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2.1 Introduction

Knowledge has been recognized as a major contributor to technological 
change and to economic growth (Romer 1990). In the knowledge produc-
tion function, one of the most important inputs is knowledge created by 
university researchers. Indeed, a report by the National Science Board (2008) 
has revealed that university researchers are responsible for more than 70 per-
cent of all scientific articles. Moreover, scholars have shown that academic 
knowledge is responsible for a large percentage of industrial innovations 
(Jaffe 1989; Mansfield 1995).

Academic knowledge has increasingly become a collective phenomenon. 
Seminal studies have documented the increase in the size of scientific col-
laborations, with special focus on the evolution of the geographic disper-
sion of team members (e.g., Adams et al. 2005; Wuchty, Jones, and Uzzi 
2007). Even though university scientists collaborate more and more across 
research institutions, the scientific laboratory remains the major locus of 
knowledge production (Stephan 2012a). These laboratories are largely 
populated by graduate students and postdocs, whose contributions to their 
laboratory’s knowledge stock have been recognized in a number of studies 
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(see, for instance, Stephan 2012a; Conti, Denas, and Visentin 2014). These 
research trainees have coauthored an important percentage of their labo-
ratory’s papers and, moreover, have produced a considerable share of the 
articles published in highly ranked journals (Black and Stephan 2010).

In this study, we use a unique database that allows us to examine the 
productivity, training duration, and the collaborative behavior of gradu-
ate students and postdocs as well as the extent to which these aspects have 
changed over time. We interpret the patterns we find in light of two para-
digms: the increased burden of knowledge that successive generations of 
scientists face (Jones 2009, 2010a) and the limited availability of permanent 
academic positions (Stephan 1996; Freeman et al. 2001).

Our data encompass the complete set of laboratories in the MIT Depart-
ment of Biology, observed from 1970 to 2000. This department has been 
a major locus of basic and applied discoveries in the life sciences for the 
latter half  of  the twentieth century. Through the time frame of our data 
set, the scientists working at the MIT Department of  Biology made dis-
coveries as varied as the molecular mechanisms underpinning recombinant 
DNA (e.g., the discovery of  splicing and introns), cell death, aging, and 
the progression of cancer. This work has resulted in six Nobel Laureates 
and  forty- three members of  the National Academy of Sciences between 
1966 and 2000. MIT’s Department of Biology has roughly doubled in size, 
from  twenty- seven laboratories in 1966 to  forty- nine laboratories in the year 
2000. Given this department’s elite status, the findings in this chapter may 
be difficult to extend beyond other elite North American laboratories. With 
this caveat in mind, we follow in the footsteps of other scholars and trade 
analytical depth with a focus on an elite setting (Azoulay, Zivin, and Wang 
2010; Zuckerman 1977).

We collected a detailed set of  information on the graduate students and 
postdocs who populated these laboratories, including their publication 
output. For the purposes of  this study, we use this information to analyze 
the evolution over time of  four fundamental aspects of  their productivity: 
(a) training duration, (b) time to a first publication, (c) productivity over 
the training period, and (d) collaboration with other scientists.

We identified four main trends that are common to graduate students and 
postdocs. First, training periods have increased for later cohorts of gradu-
ate students and postdocs. Second, recent cohorts tend to publish their first 
article later than the earlier cohorts. Third, they produce fewer  first- author 
publications. Finally, collaborations with other scientists, as measured by 
the number of coauthors on a paper, have increased. This increase is driven 
by collaborations with scientists outside of a trainee’s laboratory.

The remainder of this study is organized as follows. Section 2.2 describes 
the empirical setting. Section 2.3 presents the scientific productivity trends 
for graduate students and postdocs. Section 2.4 concludes and discusses 
policy implications.
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2.2 Empirical Setting 

Our core data source is the MIT Department of Biology’s series of annual 
reports. The primary purpose of the annual report was to document, on 
a yearly basis, the department’s internal activities. This information was 
then distributed to each member of the department, allowing individuals 
to be cognizant of  their peers’ scientific activities. To serve this purpose, 
the reports included both a roster of laboratory members that comprised 
the department, as well as technical summaries of ongoing projects. From 
1966 to 1989, technical summaries were at the project level, which included 
both laboratory members affiliated with the project as well as a short project 
summary. The size of the annual report grew in accordance with the size of 
the department. After the annual report reached 629 pages in 1987, project 
summaries were condensed to two pages per laboratory, regardless of its size. 
In the year 2001, annual reports were no longer published, and our data set 
ceases at this point.

The annual report documents a roster of each laboratory’s members. We 
know the names of every individual in each laboratory as well as the indi-
vidual’s personnel type (e.g., postdoc, graduate student, technician). As a 
result, we know the characteristics of the department, its laboratories, and 
its individual members over the duration of our data set. Table 2.1 provides 
an example of the roster data available for any given  laboratory- year. We 
know of no other data source that provides as detailed a view into the orga-
nization of scientific work as this one.

We supplemented this departmental personnel roster with a number of 
other data sources. To examine scientific outputs, we hand collected each lab-
oratory head’s (i.e., principal investigator [PI]) paper output from Medline. 
We then matched each laboratory’s extracted  publication- author list with 
our personnel roster to examine the extent to which individual laboratory 
members contributed to the scientific output. In instances where matching 

Table 2.1 Personnel composition of Professor Baltimore’s laboratory

Professor: David Baltimore
Visiting scientists: Samuel Latt and Richard Van Etten
Postdoctoral associates: Brygida Berse, Mark Feinberg, Michael Lenardo, Jing- Po Li, 

Shiv Pillai, Louis Staudt, and Xiao- Hong Sun
Postdoctoral fellows: Raul Andino, Patrick Baeuerle, Andre Bernards, Lynn Corcoran, 

Sunyoung Kim, Towia Libermann, Ricardo Martinez, Mark 
Muesing, Cornelis Murre, Jacqueline Pierce, Stephen Smale, 
Didier Trono, Anna Voronova, and Astar Winoto

Technical assistants: Ann Gifford, Carolyn Gorka, Patrick McCaw, Michael Paskind, 
and Gabrielle Rieckhof

Graduate students: George Daley, Peter Jackson, Marjorie Oettinger, David Schatz, 
and Dan Silver

Undergraduate student: Anna Kuang
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was ambiguous (e.g., Liu), we examined the article directly. It is exceedingly 
rare for laboratory members to publish scientific papers without their PI 
listed as an author. Hence we do not believe we are missing any publications.

Overall, our data set comprises 1,494  laboratory- years and 20,324 labora-
tory  member- years that span the period 1966–2000. Within this data set, 
there are 120 unique professors and 6,938 laboratory members who collec-
tively produced 7,553 journal publications (in Medline).

We restrict our analysis to the years 1970–2000 as there was ambiguity in 
personnel categories prior to 1970. We begin with a description of the labo-
ratories and their changes over time. We then turn our attention to examine 
the laboratory members with a particular emphasis on the two dominant 
personnel types, postdocs and graduate students, who comprise more than 
half  of our personnel roster.

Within our data set, the average laboratory has ten members of whom 
five are postdocs, three are graduate students, and two are technicians. Staff 
scientists are rare, but their prevalence has increased over time. As shown in 
figure 2.1, laboratories have grown in size through the latter part of the twen-
tieth century, and this increase has been driven by an increase in the number 
of postdoctoral scientists. There is no change in the number of graduate 
students or technicians over time, although the number of salaried staff (i.e., 
technicians and staff scientists) appears to have increased in the late 1990s.

Fig. 2.1 Number of laboratory’s personnel by type
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Figure 2.2 presents trends in scientific output for our laboratories. As 
shown, the average number of articles has steadily increased over time, from 
an average of four articles per  laboratory- year in the 1970s to six articles per 
 laboratory- year in the 1990s. We observe a very similar trend in the number 
of impact  factor- weighted publications.

We focus our analysis of laboratory members on graduate students and 
postdocs for a number of reasons. First, these individuals make large con-
tributions to a PI’s publication output (Conti and Liu forthcoming). Their 
purpose is to directly produce scientific publications, rather than to play 
a supporting role (e.g., technicians). Second, these two types are the most 
prevalent personnel categories within the roster. Together they make up 
more than half  of the laboratory. Third, these two personnel types have been 
the focus of recent interest in the literature because of their contributions 
to knowledge and technology production (e.g., Dasgupta and David 1994; 
Waldinger 2010). Lastly, we note that graduate students and postdocs are 
easily and unambiguously identified from one another, suggesting that the 
distinction in these roles may be salient (e.g., Azoulay, Liu, and Stuart 2014).

Our sample is composed of 991 graduate students and 2,427 postdocs. Fig-
ures 2.3A and 2.3B provide descriptive results of the distribution of graduate 
students and postdocs by their publication count. Interestingly, a significant 
proportion of them (about 35 percent) did not publish any articles during 

Fig. 2.2 Number of laboratory’s publications and impact  factor- weighted 
publications



Fig. 2.3B Distribution of postdocs by their number of papers

Fig. 2.3A Distribution of graduate students by their number of papers
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their training period. Conditioned upon having published, the mean number 
of papers is about three articles for both graduate students and postdocs.

2.3 Trends in Scientific Productivity of Graduate Students and Postdocs

This section explores the trends in four major dimensions of graduate stu-
dent and postdoc scientific productivity. First, we look at training duration. 
Second, we investigate the timing to a first publication. Third, we examine 
scientific output. Finally, we explore collaboration patterns.

In analyzing these trends, we should keep in mind that while both post-
docs and graduate students are formally considered laboratory trainees, they 
fundamentally differ in a number of aspects. Postdocs are more experienced 
than graduate students and have accumulated a greater wealth of knowledge 
and skills. As a consequence, matching between postdocs and PIs is based 
upon prior ability and experience, rather than the future expectation of 
productivity as in the case of graduate students (Stephan 2012a).

2.3.1 Training Duration

We begin this section by presenting descriptive statistics for the average 
training duration of postdoc and graduate students over our sample period. 
We then investigate whether the length of training has changed over time. 
Figures 2.4A and 2.4B show the distribution of  graduate students and 
postdocs by their training duration. That the training period for gradu-
ate students is longer than postdoctoral training is clearly evident. Indeed, 
the majority of graduate students in our sample completed their training 
between five and seven years, while postdocs tended to spend between two 
and four years in a PI’s laboratory.1

Figure 2.5 documents training periods for graduate students (dotted 
line) and postdocs (solid line) over the period 1970–1995. We exclude the 
years 1996 through 2000 since students who enrolled in these years might 
not have completed their training by the end of 2000, when our data set is 
 right- censored. Consistent with previous studies,2 we find that training peri-
ods for recent cohorts of students are approximately one year longer than 
those for the earliest cohorts. The training period increases from three to 
approximately four years for postdocs and from five to six years for graduate 
students over our data set.

There are at least three reasons that can explain these trends. The first rea-
son is that as knowledge accumulates, earlier trainee cohorts face a greater 

1. It is possible for postdocs to have worked in more than one PI’s laboratory before they 
are offered a faculty position. However, from discussions with MIT PIs as well as from an 
examination of a CV sample, it is evident that, at least for the period we examine, this is rarely 
the case for MIT postdocs.

2. See, for instance, the findings by Tilghman (1998), Jones (2009), Jones and Weinberg 
(2011), and Freeman et al. (2001).



Fig. 2.4B Distribution of postdocs by their training duration

Fig. 2.4A Distribution of graduate students by their training duration
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educational burden than do the older cohorts (Jones 2009, 2010a). Second, 
it is also possible that the recent cohorts of postdocs and graduate students 
tend to stay longer in their positions because of  the increased mismatch 
between the trainees’ supply and the availability of  permanent academic 
positions (Stephan 1996; Freeman et al. 2001). Finally, one cannot exclude 
the possibility that the increased pressure on PIs to publish and apply for 
grants has led them to impose longer training periods on their students 
(Freeman et al. 2001).

To more formally assess the evolution of training periods over time, we 
estimate Poisson regression models, with robust standard errors, in which we 
relate the training duration of graduate students and postdocs to whether 
these trainees had enrolled during the following periods: (a) 1970–1979, (b) 
1980–1989, and (c) 1990–1995. The distribution of students across enroll-
ment periods is reported in table 2.2.

The equation we estimate is:

(1)    yi = exp(�1D1980–1989 + �2D1990–1995 + �i + �i + �i), 

where yi is training duration, measured in number of  years. Moreover, 
D1980–1989 is an indicator variable that equals one if  trainee i enrolled 
during 1980–1989 and equals zero otherwise. D1990–1995 equals one if  
trainee i enrolled during 1990–1995 and, similarly, equals zero otherwise. 
We omit the 1970–1979 indicator variable and use it as a reference. Hence, 

Fig. 2.5 Training duration for graduate students and postdocs over time
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the coefficients of   �1 and   �2 should be interpreted as the change in training 
duration relative to the duration of trainees enrolled in 1970–1979. When 
investigating training duration, it is important to consider the scientific field 
in which a laboratory operates. Different scientific fields use different tools 
and it is likely that trends in training durations vary across fields (Galison 
1997). To account for field effects, we include a series of indicator variables, 

  �i, corresponding to the modal experimental organism used in each labora-
tory. Specifically, we generated indicators for protein biochemists, bacteri-
ologists, unicellular systems (e.g., HeLa cells), genetic systems (e.g., yeast), 
rodents, and others (e.g., frogs). Finally, we include a set of PI dummies,   �i, 
to control for variations in duration trends across laboratory heads (i.e., 
laboratory fixed effects).3

Table 2.3 presents the regression results for graduate student and postdoc 
training duration. For each trainee category, we first include biology field 

3. In an alternative specification, we substituted the PI dummies with the PI five- year, pre-
sample stock of publications to compare cohorts of trainees from supervisors with similar 
characteristics. 

Table 2.2 Distribution of graduate students and postdocs by enrollment period

   Graduate students  Postdocs 

1970–1979 289 560
1980–1989 334 868
1990–1995 247 565

 1996–2000 121  434  

Table 2.3 Regression results for graduate student and postdoc training duration

Graduate students Postdocs

  Coeff.  Coeff.  Coeff.  Coeff.

D1980–1989 0.103*** 0.075** 0.111*** 0.065*
(0.028) (0.033) (0.032) (0.036)

D1990–1995 0.128*** 0.055 0.209*** 0.143***
(0.029) (0.039) (0.034) (0.041)

Field FE Yes Yes Yes Yes
PI FE Yes Yes
R2 0.01 0.04 0.01 0.03
N  870  1993

Note: We estimated Poisson models. Robust standard errors are in parentheses. For these 
analyses we only consider trainees who had enrolled before 1996.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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fixed effects (column [1]) and, subsequently, we add PI fixed effects (column 
[2]). We begin by describing the results for graduate students and then for 
postdocs.

As table 2.3 shows, in the baseline model the dummies D1980–1989 and 
D1990–1995 have a positive and statistically significant coefficient. These 
results confirm the descriptive evidence that later cohorts of students take 
longer to complete their PhD than earlier cohorts (cohorts who enrolled 
during the 1970–1979 period). In the second column, we add PI effects 
and the magnitude of the coefficients declines, together with their statistical 
significance. This last result suggests that PI characteristics are a source of 
positive correlation between period dummies and training duration.

We find similar results for postdocs. The coefficients of the 1980–1989 
and 1990–1995 period dummies are positive and statistically significant in 
both model specifications, although the magnitude and significance is, again, 
reduced with the inclusion of PI fixed effects.

To summarize, the results in this section suggest that training periods have 
increased in recent years for both graduate students and postdocs. While we 
cannot precisely disentangle the mechanisms behind these trends, we believe 
that increasing challenges imposed on recent trainees, in terms of increased 
educational burden or reduced availability of  permanent academic posi-
tions, play an important role.

2.3.2 Time to a First Publication

A singular advantage to our data set is the ability to discern the year in 
which graduate students or postdocs enter their training, and begin to be at 
“risk” for being an author on an article. In this section, we use this aspect 
of  the data set to focus on the time it takes trainees to publish their first 
article. We considered the time interval between a trainee’s enrollment and 
first publication as the time it takes to acquire the knowledge to develop 
publishable findings. This interval then becomes a measure of  trainee dis-
tance to the existing knowledge frontier. Figure 2.6 presents  Kaplan- Meier 
estimates of  the time to a first publication for postdocs and graduate stu-
dents. As shown, the probability of  publishing a paper in each training year 
appears to be higher for postdocs than for graduate students. This holds 
true even when we focus exclusively on  first- author publications, which we 
take as a proxy for those projects to which trainees have given their greatest 
contribution.4

Once more, we are interested in the evolution of time to a first publica-
tion over our sample period, for both graduate students and postdocs. If  
the knowledge burden for the more recent cohorts is larger than that for the 
oldest ones, then we should expect that the time it takes to publish a first 

4. For the sake of brevity, we do not show the results for  first- author publications, but they 
are available upon request. 
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article has increased for the most recent cohorts. There are other reasons to 
expect such a trend. One of these could be a lengthening of the review pro-
cess at scientific journals. While this is a documented trend in the economic 
field (Ellison 2002), there are grounds for believing that this phenomenon is 
not confined to economic journals. As one example, statistics available for 
the EMBO journal reveal an increase over time in the number of days from 
submission to final decision.5

Figures 2.7 and 2.8 display  Kaplan- Meier estimates of the time it takes to 
publish a first article, distinguishing between the following periods: (a) 1970– 
1979, (b) 1980–1989, and (c) 1990–2000. They provide evidence that the 
probability of publishing a paper at any given period is higher for the old-
est cohorts than for the more recent ones. These trends seem to be more 
accentuated for postdocs than for graduate students. Moreover, for graduate 
students, they are more evident in  first- author publications than they are in 
other publications.

Do these trends persist once we take into account field or PI character-
istics, which are likely to be a source of  correlation between enrollment 
periods and time to a first publication? Formally, we estimate a series of Cox 
proportional hazard models in which the hazard of publishing a first article 
is conditioned on a number of control variables (including period, field, and 
PI indicators) as above.

5. Statistics are available from http://www.nature.com/emboj/about/process.html.

Fig. 2.6  Kaplan- Meier estimates of the time to a first publication: Graduate students 
and postdocs
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Fig. 2.8  Kaplan- Meier estimates of the time to a first publication: Postdocs over time

Fig. 2.7  Kaplan- Meier estimates of the time to a first publication: Graduate students 
over time

Specifically, we estimate the following equation:

(2)    h(t|xi) = h0(t)exp(xi�x), 

where   h(t|xi) is the hazard of publishing a first article,   h0(t) is the baseline 
hazard (i.e., the hazard when all covariates are equal to zero), and xi is a 
matrix of covariates. As in our previous equation, xi includes period indica-
tor variables as well as field and PI dummies. This time we also include in 
the sample trainees who had enrolled after 1995. Hence, the last period 
indicator variable equals one for trainees who had enrolled during 1990–
2000 and zero otherwise. The results for graduate students are presented in 
table 2.4, while those for postdocs are in table 2.5. Standard errors are clus-
tered around PI.

We begin by presenting the results for graduate students, distinguishing 
between the time to a first publication and the time to an initial  first- author 
publication in table 2.4. Estimates are presented in terms of their effect on 
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the odds of  publishing a first paper. Hence, a coefficient smaller (larger) 
than one reflects a negative (positive) effect. When we only include field fixed 
effects, the coefficients of the 1980–1989 and 1990–2000 period dummies are 
smaller than one, as expected, but not statistically significant. With the inclu-
sion of PI fixed effects, the odds ratio of publishing a first paper decreases 
in magnitude (relative to the excluded reference category, 1970–1979) and 
is now statistically significant. This result, which is our preferred specifica-
tion, indicates that trends in the time to a first publication vary across PIs.

Table 2.4 Hazard models for the time to a first publication: Graduate students  
over time

Any publication First- author publications

  Hazard ratios  Hazard ratios  Hazard ratios  Hazard ratios

D1980–1989 0.969 0.768** 0.888 0.718***
(0.121) (0.095) (0.110) (0.091)

D1990–2000 0.837 0.650*** 0.780* 0.613***
(0.110) (0.103) (0.099) (0.081)

Field FE Yes Yes Yes Yes
PI FE Yes Yes
Log likelihood –4,121 –4,042 –3,467 –3,380
N  991

Note: We estimate Cox proportional hazards models with standard errors clustered around 
PI. We report hazard ratios. 
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

Table 2.5 Hazard models for the time to a first publication: Postdocs over time

Any publication First- author publications

  Hazard ratios  Hazard ratios  Hazard ratios  Hazard ratios

D1980–1989 0.850*** 0.788*** 0.862 0.795**
(0.061) (0.056) (0.083) (0.075)

D1990–2000 0.665*** 0.615*** 0.658*** 0.602***
(0.061) (0.061) (0.071) (0.062)

Field FE Yes Yes Yes Yes
PI FE Yes Yes
Log likelihood –10,583 –10,478 –8,626 –8,517
N  2,427

Note: We estimate Cox proportional hazards models with standard errors clustered around 
PI. We report hazard ratios. 
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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When we examine  first- author publications, we find additional evidence 
that the time to a first publication has increased for later cohorts of graduate 
students relative to earlier ones. Indeed, the coefficients of both period dum-
mies are smaller than one and the coefficient for the 1990–2000 indicator is 
statistically significant. The coefficient magnitudes suggest that the hazard of 
publishing an initial  first- author paper, for graduate students who enrolled 
in the 1980–1989 period, is 0.9 times the hazard of those who enrolled in 
the 1970–1979 period. It declines to 0.8 times for graduate students who 
enrolled during 1990–2000. As before, once we introduce PI fixed effects the 
significance of the coefficients improves and the magnitude declines.

In the case of postdocs, both the time to a first publication and that to 
an initial  first- author publication appear to have increased for later cohorts 
relative to earlier ones. Across multiple regression specifications, the hazard 
of publishing a first paper is lower for postdocs who started in the 1980–
1989 period, than for postdocs who enrolled during 1970–1979. And this 
downward, temporal shift in the hazard of publishing continues for those 
postdocs who started during 1990–2000. Moreover, the coefficients tend to 
be statistically significant with and without PI fixed effects.6

Taken together, we provide evidence that the time to an initial  first- author 
publication has increased for both graduate students and postdocs and this 
trend line shows no evidence of leveling off. Moreover, in the case of post-
docs, results indicate that the time to a first publication has increased even for 
non- first- author articles. As a complement to our prior results, that overall  
training periods have increased over time, increasing times to first publica-
tion suggest that, at least in part, recent cohorts of trainees require extra 
training time to “ramp- up” to the productive training periods.

2.3.3 Publication Trends

In this section, we turn our attention to trends in the overall publication 
output of graduate students and postdocs. The question we want to explore 
is whether recent cohorts of graduate students and postdocs have become 
less productive than older ones. Indeed, if  one posits that recent cohorts of 
scientists face a larger learning burden or that the reviewing process at scien-
tific journals has increased over time, then we should observe a declining 
trend in the publication output of graduate students and postdocs. 

To investigate this hypothesis, we estimate count regression models in 
which we relate publication outputs that graduate students and postdocs had 
produced during their training as a function of whether their enrollment year 
falls within the 1970–1979, 1980–1989, or 1990–1995 periods. We adopt a 
Poisson specification with robust standard errors. We measure publication 

6. In column (3) the coefficient for the 1980–1989 period dummy is not significant. However, 
a test of joint significance of period dummies rejects the null hypothesis that they are (jointly) 
equal to zero with a p- value of 0.00.
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output by counting the number of publications from the moment a trainee 
joins a PI laboratory until two years after the trainee was last observed in the 
laboratory. In this way, we account for the fact that there are lags between 
the moment a research project is completed and the moment its results are 
published. As for the analysis of training durations, we exclude the latest 
years because graduate students and postdocs who enrolled in these years 
might not have completed their training by the end of our sample period.

The equation we estimate is:

(3)     yi = exp(�1D1980–1989 + �2D1990–1995 + �3Durationi + �i + �i + �i),

where yi is either the total count of trainee i’s publications or the count of 
their  first- author publications. D1980–1989 is an indicator variable that 
equals one if  trainee i enrolled during 1980–1989 and equals zero otherwise. 
D1990–1995 equals one if  trainee i enrolled during 1990–1995 and, simi-
larly, equals zero otherwise. Durationi is defined as the number of years a 
trainee has spent in a laboratory. Finally,   �i and   �i  are field and PI fixed 
effects, respectively.

The results for graduate students are displayed in table 2.6, while those for 
postdocs are presented in table 2.7. When we consider the total publication 
count (column [1]), we find that graduate students who enrolled in more 
recent periods are no less productive than their colleagues who enrolled 
during 1970–1979. In fact, none of the coefficients for the 1989–1990 and 
1990–1995 period dummies are statistically significant. Once we include 

Table 2.6 Regression results for graduate student publications

No. publications
No.  first- author 

publications

Probability of 
publishing a  first- 
author publication

  Coeff.  Coeff.  Coeff.  Coeff.  Coeff.  Coeff.

D1980–1989 0.022 –0.103 –0.114 –0.241** –0.009 0.071
(0.083) (0.103) (0.087) (0.104) (0.038) (0.048)

D1990–1995 –0.071 –0.257** –0.221** –0.499*** –0.084** –0.203***
(0.090) (0.120) (0.096) (0.130) (0.041) (0.059)

Duration Yes Yes Yes Yes Yes Yes
Field FE Yes Yes Yes Yes Yes Yes
PI FE Yes Yes Yes
R2 0.05 0.15 0.03 0.12 0.105 0.28
N  870

Note: Standard errors are in parentheses. For the Poisson models we use robust standard er-
rors, while for the linear probability model we cluster standard errors around PI. For these 
analyses we only consider trainees who had enrolled before 1996.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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supervisor fixed effects, the coefficient of the dummy for student enrollment 
during 1990–1995 becomes statistically significant and has a negative sign. 
While this last result suggests that there are some supervisor characteristics 
that are correlated with productivity trends, we cannot conclude that there 
is a general declining tendency in the graduate student paper count. In sup-
port of this conjecture, descriptive evidence reported in figure 2.9 does not 
reveal a decreasing trend for the annual publication count. In regressions not 
reported here (but available upon request), we find very similar results when 
we use the  impact- factor weighted publication count as the output measure.

We show different findings when analyzing  first- author publications. In 
this case, both period dummies have a negative coefficient and the coefficient 
for the 1990–1995 period variable is significant, regardless of whether we 
include PI fixed effects. One might wonder whether this effect is driven by the 
fact that fewer graduate students are publishing  first- author papers in recent 
years. To investigate this possibility, we estimate a linear probability model 
in which the dependent variable is an indicator that takes a value of one if  
graduate students have published at least one article during their training. 
The results are displayed in the last column of table 2.6. The coefficient for 
the 1990–1995 period dummy is negative and statistically significant, indepen-
dent of the regression specification. These results suggest that at least part of 
the declining output trend is explained by a lower publishing probability for 
the most recent cohorts. Overall, we find that later graduate student cohorts 

Table 2.7 Regression results for postdoc publications

No. publications
No.  first- author 

publications

Probability of 
publishing a  first- 
author publication

  Coeff.  Coeff.  Coeff.  Coeff.  Coeff.  Coeff.

D1980–1989 –0.160** –0.250*** –0.174** –0.255*** –0.018 0.019
(0.067) (0.071) (0.068) (0.074) (0.026) (0.029)

D1990–1995 –0.173** –0.314*** –0.238*** –0.384*** –0.064** –0.076**
(0.075) (0.086) (0.076) (0.089) (0.028) (0.035)

Duration Yes Yes Yes Yes Yes Yes
PI FE Yes Yes Yes Yes Yes Yes
Entry Year 
FE

Yes Yes Yes

R2 0.10 0.18 0.08 0.14 0.22 0.23
N  1993

Note: Standard errors are in parentheses. For the Poisson models we use robust standard er-
rors, while for the linear probability model we cluster standard errors around PI. For these 
analyses we only consider trainees who had enrolled before 1996.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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produce fewer  first- author articles than earlier ones and, this time, regression 
results seem to be supported by descriptive evidence reported in figure 2.9.

When we turn our attention to postdocs (table 2.7), we find strong evi-
dence that the postdoc cohorts enrolled during 1980–1989 and 1990–1995 
produce fewer articles than cohorts enrolled during 1970–1979. This result 
holds true regardless of whether we look at total or  first- author publication 
counts. Indeed, the coefficients of our period dummies are negative and sta-
tistically significant, with and without PI fixed effects. When we analyze the 
probability of publishing at least one  first- author paper, we find that part of 
the declining trend for the  first- author paper count is explained by a lower 
publishing probability for the most recent cohorts. Overall, these findings are 
consistent with the descriptive trends presented in figure 2.10, which shows 
an over- time decline in publication outputs by postdoc students.

In analyses not presented here for the sake of brevity, we attempted to 
analyze whether the decline in the number of  first- author graduate student 
publications was correlated with larger time intervals between papers, for 
subsequent publications. Thus we estimated hazard models for publishing 
a second  first- author paper, conditioned on having published an initial one, 
and for publishing a third  first- author paper, conditioned on having pub-
lished a second. Because we have annual data, we cannot analyze the time 

Fig. 2.9 Publication output of graduate student cohorts
Note: Counts normalized by duration.
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interval between two papers published in the same year. With this caveat 
in mind, we find that the time intervals between  first- author publications, 
subsequent to the first, are not larger for the most recent graduate student 
cohorts. This seems to suggest that the decline in the number of  first- author 
papers for graduate students could be explained by the fact that trainees take 
longer to publish a first article or they publish fewer articles per year. Similar 
results were obtained when we estimated the hazard that postdoc students 
publish a paper or a  first- author paper, conditioned on an initial publication.

To summarize, the results from this section lead us to infer that when 
we measure graduate student productivity by their  first- author publica-
tion count, later cohorts appear to be less productive than earlier ones. As 
for postdocs, recent cohorts appear to be less productive in terms of both 
 first- author and total paper counts.

2.3.4 Collaboration Trends

We have analyzed changes in both the training periods and scientific 
productivity of postdoc and graduate students from the 1970s through the 
1990s. Although an array of mechanisms may explain these trend lines, a 
final question we pose is whether trainees have reacted to these challenges 
by working in larger teams, in a similar fashion to other researchers.

Fig. 2.10 Publication output of postdoc cohorts
Note: Counts normalized by duration.
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The benefits of teamwork have been extensively discussed in the economics 
literature and include output gains derived from labor specialization (Becker 
and Murphy 1992) and from the circulation of new ideas among team mem-
bers (Adams et al. 2005). In the economics of science, scholars have found that 
scientists increasingly work in teams (Wuchty, Jones, and Uzzi 2007)7 and that 
team size has expanded over time (Adams et al. 2005), largely due to an inten-
sification of multiuniversity collaborations (Jones, Wuchty, and Uzzi 2008).

Figure 2.11 reports trends over time in the average number of coauthors per 
paper, distinguishing between postdocs and graduate students. In line with pre-
vious studies, we observe that for both trainee categories the average number 
of coauthors per paper has increased over time from approximately 1.5 at the 
beginning of the 1970s to approximately 3.5 by the second half of the 1990s. 
Interestingly enough, we also observe that the increased collaboration size was 
mainly driven by an increase in the number of outside laboratory coauthors.8

7. See also Agrawal and Goldfarb (2008) and Forman and Van Zeebroeck (2012).
8. In this case, we do not report regression results. The reason is that regression analyses 

must be conditioned on the sample of trainees who published at least one paper. The resulting 
sample size is quite limited and, thus, if  we add PI and field fixed effects the regression estimates 
become imprecise. Nevertheless, the signs of the interest coefficients are the ones expected. 
Particularly, in the regression for the average number of coauthors on a paper, the coefficients 
of the dummies for the most recent decades are positive. Moreover, in the regression for the 
number of laboratory coauthors, the magnitude of the decade indicators’ coefficients is almost 
zero, reflecting the trend that appears in figure 2.11. 

Fig. 2.11 Average yearly number of coauthors per paper
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Overall, this suggests that trainees, similar to other scientists across a 
broad range of disciplines, are increasingly working in teams and these teams 
tend to encompass authors from outside the focal trainees’ laboratories.

2.4 Conclusions and Policy Implications

2.4.1 Summary

Knowledge production is widely considered to be one of the main deter-
minants of economic growth. Within this domain, scientific knowledge pro-
duction centered at universities, which results in codified outputs designed 
largely for dissemination and replication, is particularly important.

This study focuses on the contributions to academic knowledge by post-
docs and graduate students. Using data from the MIT Department of 
Biology from 1970 to 2000, we looked at the evolution of four fundamental 
aspects of their productivity: (a) training duration, (b) time to a first publi-
cation, (c) productivity over the training period, and (d) collaboration with 
other scientists.

We identified four main trends that are common to both graduate stu-
dents and postdocs. First, training periods have increased for later cohorts 
of  research trainees. Second, recent cohorts tend to publish their initial 
 first- author article later than the earlier cohorts. Third, they produce fewer 
 first- author publications. Finally, collaborations with other scientists, as 
measured by the number of coauthors on a paper, have increased over time. 
This increase is driven by collaborations with scientists outside of a trainee’s 
laboratory.

2.4.2 Interpreting the Results

What are the mechanisms that drive our results? Our findings are con-
sistent with Jones’s educational burden story (Jones 2009, 2010a), which 
states that as knowledge accumulates, future generations of scientists require 
greater effort (or more time) to absorb and build upon this accumulated 
knowledge base. To offset this trend, one possibility is for individuals to 
specialize, narrowing their field of expertise. A second consequence of spe-
cialization may be the need to broaden patterns of collaboration with other 
scientists. Our first three results—longer training periods, longer time to 
publish, lower productivity for later trainee cohorts—could be interpreted 
as an indication that the knowledge burden has increased, particularly for 
recent trainees. The final result regarding increased trainee collaboration 
provides an indication that these cohorts have become more specialized, 
although other possibilities abound.

While the educational burden story is a compelling explanation, we never-
theless think that other mechanisms might also be responsible for our results. 
One of these mechanisms is the mismatch between the supply of trainees 
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and the availability of posttraining academic positions that scholars have 
discussed in recent decades (Stephan 2012b; Freeman et al. 2001). Data 
from the NSF- NIH Graduate Students and Postdoctorates in Science and 
Engineering survey shows that enrollment into PhD life science programs 
has increased by 80 percent between 1972 and 2005.9 While we do not have 
information on the availability of posttraining positions, it is plausible that 
selection into (desirable) postdoctoral positions has become harder over 
time. Lastly, we also should note that longer training periods certainly 
benefit and are encouraged by PIs. Specifically, many PIs are reluctant to 
allow their most productive laboratory members (i.e., high- tenure trainees) 
to depart. In fact, a PI’s compensation is, increasingly, linked to a tourna-
ment model in which seminal laboratory member (i.e., trainee) contributions 
are essential (Freeman et al. 2001).

If  market frictions were to be responsible for longer training periods, 
should we also expect them to explain the lower productivity of recent trainee 
cohorts and their increased propensity to work in collaboration with other 
scientists? Is it plausible to posit that market disequilibria last for decades? 
Why is the market not redirecting the excess supply of trainees to other fields?

To answer the first question, one might consider that the excess supply 
of scientists has led to an increase in academic journal submissions, with-
out a corresponding increase in the number of publications. If  there is an 
excess supply of submissions, then the direct consequence is that publishing 
becomes more difficult, which might explain the lower productivity of recent 
trainee cohorts. Moreover, specialization and collaboration become ways 
of dealing with market disequilibria and one wonders whether the reduc-
tion in recent cohort productivity could have been even more accentuated 
had recent trainees not worked with other scientists. This mechanism is not 
necessarily in contrast with the educational burden explanation; rather, it 
offers a complementary perspective. In fact, market imbalances might act as 
a stimulus for scientists to expand the knowledge frontier in order to publish, 
thus increasing the burden on future generations.

While the mechanisms we have highlighted seem to be plausible, one can-
not exclude the possibility that the mismatch between the supply of trainees 
and the availability of academic positions has led the brightest students to 
shy away from careers in the life sciences. Thus, the increase in training peri-
ods and the reduced productivity of the most recent cohorts is a reflection 
of their lower quality skills. With our current data set, we cannot disentangle 
these possibilities.

To answer the second and third questions regarding the duration of market 
imbalances, we should refer to studies by Freeman et al. (2001) and Stephan 
(2012a) and mention that, increasingly, PhD programs in life science, among 
others, tend to be populated by foreign students. Indeed, while some domes-

9. Data is available from https://webcaspar.nsf.gov/.
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tic students might be discouraged from continuing their studies in the life  
sciences PhD programs, American PhD programs remain attractive to for-
eign students not only because of  their prestige, but also because salary 
differentials between foreign countries and the United States are typically 
large. To verify that the proportion of foreign graduate students in the MIT 
Department of Biology has increased over time, we examined our trainees’ 
first and last names. We then codified those who had a Chinese last name 
as well as those with an Italian or French first and last name.10 We found 
that the proportion of Asian, Italian, or French trainees has increased from 
17 percent in 1970 to 27 percent in 1995. While these figures are only sug-
gestive, given that we cannot distinguish between foreign or  native- born 
students, they provide some indication that foreign trainees have recently 
become an increasingly large proportion of the trainee population.

2.4.3 Policy Implications

Ultimately, this chapter has served to document the mechanisms under-
lying two important trends in the scientific community: the increasing dura-
tion of scientist trainees and an increasing propensity for collaborative activ-
ity (e.g., Agrawal, McHale, and Oettl [chapter 3, this volume]; Tilghman 
1998). Additionally, we have provided evidence of a decline in the scientific 
output of recent trainees. What implications do these trends have for the 
scientific community?

First, we note the remarkable consistency linking changes in graduate 
students and postdocs training with an array of  outcomes (i.e., training 
duration, time to first publication, and productivity). It is very possible that 
the act of doing science has become more difficult over time. To be produc-
tive, there is more knowledge that must be learned. It is possible that few 
policy changes can offset these trends, and that longer training durations 
are a necessary byproduct of scientific advances in the twentieth century.

Second, institutional constraints may be at play. Even for established sci-
entists (i.e., PIs), increasing difficulties in acquiring funding may cascade 
through the scientific system in multiple ways. To increase efficiency, PIs may 
hold on to their productive students longer. Faced with increasing uncer-
tainty over funding, universities may hire only the most experienced and 
productive postdocs. And lastly, each of these processes may feed back on 
one another over time.

Third, regardless of the reasons for the observed trends, it is important 
to note that the costs of science have increased (Jones 2010b). These costs 
are paid by the individual, who must endure longer training and uncertain 
future prospects, as well as by society at large, which does not recuperate the 
returns from its investment. As previous scholars have highlighted (Jones 
2010b; Stephan 2012b), costs can be reduced by ensuring that graduate 

10. Given the authors’ backgrounds, we found it easiest to codify these student ethnicities.
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students and postdocs receive adequate pedagogical support during their 
training period. This, in turn, improves the efficiency of trainee learning and 
may serve to offset increases in learning burdens. Moreover, decision makers 
could cap the trainee teaching load, thereby ensuring that the majority of 
their time is dedicated to research.

It is also worth mentioning that, as the pre- PI career path for life scien-
tists has become incredibly long, talented scientists may increasingly choose 
to opt out. Our data illustrate that total trainee duration has crested ten 
years and this evidence is not unique to the MIT Department of Biology 
and to elite institutions (Stephan 2012a). Longer training duration raises 
the opportunity costs of a scientific career and makes other occupations 
more attractive. Thus, if  employment in other fields entails shorter training 
periods, lower uncertainty and higher salaries, we may increasingly see a 
shift from the careers where graduate training is the passkey to the profes-
sion, such as the life sciences, toward other, equally rewarding careers (e.g., 
engineering).

Given fecundity differentials across the sexes, increasing training dura-
tions may affect women more severely than men, further exacerbating issues 
of female participation in the sciences (Ding, Murray, and Stuart 2006). As 
training increasingly comes to dominate individuals in their thirties, work- 
life balance issues, including considerations such as family constraints and 
career uncertainty (Kaminski and Geisler 2006) may come to dominate. 
Certainly, longer training durations do not help ease these concerns.

We conclude with a final important issue that has attracted the attention 
of recent scholars, namely the allocation of research credit in collaborations 
(Bikard, Murray, and Gans 2013). Working in teams entails a  trade- off. On 
the one hand, teamwork seems to produce more knowledge breakthroughs 
than solo work (Singh and Fleming 2010). On the other, it involves costs, 
some of which are related to the assessment of the team members’ contribu-
tions (Dasgupta and David 1994). This  trade- off is especially relevant for 
trainees given that access to  tenure- track positions requires that they be able 
to prove their ability to conduct impactful independent research.
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