intermediate- run production perspective by analyzing the cropping pattern 
decision, in contrast to the very- short- run (growing season) and short- run 
(planting- growing season) perspectives of the aforementioned studies; and 
(iii) it uses high- resolution spatial data on land use and weather instead of 
relying solely on county- level data.

Our chapter is also related to the extensive empirical literature on moral 

7. Annan and Schlenker (2015) describe these problems with the crop insurance data. We 
discuss this in more detail in the “Data” subsection in section 3.3.

8. Related literature includes Deschênes and Greenstone (2007); Schlenker and Roberts 
(2009); Fisher et al. (2012); and Urban et al. (2015) on agriculture; Davis and Gertler (2015) 
and Mansur et al. (2008) on energy consumption; and Barreca et al. (2016) and Deschênes and 
Greenstone (2011) on human health.

9. Our research is similar to that of Kala (2017), Khanal et al. (2017), Miller (2014), and 
Rosenzweig and Udry (2014), all of whom study farmer adaptation to expected precipitation 
during the growing season in the context of developing economies. Our research also relates to 
recent studies that conduct randomized controlled trials to elicit the eff ect of rainfall insurance 
programs on farmers’ response to weather risk (Cole et al. 2017; Karlan et al. 2014; Mobarak 
and Rosenzweig 2014). Our results are consistent with their fi ndings that a risk- management 
program induces farmers to switch to production of riskier crops.
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hazard in insurance markets (see, for example, Einav, Finkelstein, and 
Levin 2010; Finkelstein 2015). In the agricultural sector, Weber, Key, and 
O’Donoghue (2016) review research related to moral hazard in the crop 
insurance market. Two studies reach contrary conclusions on the topic. 
Weber, Key, and O’Donoghue (2016) fi nd no evidence of moral hazard with 
respect to crop productivity, crop specialization, and input use, while Rob-
erts, O’Donoghue, and Key (2014) fi nd such evidence with respect to crop 
yield. Deryugina and Kirwan (2018) fi nd that expectations of agricultural 
disaster aid aff ect the crop insurance decision, a type of moral hazard. Our 
study is most similar to that of Annan and Schlenker (2015), who are the 
fi rst to connect the two topics of adaptation to weather and moral hazard 
in insurance. They fi nd that crop insurance gives farmers a disincentive to 
reduce damage to crop yields from extreme heat. Insurance thus perversely 
makes farmers less responsive to the weather (moral hazard).

A key feature of  our chapter is the study of  moral hazard’s hidden 
action—for instance, planting corn after experiencing extreme preplant 
precipitation—instead of the outcome of the hidden action. Other research, 
in contrast, commonly assesses an outcome of  the action instead of  the 
action itself. For example, Einav et al. (2013) study the response in health 
insurance utilization to increased insurance coverage as a form of moral 
hazard; they do not study individuals’ eff orts in maintaining their health.10 
Similarly, Annan and Schlenker (2015) examine the eff ect of crop insurance 
coverage on crop yield; they do not study farmers’ reduction in input use as 
the mechanism for explaining lower yield.11 In our case, data on preplant 
precipitation are not recorded in an insurance contract. Thus the choice of 
which crop to grow, conditional on preplant precipitation, is not observed by 
the insurance company. From the vantage point of the analyst, our unique 
data set translates this choice from unobservable to observable at a high 
degree of spatial resolution in the PLSS section.

Lastly, our chapter is related to research by Einav et al. (2013), who con-
duct the fi rst study of selection on moral hazard. Moral hazard and adverse 
selection are conventionally analyzed as distinct phenomena of insurance 
markets, but Einav et al. connect the two by investigating an individual’s 

10. Einav et al. (2013) write of the “abuse of terminology” related to the notion of “moral 
hazard” used in the literature on health insurance. They note that “moral hazard” should refer 
to a hidden action that would aff ect an individual’s health status. Beginning with Arrow (1963), 
however, “moral hazard” has instead referred to the responsiveness of health- care spending 
to insurance coverage. Only by assumption does health- care spending relate directly to health 
status and moral- hazard behavior. In this general context, Einav et al. (2013) follow convention 
by defi ning “moral hazard” as the price elasticity of demand for health care rather than as a 
hidden action that would aff ect health status.

11. Annan and Schlenker (2015) argue that an increase in insurance coverage caused a 
decrease in yield as a consequence of unobserved moral- hazard behavior. They rule out, albeit 
indirectly, that the lower yield is due to insuring lower- quality land through the crop insurance 
market.
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selection of  insurance coverage dependent on the expected behavioral 
response to the coverage. Here we complement our focus on moral hazard 
in cropping pattern by examining the eff ect of  preplant precipitation on 
crop insurance take- up—that is, whether crop insurance coverage shifts in 
response to SURE’s reduced deductibles in the same way as cropping pat-
tern. This is a new perspective on adverse selection in the crop insurance 
market. Adverse selection is no longer considered to be a major concern 
in this market due to risk adjustment in contract pricing—that is, setting 
insurance premiums based on farm- level data on historical crop yields and 
insurance claims (Du, Feng, and Hennessy 2017).12 Our research reconsiders 
the possibility of adverse selection in crop insurance based on asymmetric 
information about how preplant precipitation aff ects cropping pattern. In 
doing so, we follow Einav et al.’s (2013) recommendation for research into 
selection on moral hazard in a context other than health insurance.

The interdependent topics of  adaptation, moral hazard, and selection 
on moral hazard relate to signifi cant public policy issues. Understanding 
farmers’ adaptation to weather risk is essential for designing government 
programs to effi  ciently deal with the risk (Mendelsohn 2000). The impor-
tance and cost of these programs might only increase given that episodes of 
extreme weather are likely to increase under a changing climate.

The rest of  the chapter proceeds as follows: Section 3.2 describes the 
relevant background. Section 3.3 describes the empirical strategy and data. 
Section 3.4 reports preliminary material on the eff ect of preplant precipi-
tation on crop yields—this sets the stage for the main results. Section 3.5 
presents the main regression results on land use, including adaptation and 
moral hazard in response to preplant precipitation. Section 3.6 presents the 
main regression results on crop insurance take- up and how it relates to land 
use—that is, selection on moral hazard. Section 3.7 describes robustness 
checks on the land- use results. Section 3.8 off ers concluding remarks.

3.2 Background

3.2.1 Precipitation and Crop Growth in the Midwest

Crops need water to grow. The amount of water available for crop growth 
in rain- fed agriculture depends on the interaction between precipitation and 
the water- holding capacity of soil. In the Midwest, the amount of rainfall is 
usually favorable, and the soil is deep with a high water- holding capacity such 
that cultivated crops can grow without irrigation. Compared to other crops, 
corn is sensitive to water stress (Steduto et al. 2012). Anderson, Wang, and 

12. Risk adjustment—the standard approach to mitigating adverse selection—is executed by 
setting insurance premiums based on observable characteristics of the buyer that predict his or 
her insurance claims (Einav et al. 2013).
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Zhao (2012) compare the sensitivity of crop growth to water input and report 
that corn’s average sensitivity to water is greater than the sensitivity of other 
major crops in the region (soybeans, wheat, and alfalfa). Thus when farm-
ers expect extreme precipitation, they may substitute other crops for corn.13

Precipitation both prior to the growing season and during the growing 
season is important for crop growth, as this total supply provides the water to 
crops. Relative to growing- season precipitation, preplant precipitation pro-
vides three distinct infl uences on farmers’ cropping pattern decisions. First, 
preplant precipitation can aff ect root growth. Precipitation from October 
through April is important in this region for recharging soil moisture. By 
recharging soil, preplant precipitation is then available as water to enhance 
root growth during the growing season (Neild and Newman 1990).

Second, preplant precipitation can aff ect crop growth through indirect 
mechanisms. For example, Iowa experienced exceptionally warm winters in 
2011 and 2012. The resulting lower preplant precipitation aff ected insect ecol-
ogy and water quality, which contributed to poor crop production in those 
years (Al- Kaisi et al. 2013). At the other extreme, excess preplant precipitation 
can increase the risk of seedling diseases. Farmers may extend the planting 
period in response to excess preplant precipitation, but this increases the risk 
of foregoing yield in the late summer (Steduto et al. 2012; Urban et al. 2015).

Third, preplant precipitation can aff ect farmers’ expectation of  total 
water available for crop growth. In this region, positive (negative) snowfall 
anomalies in winter are associated with wetter (drier) than normal condi-
tions during the summer (Quiring and Kluver 2009). Our precipitation data 
also support this relationship. Thus the realized lower (higher) precipitation 
prior to the growing season signals to farmers a higher likelihood of expe-
riencing drier (wetter) conditions for crop growth.

3.2.2 Crop Insurance

Since the 1980s, the US government has relied on two policy tools, crop 
insurance and ad hoc crop disaster payments, to help farmers recover from 
fi nancial losses due to natural disasters (Chite 2008). Two advantages of crop 
insurance, according to policymakers, are its ability to replace costly disaster 
payments and to assist more producers. Relative to disaster payments, insur-
ance is also viewed as providing lower incentives for moral hazard and for 
planting crops on marginal lands (Glauber and Collins 2002).14 To increase 
participation rates, subsidy provisions for crop insurance thus were included 

13. In table 2 of Anderson, Wang, and Zhao (2012), the index of water- use effi  ciency (WUE) 
is compared across major US crops. The WUE index is a proxy for a crop’s average sensitivity to 
water. The index for corn is set at 1.0 as a benchmark. The indexes of other major crops in our 
study region are as follows: 0.65 for soybeans, 0.71 for wheat, and 0.43 for alfalfa. The smaller 
values indicate that, relative to corn, growth of these crops is less sensitive to water input.

14. Deryugina and Kirwan (2018) examine the relationship between crop insurance and 
disaster payments. They fi nd that expected disaster payments aff ect producers’ crop- insurance 
decisions.
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in major legislative programs in 1980, 1994, and 2000, with the expectation 
of reducing reliance on disaster payments (Shields and Chite 2010).

The crop insurance market blends private incentives and government 
intervention.15 On the demand side, farmers purchase insurance by crop 
and pay premiums adjusted to their own historical crop yields and insurance 
claims. Farmers select either yield- based insurance or revenue- based insur-
ance, where the latter includes both yield and crop price provisions. Farmers 
also select coverage levels. These range in fi ve- unit intervals from 55 percent 
to 85 percent, and in some regions only to 75 percent, for yield coverage and 
the yield provision of revenue- based insurance. The percentages are relative 
to a benchmark of 100 percent of the farm’s historical average yield of the 
crop. For the price provision, coverage levels range in fi ve- unit intervals 
from 60 percent to 100 percent. These percentages are relative to a 100 per-
cent benchmark set by the expected market price, as determined on futures 
markets. A larger coverage level naturally translates into a higher premium 
for insuring a given acreage of a crop. A larger coverage level also translates 
into a smaller deductible—that is, the deductible equals 100 percent minus 
the coverage percent.

Here we study the demand side of crop insurance using expenditures on 
premiums as the outcome variable. In 2014, farmers paid $3.79 billion in 
premiums to insure 294 million acres of crops (Shields 2015). Nationally, this 
covered the vast majority of planted acreage of corn (87 percent), soybeans 
(88 percent), and wheat (84 percent).

The supply side of the crop insurance market relies on private insurance 
companies operating with substantial government intervention. Nineteen 
companies sell crop insurance to farmers, yet they function under the pur-
view of USDA’s Risk Management Agency (RMA) and its Federal Crop 
Insurance Corporation (FCIC). The FCIC strictly limits the type of poli-
cies that can be sold, and it derives formulas for premium rates that are 
developed in the context of the federal government’s subsidy provisions. In 
2014, the crop- insurance subsidy totaled $6.27 billion. Thus the farmer- paid 
premiums of $3.79 billion (38 percent) plus the $6.27 billion in subsidy (62 
percent) equaled the gross insurance premiums, $10.06 billion. Both private 
and public expenditures on crop insurance are substantial.

3.2.3 The Supplemental Revenue Assistance Payments Program

The crop insurance program, by the mid- 2000s, had failed to replace 
disaster payments despite substantial growth in its participation rates.16 To 

15. Shields (2015) provides an excellent introduction to crop insurance, including its type of 
products, institutional setting, and historical experience in the United States. We rely on this 
for many of the details here.

16. The US Congress continued to establish ad hoc disaster assistance primarily through 
emergency supplemental appropriations. Thirty- nine acts established disaster payments to 
farmers between 1989 and 2007, and such payments were provided every year during this 
period (Chite 2010).
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further promote crop insurance, the US Congress authorized a new program 
in the 2008 Farm Bill, the SURE program (Shields 2010). The SURE pro-
gram supplemented crop insurance by compensating producers for so- called 
shallow losses—that is, losses that were part of a policy’s deductible. To be 
eligible for a SURE payment, a farmer needed to purchase insurance on all 
planted crops. Then to qualify for a payment, the farm (i) had to be located in 
a federally declared disaster county or a county bordering a disaster county 
or (ii) had to suff er a crop loss that exceeded 50 percent of expected yield. In 
its formula, the SURE payment increased with the farmer’s insured cover-
age level.

Previous research has argued that the SURE program was likely to 
encourage moral hazard in farmer decision- making by both reducing the 
deductible at which payments began and converting to a whole- farm revenue 
approach. First, SURE payments were initiated when a crop suff ered a yield 
loss of 10 percent or more—that is, farmers could insure 90 percent of their 
expected yield when SURE payments were combined with insurance indem-
nities (Glauber 2013; Smith and Watts 2010). This contrasts with the typical 
maximum of 85 percent coverage of expected yield under crop insurance. 
This substantial reduction of deductibles under SURE created incentives for 
risk- taking in crop choice and production. Empirically, Bekkerman, Smith, 
and Watts (2012) fi nd that the SURE program markedly increased insur-
ance participation rates, measured by the ratio of net insured acres to total 
planted acres at the county level.

Second, SURE payments were based on a whole- farm revenue approach, 
whereas prior to 2008, payments were based on crop- specifi c losses. To take 
advantage of SURE payments, farmers might eliminate crops from their 
rotations, thereby reducing the diversity inherent in a portfolio of  crops 
(Shields 2010). Growing a single crop might increase the chance that a farm 
would drop below its guaranteed revenue threshold at which program pay-
ments were triggered. Therefore, changes in crop- choice decisions could be 
evidence of response to the program’s incentives.

Payments to farmers were substantial under the SURE program. Bekker-
man, Smith, and Watts (2012) report that $2.11 billion in SURE payments 
were made for low production in 2008, which is about fi ve times higher than 
the Congressional Budget Offi  ce’s original estimated annual payments under 
the program, $425 million (CBO 2011). The US Government Accountability 
Offi  ce reports total SURE payments of $2.52 billion for fi scal years 2008 to 
2012 (USGAO 2014).

The SURE program ran for only a short time, 2008 through 2011. The 
program’s timeline suggests that farmers did not make 2008 planting deci-
sions with information about the program. At the same time, farmers later 
received SURE payments for 2008 crop losses. We excluded 2008 from the 
main analysis because of this ambiguity about program timing relative to 
farmer decision- making.
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3.3 Empirical Strategy

This section includes three parts: a simple conceptual motivation of land- 
use and insurance decision- making under weather risk; description of the 
econometric models for studying land use, insurance take- up, and crop yield; 
and description of the data.

3.3.1 Conceptual Motivation

We motivate the econometric analysis of land use and insurance take- up 
with a simple stylized example that considers farmer decision- making faced 
with growing- season weather risk. It begins with conditions prior to the 
SURE program and continues with an extension to the SURE program. 
For the sake of illustration, we consider a farmer’s choice to plant wheat or 
corn on a North Dakota farm.

Pre- SURE program. March 15 is the deadline for purchasing crop insur-
ance. The farmer will purchase insurance in any case in our example; but 
because the insurance is crop specifi c, the insurance decision is, in fact, the 
decision on which crop to grow—wheat or corn.

The farmer observes preplant precipitation on March 15. Preplant precip-
itation is the signal for soil moisture conditions in early May (the window for 
planting) and for precipitation during the growing season. Here we posit that 
preplant precipitation is relatively low on March 15, and this signal creates 
conditional probabilities of two precipitation outcomes for the planting and 
growing seasons. Only two outcomes are considered for ease of exposition.

State of nature 1: adequate precipitation for growing both wheat and corn 
(at probability p1)

State of nature 2: adequate precipitation for growing wheat, but low precipi-
tation for growing corn (at probability (1 – p1)).

Profi t is generated from allocating cropland to either wheat (W) or corn 
(C). Expected profi t, by crop, encompasses profi t (π) under the two states 
of nature. These are

E W = p1 1
W + (1 p1) 2

W

and

E C = p1 1
C + (1 p1) 2

C.

We posit that, given the relatively low preplant precipitation, the expected 
profi t from growing wheat exceeds the expected profi t from growing corn, or

E W > E C.

The farmer thus allocates cropland to wheat, not corn, given corn yield’s 
sensitivity to water input. In extrapolating to our empirical analysis, we 
expect wheat acres to increase and corn acres to decrease as preplant pre-
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cipitation decreases to a level of water defi cit in North Dakota. The farmer 
also purchases crop insurance for wheat, not corn.

SURE program. In the hypothetical, the SURE program reduces the 
deductible on crop insurance; farms with yield losses in the 75 percent to 
90 percent range of historical yields now qualify for SURE payments. We 
suppose, on the farm considered here, that corn yield is below 90 percent of 
historical yield in state of nature 2. Conventional profi t from corn is now 
augmented with a SURE payment, with the new profi t designated as 2

C . 
With 2

C > 2
C, we posit that corn production now generates higher expected 

profi t than wheat, or

E C = p1 1
C + (1 p1) 2

C > E W.

The farmer changes crops, now allocating cropland to corn, not wheat. 
This illustrates the moral hazard created by the SURE program: the farmer 
is taking a risk on corn. The farmer also purchases crop insurance for corn, 
not wheat. Once again extrapolating to the empirical analysis, we expect the 
program to increase corn acres and decrease wheat acres—relative to prepro-
gram levels—over the range of relatively low preplant precipitation levels. 
In addition, we expect insurance coverage to increase on corn, refl ecting 
selection on moral hazard. These are the type of treatment eff ects expected 
from the SURE program.

3.3.2 Piecewise Linear Regression Models

Our study area includes four major agricultural states in the Midwest: the 
entire states of Iowa and Illinois and the regions east of the 100th meridian 
in North Dakota and Nebraska that rely on rain- fed farming. The study 
encompasses 2001 to 2014. By beginning in 2001, we avoid the period prior 
to the major change in crop insurance policy (substantially increasing pre-
mium subsidies) that was enacted in 2000 with the Agricultural Risk Protec-
tion Act. We span the SURE program years, 2009 to 2011, which enables 
analysis of the postprogram period as part of the research design. By ending 
in 2014, we avoid a new supplemental insurance program that was enacted 
in the Agricultural Act of 2014 and implemented in 2015.

In the analysis, we exploit random year- to- year variation in preplant 
precipitation as a natural experiment. Preplant precipitation operates as a 
continuous treatment variable, with the treatment intensity varying across 
the observed range of preplant precipitation. In tandem with the weather 
experiment, we utilize the SURE program’s shock to insurance deductibles 
as a quasi experiment. The identifying assumption of the estimation strategy 
for SURE treatment eff ects is that local preplant precipitation shocks are 
exogenous to the policy changes in 2009 and 2012. We fi nd no evidence that 
our preplant precipitation variable and the policy changes are correlated. 
More generally, it is unlikely that annual preplant precipitation caused a 
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policy change such as the SURE program or that the SURE program caused 
a change in preplant precipitation.

Land- use regressions. Previous research has demonstrated a strong non-
linearity in the relationship between precipitation during the growing season 
and crop- yield outcomes (Annan and Schlenker 2015; Burke and Emer-
ick 2015; Schlenker and Roberts 2009). These fi ndings—that both water 
shortage and water excess aff ect yield negatively—motivate our approach 
to investigating whether farmers adjust cropping pattern based on real-
ized preplant precipitation. Many of the previous studies use higher- order 
terms of precipitation to capture the nonlinear eff ect. However, using these 
functional forms in a panel setting means that a unit- specifi c mean reenters 
the estimation, raising omitted variables concerns, as identifi cation in the 
panel models is no longer limited to location- specifi c variations over time 
(Mc Intosh and Schlenker 2006). We instead use a piecewise linear approach, 
following Schlenker and Roberts (2009) and Burke and Emerick (2015). This 
allows us to identify the eff ects of both risks—water shortage and water 
excess—on farmers’ cropping pattern response to preplant precipitation. 
Our use of high- resolution spatial data on land use and weather facilitates 
estimation of a fl exible model that can detect nonlinearities and thresholds 
in the eff ect of preplant precipitation on land allocation to crops.

We model log planted acres of  a crop in section i, state s, and year 
t (cropacreist) as a piecewise linear function of preplant precipitation with a 
threshold (or kink) at p0. The eff ect of the new SURE program in 2009 on 
cropping pattern adaptation to precipitation risk is identifi ed with the inter-
action term between our preplant precipitation variable precit and a policy 
dummy d09t equal to 1 if  the year is 2009 to 2011. Similarly, the eff ect of 
the termination of the SURE program on cropping pattern adaptation to 
precipitation risk is identifi ed with the interaction term between precit and 
a policy dummy d12t equal to 1 if  the year is 2012 or later. We estimate the 
fi xed eff ects model

(1) cropacreist = + 1precit;p<p0
+ 2 precit;p<p0

d09t + 3precit;p<p0
d12t

+ 4 precit;p> p0
+ 5 precit;p> p0

d09t + 6 precit;p> p0
d12t

+ tempit + X + i + t + gs(t) + ist ,

where the variable precit;p< p0 is the diff erence between preplant precipitation 
and p0 interacted with an indicator variable for preplant precipitation being 
below the threshold p0. precit;p> p0 is similarly defi ned for preplant precipi-
tation above the threshold. We allow the data to determine p0 by looping 
over all possible thresholds and selecting the model with the lowest sum of 
squared residuals. The variable tempit is the average preplant temperature 
from October 1 to March 15. X is a vector of  control variables, includ-
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ing planting- season precipitation, temperature, and future crop price. The 
planting- season variables control for the fact that farmers may revise land- 
use decisions subsequent to March 15 based on updated weather conditions. 
The μi are section fi xed eff ects that control for unobserved time- invariant 
characteristics that aff ect cropland use, such as climate and soil quality. 
Because the PLSS aligns with patterns of farm ownership and management, 
the section fi xed eff ects can also control for unobserved farmer characteris-
tics such as management skills and risk perception (Holmes and Lee 2012). 
Year fi xed eff ects δt account for unobserved common year- specifi c eff ects 
across sections, such as crop prices, and statewide and national policies, 
such as crop insurance premiums and biofuel policies. Similar to Annan 
and Schlenker (2015), we include gs(t) as a quadratic time trend, by state, to 
control for trends in agricultural technologies (such as seed types or drainage 
capital) that might aff ect yields and related land- use decisions.

The parameters of interest are the set of 𝛃. β1 and β4 provide estimates of 
how farmers’ crop acreage decisions respond to preplant precipitation prior 
to the SURE program both below and above the threshold, respectively; 
these parameters estimate adaptation. β2 and β5 provide estimates of the 
SURE treatment eff ects, or how farmers change their response to preplant 
precipitation under the SURE program; these parameters estimate moral 
hazard. Hence β1 + β2 and β4 + β5 provide estimates of how farmers respond 
to preplant precipitation under the SURE program below and above the 
threshold, respectively. β3 and β6 provide estimates of how farmers change 
their response after the SURE program relative to during the program. 
β1 + β2 + β3 and β4 + β5 + β6 provide estimates of how farmers respond to 
preplant precipitation after the SURE program both below and above the 
threshold, respectively. These parameters once again estimate adaptation.

Equation (1) is estimated by crop and by state for Illinois, Iowa, Nebraska, 
and North Dakota.

An important note with respect to the SURE treatment eff ects (β2 and β5) 
is that we do not observe purchase of crop insurance at the section level. That 
is, when observing land use in a section, we do not know whether the crops 
are insured. Insurance participation rates are quite high in general, with 
almost 90 percent of US corn, soybean, and wheat acres covered by insur-
ance. Nevertheless, the implication is that the estimated treatment eff ects are 
underestimates of the true eff ects.

Lastly, an ambiguity arises with observations from 2008. The SURE 
program was part of  a policy enacted on May 22, 2008, so it is unlikely 
that farmers could have included information about the program in insur-
ance and planting decisions by March 15 of 2008. Nevertheless, we exclude 
observations from 2008 from our main analysis and then include them in 
the preprogram period in a robustness check.

Insurance take- up regressions. We estimate crop insurance take- up using 
the same structure of  a piecewise linear function. We model log insur-
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ance premiums per planted acre of a crop in county c, state s, and year t 
(premiumscst) as a piecewise linear function of total preplant precipitation 
with a threshold at p0. Here we apply the actual value of the threshold p0 
from the land- use regression as a way to gauge whether the SURE treatment 
eff ect on insurance take- up follows the SURE treatment eff ect on land use 
(selection on moral hazard). We estimate the fi xed eff ects model

(2) premiumscst = + 1precct;p< p0
+ 2 precct;p< p0

d09t + 3precct;p< p0
d12t

+ 4 precct;p> p0
+ 5 precct;p> p0

d09t + 6 precct;p> p0
d12t

+ tempct + X + c + t + gs(t) + cst ,

where μc are county fi xed eff ects that control for unobserved time- invariant 
characteristics that aff ect insurance take- up, such as expected disaster pay-
ments in the county or the historical probability of a county being declared 
a disaster county. Other variables are defi ned as in equation (1).

The outcome variable in each insurance regression is specifi ed as a rate, 
premiums divided by total planted acres, and not simply premiums.17 To 
demonstrate selection on moral hazard, farmers need to purchase better 
insurance coverage when, for example, they are increasing acreage in a crop 
after being treated with the SURE program. With the county- level data, this 
requires showing increases in insurance coverage per acre of a crop—that 
is, the rate of insurance must be increasing. Thus the parameters of inter-
est are the SURE treatment eff ects, β2 and β5, and how they compare with 
the respective β2 and β5 for a particular crop from the land- use regressions.

Equation (2) is estimated for corn and soybean insurance premiums by 
state for Illinois and Iowa.

Crop yield regressions. We estimate crop yield regressions while once again 
using the same structure of a piecewise linear function. We model log crop 
yield in county c, state s, and year t (cropyldcst) as a piecewise linear func-
tion of preplant precipitation with a threshold at p0. We estimate the fi xed 
eff ects model

(3) cropyldcst = + 1precct;p< p0
+ 2 precct;p< p0

d09t + 3precct;p< p0
d12t

+ 4 precct;p> p0
+ 5 precct;p> p0

d09t + 6 precct;p> p0
d12t

+ tempct + X + c + t + gs(t) + cst ,

where X is a vector of variables for weather during the planting and growing 
seasons that serve as controls. We allow the data to determine p0 by looping 

17. Deryugina and Kirwan (2018) use premiums as their outcome variable, arguing that it 
captures both the intensive margin (choice of a discrete coverage level) and extensive margin 
(insured acres) of crop insurance. Annan and Schlenker (2015) use the rate of insurance, insured 
acres divided by total planted acres.
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over all possible thresholds and selecting the model with the lowest sum of 
squared residuals. Other variables are defi ned as in equations (1) and (2).

Equation (3) is estimated for corn and soybean yields using data pooled 
across Illinois, Iowa, and eastern North Dakota. Once again, the parameters 
of interest are the set of β, and they are interpreted in a similar way as the 
β in equation (1). These parameters show the estimated eff ects of preplant 
precipitation on crop yields.

3.3.3 Data

The unit of analysis for studying land use is the PLSS section, which is 
a 1 × 1 mile square piece of land. We use a geographic information system 
(GIS) data layer to defi ne sections (ESRI 2015). By state, the number of 
sections is as follows: Illinois, 45,372; Iowa, 50,020; Nebraska, 14,426; and 
North Dakota, 27,151 (table 3.1). Sections in eastern North Dakota and 
eastern Nebraska with irrigated land are excluded.18 Following Schlenker 
et al. (2005), the analysis focuses solely on rain- fed farming.

The unit of analysis for studying insurance take- up and crop yield is the 
county. By state, the number of counties is as follows: Illinois, 102; Iowa, 99; 
and North Dakota, 28. The county- level statistical analysis excludes eastern 
Nebraska because of its preponderance of irrigated agriculture; almost two- 
thirds of PLSS sections in eastern Nebraska rely on irrigation.

Land- use data. The land- use data are from the National Agricultural 
Statistics Service (NASS)’s Cropland Data Layer (CDL) program, which 
provides high- resolution geospatial data on crops planted and other types 
of land cover for the United States.19 For the four states, we constructed a 
balanced panel of planted acres by crop within the 640 acre PLSS sections 
from 2001 to 2014 (2002 to 2014 for Nebraska). The section- level data are 
generated by summing over the CDL grids within each section.

Table 3.1 presents summary statistics for mean acreage by state for corn, 
soybeans, spring wheat, and grassland, averaged over the sections and study 
period. The most common crops in North Dakota are spring wheat and soy-
beans, which sum to 228 acres per section. Corn is the most common crop 
in Illinois and Iowa, with soybeans also grown at high levels. Grassland is a 
major type of land cover in all four states, especially in North Dakota and 
Nebraska. Grassland is a single land- cover category, not a crop. Since CDL 
data are less reliable for diff erentiating among several land- cover types—
including alfalfa, fallow/idle cropland, unmanaged grassland, pasture, and 
hay—these land covers are combined into a single grassland category.

18. Data on the sections with irrigated agriculture are from the 250- meter scale irrigation 
map in 2007 from the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated 
Agriculture Dataset for the United States (MIrAD- US). See Brown and Pervez (2014) for 
documentation.

19. Donaldson and Storeygard (2016) highlight the CDL as an example of high- resolution 
satellite data with promising potential for application in economics.
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Table 3.1 Summary statistics

North Dakota Iowa

  Unit  Mean  Median  Std. dev.  Mean   Median  Std. dev.

Panel (A): Section- level variables for land- use regressions
Corn acreagea acre 49.51 6.75 88.29 222.85 222.30 134.61
Soybean acreagea acre 118.74 71.10 132.80 170.63 162.23 116.05
Spring wheat acreagea acre 110.49 72.13 120.68 0.10 0 1.79
Grassland acreagea acre 196.52 149.85 172.58 151.82 111.83 131.21
Preplant precipitationb mm 127.99 122.04 47.49 226.37 218.53 67.36
Preplant temperatureb °C –6.19 –6.55 2.24 –0.65 –0.68 2.13
Planting precipitationb mm 152.07 148.41 47.01 251.71 240.75 70.17
Planting temperatureb °C 7.12 7.43 2.21 11.04 11.03 1.85

Sections 27,151 50,020
Observations   352,963      650,260   

Illinois Nebraska

Corn acreagea acre 194.71 181.10 146.88 68.95 9.68 99.23
Soybean acreagea acre 157.77 145.13 119.55 55.51 1.35 90.68
Spring wheat acreagea acre 0 0 0.30 0.01 0 0.51
Grassland acreagea acre 102.67 74.70 97.40 433.52 501.76 199.43
Preplant precipitationb mm 380.52 360.06 108.55 156.29 145.84 52.11
Preplant temperatureb °C 2.74 2.77 2.28 0.70 0.77 1.68
Planting precipitationb mm 264.72 248.42 93.95 203.47 198.75 73.84
Planting temperatureb °C 13.31 13.35 1.97 11.29 11.22 1.87

Sections 45,372 14,426
Observations   589,836      173,112   

Iowa Illinoisf

Panel (B): County- level variables for insurance demand regressions
Corn insurance premiumsd 1,000 $ 3,982 3,361 2,625 3,567 2,589 3,223
Soybean insurance premiumsd 1,000 $ 1,814 1,591 1,153 1,558 1,217 1,281
Corn premiums per acree $/acre 31.05 29.44 17.10 29.79 28.79 17.93
Soybean premiums per acree $/acre 18.94 16.94 10.31 17.16 15.67 11.15
Preplant precipitationb mm 226.93 218.50 67.57 389.16 366.63 114.88
Preplant temperatureb °C –0.36 –0.37 2.18 3.17 3.20 2.37
Planting precipitationb mm 252.08 240.06 69.65 267.56 250.42 96.31
Planting temperatureb °C 11.67 11.64 1.89 14.04 14.10 2.03

Counties 99 102
Observations      1,287      1,291   

a Authors’ calculations with the Cropland Data Layer, 2001–2014.
b Authors’ calculations with Schlenker and Roberts (2009) weather data, 2001–2014.
c Authors’ calculations with the Soil Survey Geographic (SSURGO) database. Larger values indicate 
poorer soil quality. See the appendix for our calculation of weighted land capability at the section level.
d Authors’ calculations with the Risk Management Agency’s Summary of Business Reports and Data, 
2001–2014.
e Premiums divided by planted acres by crop. Data on planted acres are from the National Agricultural 
Statistics Service.
f The number of observations for corn in Illinois is 1,285. Summary statistics of  preplant and planting 
precipitation and temperature for the sample of corn in Illinois are very similar to the values reported here 
using the 1,291 observations from the soybean sample in Illinois.
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Figure 3.1 displays acreages of major types of cropland use across years. 
On average, acreages of  corn and soybeans in North Dakota are larger 
after 2012 than from 2009 to 2011, which are larger than those before 2008. 
The diff erences could be driven by the price eff ects of biofuel policy, which 
we control for with year fi xed eff ects. Acreages of corn and soybeans are 
relatively stable across the three periods in other states. Grassland acre-
age decreases after 2008 in all states, especially in North Dakota, where it 
decreases over time for the entire study period.

Weather data (section level). The weather data are an updated version of 
those used in Schlenker and Roberts (2009), which consist of daily precipita-
tion and maximum and minimum temperatures at 4 × 4 kilometer grid cells 
in the United States from 1950 to 2014. For each cell, preplant precipitation 
is the accumulated precipitation from October 1 in the previous year to 
March 15 in the current year—that is, precipitation from the end of the pre-

Fig. 3.1 Average cropland and grassland acres at the section level
Notes: The graphs display acreages of major types of cropland use across years. Data at the 
section level are extracted from the Cropland Data Layer. Panels (A)–(D) use nonirrigated 
PLSS sections.

A B

C D
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vious growing season through the deadline for purchasing crop insurance. 
Preplant temperature is computed by averaging daily average temperature 
over the same period. Planting- season precipitation is the accumulated pre-
cipitation from March 16 to May 31 for Iowa, Illinois, and Nebraska and 
from March 15 to June 15 for North Dakota. Planting- season temperature 
is the average of daily temperatures over these same periods. To match the 
spatial delineation of the land- use data, these four data series are converted 
to the section level by averaging each series over the intersected cells.

Using the section as the unit of  analysis takes advantage of  the high- 
resolution precipitation data. While temperature is a large- scale weather 
event, precipitation tends to be a microscale event—that is, precipitation 
intrinsically varies more spatially because local vegetation and geography 
can aff ect it. Use of aggregated weather data may result in small variation 
in precipitation variables.20

Mean preplant precipitations in North Dakota and Nebraska are 127.99 
mm and 156.29 mm, respectively, which is substantially lower than the 
226.37 mm of Iowa and 380.52 mm of Illinois (table 3.1). Illinois also has 
relatively larger variation in preplant precipitation. Using the raw data, 
fi gure 3.2 presents diff erent forms of  the nonlinear relationship between 
preplant precipitation and corn acreage for each state during the three peri-
ods: before 2008, 2009 to 2011, and 2012 to 2014. In North Dakota, for 
example, relatively low preplant precipitation occurred from 2001 to 2007 
and after 2012, while relatively high preplant precipitation occurred from 
2009 to 2011, as can be seen in panel (A). In Illinois and Iowa, fi gure 3.2 
shows that the relationships between preplant precipitation and corn acre-
age are somewhat similar across the three periods. In North Dakota and 
Nebraska, in contrast, the relationships between preplant precipitation and 
corn acreage from 2009 to 2011 appear very diff erent from those during the 
other two periods.

One concern with the land- use regressions is that the section and year 
fi xed eff ects can absorb a signifi cant amount of the variation in the preplant 
precipitation variables (Fisher et al. 2012). Following Fisher et al. (2012), 
we explore how much of the variation is absorbed by the fi xed eff ects. The 
appendix reports results showing that substantial residual variation exists 
to implement our approach (table 3A.2). This conclusion is reinforced by 
the standard errors on the various estimated coeffi  cients on the preplant 
precipitation variable in the (subsequent) land- use regressions.

Weather data (county level). We also use the same raw data to produce 
county- level weather data for the crop insurance regressions and the yield 

20. Mearns et al. (2001) and Fezzi and Bateman (2015) show that climate impact studies 
that use aggregated precipitation data to analyze a large spatial scale (such as county level 
or country level) may fail to capture the high variation of precipitation and thus may under-
estimate its importance.
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regressions. For the crop insurance regressions, the four county- level weather 
variables are preplant precipitation, preplant temperature, planting- season 
precipitation, and planting- season temperature. Their summary statistics 
are reported for the states with insurance regressions, Illinois and Iowa 
(table 3.1).

County- level weather data are also produced for the yield regressions for 
the relevant states: Illinois, Iowa, and eastern North Dakota. Seven vari-
ables are developed: preplant precipitation, preplant temperature, planting- 
season precipitation, planting- season temperature, growing- season precipi-
tation, growing- season temperature, and the daily maximum temperatures 
during July. Summary statistics for the three- state region are reported in the 
appendix (table 3A.3).

Insurance data. County- level administrative data on insurance premiums 

A B

C D

Fig. 3.2 Relationship between corn acres and preplant precipitation
Notes: These plots are generated by kernel- weighted local polynomial smoothing with the 
following settings: kernel = epan2, degree = 3, and bandwidth = 20. Data at the section level 
are extracted from the cropland data layer and Schlenker and Roberts (2009) weather data. 
Panels (A)–(D) use nonirrigated PLSS sections. Preplant precipitation is in millimeters.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



Farming under Weather Risk    97

are from the RMA. We use the dollar value of premiums paid by farmers.21 
These data cover corn and soybeans in Illinois and Iowa. Our dependent vari-
able in the insurance regressions is premiums divided by total planted acres 
of the respective crop, or dollars per acre. County- level data on total planted 
acres are from the NASS. Summary statistics are reported in table 3.1.

We exclude North Dakota from the state- based analysis of  insurance 
premiums. With only 28 counties, eastern North Dakota presents challenges 
for obtaining accurate regression estimates. More important, the crop insur-
ance data are of questionable quality in North Dakota. The data were fi rst 
questioned by Annan and Schlenker (2015), who were concerned with data 
on total planted acres. To understand this further, we display data on insured 
acres from RMA versus planted acres from NASS (fi gure 3.3). Beginning 
in 2008 and continuing through 2014, the number of insured acres equaled 
and, in several years, greatly exceeded planted acres for corn and soybeans in 
the state. For this reason, we do not estimate insurance take- up regressions 
for the crops in North Dakota.22

Futures price data. National data on futures prices for corn, soybeans, and 
wheat are from the RMA. They represent monthly average prices for Febru-
ary of the current growing season. These are the prices used in the formulas 
for revenue- based insurance of these respective crops. Thus futures price 
variables may help explain both land- use and insurance decisions.

Yield data. County- level data on crop yields of  corn and soybeans in 
bushels per acre are from the NASS. Summary statistics are reported in the 
appendix for the study region of Illinois, Iowa, and eastern North Dakota 
(table 3A.3). Wheat yield is not studied, as wheat is not one of our crops in 
Illinois and Iowa. Similarly, grassland is not studied; grassland is an amal-
gamation of land covers and so does not have related yield data.

3.4  Preliminary Considerations: Does Preplant Precipitation Aff ect 
Crop Yield?

We begin with preliminary analysis that examines the eff ect of preplant 
precipitation on crop yields. The intent is to establish that preplant precipi-
tation aff ects crop yields—that is, that there is an empirical justifi cation for 
farmers to include preplant precipitation in decision- making. We pool the 
county- level data from 2001 to 2014 across three states: Illinois, Iowa, and 
North Dakota (with North Dakota limited to counties in the eastern part 

21. Premiums paid by farmers are relevant for decision- making, while the premium subsidy 
paid by the federal government is not.

22. The diff erence between planted acres and insured acres could be explained by “acres 
prevented from planting” before the planting deadline under the crop insurance program. 
Additional research on this topic is needed to understand the incentive that crop insurance 
provides not to plant acres and how that interacts with preplant weather.
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Fig. 3.3 Comparison of planted acres (NASS) and insured acres (RMA)
Notes: The graphs display planted acres and insured acres for corn and soybeans across years 
by state. Planted acres are data from the NASS. Insured acres are data from the RMA’s Sum-
mary of Business Reports and Data. Data for North Dakota only include 28 counties east of 
the 100th meridian.
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of the state).23 Pooling the data across states is appropriate with yield regres-
sions.24 We apply equation (3) to estimate piecewise linear regressions for 
corn yield and soybean yield, using the common structure in our approach 
to assessing eff ects before, during, and after the SURE program. In addition 
to preplant precipitation and preplant temperature, other weather variables 
(just described) are included as controls. The appendix describes the vari-
ables and full results in more detail.

The results show that preplant precipitation aff ects crop yields with small 
but signifi cant eff ects in most cases. Begin with corn yields (table 3A.4 and 
fi gure 3A.2). Below the precipitation threshold, the eff ect of preplant pre-
cipitation is positive and highly signifi cant in the pre- SURE phase from 2001 
to 2007 and positive but insignifi cant in the post- SURE phase from 2011 to 
2014. Above the threshold, preplant precipitation exerts negative and highly 
signifi cant eff ects in both the pre-  and post- SURE phases.

Turn next to soybean yields. Below the precipitation threshold, the eff ect 
of preplant precipitation is negative and highly signifi cant in the pre- SURE 
phase and negative but insignifi cant in the post- SURE phase. Above the 
threshold, preplant precipitation exerts negative and signifi cant eff ects in 
both the pre-  and post- SURE phases.

With the SURE program, the respective changes in corn yields and soy-
bean yields are positive, with three of four estimated coeffi  cients highly sig-
nifi cant on variables that interact the SURE program with preplant precipi-
tation (table 3A.4 and fi gure 3A.2). This is interesting per se, as it counters 
intuition that risk- taking during the SURE program will lead to productiv-
ity losses. In a separate study, we are investigating soil quality as a possible 
mechanism to explain this. Farmers might have grown corn and soybeans 
on land with higher- quality soil during the SURE program.

To summarize: the two yield regressions provide empirical support for the 
idea that farmers consider preplant precipitation in land- use and insurance 
take- up decision- making.

23. We exclude our study counties in Nebraska from the analysis of crop yields due to the 
high rate of irrigation in eastern Nebraska. In these counties, 63.4 percent of the sections are 
in irrigated agriculture and 36.6 percent are in rain- fed agriculture. This preponderance of 
irrigation skews the county- level data on crop yields.

24. Pooling the data across states is appropriate with yield regressions but not land- use 
regressions. With land use, individual farms typically grow more than one crop each season, 
and multiple crops are competing to be selected for planting in any given fi eld. This competition 
can vary across states—for example, corn competes with wheat for land use in North Dakota 
but does not compete with wheat in Iowa. This implies a multioutput technology with tradeoff s 
that may diff er from state to state such that state- specifi c regressions may be warranted. Yield, 
in contrast, implies a single- output technology that depends primarily on agronomic consid-
erations in the short run such that pooling data across states is defensible. Empirically, several 
studies apply data pooled across states when examining the eff ect of extreme weather on crop 
yield (e.g., Schlenker and Roberts 2009; Lobell et al. 2014; Urban et al. 2015).
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3.5 Results I: Adaptation and Moral Hazard in Land Use

Results from the land- use regressions (equation (1)) are reported in three 
subsections. The fi rst discusses the main estimation results for a single crop, 
corn, which is recognized as a water- sensitive crop, and a major crop, in 
the Midwest. The second discusses results for a single state, North Dakota, 
which has a diversity of  crops and land allocations. The third discusses 
results for the other three crops and states.

Prior to reporting results, we fi rst explain why we do not pool the data 
and estimate a single regression for each crop that encompasses the four 
states. After all, the section fi xed eff ects account for several time- invariant 
unobservables at the section level, such as soil quality, climate factors, and 
farm management skills. But our focus on cropping pattern—and the vari-
ous crop substitutions that result in substantially diff erent acres allocated 
to a particular crop across states—provides one rationale for the state- level 
analysis. We can observe this heterogeneity in the average cropland alloca-
tions in a section and how those allocations vary across states (fi gure 3.1).

A second factor favoring state- level regressions is the heterogeneity across 
states in preplant precipitation thresholds. In the piecewise linear approach, 
we allow the data for a state to determine each crop’s threshold by looping 
over all possible thresholds based on equation (1) and then selecting the 
model with the lowest sum of squared residuals. As an example, the thresh-
olds of preplant precipitation for corn vary widely across states: 100 mm in 
North Dakota, 370 mm in Iowa, 395 mm in Illinois, and 135 mm in Nebraska 
(table 3.2). With diff erent thresholds, the piecewise linear functions vary 
substantially across states. Figure 3.4 illustrates this using the regression 
results for corn.

Overall, we estimate 13 land- use regressions for the four crops across 
the four states. The eff ects of preplant precipitation are captured in 77 esti-
mated coeffi  cients, with 51 of these refl ecting the interaction with the SURE 
program and post- SURE program. Of the 77 estimates, 52 are statistically 
signifi cant—that is, preplant precipitation exerts meaningful causal eff ects 
on agricultural land use.

3.5.1 The Eff ect of Preplant Precipitation on Corn Acres

The regression results for corn show economically and statistically signifi -
cant responses to preplant precipitation in the study states (table 3.2). Farm-
ers in states with relatively poorer natural capital in their climate and soil 
conditions25 were more responsive—these are North Dakota and Nebraska. 
Farmers in Iowa and Illinois, in contrast, were less responsive to both pre-

25. The appendix describes data on soil quality at the section level across the four states. 
Illinois and Iowa have relatively high soil quality, while Nebraska has the poorest soil quality. 
Soil quality in North Dakota approaches that of Illinois and Iowa.
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plant precipitation and the interaction of preplant precipitation with the 
SURE program.

North Dakota: farmers are quite responsive to both preplant precipitation 
and its interaction with the SURE program. Column (1) of table 3.2 reports 
the results for corn in North Dakota. Before the policy change in 2009, 
a 1 mm decrease in preplant precipitation below the threshold decreases 
corn acreage by 1.0 percent, while a 1 mm increase in preplant precipita-
tion above the threshold decreases corn acreage by 0.6 percent. The results 

Table 3.2 Land- use estimation results for corn

  
North Dakota 

(1)  
Iowa 
(2)  

Illinois 
(3)  

Nebraska 
(4)

Preplant precipitation below threshold –0.010** –0.000 –0.000 –0.009***
(0.004) (0.000) (0.000) (0.003)

Preplant precipitation below threshold 
× after 2008

–0.015 –0.001** 0.001*** 0.012***
(0.041) (0.000) (0.000) (0.003)

Preplant precipitation below threshold 
× after 2011

0.008 0.000 –0.001** –0.006***
(0.042) (0.000) (0.000) (0.002)

Preplant precipitation above threshold –0.006*** –0.001 –0.001*** –0.005***
(0.002) (0.003) (0.000) (0.001)

Preplant precipitation above threshold 
× after 2008

0.009*** 0.006** 0.001 0.004***
(0.002) (0.003) (0.000) (0.001)

Preplant precipitation above threshold 
× after 2011

–0.010*** –0.010*** –0.001*** 0.001
(0.003) (0.003) (0.000) (0.001)

Preplant temperature –0.389** –0.068*** 0.013 –0.099*
(0.151) (0.023) (0.049) (0.056)

Preplant temperature squared –0.019*** –0.004** 0.001 –0.015**
(0.005) (0.002) (0.003) (0.007)

Planting precipitation –0.004 0.001 –0.000 –0.004***
(0.003) (0.000) (0.001) (0.001)

Planting precipitation squared 0.000 –0.000* 0.000 0.000***
(0.000) (0.000) (0.000) (0.000)

Planting temperature –0.047 0.171*** –0.000 0.019
(0.132) (0.035) (0.062) (0.087)

Planting temperature squared 0.004 –0.006*** 0.004** 0.002
(0.007) (0.001) (0.002) (0.003)

Corn futures price 0.628*** 0.192*** 0.038 0.157***
(0.213) (0.034) (0.032) (0.042)

Observations 352,963 650,260 589,836 173,112
R- squared 0.158 0.027 0.026 0.090
Number of PLSS sections 27,151 50,020 45,372 14,426
Threshold of preplant precipitation  100  370  395  135

Notes: Dependent variable in all regressions is the log of corn acres. Regressions estimated using piece-
wise linear functional form with the fi xed eff ects estimator. Regressions include section fi xed eff ects, year 
fi xed eff ects, and a quadratic time trend by state. Regressions (1)–(4) use nonirrigated PLSS sections. 
Standard errors are clustered at the county level and shown in parentheses, and *, **, and *** denote 
statistical signifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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imply that farmers adapted to abnormal preplant precipitation by planting 
fewer acres in corn. This adaptation strategy was adopted even though the 
crop insurance program was in place. The program had created moral hazard 
problems even before 2009 (Roberts, O’Donoghue, and Key 2014).

Under the SURE program from 2009 to 2011, we do not obtain a sta-
tistically signifi cant eff ect below the threshold, perhaps because there are 
relatively few observations below the threshold in North Dakota during this 
period. However, above the threshold, a 1 mm increase in preplant precipi-
tation actually increases corn acreage by 0.3 percent, which is the sum of 
the coeffi  cients −0.006 and 0.009. The result suggests that farmers chose to 
grow corn despite the risk of excess precipitation, implying that the program 
introduced moral hazard into land- use decisions in North Dakota.

Results from after the program’s termination in 2012 only strengthen this 
perspective. Here a 1 mm increase in preplant precipitation decreases corn 

A B

C D

Fig. 3.4 Predicted eff ects of preplant precipitation on corn acres (by policy regime)
Notes: The graphs display the predicted means of log(corn acres) in the sections as a function 
of preplant precipitation. Panels (A)–(D) use nonirrigated PLSS sections. Preplant precipita-
tion is in millimeters.
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acreage by 0.7 percent, which is derived as the sum of −0.006, 0.009, and 
−0.010. Notice that the eff ect returns to a similar slope as before the SURE 
program was enacted—that is, the increase of the corn acreage function due 
to the new policy in 2009 was virtually off set by the decrease due to termina-
tion of the policy in 2012. This lends credibility to the interpretation of the 
SURE program exerting a causal eff ect.

Figure 3.4 illustrates the piecewise linear estimation results for North 
Dakota in panel (A). Before 2009, corn acreage increases linearly up to 
the endogenous threshold of  preplant precipitation (100 mm) and then 
decreases linearly above that threshold; the solid line depicts this inverted- 
V- shaped eff ect. Under the SURE policy, the relationship changes substan-
tially, as shown by the dashed line. However, after the program’s termination, 
the relationship returns virtually to the original inverted- V- shaped eff ect of 
pre- 2009; this is the dotted line in the fi gure.

Nebraska: farmers are responsive to preplant precipitation. Like North 
Dakota, farmers in Nebraska show responsiveness in corn acres as a func-
tion of  preplant precipitation (column (4) of  table 3.2 and panel (D) of 
fi gure 3.4). Before the policy change in 2009, a 1 mm decrease in preplant 
precipitation below the threshold decreases corn acreage by 0.9 percent. 
After the policy change in 2009, the estimated coeffi  cient of 0.012 shows a 
substantial increase in corn acres such that a 1 mm decrease now increases 
acreage by 0.3 percent. Farmers thus are willing to risk corn production in 
the face of a water defi cit, apparently due to the risk protection of the SURE 
program. Following the program’s termination, farmers return to fewer corn 
acres when faced with preplant precipitation below the threshold.

Above the threshold in Nebraska, we fi nd a similar pattern to North 
Dakota’s result both before 2009 and during the SURE program. But the 
estimates are smaller, and we fi nd no evidence about corn acreage change 
after termination of  the SURE program. The results suggest that above 
the threshold, corn acreage in Nebraska is not as sensitive to the program 
changes as in North Dakota.

Iowa and Illinois: farmers are generally less responsive to preplant precipita-
tion and its interaction with the SURE program. Relative to North Dakota 
and Nebraska, farmers are less responsive in corn acres in Iowa and Illinois, 
states in which both mean preplant precipitation and soil quality are much 
higher (table 3.2 and fi gure 3.4). Before 2009, the estimated coeffi  cients on 
preplant precipitation are not statistically signifi cant in Iowa. Iowa appears 
to combine the ideal climatic and soil conditions for growing corn such that 
it is the optimal choice under a range of preplant precipitation conditions. 
In Illinois, the coeffi  cient is statistically signifi cant and indicates a small 
0.1 percent decrease in acres given a 1 mm increase in preplant precipitation 
above the threshold. Though small, some adaptation is occurring in Illinois.

Three of  four treatment eff ects are statistically signifi cant under the 
SURE program, and three of four treatment eff ects are also signifi cant in 
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the post- SURE period. The SURE eff ect above the threshold in Iowa is 
similar in magnitude to that in North Dakota; a 1 mm increase in preplant 
precipitation increases corn acreage by 0.6 percent. After program termi-
nation in 2012, the decrease in the corn acreage function off sets this eff ect. 
Farmers reverse course, once again supporting the idea that the SURE pro-
gram generates a causal eff ect.

The pairing of  high- quality soils and plentiful precipitation for corn 
growth characterizes much of the natural capital that underlies the produc-
tion technology for agriculture in Illinois and Iowa. Consequently, corn 
is not a marginal crop as a function of preplant precipitation in these two 
states.

3.5.2 Cropping Pattern in North Dakota

We return to the perspective of cropping pattern in describing results for 
North Dakota’s diverse mix of corn, grassland land cover, soybeans, and 
spring wheat.26 Table 3.3 reports regression results, and fi gure 3.5 graphs 
the piecewise linear functions. We learned that North Dakota farmers are 
responsive in corn acres: in the pre- 2009 period, corn acres decrease as pre-
plant precipitation decreases (increases) below (above) the threshold. What 
substitutes for corn during this period? Below the threshold, soybean acres 
increase substantially as precipitation decreases. Wheat, however, responds 
like corn, and grassland acres show no eff ect. Above the threshold, all three 
crops respond positively to preplant precipitation in substituting for corn. 
In fact, 11 of 12 estimated coeffi  cients above the threshold are statistically 
signifi cant.

When treated with the SURE program, corn acres shift upward, while 
wheat, soybeans, and grassland acres generally shift downward as a function 
of preplant precipitation above the thresholds.

Termination of the SURE program generated several statistically signifi -
cant responses both above and below the precipitation thresholds. Above the 
thresholds, the acreage relationships for corn, grassland, and wheat returned 
toward the preprogram relationship. This was also the case for wheat below 
the threshold.

Overall, in response to preplant precipitation, farmers in North Dakota 
show adaptation through cropping pattern followed by moral hazard in 
cropping pattern under the SURE program.

3.5.3 Other Crops and States

The other main results include grassland land covers and soybeans in 
states other than North Dakota. In general, grassland acres show statisti-

26. Note that the type of wheat grown in North Dakota is spring wheat, not winter wheat. 
Spring wheat is planted during the normal spring planting season, and thus its acreage may be 
infl uenced by preplant precipitation.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



Farming under Weather Risk    105

cally signifi cant but small responses to preplant precipitation as an adap-
tation strategy in Iowa, Illinois, and Nebraska (table 3.4). Nebraska and 
Illinois show similar patterns here of adapting to precipitation extremes by 
changing grassland acres. These eff ects are quite small, with estimated coef-
fi cients in the 0.001 to 0.003 range in absolute value.

Soybean acres show similarly small responses to preplant precipitation, 
with fewer estimated coeffi  cients being statistically signifi cant (table 3.5). 
Like corn, soybeans are not a marginal crop as a function of preplant pre-

Table 3.3 Land- use estimation results for North Dakota

Corn Soybeans Grassland Wheat
 (1)  (2)  (3)  (4)

Preplant precipitation below threshold –0.010** 0.092*** 0.001 –0.020***
(0.004) (0.031) (0.002) (0.004)

Preplant precipitation below threshold 
× after 2008

–0.015 — –0.001 –0.911***
(0.041) — (0.004) (0.056)

Preplant precipitation below threshold 
× after 2011

0.008 –0.084** 0.006 0.954***
(0.042) (0.037) (0.005) (0.058)

Preplant precipitation above threshold –0.006*** 0.008*** 0.013*** 0.004**
(0.002) (0.001) (0.002) (0.002)

Preplant precipitation above threshold 
× after 2008

0.009*** –0.005*** –0.018*** –0.008***
(0.002) (0.002) (0.003) (0.002)

Preplant precipitation above threshold 
× after 2011

–0.010*** –0.003 0.007** 0.004**
(0.003) (0.002) (0.003) (0.002)

Preplant temperature –0.389** 0.521** –0.357*** 0.542***
(0.151) (0.195) (0.128) (0.079)

Preplant temperature squared –0.019*** 0.025*** –0.003 0.017***
(0.005) (0.008) (0.003) (0.005)

Planting precipitation –0.004 –0.001 0.005* 0.003
(0.003) (0.003) (0.003) (0.003)

Planting precipitation squared 0.000 0.000 –0.000* –0.000
(0.000) (0.000) (0.000) (0.000)

Planting temperature –0.047 0.014 –0.316*** –0.118
(0.132) (0.122) (0.108) (0.116)

Planting temperature squared 0.004 –0.019*** 0.020*** 0.006
(0.007) (0.005) (0.003) (0.005)

Crop- specifi c futures price 0.628*** –0.061 –0.219** 0.069
(0.213) (0.065) (0.098) (0.052)

Observations 352,963 352,963 352,963 352,963
R- squared 0.158 0.165 0.359 0.162
Number of PLSS sections 27,151 27,151 27,151 27,151
Threshold of preplant precipitation  100  65  125  85

Notes: Dependent variable in all regressions is the log of acres. Regressions estimated using 
piecewise linear functional form with the fi xed eff ects estimator. Regressions include section 
fi xed eff ects, year fi xed eff ects, and a quadratic time trend by state. Standard errors are clus-
tered at the county level and shown in parentheses, and *, **, and *** denote statistical sig-
nifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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cipitation in Iowa. However, soybeans are part of  the cropping pattern 
response to the SURE program in both Iowa and Illinois. Farmers substitute 
away from soybeans below the thresholds in Iowa and Illinois and above the 
threshold in Iowa. Following the program’s termination, farmers return to 
their preprogram response to precipitation above the thresholds in Iowa and 
Illinois. In Nebraska, there is substitution toward soybean acres, both below 
and above the threshold, in response to the SURE program.

3.6 Results II: Selection on Moral Hazard in Insurance Take- up

We use equation (2) to estimate insurance take- up regressions for two crops 
in two states: corn and soybeans in Illinois and Iowa.27 In the piecewise linear 

27. As mentioned earlier, insurance regressions are not estimated for crops in Nebraska and 
North Dakota due to issues in the county- level data that are not present in the section- level data.

B

C
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D

Fig. 3.5 Predicted eff ects of preplant precipitation on cropland acres in North 
Dakota (by policy regime)
Notes: The graphs display the predicted means of log(crop acres) in the sections as a function 
of preplant precipitation. Preplant precipitation is in millimeters.
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regressions, the threshold values for preplant precipitation are taken from 
the land- use regressions for the respective crops and states. For example, the 
threshold of 370 mm from the corn acres regression in Iowa is applied as the 
threshold in the comparable insurance regression. Table 3.6 reports the results, 
and fi gure 3.6 graphs the results as a function of preplant precipitation.28

28. The estimated coeffi  cients on the variables for futures prices for corn and soybeans lend 
credibility to the overall results on insurance take- up. These prices serve directly as parameters 
of revenue- based crop insurance. When insurance pays out, indemnity increases in futures price. 
The four estimates are positive and highly signifi cant.

Table 3.4 Land- use estimation results for grassland

North Dakota Iowa Illinois Nebraska
  (1)  (2)  (3)  (4)

Preplant precipitation below threshold 0.001 –0.002* 0.002*** 0.003*
(0.002) (0.001) (0.000) (0.001)

Preplant precipitation below threshold 
× after 2008

–0.001 0.005*** 0.000 –0.004*
(0.004) (0.001) (0.001) (0.002)

Preplant precipitation below threshold 
× after 2011

0.006 0.002 –0.002** 0.004***
(0.005) (0.001) (0.001) (0.001)

Preplant precipitation above threshold 0.013*** –0.002*** 0.001* 0.003***
(0.002) (0.000) (0.000) (0.000)

Preplant precipitation above threshold 
× after 2008

–0.018*** 0.000 0.000 –0.002***
(0.003) (0.001) (0.000) (0.001)

Preplant precipitation above threshold 
× after 2011

0.007** 0.001*** –0.000 –0.001
(0.003) (0.000) (0.001) (0.001)

Preplant temperature –0.357*** 0.141*** –0.057 0.024
(0.128) (0.027) (0.083) (0.024)

Preplant temperature squared –0.003 –0.005*** 0.001 –0.000
(0.003) (0.001) (0.003) (0.004)

Planting precipitation 0.005* 0.000 –0.003*** –0.000
(0.003) (0.000) (0.001) (0.000)

Planting precipitation squared –0.000* 0.000 0.000*** –0.000
(0.000) (0.000) (0.000) (0.000)

Planting temperature –0.316*** –0.458*** 0.096 –0.095**
(0.108) (0.051) (0.075) (0.043)

Planting temperature squared 0.020*** 0.010*** –0.005** –0.004***
(0.003) (0.001) (0.002) (0.001)

Corn futures price –0.219** 0.048*** –0.549*** 0.096***
(0.098) (0.015) (0.099) (0.027)

Observations 352,963 650,260 589,836 173,112
R- squared 0.359 0.295 0.344 0.183
Number of PLSS sections 27,151 50,020 45,372 14,426
Threshold of preplant precipitation  125  170  435  140

Notes: Dependent variable in all regressions is the log of grassland acres. Regressions estimated using 
piecewise linear functional form with the fi xed eff ects estimator. Regressions include section fi xed eff ects, 
year fi xed eff ects, and a quadratic time trend by state. Regressions (1)–(4) use nonirrigated PLSS sections. 
Standard errors are clustered at the county level and shown in parentheses, and *, **, and *** denote 
statistical signifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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In studying selection on moral hazard, the question is whether SURE’s 
treatment eff ect on crop insurance premiums per planted acre follows the 
sign and signifi cance of the treatment eff ect on crop acres.29 The results for 
corn provide reasonably strong supporting evidence. First, for corn acres 
in Iowa, the SURE treatment eff ect is negative and signifi cant below the 

29. We study land use and insurance take- up as concurrent decisions that reveal moral hazard 
and selection on moral hazard. In contrast, Einav et al. (2013) develop a two- period model 
with selection of insurance coverage in the fi rst period and health- care utilization in the second 
period.

Table 3.5 Land- use estimation results for soybeans

North Dakota Iowa Illinois Nebraska
  (1)  (2)  (3)  (4)

Preplant precipitation below threshold 0.092*** 0.001 0.000* –0.006***
(0.031) (0.001) (0.000) (0.001)

Preplant precipitation below threshold 
× after 2008

– –0.004*** –0.001* 0.005**
– (0.001) (0.000) (0.002)

Preplant precipitation below threshold 
× after 2011

–0.084** –0.000 –0.000 0.000
(0.037) (0.001) (0.000) (0.002)

Preplant precipitation above threshold 0.008*** 0.001 –0.001*** –0.001
(0.001) (0.000) (0.000) (0.001)

Preplant precipitation above threshold 
× after 2008

–0.005*** –0.002*** 0.001** 0.002**
(0.002) (0.000) (0.000) (0.001)

Preplant precipitation above threshold 
× after 2011

–0.003 0.002*** –0.002*** 0.001
(0.002) (0.001) (0.000) (0.001)

Preplant temperature 0.521** –0.004 –0.091*** –0.179***
(0.195) (0.019) (0.035) (0.035)

Preplant temperature squared 0.025*** –0.006*** –0.005*** –0.017***
(0.008) (0.001) (0.002) (0.005)

Planting precipitation –0.001 –0.000 0.000 –0.003***
(0.003) (0.001) (0.001) (0.001)

Planting precipitation squared 0.000 0.000 0.000 0.000***
(0.000) (0.000) (0.000) (0.000)

Planting temperature 0.014 0.088** –0.127** 0.080
(0.122) (0.039) (0.055) (0.070)

Planting temperature squared –0.019*** 0.003*** 0.009*** 0.004*
(0.005) (0.001) (0.002) (0.002)

Soybeans futures price –0.061 0.051** 0.070*** –0.014
(0.065) (0.025) (0.016) (0.015)

Observations 352,963 650,260 589,836 173,112
R- squared 0.165 0.073 0.083 0.079
Number of PLSS sections 27,151 50,020 45,372 14,426
Threshold of preplant precipitation  65  180  405  140

Notes: Dependent variable in all regressions is the log of soybean acres. Regressions estimated using 
piecewise linear functional form with the fi xed eff ects estimator. Regressions include section fi xed eff ects, 
year fi xed eff ects, and a quadratic time trend by state. Regressions (1)–(4) use nonirrigated PLSS sections. 
Standard errors are clustered at the county level and shown in parentheses, and *, **, and *** denote 
statistical signifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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threshold; and positive and signifi cant above the threshold (table 3.2). Corn 
insurance premiums follow the same pattern of treatment eff ects: negative 
and signifi cant below; and positive and signifi cant above (table 3.6). In addi-
tion, the magnitudes of the estimated coeffi  cients are quite similar across 
the two regressions. Second, for corn acres in Illinois, the treatment eff ect is 
positive and signifi cant below the threshold; and positive but insignifi cant 
above the threshold (table 3.2). Corn insurance premiums show roughly the 
same pattern: the treatment eff ects are positive and statistically signifi cant 

Table 3.6 Estimation results for crop insurance take- up

Iowa Illinois

Corn Soybeans Corn Soybeans
  (1)  (2)  (3)  (4)

Preplant precipitation below threshold –0.000 0.000 –0.000 –0.000**
(0.000) (0.000) (0.000) (0.000)

Preplant precipitation below threshold 
× after 2008

–0.001** –0.003*** 0.001*** 0.001***
(0.000) (0.001) (0.000) (0.000)

Preplant precipitation below threshold 
× after 2011

0.000 –0.001 –0.001* –0.002***
(0.000) (0.001) (0.000) (0.000)

Preplant precipitation above threshold –0.007*** 0.000** –0.001*** –0.000***
(0.001) (0.000) (0.000) (0.000)

Preplant precipitation above threshold 
× after 2008

0.006*** 0.001*** 0.001*** 0.000
(0.001) (0.000) (0.000) (0.000)

Preplant precipitation above threshold 
× after 2011

–0.008*** –0.000 0.002*** 0.001**
(0.003) (0.000) (0.001) (0.000)

Preplant temperature –0.038** –0.101*** 0.014 –0.060*
(0.015) (0.018) (0.035) (0.032)

Preplant temperature squared –0.004*** –0.005*** –0.005*** –0.006***
(0.001) (0.001) (0.001) (0.001)

Planting precipitation 0.001*** 0.001*** 0.001* 0.000
(0.000) (0.000) (0.000) (0.000)

Planting precipitation squared –0.000** –0.000*** 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Planting temperature –0.008 0.032 0.150*** 0.161***
(0.026) (0.024) (0.038) (0.054)

Planting temperature squared 0.001 –0.001 –0.004*** –0.003**
(0.001) (0.001) (0.001) (0.002)

Corn/soybeans futures price 0.334*** 0.201*** 0.129*** 0.115***
(0.030) (0.015) (0.026) (0.012)

Observations 1,287 1,287 1,285 1,291
R- squared 0.956 0.966 0.915 0.936
Number of counties 99 99 102 102
Threshold of preplant precipitation  370  180  395  405

Notes: Dependent variable in all regressions is the log of crop insurance premiums per planted 
acre. Regressions estimated using piecewise linear functional form with the fi xed eff ects esti-
mator. Regressions include county fi xed eff ects, year fi xed eff ects, and a quadratic time trend 
by state. Standard errors are clustered at the county level and shown in parentheses, and *, **, 
and *** denote statistical signifi cance at the 10%, 5%, and 1% levels, respectively.
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both below and above the threshold. Moreover, the magnitudes of the esti-
mated coeffi  cients are quite similar across these two regressions.

The results for soybeans provide mixed evidence, with supporting evi-
dence in each state on one side, but not both sides, of the respective thresh-
olds. First, for soybeans acres in Iowa, the SURE treatment eff ect is negative 
and signifi cant both below and above the threshold (table 3.5). Soybean 
insurance premiums follow the same pattern below the threshold, but they 
are positive and signifi cant above the threshold (table 3.6). Second, for soy-
beans acres in Illinois, the treatment eff ect is negative and signifi cant below 
the threshold; and positive and signifi cant above the threshold. The treat-
ment eff ects for soybean insurance premiums, in contrast, are positive and 
signifi cant below the threshold and insignifi cant above the threshold.

We conclude, overall, that the results show limited evidence of selection 
on moral hazard. The county- level data on insurance premiums and weather 
may be a limiting factor in producing results that accord more closely to the 
soybean acreage results generated with section- level data.

A B

C D

Fig. 3.6 Predicted eff ects of preplant precipitation on crop insurance premiums (by 
policy regime)
Notes: The graphs display the predicted means of log(premium/acre) in the counties as a func-
tion of preplant precipitation. Preplant precipitation is in millimeters.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



Farming under Weather Risk    111

3.7 Robustness Checks

In this section, we explore the sensitivity of our land- use regression results 
to three diff erent modeling choices.

Removing sections that have zero acres of a crop during the study period. 
The fi rst robustness check examines whether the results change if  observa-
tions are removed from the small number of sections that have zero acres 
of a crop during the entire study period. As shown in columns with (a) in 
table 3.7, the estimated eff ects of  preplant precipitation on corn acreage 
under the diff erent policy regimes are almost the same as our main results 
reported in table 3.2. This is not surprising because the shares of the sections 

Table 3.7 Robustness checks for corn across states

North Dakota Iowa

  (1a)  (1b)  (1c)  (2a)  (2b)  (2c)

Preplant precipitation below 
threshold

–0.010** –0.009** –0.010** –0.000 0.000* –0.000
(0.004) (0.003) (0.004) (0.000) (0.000) (0.000)

Preplant precipitation below 
threshold × after 2008

–0.015 –0.016 –0.011 –0.001** –0.001*** –0.001**
(0.041) (0.040) (0.039) (0.000) (0.000) (0.000)

Preplant precipitation below 
threshold × after 2011

0.008 0.008 0.004 0.000 0.000 0.000
(0.042) (0.042) (0.040) (0.000) (0.000) (0.000)

Preplant precipitation above 
threshold

–0.006*** –0.006*** –0.005 –0.001 0.000 –0.001
(0.002) (0.002) (0.004) (0.003) (0.001) (0.003)

Preplant precipitation above 
threshold × after 2008

0.009*** 0.009*** 0.008*** 0.006** 0.004*** 0.006*
(0.002) (0.002) (0.002) (0.003) (0.001) (0.003)

Preplant precipitation above 
threshold × after 2011

–0.010*** –0.010*** –0.010*** –0.010*** –0.009*** –0.010***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Preplant temperature –0.388** –0.415*** –0.414*** –0.068*** –0.058** –0.103***
(0.152) (0.139) (0.140) (0.023) (0.023) (0.030)

Preplant temperature 
squared

–0.019*** –0.020*** –0.015** –0.004** –0.002 –0.004**
(0.005) (0.005) (0.006) (0.002) (0.002) (0.002)

Planting precipitation –0.004 –0.003 –0.006* 0.001 0.000 0.000
(0.003) (0.002) (0.003) (0.000) (0.000) (0.000)

Planting precipitation 
squared

0.000 0.000 0.000 –0.000* –0.000 –0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Planting temperature –0.049 –0.048 –0.011 0.171*** 0.125*** 0.194***
(0.133) (0.126) (0.131) (0.035) (0.030) (0.036)

Planting temperature 
squared

0.004 0.004 0.003 –0.006*** –0.004*** –0.006***
(0.007) (0.007) (0.007) (0.001) (0.001) (0.001)

Corn futures price 0.628*** –0.236 0.330 0.192*** 0.018 0.104***
(0.213) (0.172) (0.209) (0.034) (0.026) (0.035)

Observations 352,235 380,114 352,963 650,104 700,280 650,260
R- squared 0.158 0.147 0.159 0.027 0.027 0.027
Number of PLSS sections 27,095 27,151 27,151 50,008 50,020 50,020
Threshold of preplant 

precipitation  100  100  100  370  370  370
(continued)
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with zero corn acres during the study period are very small in each of the 
four states. The same conclusion applies to the other crops in the four states.

Treating 2008 as a control year. The second robustness check examines 
whether the results are sensitive to inclusion of observations from 2008 as 
part of the preprogram period—that is, expanding the period from 2001 to 

Table 3.7 (continued)

Illinois Nebraska

  (3a)  (3b)  (3c)  (4a)  (4b)  (4c)

Preplant precipitation below 
threshold

–0.000 –0.000 –0.000 –0.009*** –0.007** –0.009***
(0.000) (0.000) (0.000) (0.003) (0.003) (0.003)

Preplant precipitation below 
threshold × after 2008

0.001*** 0.001** 0.001 0.012*** 0.010*** 0.012***
(0.000) (0.000) (0.000) (0.003) (0.003) (0.003)

Preplant precipitation below 
threshold × after 2011

–0.001** –0.001* –0.000 –0.006*** –0.005*** –0.006**
(0.000) (0.000) (0.000) (0.002) (0.002) (0.002)

Preplant precipitation above 
threshold

–0.001*** –0.001** –0.000 –0.005*** –0.004*** –0.005***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

Preplant precipitation above 
threshold × after 2008

0.001 0.001* 0.001 0.004*** 0.002*** 0.004***
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

Preplant precipitation above 
threshold × after 2011

–0.001*** –0.001*** –0.001*** 0.000 0.001 0.000
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

Preplant temperature 0.014 0.014 0.051 –0.102* –0.114** –0.046
(0.049) (0.049) (0.046) (0.056) (0.055) (0.084)

Preplant temperature 
squared

0.001 0.001 0.004 –0.016** –0.013* –0.017**
(0.003) (0.003) (0.003) (0.007) (0.007) (0.007)

Planting precipitation –0.000 0.000 –0.000 –0.004*** –0.004*** –0.004***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Planting precipitation 
squared

0.000 –0.000 0.000 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Planting temperature –0.001 0.031 0.009 0.017 0.098 –0.054
(0.062) (0.064) (0.062) (0.087) (0.075) (0.123)

Planting temperature 
squared

0.004** 0.003* 0.004** 0.002 –0.001 0.003
(0.002) (0.002) (0.002) (0.003) (0.002) (0.004)

Corn futures price 0.038 0.009 0.088*** 0.157*** 0.164** 0.232***
(0.032) (0.039) (0.031) (0.043) (0.070) (0.031)

Observations 588,068 635,208 589,836 172,056 187,538 173,112
R- squared 0.026 0.033 0.030 0.091 0.086 0.094
Number of PLSS sections 45,236 45,372 45,372 14,338 14,426 14,426
Threshold of preplant 

precipitation  395  395  395  135  135  135

Notes: Dependent variable in all regressions is the log of acres. Regressions estimated using piecewise linear 
functional form with the fi xed eff ects estimator. Regressions include section fi xed eff ects, year fi xed eff ects, 
and a quadratic time trend by state. Columns with (a) drop the sections having zero acres of  the crops planted 
over our sample period. Columns with (b) include observations in 2008 as a control year. Columns with (c) 
include potential endogenous variables, including aggregated precipitation and average temperature in the 
prior growing season from April to September and the interaction term between preplant precipitation and 
temperature. Standard errors are clustered at the county level and shown in parentheses, and *, **, and *** 
denote statistical signifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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2008 rather than 2001 to 2007.30 In columns with (b) in table 3.7, we observe 
that the estimated eff ects of preplant precipitation on corn acreage under the 
diff erent policy regimes are similar to our main results reported in table 3.2. 
The same conclusion applies to the other crops in the four states.

Including potentially endogenous variables. The third robustness check 
examines potential endogenous variables that may be correlated with both 
preplant precipitation and cropping pattern decisions. These variables 
include an interaction term between preplant precipitation and preplant 
temperature, aggregated precipitation from April through September of 
the previous growing season, and average temperature during the same 
previous growing season. As reported in columns with (c) in table 3.7 for 
corn, the coeffi  cients of our preplant precipitation variables under diff erent 
policy regimes retain the same sign with similar magnitudes and statistical 
signifi cance when compared to our main estimation results, as reported in 
table 3.2. One minor exception is Illinois, where three estimated coeffi  cients 
change from signifi cant to insignifi cant, although they remain quite small in 
magnitude. For the other crops in the four states, the sign, magnitude, and 
signifi cance are similar to the main results.

3.8 Conclusion

This chapter develops a cohesive analysis of adaptation, moral hazard, 
and selection on moral hazard in farmer decision- making in response to 
preplant precipitation. The focus on preplant precipitation as a natural 
experiment created an opportunity to study both cropping pattern and 
crop insurance as part of an intermediate- run production frame. Prior to 
the SURE program, we fi nd considerable heterogeneity in adaptation in 
cropping pattern, with farmers in Nebraska and North Dakota much more 
responsive than farmers in Illinois and Iowa. Adaptation is a form of self- 
insurance in the lexicon of Ehrlich and Becker (1972), whereby the choice of 
cropping pattern reduces the size of a prospective loss without changing the 
probability of extreme precipitation outcomes (as an artifact of the natural 
experiment).

The SURE program’s shock to insurance deductibles created an oppor-
tunity to study moral hazard in cropping pattern and selection on moral 
hazard in crop insurance coverage. With cropping pattern, the fi nding con-
tinues that farmers in Nebraska and North Dakota are more responsive than 
in Illinois and Iowa. Following the program’s termination, farmers largely 
reverted to the preprogram cropping pattern, lending credibility to a causal 

30. Alternatively, we could have included observations from 2008 as part of the treatment 
period (2009–2011), since the SURE program was enacted on May 22, 2008. We did not do this 
for two reasons. First, that date is appreciably after the normal planting time in this region. Sec-
ond, the program was the most complex that USDA’s Farm Service Agency had ever undertaken 
such that it took some time to educate farmers about the program (Shields 2010).
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interpretation of the program’s impact. With insurance expenditures, the 
analysis covers Illinois and Iowa, where farmers increase (decrease) the rate 
of expenditure on corn when they increase (decrease) corn acres. They do 
so to a lesser degree with soybeans. This demonstrates a complementarity 
between risk- taking in land use and insuring the risk in the crop insurance 
market. This complementarity constitutes a specifi c form of adverse selec-
tion in an insurance market. To our knowledge, ours is the fi rst study of 
selection on moral hazard in an insurance market other than health insur-
ance.

The use of high- resolution spatial data on land use and weather—with 
the PLSS section as the unit of analysis for land use—created new insight 
into the mechanisms of adaptation and moral hazard. Cropping pattern and 
agricultural land use have long been conjectured as an important mechanism 
of adaptation to weather risk and climate change, and here we provide strong 
empirical support for the conjecture. Further insight comes with the link to 
moral hazard as a hidden action: the relationship between cropping pattern 
and preplant precipitation is neither observed by the insurance agent nor 
recorded in the insurance contract. The spatial data translated this rela-
tionship from an unobservable to an observable one for the econometric 
analysis. Lastly, the hidden action on cropping pattern under the SURE 
program translates into hidden information in the crop insurance market. 
Insurance companies, unwittingly, may be insuring diff erent risks than those 
represented by farms’ historical crop yields.

Evidence about farmers’ adaptation to weather risk is essential for under-
standing the impact of climate change—after all, climate change is a change 
in weather risk. Agriculture is of particular importance due to its related 
impacts on economic growth, migration, and human confl ict.31 Looking to 
the future, the major climate vulnerability for the Midwestern agricultural 
sector is the risk of excess precipitation (Andresen, Hilberg, and Kunkel 
2012). Widespread fl ooding events already occur over much of the region, 
and excessive rainfall events occur during the summer. While regional cli-
mate projections for the end of the century come with substantial uncer-
tainty, the projections include increased precipitation, increased extreme 
precipitation, and little change or even a small decrease in summer precipi-
tation (Winkler, Arritt, and Pryor 2012). Research is needed to investigate 
the eff ect of both existing and future climate change on land- use change in 
the globally signifi cant Midwest agricultural sector as well as in other major 
agricultural regions of the world.

A challenge for public policymakers is to design effi  cient risk- management 
policies in a setting of climate change. When designing policies to encour-
age effi  cient adaptation, it is important to account for perverse incentives 

31. Related literature includes, for example, Dell et al. (2012) and Burke et al. (2015) on eco-
nomic growth; Feng et al. (2010) and Hornbeck (2012) on migration; and Miguel et al. (2004) 
and Hsiang et al. (2013) on human confl ict.
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for risk- taking provided by government insurance programs. Although 
the SURE program ended in 2011, the Agricultural Act of 2014 reconsti-
tuted a similar program to cover shallow losses that are typically part of 
the insurance deductible. Again designed to supplement crop insurance, 
this program—the Agriculture Risk Coverage program—created incentives 
for risk- taking in crop choice and production. Research is needed on this 
new program following the approach developed here, as program payments 
in 2015 were quite large, $5.9 billion (USDA- FSA 2017). More generally, 
research is needed to understand the interrelationship among adaptation, 
moral hazard, and selection on moral hazard across the range of sectors 
linked directly to weather and climate change.

Appendix

In the appendix, we (i) provide additional detail on the data and variables in 
the analysis, (ii) analyze the residual variation in the section- level preplant 
precipitation variables after controlling for fi xed eff ects, and (iii) report on 
the variables and output from the yield regressions for corn and soybeans.

Data

Section 3 of the main text provides the primary description of the data 
and variables. We provide supplemental details here.

PLSS sections. The PLSS imposed a grid of  squares on the acquired 
lands of the early United States. The Fifth Principal Meridian was planned 
in 1815 to govern the grid for Illinois, Iowa, Nebraska, and North Dakota. 
We use a GIS data layer for the PLSS (ESRI 2015). The 1 × 1 mile section 
grid scale facilitates comparison of grids across years when the grid spacing 
of the cropland data changed from 56 m to 30 m in 2006. The grid scale also 
makes tractable the analysis of local precipitation impacts.

Land use. The CDL program provides raster- formatted geospatial data on 
crops planted and other nonagricultural types of land cover for the United 
States. Each grid corresponds to a specifi c crop or type of land cover. The 
CDL’s land cover classifi cations include more than 50 crops and come with a 
spatial resolution of 30 m or 56 m. Our study area covers the four states that 
have a relatively long panel of annual CDL data in the Midwest. We intersect 
CDL data with the PLSS sections using the Python language for ArcGIS 
and calculate acres for each crop planted within a section as an aggregation 
of the CDL grids within the section. Since CDL data before 2006 are less 
reliable (with the spatial resolution of 56 m), we focus on crops with high 
classifi cation accuracy, ranging from 85 percent to 95 percent, including 
corn, soybeans, and spring wheat. In addition, since CDL data are less reli-
able for diff erentiating among several land cover types—including alfalfa, 
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fallow/idle cropland, unmanaged grassland, pasture, and hay—these land 
covers are combined into a single grassland land cover category.

Weather. The weather data are an updated version of those used in Schlen-
ker and Roberts (2009), which consists of  daily precipitation and maxi-
mum and minimum temperatures at 4- by- 4 kilometer grid cells for the entire 
United States from 1950 to 2014. We compute weather variables by starting 
at the cell level and then aggregating to either the section level or the county 
level. These weather data cells are intersected with the PLSS sections using 
the Python language for ArcGIS.

Soil quality. The soil- quality data provide a useful perspective on the 
intrinsic quality of cropland across the states of Illinois, Iowa, Nebraska, 
and North Dakota. We do not describe these data in the main text, as they 
are not used in the regressions (instead relying on section fi xed eff ects to 
control for soil quality). Nevertheless, they help explain the greater diversity 
of cropping pattern in Nebraska and North Dakota relative to Illinois and 
Iowa.

The soil- quality data are from USDA’s Soil Survey Geographic (SSURGO) 
database. This spatially high- resolution database provides 10 × 10 meter grid 
cells for the entire United States. We extract data on land capability classifi -
cation and calculate area- weighted average land capability for each section. 
Land capability classifi cation shows the suitability of soils for most kinds of 
fi eld crops. The criteria used in grouping the soils involve the landscape loca-
tion, slope of the fi eld, depth, texture, reactivity of the soil, erosion hazard, 
wetness, rooting- zone limitations, and climate, which are associated with 
both soil water- holding capacity and farmers’ cropping pattern decisions. 
Class 1 and class 2 are defi ned as good quality soils for cropping. Class 3 and 
class 4 are moderate quality soils that have severe limitations for cropping 
and/or require careful conservation practices. Poor quality soils in class 6, 
class 7, and class 8 have very severe limitations that make them generally 
unsuitable for cultivation.

Figure 3A.1 in the appendix to this chapter displays the distribution of 
weighted land capability for our sample in the four states. Overall, Illinois 
and Iowa have a large share of good quality and moderate quality soils and 
only a small amount of poor quality soils. North Dakota has a large share 
of moderate quality soils but no good quality soils with weighted land capa-
bility less than 2. Nebraska similarly does not have any good quality soils 
with weighted land capability less than 2, and it has a substantial amount 
of poor quality soils.

The summary statistics for weighted land capability at the section level 
are shown in table 3A.1.

These numbers reinforce the more detailed data in fi gure 3A.1. Illinois 
and Iowa have the highest quality soil for their cropland, followed closely 
by North Dakota. Nebraska’s cropland has the poorest quality soil of these 
four states by a substantial margin.
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Variation in Preplant Precipitation: Do Fixed Eff ects Absorb a Signifi cant 
Amount of the Variation in the Section- Level Variables?

Our empirical approach relies on interannual variation in preplant pre-
cipitation after controlling for section and year fi xed eff ects. A concern with 
this approach is that the fi xed eff ects can absorb a signifi cant amount of the 
variation in the precipitation variables. Following Fisher et al. (2012), we 

A B

C D

Figure 3A.1 Land capability class
Notes: The histograms display the percentage of sections belonging to a class of  weighted land 
capability. Weighted land capability is calculated by the authors with the Soil Survey Geo-
graphic (SSURGO) database. Larger values indicate poorer soil quality. Panels (A)–(D) use 
rain- fed (nonirrigated) PLSS sections.

Table 3A.1 Summary statistics for weighted land capability by state

   Mean  Median  Std. dev.  

Illinois 2.77 2.61 1.01
Iowa 2.74 2.59 0.83
Nebraska 5.52 5.45 1.15

 North Dakota 3.03  2.68  1.05  

Source: Authors’ calculation.
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explore how much of the variation is absorbed by the fi xed eff ects. Table 3A.2 
summarizes regressions of preplant precipitation against three sets of fi xed 
eff ects: an intercept, section fi xed eff ects, and section and year fi xed eff ects. The 
table reports three items: R2, the standard deviation of the residual preplant 
precipitation variation not absorbed by the fi xed eff ects in millimeter equiva-
lent, and the fraction of residuals with an absolute value larger than 10 mm.

In North Dakota, for example, the standard deviation of preplant precipi-
tation is 47.5 mm without fi xed eff ects. After including section and year fi xed 
eff ects, the remaining variation of 21.1 mm provides enough residual varia-
tion to implement our semiparametric approach. Of note, the same conclu-
sion applies in the other three states—that is, the variation in the preplant 
precipitation variables remains substantial after accounting for fi xed eff ects.

Yield Regressions: Summary Statistics and Output

Section 4 of the main text reports on the yield regressions for corn and 
soybeans. The purpose of the yield regressions is to establish that preplant 
precipitation aff ects crop yield, thus making preplant precipitation a valid 
factor in farmer decision- making. As reported in the main text, the regres-
sions accomplish this purpose.

Since the yield regressions are only preliminary to the land- use and insur-
ance take- up regressions, we report in the appendix on the summary sta-
tistics of the variables for the yield regressions (table 3A.3) and the regres-
sion results (table 3A.4). The data are county- level panel data from 2001 to 

Table 3A.2 Variation of preplant precipitation under various sets of fi xed eff ects

R2 σe | e | > 10 mm
    (1)  (2)  (3)

North Dakota No FE — 47.5 mm 83.8%
Section FE 0.116 44.7 mm 86.4%
Section FE + year FE 0.802 21.1 mm 57.8%

Iowa No FE — 67.4 mm 91.7%
Section FE 0.270 57.5 mm 87.0%
Section FE + year FE 0.832 27.6 mm 73.4%

Illinois No FE — 108.6 mm 93.2%
Section FE 0.419 82.8 mm 89.7%
Section FE + year FE 0.784 50.4 mm 83.6%

Nebraska No FE — 52.1 mm 85.9%
Section FE 0.177 47.3 mm 83.1%

  Section FE + year FE 0.779  24.5 mm 67.2%

Notes: This table summarizes regressions of section- level preplant precipitation on various 
sets of  fi xed eff ects (FE) to assess how much variation is absorbed by the FE. Column (1) re-
ports the R2s of  the regressions. Column (2) reports the standard deviation of the residuals 
(remaining preplant precipitation variation) in millimeters. Column (3) reports the fraction of 
the observations having a residual larger than 10 mm.
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Table 3A.3 Summary statistics of variables for yield regressions

Corn Soybeans

  Unit  Mean  Std. dev.  Mean  Std. dev.

Yield bushels/acre 151.57 32.75 44.55 9.27
Preplant precipitation, accumulated mm 287.36 131.73 286.38 131.64
Preplant temperature, daily average °C 0.59 3.60 0.53 3.68
Planting- season precipitation, daily average mm 3.57 1.35 3.85 1.38
Planting- season temperature, daily average °C 13.70 2.03 17.41 2.35
June–August precipitation, monthly average mm 102.38 36.30 102.11 36.30
June–August temperature, monthly average °C 24.79 1.84 24.77 1.87
Maximum temperature in July, daily average °C 29.52 2.31 29.50 2.34

Counties 229 229
Observations    2,903  2,931

Notes: Data represent three states: Illinois, Iowa, and the counties east of  the 100th meridian in North 
Dakota. Yield variables are authors’ calculations using data from National Agricultural Statistics Ser-
vice. Weather variables are authors’ calculations using data from Schlenker and Roberts (2009).

Table 3A.4 Regression estimates of crop yield

Corn Soybeans

Preplant precipitation below threshold 0.0003*** (0.0001) –0.0004*** (0.0001)
Preplant precipitation below threshold × after 2008 0.0001 (0.0002) 0.0008*** (0.0001)
Preplant precipitation below threshold × after 2011 –0.0004* (0.0002) –0.0004*** (0.0001)
Preplant precipitation above threshold –0.0005*** (0.0001) –0.0004*** (0.0001)
Preplant precipitation above threshold × after 2008 0.0006*** (0.0001) 0.0013*** (0.0002)
Preplant precipitation above threshold × after 2011 –0.0018*** (0.0003) –0.0013*** (0.0002)

Preplant temperature 0.0858*** (0.0101) 0.0188*** (0.0067)
Planting- season precipitation –0.0067** (0.0028) 0.0004 (0.0024)
Planting- season temperature –0.0011 (0.0084) 0.0082 (0.0075)
June–August precipitation 0.0049*** (0.0004) 0.0046*** (0.0003)
June–August precipitation, squared –0.0000*** (0.0000) –0.0000*** (0.0000)
June–August temperature 0.6237*** (0.0708) 0.5150*** (0.0512)
June–August temperature, squared –0.0130*** (0.0014) –0.0113*** (0.0010)
Maximum temperature in July –0.1007*** (0.0084) –0.0058 (0.0073)

Observations 2,903 2,931
R- squared 0.741 0.712
Number of counties 229 229
Threshold of preplant precipitation  320  430

Notes: Dependent variable in all regressions is the log of crop yield. Regressions estimated using piece-
wise linear functional form with the fi xed eff ects estimator. Regressions include state- by- year fi xed ef-
fects, county fi xed eff ects, year fi xed eff ects, and a quadratic time trend by state. Standard errors are 
clustered at the county level and shown in parentheses, and *, **, and *** denote statistical signifi cance 
at the 10 percent, 5 percent, and 1 percent levels, respectively.
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2014 that are pooled for Illinois, Iowa, and eastern North Dakota. Corn 
yield has 2,903 observations, and soybean yield has 2,931 observations, both 
over 229 counties. The regressors are primarily weather variables. Precipita-
tion and temperature variables are developed for each of the three phases of 
the crop production cycle: preplanting season, planting season, and growing 
season. In addition, a variable is developed for the daily average maximum 
temperature in July. These variables are guided, in part, by prior research 
on crop yield; Schlenker and Roberts (2009) study the eff ect of growing- 
season temperature on crop yield, and Urban et al. (2015) study the eff ect 
of extremely wet planting conditions on crop yield.

The main text reports on the results, which show small but (in most cases) 
statistically signifi cant eff ects of preplant precipitation. The SURE treat-
ment eff ects, in particular, are positive and signifi cant in three of four cases 
(table 3A.4). These are contrary to expectations; in a separate work, we 
are investigating whether farmers planted corn and soybeans on land with 
higher- quality soils during the SURE program as a possible mechanism to 
explain these results. Figure 3A.2 graphs the piecewise linear functions for 
these two regressions.

The other weather variables, in large part, exert the expected eff ects on 
yield, as informed by the prior research (Schlenker and Roberts 2009; Urban 
et al. 2015). Planting- season precipitation has a signifi cant, negative eff ect on 
corn yield. Both precipitation and temperature during the growing season 
(June–August) have positive, signifi cant eff ects on corn yields and soybean 
yields. All four response functions are quadratic, with negative, small in 
absolute value, and signifi cant estimated coeffi  cients on the squared terms of 
the growing- season weather variables in both the corn and soybean regres-

A B

Figure 3A.2 Predicted eff ects of preplant precipitation on crop yield 
(by policy regime)
Notes: The graphs display the predicted means of log(yield) in the counties in the states of 
Illinois, Iowa, and North Dakota (east of  the 100th meridian) as a function of preplant pre-
cipitation. Preplant precipitation is in millimeters.
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sions. High maximum temperatures in July have a negative eff ect on corn 
yield.
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