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Although agriculture has historically experienced one of the highest rates of 
productivity growth in the US economy (Jorgenson, Gollop, and Fraumeni 
1987), there is evidence that agricultural productivity growth is beginning 
to slow (Alston, Andersen, and Pardey 2015; Alston, Beddow, and Pardey 
2009; Ray et al. 2012). The decline in productivity growth has coincided with 
concerns about food price spikes, social instability, food insecurity, popula-
tion growth, drought, and climate change (Bellemare 2015; Ray et al. 2013; 
Roberts and Schlenker 2013; Schlenker and Roberts 2009; Tack, Barkley, 
and Nalley 2015a,b). This confl uence of problems has prompted interest in 
determining whether certain technologies can promote gains in crop yields, 
and none has been more controversial than biotechnology.

Many previous studies have investigated whether adoption of genetically 
engineered (GE) crops has increased yield (e.g., see reviews in Fernandez- 
Cornejo et al. 2014; Klümper and Qaim 2014; NASEM 2016), and the con-
sensus from the microlevel data and experimental studies is that adoption of 
GE crops, particularly insect- resistant Bt varieties targeting the corn borer, 
have generally been associated with higher yield. However, ample skepticism 
remains, with high- profi le popular publications purporting that GE crops 
have failed to live up to their promise of yield increases (e.g., Foley 2014; 
Gurian- Sherman 2009; Hakim 2016).
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12    Jayson L. Lusk, Jesse Tack, and Nathan P. Hendricks

A variety of factors might explain the divergence in views about the yield 
eff ects of  GE crops, but one of  the main issues is that adoption of  GE 
crops does not appear to have had much eff ect on trend yields when inves-
tigating national- level yield data (Duke 2015), nor do yield trends appear 
much diff erent in developed countries that have and have not adopted GE 
varieties (Heinemann et al. 2014). As the NASEM (2016, 66) put it, “The 
nation- wide data on maize, cotton, or soybean in the United States do not 
show a signifi cant signature of genetic- engineering technology on the rate 
of yield increase.” This raises the question of whether the yield- increasing 
eff ects of GE crops observed in particular locations and experiments can 
be generalized more broadly and, if  so, whether the impact on crop yields 
varies spatially.

In this chapter, we show that simple analyses of yield trends mask impor-
tant weather- related factors that infl uence the estimated eff ect of GE crop 
adoption on yield. Our analysis couples county- level data on corn yields 
from 1980 to 2015 and state- level adoption of GE traits with data on weather 
variation and soil characteristics. Using state- level adoption data does not 
induce measurement- error bias because state- level aggregate adoption is 
necessarily uncorrelated with the deviation of a particular county’s adop-
tion from the state- level aggregate. Using state- level adoption data does 
induce serial correlation of the error term, which we address with two- way 
clustering.

A number of important fi ndings emerge from our analysis. First, changes 
in weather and climatic conditions confound yield eff ects associated with GE 
adoption. Without controlling for weather, adoption of GE crops appears to 
have little impact on corn yields; however, once temperature and precipita-
tion controls are added, GE adoption has signifi cant eff ects on corn yields. 
Second, the adoption of GE corn has had diff erential eff ects on crop yields 
in diff erent locations even among corn- belt states. However, we fi nd that ad 
hoc political boundaries (i.e., states) do not provide a credible representa-
tion of diff erential GE eff ects. Rather, alternative measures based on soil 
characteristics provide a broad representation of diff erential eff ects and are 
consistent with the data. In particular, we fi nd that the GE eff ect is much 
larger for nonsandy soils with a larger water- holding capacity. Overall, our 
studies show that GE adoption has increased yields by approximately 18 
bushels per acre on average, but this eff ect varies spatially across counties 
ranging from roughly fi ve to 25 bushels per acre. Finally, we do not fi nd 
evidence that adoption of GE corn has led to lower yield variability, nor 
do we fi nd that current GE traits mitigate the eff ects of heat or water stress.

The adoption of GE crops does not necessarily imply that farmers per-
ceived yield benefi ts, because there are several other benefi ts associated with 
the adoption of GE crops—primarily through a reduction in the cost of 
production. The nonyield benefi ts have come in the form of labor savings, 
reduced insecticide use, and improved weed and pest control, which has facil-
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itated the ability to adopt low-  and no- till production methods, alter crop 
rotations, and utilize higher planting densities (Chavas, Shi, and Lauer 2014; 
Fernandez- Cornejo et al. 2014; Klümper and Qaim 2014; Perry, Moschini, 
and Hennessy 2016; Perry et al. 2016). Revealed preferences of US farm-
ers indicate producer benefi ts over and above the substantially higher price 
of GE corn relative to conventional corn (Shi, Chavas, and Stiegert 2010). 
The rapid adoption of GE corn by farmers also provides evidence of these 
benefi ts. GE corn was fi rst grown commercially in the United States in 1996. 
In just four years, a quarter of the corn acres were planted with a GE trait, 
and in less than 10 years, adoption had spread to more than half  the US corn 
acres. In 2016, 92 percent of US corn acres were planted with GE corn, with 
81 percent of the total GE corn acreage being planted with “stacked” variet-
ies that are both insect resistant and herbicide tolerant. It is also important 
to recognize that GE crops can increase production through the expansion 
of designated crop- planting areas (i.e., the extensive margin) because greater 
yields and lower costs of production provide incentives to expand crop pro-
duction (Barrows, Sexton, and Zilberman 2014).

Nonetheless, discussion of yield impacts of GE crops remains at the fore-
front of public discussions about whether and to what extent bio technology 
can contribute to food security and help mitigate the eff ects of  climate 
change. In response to the fi nding that GE adoption does not appear to alter 
national- level yield trends, NASEM (2016, 16) recommended that research 
“should be conducted that isolates eff ects of the diverse environmental and 
genetic factors that contribute to yield.” Our objective here is to help fi ll this 
gap in the literature.

The next section reviews some of the research on the yield eff ects of GE 
crops, and we delineate our contribution to the literature. The third and 
fourth sections discuss the data and methods, followed by the presentation 
of results. The last section concludes.

1.1 Background

GE crops currently on the market do not increase yield per se. However, 
they can reduce the gap between actual and potential yield by reducing the 
adverse eff ects of weeds and insects (NASEM 2016). It is also possible that 
crops with GE traits can reduce yields if  introduced into less productive 
varieties not ideally suited to a particular growing region (Chavas, Shi, and 
Lauer 2013).

Figure 1.1 shows the national trend in US corn yield and the adoption of 
GE corn from 1980 to 2016. The fi gure suggests, in the words of Duke (2014, 
653), that “yields have continued to increase at the same rate as before intro-
duction [of GE crops].” Leibman et al. (2014) similarly investigated aggre-
gate yields and found after adoption of GE corn a small (0.5 bushels/acre) 
trend increase; however, no tests of statistical signifi cance were performed. 
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14    Jayson L. Lusk, Jesse Tack, and Nathan P. Hendricks

These sorts of aggregate comparisons make no attempt to control for poten-
tially confounding factors such as weather, which could have coincidentally 
been worse in the 1980s before the adoption of GE corn. Controlling for 
weather in a national- level trend analysis is diffi  cult due to the nonlinear 
impacts of  weather on yield and highly spatially heterogeneous weather 
conditions within the country. This motivates the use of disaggregate data 
to test the impact of GE adoption on yields.

These aggregate investigations can be contrasted with the large literature 
from agronomic experimental studies that attempt to hold constant many 
factors such as location and germplasm. Nolan and Santos (2012) summa-
rize the results of more than 30 such studies mainly published between 2000 
and 2003. None of the reviewed studies report a statistically signifi cant nega-
tive eff ect associated with Bt GE corn, and nearly all reported positive yield 
eff ects associated with the Bt GE trait, with yield gains as high as 19 percent. 
In their analysis, Nolan and Santos (2012) combined data sets from multiple 
experiments conducted by 10 diff erent state agricultural extension services 
from 1997 to 2009. They found, after controlling for weather, agronomic 
inputs, management, and soil characteristics, that planting of Bt GE corn 
led to yield gains of around 14 bushels per acre, although when the only GE 
trait present was herbicide tolerance, yield was unaff ected or slightly nega-
tive. Despite fi nding that yield was aff ected by location, weather, and soil 

Fig. 1.1 Trend in national US corn yield and adoption of GE corn from 1980 to 
2016. Circles represent observed yields, the solid line represents linear yield trend, 
and the dashed line represents percentage of corn acres planted with GE corn.
Source: Data are from USDA National Agricultural Statistics Service (NASS). 
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characteristics, the authors did not investigate whether these factors inter-
acted with the GE eff ect (i.e., whether GE yield gains were higher or lower 
in diff erent locations, in diff erent weather patterns, or in diff erent soils).

As shown by Chavas, Shi, and Lauer (2013), however, there is likely 
ample heterogeneity in the eff ects of GE adoption on mean yield and yield 
variance. Using experiment data from agricultural experiment stations in 
Wisconsin from 1990 to 2010, Chavas, Shi, and Lauer (2013) found that 
GE traits had variable eff ects on corn yields, depending on the type of GE 
trait introduced and how long the trait had been used in production, with 
mean yields signifi cantly increasing relative to conventional non- GE corn 
for some traits (namely, Bt targeted at the European corn borer) but not oth-
ers (namely, herbicide- tolerant- only GE corn and GE corn with Bt targeted 
only at corn rootworm). Additional analysis of the same data by Chavas, 
Shi, and Lauer (2013) suggests that some of the yield gains attributable to 
GE hybrids were a result of improvements in non- GE germplasm and the 
wider availability of higher- quality germplasm. However, regardless of the 
GE trait analyzed, the authors found a consistent eff ect on yield variance, 
with GE crops reducing the variance of corn yields. The authors conclude 
that GE crops have helped farmers reduce their risk exposure.

As was the case in Nolan and Santos (2012), Chavas, Shi, and Lauer 
(2013) did not investigate whether the yield eff ects of GE traits were aff ected 
by location, management practices, soil type, and so on. However, there are 
reasons to believe the potential yield eff ects of GE adoption are not uniform 
across location or time. Currently available GE traits rely on Bt to provide 
protection against the European corn borer and/or corn rootworm, and/
or tolerance to certain herbicides (primarily glyphosate). While there are 
fewer agronomic reasons to suggest that herbicide tolerance would con-
vey signifi cant yield benefi ts, insect resistance can plausibly lower the gap 
between potential and realized yield. As discussed by Nolan and Santos 
(2012), conventionally applied insecticides only provide 60 percent to 80 
percent protection against corn borer and rootworm, whereas Bt provides 
near 100 percent protection. As such, the eff ect of Bt GE corn relative to con-
ventional corn depends on pest pressure. It has long been known that corn 
borer and corn rootworm pressures are aff ected by soil characteristics and 
weather (e.g., Beck and Apple 1961; Huber, Neiswander, and Salter 1928; 
Turpin and Peters 1971; MacDonald and Ellis 1990), and prior research has 
hinted at the fact that yield eff ects of Bt corn might depend on soil charac-
teristics via their eff ects on insect populations (Ma, Meloche, and We 2009). 
Pest pressure is also likely to vary spatially according to the density of corn 
production, which depends on soil and climatic conditions.

In a paper most similar to the present inquiry, Xu et al. (2013) used aggre-
gate, nonexperimental data and found that GE adoption led to a 19.4 bushel 
per acre increase in corn yields in the central Corn Belt (Illinois, Indiana, 
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and Iowa). What explains the contrast between the apparent lack of impact 
of GE adoption in aggregate trend yields shown in fi gure 1.1 and the results 
from Xu et al. (2013)? There are a variety of possibilities. For example, Xu 
et al. (2013) look at county (rather than national) yields, and they control 
for confounding factors related to weather and fertilizer use. However, it is 
unclear from Xu et al. (2013) what the impacts are of ignoring these factors. 
Moreover, these authors only considered limited geographic heterogeneity 
(they only explored central Corn Belt to noncentral Corn Belt), and they 
did not consider other factors like soil characteristics or how weather and 
soil characteristics may infl uence GE- adoption eff ects on yield. In addition, 
the authors did not consider the eff ects of GE adoption on yield variability.

Another confounding factor that exists when exploring national yield 
trends is the fact that the number of acres planted to corn has increased 
signifi cantly over the same period of time that GE traits have been adopted. 
For example, in the 10 years from 1980 to 1989 prior to adoption of GE corn, 
75.7 million acres of corn were planted on average each year in the United 
States. By contrast, in the most recent 10- year period from 2007 to 2016, dur-
ing a period of near full adoption of GE traits, on average 91.2 million acres 
of corn were planted each year in the United States, a 20.5 percent increase. 
Some of the acreage expansion is a result of GE adoption, as GE traits have 
increased the viability of continuous corn (planting corn after corn rather 
than rotating with soybeans; Chavas, Shi, and Lauer 2014), a practice that 
has historically been associated with signifi cant yield drag (Gentry, Ruff o, 
and Below 2013). Ethanol policies, among other factors, also led to a dra-
matic increase in corn prices over the period of GE corn adoption, which 
both increased the prevalence of continuous corn (Hendricks, Smith, and 
Sumner 2014) and led to the expansion of corn onto acres that would previ-
ously have been considered marginal lands. Combined, these factors suggest 
that national corn yields would have been higher in recent years had it not 
been for the expansion of corn acreage.

1.2 Data

We utilize a large panel of roughly 28,000 yield observations spanning 819 
counties from 1980 to 2015. We chose 1980 as the starting point for the time 
series, as this gives us a roughly equal number of years pre-  and post- GE 
adoption, which started in 1996. Roughly 13,000 (45 percent) of the yield 
observations correspond to the pre- GE period. These data were collected 
via USDA NASS Quick Stats and correspond to total production divided 
by harvested acres in each county. As in Xu et al. (2013), we omit any county 
where (i) more than 10 percent of harvested cropland is irrigated or (ii) yield 
data was reported for less than two- thirds of the pre- GE years or two- thirds 
of the post- GE years. Figure 1A.1 in the appendix to this chapter shows that 
there exists extensive cross- sectional and temporal variation of yields. Note 
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that all tables and fi gures with a leading S are contained in the accompany-
ing supplementary material.

The limiting factor for the cross- sectional (spatial) representation of the 
data is the availability of  GE adoption data. We utilize the same NASS 
data as Xu et al. (2013), which reports GE adoption at the state- year level 
for 13 states: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Mis-
souri, Nebraska, North Dakota, Ohio, South Dakota, Texas, and Wiscon-
sin. These data were fi rst recorded in 2000 for all but North Dakota and 
Texas, which were recorded starting in 2005, several years after adoption had 
already started to occur in some areas. We interpolate missing data using 
predictions from a generalized linear model with a binomial family and a 
logit link function. A pooled model with state fi xed eff ects provides similar 
predictions as separate models for each state. We use the latter here. Our 
interpolation procedure follows the seminal work of Griliches (1957), who 
modeled the diff usion of hybrid corn seed as logistic growth. Figure 1A.2 
provides the observed adoption data in addition to the predictions from both 
models used to interpolate missing values. Table 1A.1 provides summary 
statistics for both the observed and observed- plus- interpolated GE adoption 
rate variables. Figure 1A.3 provides a spatial map of the in- sample counties 
studied in the analysis.

While our analysis focuses on identifying the eff ects of GE adoption on 
corn yields, it is likely that one must control for several sources of confound-
ing factors in practice. For example, if  the post- 1996 period of adoption 
coincided with an abnormal run of good or bad weather conditions, then 
failure to control for weather could bias the estimate of the GE eff ect. Recent 
evidence suggests that this can be an important consideration for crop yield 
analyses (Tack, Barkley, and Nalley 2015a,b). We use the same weather data 
as in Schlenker and Roberts (2009), updated to 2015 to control for the infl u-
ence of weather on corn yields. Daily outcomes on minimum and maximum 
temperatures at the county level are interpolated within each day using a 
sinusoidal approximation and are then used to construct three degree- day 
variables: between 0°C and 10°C, between 10°C and 29°C, and above 29°C. 
Along with cumulative precipitation, these variables are aggregated across 
March–August. Figure 1A.4 shows that there is extensive variation both 
cross- sectionally and over time for these variables.

Soil characteristic data are from the gSSURGO (Gridded Soil Survey 
Geographic) database created by NRCS (Natural Resources Conservation 
Service) and were also used in Hendricks (2016). Soils are aggregated to the 
county level using only the area in the county classifi ed as cropland accord-
ing to the National Land Cover Database. One measure of soil quality that 
we consider is water- holding capacity (measured in mm), which is the total 
volume of plant- available water that the soil can store within the root zone 
and is calculated as a weighted average across the county. Figure 1A.7 pro-
vides a spatial map of the water- holding capacity across counties, which 
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has a wide range from near zero to just over 300 mm and a sample average 
value of 216 mm. Another measure we consider is a grouping of soil types 
based on the soil texture of the county. This is calculated as the dominant 
soil texture classifi cation within the county and includes nine diff erent soil 
types: clay, clay- loam, loam, loamy- sand, sand, sandy- loam, silt- loam, silty- 
clay, and silty- clay- loam. Figure 1A.8 provides a spatial map of these soil 
types by county.

1.3 Empirical Model

We assume that the eff ect of GE adoption on corn yields is identifi ed using 
the regression model

 yist = + Ait* + f (xist, ) + ist,

where yist are corn yields (bushels/acre) in county i, state s, and year t. The 
variable Ait* is the unobserved GE adoption rate at the county- year level 
and is measured as the fraction of  acreage planted to GE varieties. The 
parameter of interest is δ, which measures the eff ect of  GE adoption on 
corn yields. We discuss the implications of only observing adoption rates at 
the state- year level in the next section. We also include a vector of control 
variables xist that include county- level fi xed eff ects, state- level trend variables, 
and weather variables measured at the county- year level.

Our identifi cation comes from two diff erent sources of variation. First, 
the eff ect is identifi ed from diff erences in yield over time as GE adoption has 
increased, controlling for state- specifi c yield trends and weather. Second, 
the eff ect is identifi ed from diff erences in yields from the county- specifi c 
average—adjusted for the state- specifi c trend—between counties that had 
diff erent levels of GE adoption.

One potential concern is that GE adoption could be endogenous—
counties with larger increases in yield adopted GE more rapidly. Our pri-
mary source of variation in GE adoption—before and after the introduction 
of GE technology—is exogenous because the introduction of GE variet-
ies was driven by supply of the technology rather than farmer demand. A 
more likely source of endogeneity is that counties with greater (or smaller) 
increases in yields had more rapid early adoption. To test if  this endogeneity 
aff ects our results, we present a robustness check, where all periods during 
diff usion are omitted from the sample so that we only exploit yield diff er-
ences before and after the introduction of the GE technology. An alternative 
strategy is to include year fi xed eff ects so that our source of identifi cation 
is the change in yields between counties with diff erent changes in adoption 
rates of GEs. We do not include year fi xed eff ects in our preferred specifi ca-
tion because it precludes the use of exogenous preadoption data as a coun-
terfactual for postadoption data. Including year fi xed eff ects also exploits a 
narrow source of variation in GE adoption.
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1.3.1 State- Level Adoption Rates

One of the main concerns in identifying δ is that data on GE adoption are 
only available at the state level, thus the variable that we observe is Ast. This 
can be cast as a nonclassical measurement- error problem, where the true, 
unobserved measure Ait* is related to our observed measure Ast by

Ait* = Ast + vit,

where vit denotes the diff erence between the county- specifi c adoption and the 
state- level aggregate adoption. Substituting this expression into the regres-
sion model and rearranging gives

yist = + Ast + f (xist, ) + uist

uist = vit + ist.

The error term uist is a composite random variable. Note that this source 
of measurement error is nonclassical in the sense that it does not induce 
bias in our estimate of  δ because the measurement error is uncorrelated 
with the observed state- level adoption. The state- level aggregate adoption in 
each year is uncorrelated—by defi nition—with the deviation of a particular 
county’s adoption from the state- level aggregate.

However, the measurement error does induce serial correlation of  the 
error terms on a subsample of the data. Some counties are likely to lead 
or lag the state- level adoption rate in all periods of technology diff usion, 
resulting in serial correlation of the errors. Note that measurement error is 
only a concern during the period of adoption when Ast (0,1), since Ait* and 
Ast are necessarily both equal to zero prior to adoption and both equal to 
one at full adoption. Thus the measurement error induces serial correla-
tion in the errors only when both periods are in the adoption phase of the 
data.

We use the two- way clustering approach of  Cameron, Gelbach, and 
Miller (2012) to account for multiple sources of correlation in the errors. 
The fi rst dimension of  clustering is accomplished by using a county- by- 
adoption- phase grouping scheme such that each county is split into two 
groups, one when GE adoption equals zero and another when adoption is 
positive. This clustering accounts for potential serial correlation resulting 
from the measurement error of the state- level adoption variable. The second 
dimension of clustering is by year in order to account for the presence of 
spatial correlation in the errors (εist) driven by the spatial similarity of resid-
ual weather shocks not accounted for in the model across counties within 
each year. We interpret this approach as being robust to heteroscedasticity, 
spatial correlation of the error terms across counties, and serial correlation 
of the errors within each county both within and outside of the adoption 
period.
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1.3.2 Importance of Controlling for Weather

It is worth noting that the need to control for weather is important if  the 
exposure diff ers between the pre-  and post- GE subsamples in the data (or 
if  weather was relatively good or bad in counties that adopted more rap-
idly). In theory, if  one were to observe a large enough frequency of weather 
outcomes in both periods such that average weather exposures were similar, 
then one would not need to control for its infl uence. In practice, weather may 
bias coeffi  cients in samples where the number of time periods is not large. 
We investigate this possibility by comparing precipitation and extreme heat 
exposure (degree- days above 29°C) in both periods—that is, pre-  and post- 
1996. For each county, we calculate the percentage diff erence in the average 
precipitation and extreme heat variables across periods and report these val-
ues in fi gures 1A.5 and 1A.6. Precipitation was roughly 4 percent higher in 
the post- GE period on average across counties. However, this masks a large 
amount of heterogeneity, as county- level diff erences ranged from −15 to 
21 percent. Similarly, the occurrence of extreme heat exhibited a large amount 
of heterogeneity, as diff erences as large as −63 and 22 percent spanned an 
average value of −20 percent. This suggests that controlling for weather is 
important and must be done at a local level. It would not likely be properly 
accounted for using spatially aggregated measures of weather shocks at the 
regional or national level or using crude measures such as year fi xed eff ects.

1.3.3 Heterogeneous Yield Response

We also consider models of the form

yist = + gAst + f (xist, ) + uist,

where we are now allowing the parameter of interest δ to vary across diff er-
ent subsections of the data represented by groupings g. We interact the GE 
adoption variable with the weather variables that are a subset of the variables 
in xist to investigate whether GE varieties are more or less susceptible to cer-
tain weather outcomes. We also consider several models of cross- sectional 
heterogeneity, each based on a diff erent assignment of the county to a group. 
The fi rst utilizes a grouping based on the state each county is in, while the 
other two assign each county to a group based on measures of soil quality. 
The fi rst measure of soil quality defi nes groups based on the percentiles of 
the observed water- holding capacity variable: 0–10th, 10th–25th, 25th–50th, 
50th–75th, 75th–90th, and 90th–100th. The second defi nes groups based on 
the dominant soil texture in each county.

1.4 Results

We report estimates for three classes of models in this section. The fi rst 
section provides estimates for a class of models that assume a homogeneous 
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GE eff ect across counties. The second class of models maintains this homo-
geneity assumption but reports estimates for models of  the higher- order 
moments of the corn- yield distribution. The fi nal class of models relaxes the 
homogeneity assumption and allows the GE eff ect to vary across weather 
outcomes and county groupings. All models are estimated using ordinary 
least squares with dummy variables as the fi xed eff ects and standard errors 
clustered using the two- way approach previously discussed.

1.4.1 Homogeneous GE Eff ect

Table 1.1 reports parameter estimates for fi ve models that sequentially 
include additional control variables. In the absence of any controls, the esti-
mated GE eff ect is 43 bushels per acre. However, it is clear that this estimate 
is confounded by the absence of  a trend variable, which, when included, 
changes the estimate to–8 bushels per acre. This sensitivity is expected, as the 

Table 1.1 Regression results: Impacts of GE adoption on corn yield (bushels/acre)

   Model 1  Model 2  Model 3  Model 4  Model 5

Variables
GE adoption rate 43.36*** –7.648 6.547 18.15*** 18.26***

[7.116] [11.17] [12.15] [6.546] [6.748]
Time trend 2.000*** 1.506*** 1.008*** 0.943***

[0.393] [0.413] [0.206] [0.208]
Precipitation (mm) 1.652*** 1.596***

[0.363] [0.363]
Precipitation squared (mm2) –0.0146*** –0.0142***

[0.00328] [0.00327]
Degree- days 0°–10°C 0.0216 0.0181

[0.0262] [0.0263]
Degree- days 10°–29°C 0.0159 0.0176

[0.0155] [0.0143]
Degree- days above 29°C –0.590*** –0.591***

[0.0868] [0.0808]

County fi xed eff ects N N Y Y Y
State- specifi c trends N N N N Y
R- squared 0.171 0.234 0.649 0.781 0.792
Out- of- sample RMSE (% reduction) –– 3.89 32.8 46.9 48.8
Observations 28,628 28,628 28,628 28,628 28,628
Counties 819 819 819 819 819
Years  36  36  36  36  36

Notes: The reported coeffi  cient estimate for the time trend variable under model 5 is the simple average 
of the state- specifi c estimates. The out- of- sample prediction comparison reports the percentage reduc-
tion in the root- mean- squared prediction error (RMSE) for each model compared to the baseline model 
1 that does not include any control variables. Each model is estimated 1,000 times, where each iteration 
randomly selects 80 percent of the sample observations. Relative performance is measured according to 
the accuracy of each model’s prediction for the omitted 20 percent of the data. Two- way clustered stan-
dard errors by year and county adoption are reported in square brackets, and *, **, and *** denote sta-
tistical signifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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increase in GE adoption has coincided with many other production innova-
tions that have increased productivity over time. Failure to account for this 
source of variation in the data confounds the estimate. The next model adds 
county fi xed eff ects to the model, and the estimate becomes positive but is 
not statistically signifi cantly diff erent from zero at conventional levels. In 
addition, the estimate of the time trend parameter is also sensitive to the 
inclusion of these fi xed eff ects as it decreases from 2 to 1.5 bushels per acre 
per year. It is clear that controlling for county- specifi c time- invariant yield 
drivers such as soil quality is an important consideration for estimating 
productivity gains. The next model includes the precipitation and weather 
variables, and again we see a sensitivity of the estimates as the GE eff ect 
increases and becomes statistically signifi cant at the 1 percent level.

Note that adding the weather variables nearly triples the estimate of the 
GE eff ect and reduces the standard error by half. Adding the weather vari-
ables also reduces the trend coeffi  cient to one bushel per acre per year, imply-
ing that the trend increase in yield was much smaller before the introduction 
of GE varieties after we account for weather conditions.

The fi nal model allows the time trend parameters to vary across states, 
and we fi nd that the GE estimate has stabilized across this additional gener-
alization. Both the in- sample fi t and the out- of- sample prediction accuracy 
of the models steadily increases as we include additional control variables 
in the model. Further supporting this fi nding that control variables matter, 
we reject the null of equality for the state- specifi c trend estimates (p- value = 
0.000) and reject the null that the weather variable estimates are jointly zero 
(p- value = 0.000). Thus under an assumption of a homogenous GE eff ect, 
we fi nd that the introduction of GE corn has increased yields by approxi-
mately 18 bushels per acre. This represents a roughly 17 percent increase in 
yields relative to the fi ve- year average yield prior to the introduction of GE 
traits.

We also estimated alternative specifi cations that exploit diff erent sources 
of variability in GE adoption. First, we removed all observations during 
the diff usion process—defi ned as adoption greater than 0 and less than 
0.85—so that we only exploit variation in GE adoption before and after the 
introduction of the technology. This specifi cation exploits variation in GE 
adoption that is more plausibly exogenous, but we reduce the sample size to 
17,424. The eff ect of GE adoption on yield is larger at 28 bushels per acre 
(p- value = 0.013), but the standard error increases to 11.24.

Our second specifi cation adds year fi xed eff ects to the main specifi cation. 
The eff ect of GE adoption on yield decreases to eight bushels per acre and 
lacks statistical signifi cance (p- value = 0.555) with a standard error of 13.92. 
As mentioned previously, the specifi cation with year fi xed eff ects exploits a 
small amount of cross- sectional variation in GE adoption, which leads to 
an imprecise estimate.

We also consider specifi cations that only use a subset of years in the data 
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to better understand our primary source of identifi cation. When we omit 
years for which the national adoption rate exceeded 50 percent (i.e., 2005 to 
2014), the eff ect of GE adoption is 31 bushels per acre (p- value = 0.013). If  
we instead omit years when national adoption is between 0 and 50 percent 
(i.e., 1996 to 2004), the eff ect of GE adoption is 24 bushels per acre (p- value 
= 0.028). However, when we omit years when national adoption was zero 
(i.e., 1980 to 1995), the eff ect of GE adoption drops substantially to two 
bushels per acre (p- value = 0.79; standard error = 9.1). These results indicate 
that our estimate of the eff ect of GE adoption in our preferred specifi cation 
is identifi ed primarily from the inclusion of preadoption data that permits 
a credible estimation of yield trends prior to adoption. Overall, these alter-
native specifi cations provide evidence that endogenous selection into early-  
versus late- adoption cohorts does not substantially bias the results.

We also consider robustness to a model that includes solar radiation as an 
additional control, as recent literature has suggested that this can confound 
trend estimation for US corn (Tollenaar et al. 2017), but fi nd little concern 
here, as the GE adoption estimate is 17.5 bushels per acre (p- value = 0.022) 
under this alternative. Finally, it is possible that GE adoption coincided 
with large expansions and/or retractions of acreage to/from marginal land 
within each county. While we cannot observe this directly in these data, we 
can omit annual observations for each county that are more or less than one 
standard deviation away from county- specifi c sample averages of harvested 
acreage. This eff ectively produces a subset of data (25 percent fewer observa-
tions) that experiences smaller year- to- year acreage variations, and we fi nd 
a similar estimate of 14.8 bushels per acre (p- value = 0.012).

1.4.2 Higher- Order Moment Eff ects of GE

We next consider whether GE adoption has infl uenced the higher- order 
moments of the corn- yield distribution using a moments- model approach 
(Antle 1983, 2010; Just and Pope 1978). Specifi cally, we estimate both the 
variance and skewness of the yield distribution using the squared and cubed 
residuals from the preferred model from the previous section (table 1.1, 
model 5). These transformed residuals are then regressed on the same set of 
covariates as the preferred model. Under expectation of the dependent vari-
able, these models provide linkages between the GE adoption and control 
variables on the variance and skewness of the yield distribution.

The parameter estimates for these models are reported in table 1A.2. We 
fi nd no evidence that GE adoption has aff ected the variance or skewness 
of the yield distribution, as the estimates are not statistically signifi cant at 
standard levels. However, taken in conjunction with the results revealing 
increases in mean yields, our results suggest that GE adoption has led to 
a reduction in yield risk, as it has increased yields without a proportionate 
increase in the standard deviation—that is, the coeffi  cient of variation has 
decreased. Importantly, the estimate for the time trend variable implies an 
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increase in yield variance over time, suggesting that it is an important control 
variable for studies to consider when estimating yield risk implications of 
GE. Although not reported here, when the time trends are dropped from 
the model, the estimate of the GE eff ect on yield variance becomes positive 
and signifi cant at the 105 level ( p- value = 0.096).

1.4.3 Heterogeneous GE Eff ect

Results for joint hypothesis tests for the heterogeneous models are 
reported in table 1A.3, where the p- values correspond to a null hypothesis 
of  a homogenous GE eff ect. The fi rst three models explore interactions 
between the weather variables and GE adoption. We fi nd no evidence of 
these interactions for precipitation alone, temperature alone, or precipi-
tation and temperature combined. Thus we conclude that while ignoring 
weather severely biases the estimated eff ect of GE corn adoption, the per-
formance of  GE varieties is not likely dependent on particular weather 
outcomes occurring. One reason for this result is that the initial GE traits 
focused on insect resistance and herbicide tolerance rather than developing 
traits to improve drought or heat tolerance. In the future, GE traits may 
focus more on drought and heat so that our result may not continue to hold 
(Marshall 2014).

The next set of heterogeneity models that we consider assign each county 
to a particular group. We fi rst use state boundaries to defi ne the grouping 
and estimate the heterogeneous eff ects by interacting dummy variables for 
each state with the GE adoption variable. We fail to reject the null of a homo-
geneous eff ect at standard signifi cance levels (p- value = 0.1117); however, 
fi gure 1A.9 provides a spatial map of these estimates and suggests that there 
are potentially large diff erences in eff ects across regions. A simple average 
of the estimates is 19.1, and they range from 5.5 to 27.5 bushels per acre.

To further explore potential spatial heterogeneities, we assign each county 
to one of six groups based on the soil’s water- holding capacity. The groups 
correspond to diff erent percentiles of the empirical distribution of observed 
values (1: 0th–10th percentile, 2: 10th–25th percentile, 3: 25th–50th percen-
tile, 4: 50th–75th percentile, 5: 75th–90th percentile, and 6: 90th–100th per-
centile). We interact dummy variables for each group with the GE adoption 
variable, and we fi nd evidence that this pattern of spatial heterogeneity is 
supported by the data, as a joint hypothesis test suggests rejecting the null 
of a homogeneous eff ect at standard signifi cance levels ( p- value = 0.0000). 
The parameter estimates are reported in table 1A.4, and fi gure 1.2 provides 
a spatial map of the impacts by county. The county- level estimates have an 
average value of 18.4, and they range from 12.5 to 25.1 bushels per acre. It 
is clear from the map that there exists substantial within- state variation of 
the GE eff ect that the state- specifi c heterogeneity model is not capable of 
capturing. Figure 1A.10 plots the range of county- level GE eff ects within 
each state along with the average value within that state and shows that there 
exists a broad range of more than 10 bushels per acre within most states. This 
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insight is consistent with the state- specifi c model’s failure to reject the null of 
a homogeneous eff ect, as the spatial heterogeneities are being driven not by 
ad hoc political boundaries but rather by the localized growing conditions.

The fi nal model that we consider further supports this insight and suggests 
that soil texture is also an important dimension for understanding heteroge-
neous GE eff ects. We assign each county to one of nine groups based on the 
dominant soil texture: clay, clay- loam, loam, loamy- sand, sand, sandy- loam, 
silt- loam, silty- clay, silty- clay- loam. We interact dummy variables for each 
group with the GE adoption variable, and we fi nd evidence that this pattern 
of spatial heterogeneity is supported by the data, as a joint hypothesis test 
suggests rejecting the null of a homogeneous eff ect at standard signifi cance 
levels ( p- value = 0.0001). The parameter estimates are reported in table 
1A.4, and fi gure 1.3 provides a spatial map of the impacts by county. The 
county- level estimates have an average value of 18.3, and they range from 3.9 
to 24.0 bushels per acre. We again fi nd that there exists substantial within- 
state variation of the GE eff ect that the state- specifi c heterogeneity model 
is not capable of capturing as shown in fi gure 1A.10.

The location of greater yield impacts from GE adoption corresponds gen-

Fig. 1.2  mpacts of GE corn adoption (bushels/acre) by counties’ soil water- 
holding capacities. Each county is assigned to one of six groups based on the soil’s 
water- holding capacity, and a separate GE impact is estimated for each group. Esti-
mated impacts are then binned according to values in the fi gure legend.
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erally with the location of greater utilization of Bt traits (see Hutchison et al. 
2010). As mentioned earlier, research from experimental plots has generally 
found greater yield benefi ts from Bt traits than herbicide- resistant traits. 
There are a couple reasons soil characteristics might be driving greater adop-
tion of Bt traits. First, corn borer and corn rootworm pressures are aff ected 
by soil characteristics (e.g., Beck and Apple 1961; Huber, Neiswander, and 
Salter 1928; Turpin and Peters 1971; MacDonald and Ellis 1990). Second, 
areas with better soil characteristics have a greater concentration of corn 
production resulting in greater pest pressure.

1.5 Conclusion

There is considerable interest, both within the academic community and 
among the broader public, in the eff ects of GE crop adoption. In particu-
lar, the eff ect of GE crop adoption on yield has been the subject of much 
debate, perhaps because of relationships between yield and environmental 
outcomes via land use and because of the implications for food security. 

Fig. 1.3 Impacts of GE corn adoption (bushels/acre) by counties’ soil types. Each 
county is assigned to one of nine groups based on the soil’s texture, and a separate 
GE impact is estimated for each group. Estimated impacts are then binned according 
to values in the fi gure legend.
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Numerous experiments have found that GE traits have tended to reduce 
the gap between actual and potential corn yields (Fernandez- Cornejo et al. 
2014; Klümper and Qaim 2014; NASEM 2016); however, experimental stud-
ies often generate signifi cantly higher yields than farmers actually experience 
(Lobell, Cassman, and Field 2009). Moreover, aggregate yield trends in the 
United States appear, at fi rst blush, relatively stable before and after adop-
tion of GE corn.

This chapter sought to identify whether, in fact, for corn “the nation- 
wide data . . . in the United States do not show a signifi cant signature of 
genetic- engineering technology on the rate of yield increase,” as was indi-
cated by NASEM (2016). Using corn- yield panel data corresponding to 
roughly 28,000 US county- years before and after adoption of GE corn, a 
simple model only including a time trend confi rms NASEM’s assertion, as 
the eff ect of GE adoption appears, if  anything, to have had a negative eff ect 
on yields. However, subsequent analysis reveals that this simple model is 
biased. After controlling for weather and soil characteristics and assuming 
a homogeneous eff ect of adoption, we fi nd that adoption of GE corn has led 
to an approximate 17 percent increase in corn yields. We also fi nd signifi cant 
heterogeneity in the yield eff ect that is related not to state boundaries but 
rather to soil characteristics. On average, adoption of GE corn has led to an 
18.5 bushel per acre increase in yield, but the eff ects range from 12.5 to 25.1 
bushels per acre depending on soil characteristics. We conjecture that the 
variation across soil types may be related to diff erences in insect pressure.

While we found important soil- GE adoption interactions, there were no 
signifi cant interactions related to weather. The fi ndings suggest that the 
current GE traits have not led to more resilience to heat or water stresses. 
Moreover, while we fi nd that the variance in corn yield has increased over 
time, adoption of GE corn has not lowered the variance. Nonetheless, if, 
as our results show, adoption of GE corn increases yield without aff ecting 
variance, the coeffi  cient of variation on yields has fallen as a result of GE 
corn adoption. This suggests that GE corn is less risky, as, for example, the 
actuarially fair price of  insurance to indemnify a given yield falls as the 
coeffi  cient of variation falls.

Our study has a number of  limitations. As we discussed, the available 
adoption data only exist at the state level. We showed that this produces 
a type of measurement- error problem that can lead to serially correlated 
errors—an issue we address using the two- way clustering approach of Cam-
eron, Gelbach, and Miller (2012). There are other issues that have likely 
aff ected national- level yields, such as the move toward more continuous corn 
and other factors that have led to the expansion of corn acres. The adoption 
of GE crops may have also led to an expansion of corn acres on more mar-
ginal land that decreased county average yield. We partially addressed this 
problem by limiting our analysis to only those counties that reported yield 
data for at least two- thirds of the years before and after GE adoption, but 
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an altogether diff erent sort of analysis that moves from our primal produc-
tion function approach to a structural model that relates planting decisions 
to input and output prices would likely be required to fully address the 
issue. To the extent that adoption of GE crops did reduce county average 
yields through an expansion of growing area, our estimate refl ects this eff ect 
and understates the impact of GE on fi eld- level corn yields. It would also 
be of interest to conduct the sort of analysis performed here using data, 
for example, from the European Union, where there has been little to no 
adoption of GE corn. Such an approach would permit a truer diff erence- 
in- diff erence estimate of the eff ect of GE corn adoption.

A fi nal important caveat to be noted is that the estimated eff ects of GE 
corn adoption depend critically on the available GE technologies. Genetic 
engineering is not a single “thing.” In the case of our data, GE corn is one 
of four types: herbicide tolerant, Bt corn- borer tolerant, Bt root- worm tol-
erant, or stacked varieties that include combinations of the previous three 
types. Geneticists and plant scientists are continually working on new genetic 
modifi cations that could further reduce the gap between actual and potential 
yield or even increase potential yields. For example, Kromdijk et al. (2016) 
recently genetically engineered a tobacco plant to improve the effi  ciency of 
photosynthesis, which increased potential yields by about 20 percent. Other 
research has focused on genetic pathways to increasing nitrogen utilization 
(McAllister, Beatty, and Good 2012). Whether these additional GE crop 
technologies can live up to the “hype” of increasing crop yields remains to be 
seen. However, if  and when these biotechnologies arrive, it will be important 
to closely scrutinize whether they substantively aff ect real- world farm yields, 
just as this study has attempted to do with the fi rst generations of GE corn.
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Appendix

Table 1A.1 Summary statistics for raw and interpolated state- level GE adoption 
rates, 1980–2015

Site    Mean  Std. dev.  Min.  Max.  Obs.

All states Raw 0.349 0.395 0.00 0.98 419
 Interpolated 0.322 0.377 0.00 0.98 481
Illinois Raw 0.322 0.381 0.00 0.93 33
 Interpolated 0.294 0.370 0.00 0.93 37
Indiana Raw 0.289 0.366 0.00 0.88 33
 Interpolated 0.262 0.354 0.00 0.88 37
Iowa Raw 0.368 0.399 0.00 0.95 33
 Interpolated 0.341 0.385 0.00 0.95 37
Kansas Raw 0.381 0.408 0.00 0.95 33
 Interpolated 0.353 0.394 0.00 0.95 37
Michigan Raw 0.312 0.371 0.00 0.93 33
 Interpolated 0.284 0.359 0.00 0.93 37
Minnesota Raw 0.387 0.409 0.00 0.93 33
 Interpolated 0.360 0.394 0.00 0.93 37
Missouri Raw 0.341 0.373 0.00 0.93 33
 Interpolated 0.315 0.360 0.00 0.93 37
Nebraska Raw 0.388 0.413 0.00 0.96 33
 Interpolated 0.360 0.399 0.00 0.96 37
North Dakota Raw 0.391 0.462 0.00 0.97 28
 Interpolated 0.357 0.414 0.00 0.97 37
Ohio Raw 0.252 0.338 0.00 0.86 33
 Interpolated 0.228 0.327 0.00 0.86 37
South Dakota Raw 0.437 0.446 0.00 0.98 33
 Interpolated 0.409 0.429 0.00 0.98 37
Texas Raw 0.360 0.425 0.00 0.91 28
 Interpolated 0.327 0.378 0.00 0.91 37
Wisconsin Raw 0.319 0.369 0.00 0.92 33
  Interpolated  0.293  0.357  0.00  0.92  37
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Table 1A.2 Regression results: Impacts of GE adoption on variance and skewness of 
corn yields

   Variance  Skewness  

Variables
GE adoption rate –95.18 1526.6

[166.1] [10927.8]
Time trend 9.086** –134.0

[4.588] [306.5]
Precipitation (mm) –22.46*** –352.3

[7.371] [503.8]
Precipitation squared (mm2) 0.187*** 3.344

[0.0498] [4.773]
Degree- days 0°–10°C 0.689 –22.56

[0.512] [50.22]
Degree- days 10°–29°C –0.375 –8.051

[0.354] [24.25]
Degree- days above 29°C 4.955** 104.7

[1.940] [183.8]

County fi xed eff ects Y Y
State- specifi c trends Y Y
R- squared 0.134 0.034
Observations 28,628 28,628
Counties 819 819

 Years  36  36  

Notes: The reported coeffi  cient estimates for the time trend variable in both models is the 
simple average of the state- specifi c estimates. Two- way clustered standard errors by year and 
county adoption are reported in square brackets, and *, **, and *** denote statistical signifi -
cance at the 10 percent, 5 percent, and 1 percent levels, respectively.

Table 1A.3 Joint hypothesis tests for the heterogeneous GE eff ect models

 Null hypothesis  p- value  

Weather interaction model
All weather/GE interactions are equal to zero. 0.3344
All precipitation/GE interactions are equal to zero. 0.4538
All temperature/GE interactions are equal to zero. 0.6672

State- specifi c GE eff ect
All state- specifi c GE eff ects are equal. 0.1117

GE eff ect varies by soil water- holding capacity
All GE eff ects for each group are equal. 0.0000

GE eff ect varies by soil type
 All GE eff ects for each group are equal.  0.0001  

Notes: The reported p- values correspond to the joint hypothesis of  a homogenous GE eff ect 
using two- way clustered standard errors by year and county adoption.
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Table 1A.4 Regression results: Heterogeneous impacts of GE adoption by soil type

 Variables  Model 1   Model 2  

(GE adoption rate) × (<10th percentile 
water- holding capacity)

12.50*
[7.070]

(GE adoption rate) × (10th–25th percentile 
water- holding capacity)

18.68***
[6.971]

(GE adoption rate) × (25th–50th percentile 
water- holding capacity)

14.12**
[6.805]

(GE adoption rate) × (50th–75th percentile 
water- holding capacity)

15.69**
[6.941]

(GE adoption rate) × (75th–90th percentile 
water- holding capacity)

21.84***
[6.866]

(GE adoption rate) × (>90th percentile 
water- holding capacity)

25.13***
[7.002]

(GE adoption rate) × (clay soil) 24.01*
[12.31]

(GE adoption rate) × (clay- loam soil) 19.46***
[7.385]

(GE adoption rate) × (loam soil) 22.35***
[6.861]

(GE adoption rate) × (loamy- sand soil) 7.537
[7.329]

(GE adoption rate) × (sand soil) 3.911
[7.955]

(GE adoption rate) × (sandy- loam soil) 12.56*
[7.436]

(GE adoption rate) × (silt- loam soil) 16.41**
[6.934]

(GE adoption rate) × (silty- clay soil) 14.79**
[7.490]

(GE adoption rate) × (silty- clay- loam soil) 22.99***
[7.382]

Simple average of GE eff ects 17.99*** 16.00**
[6.735]z [6.963]

R- squared 0.7929 0.7927
Out- of- sample RMSE (% reduction) –50.1 –50.0
Observations 28,628 28,628
Counties 819 819

 Years   36  36  

Notes: Both models include a full set of  controls: weather variables, county fi xed eff ects, and 
state- specifi c linear trends. The out- of- sample prediction comparison reports the percentage 
reduction in the root- mean- squared prediction error (RMSE) for each model compared to a 
baseline model that does not include any control variables and assumes a homogeneous GE 
eff ect. Each model is estimated 1,000 times, where each iteration randomly selects 80 percent 
of the sample observations. Relative performance is measured according to the accuracy of 
each model’s prediction for the omitted 20 percent of the data. Two- way clustered standard 
errors by year and county adoption are reported in square brackets, and *, **, and *** denote 
statistical signifi cance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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Fig. 1A.1 Spatial and temporal variation of yields. We observe yields at the 
county- year level and construct boxplots for each year. Each box is defi ned by the 
upper and lower quartile, with the median depicted as a horizontal line within the 
box. The endpoints for the whiskers are the upper and lower adjacent values, which 
are defi ned as the relevant quartile +/− three- halves of the interquartile range, and 
circles represent data points outside of the adjacent values.

Fig. 1A.2 Observed and interpolated values for state- level GE adoption rates. The 
dots represent observed data, and the lines denote interpolated (predicted) values for 
the rates using two diff erent. We interpolate missing data using predictions from a 
generalized linear model with a binomial family and a logit link function. The “pre-
diction pooled” model pools all states and includes state fi xed eff ects, while the “pre-
diction state” model estimates a separate model for each state.
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Fig. 1A.3 Spatial map of counties included in analysis. In- sample counties are 
dark gray.

Fig. 1A.4 Spatial and temporal variation of weather variables. We observe the 
weather variables at the county- year level and construct boxplots for each year. Each 
box is defi ned by the upper and lower quartile, with the median depicted as a hori-
zontal line within the box. The endpoints for the whiskers are the upper and lower 
adjacent values, which are defi ned as the relevant quartile +/− three- halves of the in-
terquartile range, and circles represent data points outside of the adjacent values.
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Fig. 1A.5 Precipitation diff erence, pre-  and post- GE. For each county, we calcu-
late the average of the observed cumulative growing season precipitation across 
years in the pre-  and post- GE periods. We report the percentage change of the latter 
over the former here.

Fig. 1A.6 Extreme heat diff erence, pre-  and post- GE. For each county, we calcu-
late the average of the observed cumulative growing season degree- days over 29°C 
across years in the pre-  and post- GE periods. We report the percentage change of the 
latter over the former here.
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Fig. 1A.7 Spatial map of water- holding capacity (mm). For each county, we ob-
serve the total volume of plant- available water that the soil can store within the root 
zone.

Fig. 1A.8 Spatial map of soil types. For each county, we observe the most common 
soil texture.
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Fig. 1A.9 Impacts of GE corn adoption (bushels/acre) by state. The parameter of 
interest in the regression model measuring the impact of GE adoption on yield is al-
lowed to vary by state. Estimated impacts are then binned according to values in the 
fi gure legend.

Fig. 1A.10 Impacts of GE corn adoption (bushels/acre) by counties’ water- holding 
capacity and soil texture reported for each state. County- level estimates from fi gures 
1A.2 and 1A.3 are reported by state. The vertical bars are the distance between the 
highest and lowest value within each state. Dots denote the average of the county- 
level estimates within each state.
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