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3.1 Introduction

The spatial organization of science is undergoing a fundamental trans-
formation. New patterns of institutional participation, division of labor, 
and star scientist centrality are emerging. Given the essentially combina-
tory nature of invention and innovation, changes in organization that affect 
access to knowledge and ease of collaboration to produce new knowledge 
are potentially of great importance to aggregate technological progress and 
economic growth.1

In this chapter, we document and discuss significant changes in the spa-
tial organization of science over recent decades in the field of evolutionary 
biology. Specifically, we identify two trends that appear contradictory at first 
glance. First, we find that the concentration of scientific output at the institu-
tion level is falling. More institutions are participating in scientific research 
over time and relatively more activity is migrating to  lower- ranked institu-
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1. For influential work that emphasizes the role of combining ideas in the generation of new 
knowledge, see Romer (1990), Jones (1995), Weitzman (1998), and Mokyr (2002).
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tions, broadening the base of science. At the same time, however, we find 
that the concentration of scientific output at the individual level is increas-
ing. Publications and citations have always been highly skewed toward star 
performers. However, the relative importance of stars has increased in recent 
decades.

What could explain these seemingly contradictory trends? Collaboration 
offers a possible explanation. An increase in collaborative activity could 
broaden the base of science at the department level by raising the relative 
amount of participation by previously  lesser- involved research institutions 
and at the same time increase the concentration of output at the individual 
level by disproportionately benefiting highly productive scientists, perhaps 
through more efficient matching with collaborators, thus enabling more 
finely grained specialization. Stars may disproportionately benefit from 
better matching because they have a larger pool of potential distant col-
laborators to choose from. We report descriptive evidence that is consistent 
with these conjectures.

Specifically, we report evidence that the level of collaboration has increased 
significantly over time. Furthermore, the average distance between collabo-
rators has grown in terms of both physical distance and the rank separation 
of collaborating institutions, consistent with the conjecture that collabora-
tion plays a role in the expanding base of science. We further show that the 
base of institutional participation has grown, including the entry of institu-
tions from emerging economies. Moreover, we show that star scientists have 
an increasingly larger pool of potential collaborators relative to nonstars, 
consistent with the assertion that they may disproportionately benefit from 
lower communication costs due to better matching opportunities.

Why might collaboration be increasing? We see two central forces that 
increase the returns to collaboration although also work in opposing direc-
tions on the returns to colocation. The first is the rising “burden of knowl-
edge” (Jones 2009). The increasing depth of knowledge required to work at 
the scientific frontier is leading to increasing returns to specialization. This 
in turn raises the returns to collaboration, given the need to combine ideas 
and skills to produce new ideas. Furthermore, to the extent that colocation 
lowers the cost of collaboration, the rising burden of knowledge increases 
the returns to colocation. Agrawal, Goldfarb, and Teodoridis (2013) report 
evidence consistent with the knowledge burden hypothesis. Utilizing the 
sudden and unexpected release of previously hidden knowledge caused by 
the collapse of the Soviet Union as a natural experiment, the authors find 
that an outward shift in the knowledge frontier does indeed cause an increase 
in collaboration.

The second force is the improvement in collaboration- supporting tech-
nologies that reduce the barriers created by distance such as e- mail, low- 
cost conferencing, and file- sharing technologies (Agrawal and Goldfarb 
2008; Kim, Morse, and Zingales 2009). All else equal, these advances allow 
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for a greater physical dispersal of collaborating scientists. So, although the 
declining cost of communication may decrease the returns to colocation, 
it increases the returns to collaboration. Therefore, despite the potential 
conflict between these two forces with respect to their impact on the relative 
returns to colocation, they both increase the returns to collaboration.

We develop a simple model that provides a potential unified explanation 
for these facts. The key idea behind the model is that stars have a larger set 
of  potential collaborators to choose from—perhaps due to having more 
former graduate students—and thus have the potential to gain dispropor-
tionately from improvements in collaboration technology. Moreover, some 
of these  cross- institutional collaborations may occur with scientists from 
 lesser- ranked institutions, consistent with a broadening institutional base 
in the production of science.

Drawing on parallel work on the causal impact of  star scientists on 
departmental performance (Agrawal, McHale, and Oettl 2013), we specu-
late on the efficiency of the emerging spatial distribution of scientific activity. 
Recognizing the existence of  knowledge, reputational, and consumption 
externalities associated with the location decisions of star scientists, we make 
no presumption that the resulting spatial distribution of stars is efficient. We 
find that stars attract other stars and also that the recruitment of a star can 
have positive effects on the productivity of colocated incumbents working in 
areas related to the star. These effects appear to be particularly strong when 
recruitment takes place at non- top- ranked institutions.

However, while strong forces may lead to star agglomeration due to local-
ized externalities,  lower- ranked institutions may have strong incentives to 
compete for stars as a core part of strategies aimed at climbing the institu-
tional rankings. We document significant movement up the rankings for 
a select set of  institutions that begin outside the top- ranked institutions. 
Congestion effects may also exist from star colocation due to clashing egos 
and increasing returns to “vertical collaboration” across skill sets located at 
different institutions. Overall, we find a tendency toward reduced concentra-
tion of the field’s best scientists at its top- ranked institutions. In addition, the 
increasing propensity to collaborate across institutions, particularly across 
institutions of significantly different rank, further diminishes the concen-
tration of  knowledge production. Thus, fears of  excessive concentration 
of stars due to positive sorting might be overblown, although research on 
the normative implications of the observed changes in the organization of 
science is still at an early stage.

We structure the rest of the chapter as follows. In section 3.2, we explain 
the construction of our evolutionary biology data at the institutional and 
individual levels. In section 3.3, we report evidence of the broadening insti-
tutional and international base of scientific activity. We describe the increas-
ing concentration of individual productivity and, in particular, the rising 
importance of stars in section 3.4. In section 3.5, we present data on the 
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overall rise of collaborative activity and the change in collaboration patterns. 
In section 3.6, we develop a model that offers a potential unified explana-
tion of the facts documented in previous sections. Finally, in section 3.7 we 
provide a more speculative discussion of possible normative implications 
of these participation, concentration, and collaboration patterns, with an 
emphasis on the role of the location of stars and the increasing propensity 
to collaborate across institutions.

3.2 Data

Our study focuses on the field of evolutionary biology, a subfield of biology 
concerned with the processes that generate diversity of life on earth. Although 
some debate exists among historians of science and practicing evolutionary 
biologists over the key early contributors to this discipline, the general con-
sensus remains that On the Origin of Species by Means of Natural Selection, 
authored by Charles Darwin in 1859, is the foundational text of this field. As 
in most fields of science, research in evolutionary biology consists of both 
theoretical and experimental contributions. In addition to specializing in par-
ticular topic areas, empiricists often specialize in working with particular 
organisms such as Macrotrachela quadricornifera (rotifer), Drosophila mela-
nogaster (fruit fly), and Gasterosteus aculeatus (three- spined stickleback fish). 
The returns to species specialization result from, for example, the upfront 
costs of learning how to work with a particular species (including, in many 
cases, learning where to find them and how to catch and care for them to facili-
tate reproduction in order to observe, for instance, the variation in genotypes 
and phenotypes of offspring over multiple generations) as well as setting up 
the infrastructure in a lab or in nature to study them.

3.2.1 Defining Evolutionary Biology

Defining knowledge in evolutionary biology is not straightforward. On 
the input side, evolutionary biology, as in many areas of science, draws from 
many fields, such as statistics, molecular biology, chemistry, genetics, and 
population ecology. Furthermore, on the output side, some of the most influ-
ential papers are published in general interest as opposed to  field- specific 
journals. Therefore, identifying the set of papers that comprise the corpus 
of the field is complicated because although every paper in the Journal of 
Evolutionary Biology is probably relevant, most papers in Science and Nature 
are not, although a significant fraction of the field’s most important papers 
are published in those latter two journals.

Therefore, we follow a  three- step process for defining “evolutionary 
biology papers.” First, using bibliometric data from the ISI Web of Science, 
we collect data on all articles published during the  twenty- nine- year period 
of 1980 through 2008 in the journals associated with the four main societies 
that focus on the study of evolutionary biology: the Society for the Study 
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of Evolution, the Society for Systematic Biology, the Society for Molecular 
Biology and Evolution, and the European Society of Evolutionary Biology. 
Their respective journals are: Evolution, Systematic Biology, Molecular 
Biology and Evolution, and Journal of Evolutionary Biology. We focus on 
these four society journals because every article published within them is 
relevant to evolutionary biologists. In other words, unlike general interest 
journals such as Science, Nature, and Cell, which include papers from evolu-
tionary biology but also research from many other fields, these four journals 
focus specifically on our field of interest. This process yields 15,256 articles.

Second, we collect all articles that are referenced at least once by these 
15,526 society journal articles. There are 149,497 unique articles that are 
referenced at least once by the set of 15,256 evolutionary biology society 
articles. This set of 149,497 articles includes, for example, papers that are 
important to the field but are published outside the four society journals, 
such as key evolutionary biology papers published in Science that are cited, 
likely multiple times, by articles in the four society journals. We call this set 
of 149,497 papers the corpus of influence because each of these articles has 
had impact on at least one “pure” evolutionary biology article.

Third, we  citation- weight the corpus of influence. We do this by count-
ing the references to each of the 149,497 articles from the original 15,256 
society journal articles. There are 501,952 references from the 15,256 society 
journal articles. So, on average, articles in the corpus are cited 3.4 times. 
Unsurprisingly, the distribution of citations is highly skewed. The minimum 
number of  citations is one (by construction), the median is one, and the 
maximum is 906.2 For most of the analyses in this chapter, we use counts of 
 citation- weighted publications. When we do so, we use the 149,497 articles 
weighted by the 501,952 society article references.

3.2.2 Identifying Authors

We follow several steps to attribute the 149,497 articles in the corpus 
of influence to individual authors. The reason this process requires several 
steps is that authors are not uniquely identified and therefore name disam-
biguation is necessary. In other words, when we encounter multiple papers 
authored by James Smith, we need to determine whether each is written by 
the same James Smith or if  instead these are different people with the same 
name. This process is made more challenging because until recently the ISI 
Web of Science only listed the first initial, a middle initial (if  present), and 
the last name for each author. Is J Smith the same person as JA Smith? Name 
disambiguation is particularly important for properly assessing researcher 
productivity over time and changing collaboration patterns.

2. This paper is “The  Neighbor- Joining Method—A New Method for Reconstructing Phylo-
genetic Trees” published in Molecular Biology and Evolution (1987) by Saitou Naruya (Univer-
sity of Tokyo) and Masatoshi Nei (University of Texas).
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To address this issue, we employ heuristics developed by Tang and Walsh 
(2010). The heuristic utilizes backward citations of focal papers to estimate 
the likelihood of the named author being a particular person. For example, 
if  two papers reference a higher number of the same papers (weighted by 
how many times the paper has been cited, i.e., how popular or obscure it 
is), then the likelihood of those two papers belonging to the same author is 
higher. We attribute two papers to the same author if  both papers cite two 
or more rare papers (fewer than fifty citations) in both papers. We repeat 
this process for all papers that list nonunique author names (i.e., same first 
initial and last name). We exclude scientists who do not have more than two 
publications linked to their name.

Overall, 171,428 authors are listed on the 149,497 articles. We drop 
140,240 names because they do not have more than two publications linked 
to their name. Employing the process described above, we assign the remain-
ing 31,188 author names to 32,955 unique authors (a single name may map 
to more than one person). We conduct our analyses using these 32,955 
authors. It is important to note that this is the total number of scientists in 
our sample over the  twenty- nine- year period, but that the number of active 
scientists varies from year to year. Unsurprisingly, the output produced by 
these authors is highly skewed. Considering the overall period of our study, 
the minimum number of publications per author is three (by construction), 
the median is four, the mean is 7.5, and the maximum is 210 (Professor Rick 
Shine at the University of Sydney).

We use  citation- weighted paper counts per year as our primary measure 
of author output. We treat as equal every paper on which a scientist is listed 
as an author. In other words, we do not distinguish between a paper on which 
a scientist is one of two authors from one on which they are one of three 
authors. An alternative approach is to use fractional paper counts where half  
a paper unit is attributed to the focal author in the former case and a third in 
the latter. Although we report results using the former approach, we conduct 
our analysis using both approaches. The results are qualitatively similar.

In certain analyses, we refer to the top 100 (or 200, or 50) scientists. When we 
do so, we determine ranking by the accumulated stock of  citation- weighted 
output over the preceding years. When we refer to “stars,” we are referring 
to scientists in the 90th percentile in a given year in terms of their accumu-
lated stock of  citation- weighted paper output over the preceding years. We 
provide a more detailed explanation of how we identify stars and related 
features of the data in our companion paper that focuses on stars and that 
uses the same data (Agrawal, McHale, and Oettl 2013).

3.2.3 Identifying Scientist Locations

Using the unique author identifiers we generate in the process described 
above for each evolutionary biology paper, we then attribute each scientist 
to a particular institution for every year they are active. A scientist is active 
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from the year they publish their first paper to the year they publish their last 
paper. Here again, we must overcome a data deficiency inherent within the 
ISI Web of Science data; until recently, the Web of Science did not link insti-
tutions listed on an article to the authors. Instead, we impute author location 
using reprint information that provides a one- to- one mapping between the 
reprint author and the scientist’s affiliation. In addition, we take advantage 
of the fact that almost 57 percent of evolutionary biology papers are pro-
duced with only a single institution listing. Thus, we are able to directly attri-
bute the location of all authors on these papers to the focal institution. This 
method of location attribution is more effective for evolutionary biology 
than for many other science disciplines since articles in this field are generally 
produced by  smaller- sized teams relative to other disciplines in the natural 
sciences (3.32 average number of authors per paper).

Overall, we are able to attribute 78.9 percent of the 32,955 unique authors 
to an institution. We drop institutions that do not produce at least one publi-
cation in each of the  twenty- nine years under study. This results in the iden-
tification of 255 institutions that actively produce new knowledge in the field 
of evolutionary biology throughout our study period. Although we refer to 
these as “departments,” they are actually the set of authors at an institution 
(e.g., Georgia Tech) who publish at least three articles that we categorize 
as being part of the corpus of influence in evolutionary biology during the 
study period. In other words, these individuals may not all formally belong 
to the same department within the institution. Again, the output of depart-
ments is highly skewed. Over the  twenty- nine- year period, the minimum 
number of publications per institution per year is one (by construction), 
the median is eleven, the mean is 17.7, and the maximum is 181 (Harvard 
University in 2005).

3.3 Participation: A Broadening Base

The first trend in the organization of evolutionary biology we document 
is a decline in the skew of the distribution of  output across institutions. 
This may reflect: (a) an increasing emphasis in knowledge production across 
previously  lesser- producing institutions that are now more concerned about 
rankings and thus increasingly emphasizing research output as a factor in 
promotion and tenure, (b) changing preferences of faculty who have spent 
more time than their predecessors developing specialized research expertise, 
and/or (c) mounting political pressure to distribute government funding 
more evenly across institutions and political jurisdictions. In addition, we 
find a dramatic increase in research activity in emerging economies, possibly 
reflecting a broader movement toward higher  value- added activities as part 
of the economic development process.

In figures 3.1, 3.2, and 3.3, we report evidence of the broadening base 
of science in terms of the declining  department- level concentration of sci-
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Fig. 3.2 Gini coefficients by year for the distribution of publications across departments

Fig. 3.1 Gini coefficients by year for the distribution of scientists across departments

entists, publications, and citations, respectively. Specifically, we plot Gini 
coefficients to illustrate the distribution of  scientists (publications, cita-
tions) across departments by year. The pattern of falling concentration is 
pronounced for the period between 1980 and 2000, although there is some 
indication of a turnaround in this pattern after 2000.

In figure 3.4, we plot  department- level Lorenz curves for publications 
and citations. These curves illustrate the overall shift in the distribution 
over time. For example, the top 20 percent of departments produce 60 per-
cent of all publications in 1980, but only 50 percent in 2000. Similarly, the 
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top 20 percent produce 75 percent of all  citation- weighted publications in 
1980, but only 60 percent in 2000. It is important to note that we use a bal-
anced panel for these analyses, including only the 255 institutions publish-
ing in evolutionary biology throughout the period under study. In other 
words, we do not allow for entry of new institutions part way through the 
study period. Since most institutions that are ever meaningful contributors 
to this field are active throughout our study period, this is not a serious  
restriction.

Fig. 3.4 Lorenz curves by department for publications and  citation- weighted 
publications

Fig. 3.3 Gini coefficients by year for the distribution of citations received across 
departments
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However, we relax the no- entry restriction for the data we use in the next 
graph where we plot output by country because several institutions in previ-
ously low- income countries are not active in the early years, but have since 
become increasingly important in the overall production of knowledge. We 
plot the increasing importance of institutions based in emerging markets in 
figure 3.5. The growth rate of publications from institutions based in BRIC 
countries (Brazil, Russia, India, and China) begins to rise dramatically from 
the early 1990s onward and increases fortyfold by 2000. However, in abso-
lute terms, the BRIC countries are still minor knowledge producers in this 
field relative to the leading nations, such as the United States, the United 
Kingdom, France, Germany, and Canada.

These decentralization findings from  university- based research in evolu-
tionary biology are consistent with prior findings on the decentralization of 
innovative activity more broadly (Rosenbloom and Spencer 1996; Bresna-
han and Greenstein 1999). Also, more recently, in a study of innovation in 
information and communication technologies (ICTs) over almost the identi-
cal period as our study (1976–2010), Ozcan and Greenstein (2013) examine 
US patent data and find that although the top  twenty- five firms account for 
72 percent of the entire patent stock and 59 percent of new patents in 1976, 
they account for only 55 percent and 50 percent, respectively, by 2010. The 
decline is even more dramatic when they restrict the sample to the ownership 
of high- quality patents (82 percent down to 62 percent). They interpret their 
results as supporting the view that decentralization is resulting from “more 
widespread access to the fundamental knowledge and building blocks for 
innovative activity” (5).

Overall, we interpret our data as reflecting a decline in the concentra-
tion of output at the department level. In other words, the top institutions 

Fig. 3.5 Publication count by country by year normalized relative to output in 1980



Collaboration, Stars, and the Changing Organization of Science    85

are producing a decreasing fraction of the overall output, and previously 
 lesser- producing institutions are now contributing a higher portion of over-
all output. However, this is not the case at the individual level. We turn to 
this unit of analysis next.

3.4 Concentration: The Increasing Importance of Stars

With greater democratization in knowledge production across depart-
ments, is science becoming a less elite activity, with a falling centrality of 
stars as they compete with scientists from an ever- widening base? One might 
expect the broadening base of science at the department level to be accom-
panied by a reduction in the concentration of output at the individual level. 
However, we find evidence of the opposite.

We again plot Gini coefficients by year using  citation- weighted publica-
tions, but this time at the individual level. These data, illustrated in figure 
3.6, indicate a significant increase in concentration during the 1980s and 
then relative stability during the following decade. Then, in figure 3.7, we 
plot  individual- level Lorenz curves for 1980, 1990, and 2000 with the same 
data to illustrate how the full distribution shifts over time. Again, we see 
 individual- level output increasing over time. For example, the top 20 percent 
of scientists produce 70 percent of output in 1980 but 80 percent by 2000, 
with most of the shift occurring in the first decade. Furthermore, in figure 
3.8, we illustrate the increasing spread between the top- performing scientists 
and the rest by comparing the number of  citation- weighted publications 
required to be in the top 50, which increases fivefold, to the average number 

Fig. 3.6 Gini coefficients for the distribution of  citation- weighted publications across 
individuals
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of  citation- weighted publications, where the increase over the same time 
period is negligible.

How might we reconcile decreasing concentration at the department level 
but increasing concentration at the individual level? The answer may lie in 
the changing patterns of collaboration. Recall that although the rising bur-
den of knowledge and declining communication costs exert opposing forces 
on the returns to colocation, both increase the returns to collaboration. We 
turn to the topic of collaboration next.

Fig. 3.8 Publication stock of 50th- ranked scientist

Fig. 3.7 Lorenz curves by individual for  citation- weighted publications
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3.5 Collaboration: Increasing across Distance and Rank

The trend toward increasing collaboration is a well- documented feature 
of the changing organization of science (e.g., see Wuchty, Jones, and Uzzi 
2007). In fact, the rising role of collaboration is one of the most common 
themes across the chapters in this volume. For example, Branstetter, Li, and 
Veloso (chapter 5) state: “Our study suggests that the increase in US patents 
in China and India are to a great extent driven by MNCs (multinational 
corporations) from advanced economies and are highly dependent on col-
laborations with inventors in those advanced economies.”3 Forman, Gold-
farb, and Greenstein (chapter 6) explain: “We show that these [geographic 
distribution of inventive activity] results are largely driven by patents filed by 
distant collaborators rather than by noncollaborative patents or by patents 
by nondistant collaborators.” Stephan (chapter 10) argues: “Much of the 
equipment associated with these shifts in logic were, although expensive, still 
affordable at the lab or institutional level. Some, however, such as an NMR 
(nuclear magnetic resonance), carried sufficiently large price tags to encour-
age, if not demand, collaboration across institutions.” Conti and Liu (chapter 
2) report: “Collaborations with other scientists, as measured by the number 
of coauthors on a paper, have increased. This increase is driven by collabo-
rations with scientists outside of a trainee’s laboratory.” Freeman, Ganguli, 
and  Murciano- Goroff (chapter 1) discover through their survey: “The major 
factor cited for all types of collaborations was ‘unique knowledge, expertise, 
capabilities. . . . Non- colocated and international teams were more likely 
to have a coauthor contributing data, material, or components—a pattern 
that has been increasing over time.”

We document this phenomenon of increasing collaboration over time in 
our own setting in figure 3.9. Specifically, this figure illustrates the steady 
increase in the average number of authors on evolutionary biology papers, 
rising from 2.3 in 1980 to 3.8 in 2005. Moreover, this collaboration increas-
ingly has been taking place across university boundaries (Jones, Wuchty, 
and Uzzi 2008). We illustrate this in figure 3.10, where we plot the average 
number of unique institutions represented on a paper over time. The figure 
shows that this number increases from 1.46 in 1980 to 2.45 in 2005.

We also observe a dramatic trend in the average rank difference between 
authors on coauthored papers (figure 3.11). For example, in 1980 the average 
distance in rank between collaborating institutions is approximately thirty 
(e.g., one collaborator is at an institution ranked number twenty and the 
coauthor is at an institution ranked number fifty), by 2005 the difference 
increases to approximately  fifty- five. Furthermore, we find evidence of 
increasing distance between collaborators over time. We illustrate this in 

3. The emphasis in this and the other quotes in this paragraph is our own, not that of the 
original authors.
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figure 3.12, where the average distance between coauthors increases from 
325 to 500 miles over the period 1980 to 2005.

Why might the falling cost of distant collaboration disproportionately 
benefit stars? Freeman, Ganguli, and  Murciano- Goroff (chapter 1, this vol-
ume) present survey evidence indicating that, in general, a large fraction of 
collaborations occur between scientists who were previously colocated. We 
conjecture that one reason stars disproportionately benefit from a drop in the 
cost of distant collaboration is because they have a greater number of distant 

Fig. 3.10 Mean number of unique institutions per paper

Fig. 3.9 Mean number of authors per paper
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potential collaborators. For example, stars are likely to have more graduate 
students and postdoctoral students than nonstars, on average, and these stu-
dents are likely to subsequently move to other institutions. To the extent that 
communication technologies like the Internet are most suitable for facilitating 
communication between individuals with an already established relationship 
as opposed to establishing new relationships (Gaspar and Glaeser 1998), then 
lowering communication costs will disproportionately benefit those individu-
als, such as stars, who have more previously colocated, but now distant poten-

Fig. 3.12 Mean distance between coauthors (miles)

Fig. 3.11 Mean difference in institution rank between coauthors
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tial coauthors. In other words, stars are able to employ this technology over a 
larger number of previously colocated but now distant potential collaborators.

This benefit to stars could accrue through two non- mutually exclusive 
channels. First, stars could disproportionately increase the number of indi-
viduals they collaborate with. Our descriptive evidence suggests that although 
stars do increase their propensity to collaborate over time, so do nonstars. 
We illustrate this in figures 3.13 and 3.14. First, we show that although the 
number of coauthors per paper increases over time, there is no meaningful 
difference between papers with and without stars. Second, we construct three 
measures of stars (top 50, top 100, and top 200 scientists) and plot the number 
of unique coauthors per year for stars versus nonstars. These data indicate 
that although the annual number of unique collaborators is increasing over 
time for star scientists, stars do not seem to increase their number of unique 
collaborators at a meaningfully faster rate than nonstars.

Second, stars may disproportionately benefit from the fall in communication 
costs because they are able to make better matches with coauthors since they 
have more potential collaborators to choose from. In other words, the best of 
the available pool of potential collaborators is better for stars than for nonstars. 
So, for example, if the falling cost of communications increases the returns 
to collaboration such that both a star and a nonstar increase their number of 
collaborations by one, then the average star may choose the best- suited col-
laborator from a pool of many previously colocated but now distant potential 
collaborators, while the nonstar can only choose from a pool of few. Even if  
stars and nonstars are choosing collaborators from pools with the same distri-
bution in terms of quality or range of skills, stars likely will be able to choose 
a superior match simply due to the larger pool size to which they have access.

Fig. 3.13 Mean number of authors per paper (star versus nonstar)



Fig. 3.14 Number of unique coauthors per year
Note: Panel (a) = top 200 stars; panel (b) = top 100 stars; and panel (c) = top 50 stars.
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We construct a measure of the size of the pool of previously colocated but 
now distant collaborators by counting the cumulative number of individuals 
who coauthor with the focal scientist at least once while located at their home 
institution and then subsequently at least once while at another institution. We 
again construct three measures of stars (top 50, top 100, and top 200 scientists). 
In figure 3.15, we plot the potential distant coauthor pool size for stars versus 
nonstars (cumulative number of unique coauthors that were previously colo-
cated but are now distant). It is important to note that this count is not simply 
the aggregation of the annual counts plotted in the prior figure. That is because 
in the prior figure repeated coauthorships are counted as distinct in each new 
year (although multiple coauthorships with the same individual in the same 
year are not double counted). However, in this plot only unique coauthorships 
that are unique in the absolute sense (cumulatively) are counted. Furthermore, 
in figure 3.15 we only count distant coauthors that were previously located 
whereas in the prior figure there were no distance or prior colocation restric-
tions in counting unique coauthors. These data indicate that the pool size of 
potential collaborators (such as graduate students and postdocs) grows signifi-
cantly faster for stars than for nonstars. Furthermore, in figure 3.16, we plot 
the inverse of the ratio of the number of actual collaborations in a given year 
to the number of potential collaborators in the pool that year and compare the 
change in this ratio over time for stars versus nonstars. We interpret the ratio 
as a proxy for the degree of selectivity afforded to stars and nonstars. In other 
words, a higher ratio for stars versus nonstars indicates that stars collaborate 
with a smaller fraction of their pool of potential coauthors than nonstars. The 
figure thus suggests that the relative selectivity of stars versus nonstars in terms 
of choosing collaborators is increasing over time. While not conclusive, these 
descriptive data are consistent with the conjecture that stars disproportionately 
benefit from falling communication costs by way of an increased pool size of 
distant collaborations to choose from relative to nonstars.

3.6 Improved Collaboration Technology and the Distribution  
of Scientific Output: An Integrating Model

In this section, we develop a simple model to examine the effects of an 
improvement in collaboration technology on the distribution of scientific 
output. In particular, we examine how such an improvement both dispropor-
tionately affects stars and leads to more collaboration. The model’s results 
are consistent with both an increased concentration of  scientific output 
across individual scientists—that is, a star concentration effect—and also a 
broadening institutional base of science.

A key assumption is that relationships with previously colocated but now 
distant former coauthors, such as former graduate students and postdocs, 
are central to developing opportunities for subsequent collaboration. This is 
consistent with the survey evidence on collaboration reported by Freeman, 



Fig. 3.15 Cumulative number of unique previously colocated but now distant coauthors
Note: Panel (a) = top 200 stars; panel (b) = top 100 stars; and panel (c) = top 50 stars.



Fig. 3.16 Selectivity index
Note: Panel (a) = top 200 stars; panel (b) = top 100 stars; and panel (c) = top 50 stars. We con-
struct the selectivity index as the inverse of the ratio of the number of unique collaborators in 
a given year over the cumulative number of previously colocated but now distant collaborators.
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Ganguli, and  Murciano- Goroff (chapter 1, this volume), which documents 
the extent to which such relationships account for the majority of collaborative 
partnerships. We also assume that the number of feasible collaborative relation-
ships is limited due to the costs of collaboration. Furthermore, we assume that 
stars know a larger set of former graduate students and postdocs from which 
to choose their collaborative relationships. We do not need to assume that stars 
have better graduate students in general or engage in more collaborative rela-
tionships. We show that simply having a greater range of graduate students to 
choose from enables stars to gain disproportionately from an improvement in 
collaborative technologies, which we take to be due to improvements in com-
munication technologies (e- mail, file- sharing technologies, etc.).

For a given scientist, we assume the value of  a collaborative relation-
ship, X, with a given former graduate student is uniformly distributed on 
the interval [0, M ]. We assume that an improvement in collaboration tech-
nology increases the value of  any relationship by a multiplicative factor. 
The increased value of collaboration could also reflect a greater need for 
collaboration due to the burden of knowledge effect. Thus, we can simply 
model an improvement in technology (or the greater need for collaboration) 
as an increase in M, effectively a stretching of the distribution to the right.

3.6.1 Basic Model

We assume initially that each scientist chooses the  single- best relationship 
from her set of n former graduate students. We use the size of n as a proxy 
for the scientist’s degree of stardom. For a given scientist, the expected value 
of the best available relationship is:

(1) 
  
E(X ) =

0

M

∫X
n
X

X
M( )n

dX = n
1 + n

M . 

This result uses the distribution of the maximum value of n, which draws 
from the uniform distribution.4

The increase in expected value from a small increase in the available col-
laboration technology is then:

(2) 
  

∂E(X )
∂M

= n
1 + n

. 

The size of this increase is increasing in n,

(3) 
  

∂2E(X )
∂M ∂n

= 1
(1 + n)2

> 0. 

Thus, stars—those with a high n—gain disproportionately from the im- 
provement in the collaboration technology.

4. The CDF for this extreme value distribution is:   F(X ) = (X / M)n. The density function 
is then:   f (X ) = (n / X )(X / M)n.
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3.6.2 Extended Model

A limitation of the basic model is that it assumes a scientist will choose 
to collaborate with her best former graduate student no matter how low the 
value of that best collaboration. A more realistic assumption is that scien-
tists have some threshold below which they will not collaborate, given the 
opportunity costs of collaboration (e.g., reduced time for sole authorship). 
Denoting this threshold as X*, the expected value of a collaboration is now:

(4) 
  
E(X ) =

X *

M

∫
n
X

X
M( )n

dX = n
1 + n( ) M





1 − X*
M( )n+1





. 

The expected value is lower than when the threshold is absent because 
best draws from the distribution that are below the threshold result in zero 
value. It is also increasing in M, so that improvements in the collaboration 
technology are again beneficial.

(5) 
  

∂E(X )
∂M

= n
1 + n







1 + n
X*
M( )n+1





> 0. 

We again ask if  the technology improvement disproportionately benefits 
stars. This requires that the cross derivative with respect to n is positive. 
Making use of logarithmic differentiation, the cross derivative is:

(6) 
  

∂2E(X )
∂M ∂n

= 1
1 + n( )2 + n2

1 + n( ) X*
M( )n+1 2

n
− 1

1 + n
+ ln

X*
M( )




. 

This cross derivative is obviously quite a complex function of n, M, and 
X*. However, it can be shown to be positive for all n given a low enough value 
of X* relative to the starting value of M, so that   ∂E X( ) / ∂M  is then mono-
tonically increasing in n. Figure 3.17 shows the cross derivative as a function 
of n for different values of X* (conveniently scaled by the starting value of 
M): 0.1, 0.2, and 0.3. At high values of X* / M, the cross derivative can be 
negative over an intermediate range of  n but becomes positive for high 
enough values of n. We assume, however, that the threshold is sufficiently 
low such that the cross derivative is positive for all n.

An additional consequence of introducing a threshold for collaboration 
is that the probability of collaboration is now itself  a function of M.

(7) 
  
Prob[X > X*] = 1 − X*

M( )n

. 

This probability is also increasing in M, so that improvements in the collab-
orative technology lead to more as well as higher expected value collaboration:

(8) 
  

∂Prob[X > X*]
∂M

= n
M

X*
M( )n

> 0. 

Summing up, the extended model demonstrates two effects of an improve-
ment in collaborative technology that could impact the distribution of scien-
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tific output. First, provided that scientists do not set too high a threshold for 
engaging in collaboration, the benefit from the improvement in technology 
is increasing in n, so that stars—whom we assume to be disproportionately 
endowed with previously colocated but now distant former coauthors—benefit 
disproportionately. This is consistent with an increased concentration of scien-
tific output at the individual level. Second, it will be beneficial for more scientists 
to engage in collaborative research. This is consistent with an expanding insti-
tutional base of science as more former students and postdocs—who will have 
dispersed across the institutional ranks—are involved in collaborative research.

3.7 Discussion: Normative Implications of Star Location

Our review of the basic trends in participation, concentration, and collabora-
tion reveals the dramatically changing organization of scientific activity in the 
field of evolutionary biology. The emerging picture also points to the increas-
ingly central role played by stars in collaboration and overall output. Moreover, 
stars, like the overall research community, appear to be increasingly collaborat-
ing across distance and institution rank. Overall, we see evidence of a develop-
ing  cross- institutional division of scientific labor, with stars playing a leadership 
role in  institution-  and  distance- spanning multiauthor research teams.

The rising centrality of stars raises questions about the efficient distri-
bution of stars across institutions. We thus reflect on the efficiency of the 
emerging pattern of the division of labor, drawing on both the factual picture 
just documented and parallel work on the causal impact of star scientists at 
the departmental level (Waldinger 2012, 2013; Agrawal, McHale, and Oettl 
2013). A key question is whether the emerging spatial distribution of stars 
is efficient from the perspective of maximizing the value of scientific output.

We do not presume that the distribution will be efficient, given the free 
location choices of individual scientists and the productivity, reputational, 

Fig. 3.17 Relationship of the cross derivative to n
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and consumption externalities associated with those choices. We note in 
particular that the reputational spillover from locating at top- ranked institu-
tions could lead to an excessive positive sorting of stars at these institutions. 
Such inefficiency, if  it exists, could be ameliorated by easier  cross- institution 
collaboration, effectively making the location of  stars less important to 
knowledge production. Even so, given the ongoing costs of  distance- related 
collaboration, a concern still remains that there may be excessive concentra-
tion from a social welfare perspective.

In Agrawal, McHale, and Oettl (2013), we show that the arrival of a star, 
whom we define as a scientist whose output in terms of  citation- weighted 
publications is above the 90th percentile of the  citation- weighted stock of 
papers published up until year t–1, leads to a significant increase in the pro-
ductivity of colocated scientists. More specifically, we show this effect oper-
ates through two channels: knowledge and recruiting externalities. We show 
that the arrival of the star leads to an increase in the productivity of incum-
bents, those scientists already at the department prior to the arrival of the  
star, but only for those incumbents working on topics related to those of 
the star. We do not find any evidence of productivity gains by incumbents 
working in the field of evolutionary biology, but on topics unrelated to those 
of the star. These effects are robust to including controls for broader depart-
mental and university expansion. Furthermore, they are robust to placebo 
tests for the timing of the effect; we find no evidence of a pretrend in terms of 
increasing productivity prior to the arrival of the star. Moreover, the results 
are also robust to using a plausibly exogenous instrument for star arrival.

The star’s arrival also leads to a significant increase in subsequent joiner 
quality (recruits hired after the arrival of the star), which is most pronounced 
for related joiners but also occurs for unrelated joiners. These results also hold 
when subjected to the robustness tests described above. These recruiting results 
raise a concern about the possibility of  reputation- driven positive sorting at top 
institutions, with stars attracting stars irrespective of  productivity- increasing 
knowledge spillovers. This in turn raises a concern about lost opportunities for 
stars to seed focused and dynamic research clusters at  lower- ranked institutions.

But are these opportunities actually lost? Given the apparent role of star 
recruitment in department building—which our evidence suggests would 
be particularly effective where the institution already has a cadre of incum-
bents working in related areas to the star and has a sufficient flow of new 
openings to take advantage of star- related recruitment externalities—an 
offsetting force to excessive concentration could come from the incentive of 
 lower- ranked institutions to use star- focused strategies to ascend depart-
mental rankings. We show how departmental rankings changed between 
1980 and 2000 in figure 3.18. While these data imply a reasonably high degree 
of rank persistence, they also show that some institutions made significant 
movements up the rankings. Anecdotal evidence suggests that the recruit-
ment of stars may have played an important role here.
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Moreover, stars may increasingly benefit institutions they do not join but 
where they have collaborative relationships. Azoulay, Graff Zivin, and Wang 
(2010) and Oettl (2012), who both use the unexpected death of star scientists 
to estimate their effect on the productivity of their peers, report evidence that 
stars significantly influence the productivity of their collaborators. Moreover, 
Agrawal and Goldfarb (2008) show that the greatest effect of universities 
connecting to Bitnet (an early version of the Internet) in terms of influencing 
 cross- institution collaboration patterns was not between researchers at tier 
1 institutions but rather tier 1–tier 2 collaborations. This is consistent with 
the data we report here on the increasing institution rank distance between 
collaborators. One interpretation of this result is that lowering communica-
tion costs particularly benefits vertical collaboration, suggesting an increas-
ingly vertically disaggregated division of labor as communication costs fall. 
Perhaps, for example, declining communication costs increase the returns for 
individuals at top institutions specializing in leading major research initia-
tives, identifying key research questions, and writing grant applications, while 
their collaborators at  lower- ranked institutions run experiments, collect and 
analyze data, and work together with all collaborators to interpret and write 
their results. The results reported by Kim, Morse, and Zingales (2009) are 
consistent with this when they document the rise of  lesser- ranked universities.

To obtain more direct evidence of changes in star concentrations, we plot 
in figure 3.19 the share of the top 100 evolutionary biology scientists at the 

Fig. 3.18  Department- level rank in evolutionary biology: 1980 versus 2000



Fig. 3.19 Fraction of top 100- ranked researchers at top- ranked departments
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top 50, top 25, and top 10 evolutionary biology departments. The basic pat-
tern shows, if  anything, a fall in the concentration of stars at top institutions, 
somewhat allaying fears of excessive concentration due to  reputation- driven 
positive sorting.

Our examination of the efficiency of the emerging organization of activity 
in the field of evolutionary biology is unavoidably preliminary and specu-
lative given current levels of  knowledge. The broad pattern of  increased 
spatial and  cross- institution collaboration—often centered on a star—is 
pronounced in the data. However, despite  institution- level evidence of 
 reputation- based sorting, we do not observe the feared rise in concentra-
tion at top institutions. Given the importance of the spatial and institutional 
distribution of  stars to the workings of  collaborative science, we expect 
the normative implications of the changing spatial distribution of scien-
tific activity—and its stars—to be an active area of future research on the 
organization of science.
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Comment Julia Lane

The authors address an interesting and important question about the way in 
which scientific collaboration has changed over time. They use a creatively 
constructed data set on evolutionary biology to show how scientific col-
laboration for the subset of authors they identify has changed. The results 
reported are consistent with other work in the book. Most interestingly, the 
geographic distance between coauthors has increased substantially, notably 
that the concentration of publications within an institution has decreased 
and that the institutional rank distance between coauthors has increased. 
They find that the concentration of publications at the individual level has 
increased. They also note the pool of potential coauthors has increased. The 
authors posit that these trends are the result of two factors: the burden of 
knowledge and collaboration- supporting technologies.

Their work thus provides potential new areas that could be examined in 
future research. One is whether evolutionary biology is unique among scien-
tific disciplines: it would be extremely useful to know whether similar changes 
in collaboration are found for such subsets of authors in “big science,” like 
astrophysics, and smaller scale sciences, like chemistry. It would also be 
useful to examine across different disciplines whether observed changes in 
collaboration are due to specialization of innovative labor. It would also be 
very useful to understand the role of technology in driving geographically 
dispersed collaboration. It is possible, and anecdotal evidence suggests, that 
increasingly  technology- intensive science that requires  large- scale complex 
equipment is a driving force behind changes in collaboration.
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