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5
Bubble Troubles? Rational Storage, 
Mean Reversion, and Runs in 
Commodity Prices

Eugenio S. A. Bobenrieth, Juan R. A. Bobenrieth, 
and Brian D. Wright

5.1 Introduction

Recent volatility of prices of major grains has revealed new interest in 
understanding the price behavior of storable commodities such as grains. 
A well- grounded model of a market for a storable staple product subject to 
random shocks to excess supply has been available since Gustafson (1958). 
Its basic logic of intertemporal arbitrage is widely accepted, and it can gen-
erate price series that have large “spikes” and “runs” of the type that attract 
the concern of consumers and policymakers. However, models of this type 
have been little used in recent analyses of commodity price fluctuations.

There are two key reasons. One is the absence of empirical support. For 
more than three decades the model could not be seriously tested, due to lack 
of both appropriate data and a satisfactory estimation procedure. When a 
version of the Gustafson model was eventually tested (Deaton and Laroque 
1992, 1995, 1996), it was roundly rejected due to failure to replicate the high 
levels of serial correlation observed in commodity price data. Cafiero et al. 
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(2011), after solving a problem of numerical accuracy in the Deaton and 
Laroque estimation procedure, derived estimates for several commodities 
consistent with the observed price correlations.

A second reason is the common impression that commodity prices can 
occasionally exhibit bubble- like behavior in which conditional price expecta-
tions rise without bound, and that the storage model cannot satisfac torily 
replicate such behavior. Recent tests have, in some cases, detected price 
“exuberance” in observations of sporadic runs of prices of securities rising 
faster than the rate of interest. Some authors (for example, Phillips, Wu, and 
Yu 2011) have related such price behavior to former United States Federal 
Reserve Bank chairman Greenspan’s remark in December 1996 regarding 
“irrational exuberance” of asset prices. Researchers including Gilbert (2010) 
and Gutierrez (2012) have looked for similar behavior in commodity mar-
kets. Others believe that the existence of bubbles in recent grain price data 
is obvious only after they “crash.” (Timmer 2009).

In models in the tradition of  Gustafson (1958), (including Samuelson 
1971; Gardner 1979; Newbery and Stiglitz 1981; Wright and Williams 1982), 
the conditional expectation of  price at far horizons is bounded. In their 
pioneering model of  commodity price behavior with responsive supply, 
Scheinkman and Schechtman (1983, 433) presented a model in which, if  
price at zero harvest is infinite, and zero harvest has positive probability, then 
the long run conditional expectation of price is unbounded. They inferred 
that in this case “the model is exactly like an exhaustible resource model. 
Since stocks are always held, discounted expected prices must exceed today’s 
prices by the marginal cost of storage. This seems a very unrealistic behavior 
for the price of a producible commodity and thus it must be true that in fact 

  x(z) = 0 for some   z > 0.” Hence they decided to restrict attention to mod-
els in which stocks carried to the next period can fall to zero. Since continu-
ously increasing price is something not observed in commodity markets (in 
contrast to price spikes, or price runs that eventually crash), their decision 
to restrict attention to models in which stocks carried to the next period can 
be zero, so that “mean reversion” occurs when available supply is below some 
strictly positive level, is understandable.

Several studies have identified mean reversion, variously defined, in 
commodity prices, adding empirical support to the informal inference of 
Scheinkman and Schechtman (1983) that the standard model of  storage 
must have occasional “stockouts.” (i.e., periods with zero discretionary 
stocks).

After a brief  review of the issues regarding consistency of the standard 
version of the model with observed time series of prices, we focus on the 
questions regarding the capacity of the model to replicate bubble behavior 
and mean reversion. We draw on Scheinkman and Schechtman (1983) and 
Bobenrieth, Bobenrieth, and Wright (2002) to derive new implications for 
price behavior, and simulate a sample of  price realizations in which the 
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conditional expectation of  price goes to infinity. We then establish some 
empirical implications for sample averages of returns from time series of 
prices, and relate these to findings of mean reversion.

5.2 The Model

In this chapter we use a stylized model of a market for a storable com-
modity such as a food grain to reconsider the capacity of storage arbitrage 
to replicate key features of commodity price behavior identified in empirical 
studies. We model a competitive market for a single storable consumption 
commodity such as a food grain in which time is discrete and all agents have 
rational expectations, in which the price process has an invariant distribu-
tion similar to that of Scheinkman and Schechtman (1983) and Bobenrieth, 
Bobenrieth, and Wright (2002). The distribution of the harvest disturbance 
can have an atom at its minimum value, here normalized at zero, and price 
at zero consumption is infinite.

Production is subject in each period to a common exogenous independent 
and identically distributed (i.i.d.) disturbance    ∈ [0,],   0 <  < ∞. The 
distribution of     is of  the form    Ld + (1 - )Lc, where     ∈ [0,1], Ld  is a 
discrete distribution with a unique atom at 0, and  Lc is an absolutely con-
tinuous distribution, with continuous derivative when restricted to its sup-
port   [0,].

Assume that there is a continuum of identical producers, a continuum of 
identical storers, and a continuum of identical consumers; each of the three 
has total measure one. There is a one- period lag between the producers’ 
choice of eVort    ≥ 0 and output of the commodity   ′ , where  ′  is next 
period’s harvest shock. Cost of eVort is given by a function 

  g :  + →  +, 
with   g(0) = 0, ′g (0) = 0, and    ′g () > 0, ′′g () > 0 for all    > 0. Storers can 
hold any nonnegative amount of available supply from one year to the next, 
and then these stocks are all available for consumption or for further storage.

We replace the key assumption of Scheinkman and Schechtman (1983) 
that the physical storage cost function is strictly convex and its derivative 
appears additively in the Euler equation with the assumption that the phys-
ical storage cost function is zero; the sole cost of storage is the cost of capi-
tal invested. Given storage  x and eVort   , the next period total available 
supply is    ′z ≡ x + ′w . Producers and storers are risk neutral and have a 
common constant discount factor     ≡ 1/(1 + r), where r > 0 is the discount 
rate.

The utility function of the representative consumer 
  U :  + →  + is con-

tinuous, once continuously diVerentiable, strictly increasing, and strictly 
concave. It satisfies   U(0) = 0, ′U (0) = ∞.1 The inverse consumption demand 

1. Unbounded marginal utility implies no substitution at the margin, an assumption which 
is more plausible for aggregate rather than for individual food commodities.
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curve, with zero income elasticity, is then   f = ′U .2 We assume  U  has a finite 
upper bound, and thus total revenue   cf (c) is also bounded, and that the 
expectation of  f  with respect to  Lc is finite.3 The perfectly competitive mar-
ket yields the same solution as the surplus maximization problem. The Bell-
man equation for the surplus problem is:

   
(z) = max

x,
{U(z - x) - g() + E[( ′z )]}, subject to

   ′z = x + ′ ,

   x ≥ 0, z - x ≥ 0,  ≥ 0,

where  E ⋅[ ] denotes the expectation with respect to next period’s productivity 
shock   ′ .

By standard results (see, for example, Stokey and Lucas with Prescott 
[1989]),   is continuous, strictly increasing, strictly concave, and the optimal 
storage and eVort functions   x(z) and    (z) are single valued and continuous.

Consumption and price are given by the functions c(z) ≡ z – x(z), p(z) ≡ 
f(z – x(z)).

The storage and eVort functions  x and   satisfy the Euler conditions:

(1)    f (z - x(z)) ≥ E[ ′ (x(z) + ′ (z))], with equality if  x(z) > 0,

(2)    ′g ((z)) ≥ E[ ′ ′ (x(z) + ′ (z))], with equality if  λ(z) > 0,

and the envelope condition    ′ (z) = f (z - x(z)).
Given initial available supply, z > 0, if  the probability of zero productivity 

shock, α, is strictly positive, condition (1) implies that   ′z > 0 and   x( ′z ) > 0, 
and this arbitrage condition holds with equality in the current period and 
for the indefinite future. When positive, storage   x(z) is strictly increasing with 
z, and eVort    (z) is decreasing with z. Note that   p(0) = f (0) = ∞.

Define available supply at time  t as   zt. Given arbitrary fixed   z0 > 0, the func-
tion that yields the supremum of the support of   zt +1 is    ẑ(zt) ≡ x(zt) + (zt). 
From the fact that there exists a unique fixed point   z* of   ẑ such that   ẑ(z) < z  
for all   z > z*, we conclude that   zt ≤ z ≡ max{z0,max{ẑ(z) : 0 ≤ z ≤ z*}}, 
for all   t ≥ 0. Then a suitable state space is   S ≡ [0,z ]. Storage takes values in 
the set   [0,x], where   x ≡ x(z).

5.3 Empirical Relevance Revisited

5.3.1 Failure to Match Observed High Price Correlations

Deaton and Laroque (1992, 1995, 1996) presented empirical tests of the 
Gustafson model (1958) using, first, simulations of  the model, and then 

2. As discussed in footnote 1 of Scheinkman and Schechtman 1983, specification of a quasi-
linear utility function is one way to incorporate income in the setting of general equilibrium 
models that generate the same set of equilibria as this partial equilibrium specification.

3. This guarantees that for a model with harvest disturbances with distribution  Lc  there is a 
finite threshold price above which discretionary stocks are zero.
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econometric estimates based on the short available annual time series of 
prices of a number of commodities. Deaton (2014, 96) summarizes their 
overall conclusion:

We have a long- established theory—whose insights are deep enough that 
some part of them must be correct—which is at odds with the evidence 
and where it is far from obvious what is wrong.

Cafiero et al. (2011) show, first, that a version of the Gustafson model 
with lower consumption demand elasticity can generate the high levels of 
serial correlation observed in commodity prices. Second, they show that 
application of Deaton and Laroque’s (1995, 1996) econometric approach, 
modified to improve its numerical accuracy, using the same data set, yields 
empirical results that are consistent with observed levels of price variation 
and autocorrelation for seven major commodities. In a subsequent paper,  
Cafiero et al. (forthcoming) derive maximum likelihood estimates that 
impose no more assumptions than the previous pseudomaximum likelihood 
estimates for the global sugar market, and obtain even better results.

Thus we are now in a position to consider the relevance of the Gustafson 
model for interpreting and testing recent claims regarding the behavior of 
commodity prices. In particular, we address in this chapter claims that grain 
markets display mean reversion, or that they have recently been disrupted 
by bubbles (Gilbert 2010; Piesse and Thirtle 2009; Timmer 2009, 2010; 
 Gutierrez 2012), or by exuberant behavior (Phillips, Wu, and Yu 2011), and 
the popular notion that such claims can be resolved, at least in principle, 
from observed price behavior.

The model tested by Deaton and Laroque (1992, 1995, 1996) and Cafiero 
et al. (2011, forthcoming) assumes linear demand, implying that stocks go 
to zero at a finite price. To address questions about mean reversion, specula-
tive runs and related phenomena, we have adopted a demand specification 
that, if     > 0, does not impose mean reversion at high prices, and allows for 
unbounded price expectations.4 Thus our model is capable of  producing 
behavior that includes conditional expectations of prices that go to infinity 
as the horizon recedes, as observed by Scheinkman and Schechtman (1983). 
Is this extension of the model of  any empirical relevance to actual price 
behavior in commodities such as grains?

5.3.2  Behavior of the Model with Unbounded Conditional 
Price Expectations

Scheinkman and Schechtman (1983) stated that price behavior when 

   > 0 and price at zero consumption is infinite is very unrealistic for a pro-
ducible commodity, because then the model “is exactly like an exhaustible 
resource model. Since stocks are always held, discounted expected prices 

4. As for the linear case, questions have been raised about the realism of the behavior of 
prices in that model.
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must exceed today’s prices by the marginal cost of storage” (433). Thus we 
start by considering a case of the model, that is in fact a natural resource 
model.

The Deterministic Finite Natural Resource Model

If     = 1 then our model, which has no storage cost, is the deterministic 
Hotelling model of consumption of a finite resource with unbounded price. 
Standard results are that price rises monotonically at the rate of interest, so 
that discounted future prices equal the current price. Such price behavior is 
indeed inconsistent with actual stochastic evolution of prices for commod-
ities such as food grains. Does this price behavior generalize to the case in 
which   0 <  < 1?

The Stochastic Model with Unbounded Price Expectations

Intertemporal storage arbitrage implies that, in the model with   0 <  < 1, 

   {t pm+t}t ≥0 is a martingale and    {Em[t pm+t] : t ≥ 0} = pm, where   Em[⋅] denotes 
the expectation conditional on the price  pm at time m. Indeed the conditional 
expectation of price behaves exactly as the price in the deterministic natural 
resources model discussed above. But in this stochastic model the price path 
does not follow its expectation, contrary to the inference of Scheinkman and 
Schechtman (1983). Nor does the statement of Bessembinder et al. (1995, 
362) that the path of conditional expectations at diVerent horizons “describes 
several points on the path that investors expect the spot price will take” hold 
for this model. To the contrary, as the horizon recedes, the path of realized 
prices eventually drifts down and away from the rising profile of conditional 
expectations, any fraction of which becomes an upper bound on that real-
ized path.

The sequence of probability measures of prices conditional on any initial 
price  pm converges to a unique invariant measure, uniformly in  pm, and 
consequently the sequence of discounted prices converges in probability to 
zero, uniformly in   pm.5

More precisely:

Theorem 1: Let    < 1. Given    > 0 and  e > 0, there exists 
 T ∈  such 

that for any price realization   pm,

5. If    0 ≤  < 1, the sequence of probability measures of     zt,{t}t=0
∞  converges in the total 

variation norm to a unique invariant probability   *, regardless of the value of   z0. The idea of 
the proof for the case,   0 ≤  < 1 can be found in Bobenrieth, Bobenrieth, and Wright (2002). 
It follows immediately that the sequence of probability measures of prices    {tc-1f -1}t=0

∞  con-
verges in the total variation norm to the unique invariant probability measure    *c-1 f -1. 
Note that    Prob[ pt ≥ y] = (tc-1 f -1)([y, ∞]), where   pt = f (c(zt)) is the price at time t. 

  Ht(y) ≡ Prob[ pt ≥ y] converges uniformly to a unique invariant upper c.d.f.   H*, with 

  
lim p→∞ H*(p) = 0. If    0 ≤  < 1, then the support of the invariant distribution of prices is an 
interval 

  
[ p, ∞] with 

  
0 < p < ∞.
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   Prob[t pm+t <  | pm] ≥ 1 - e, ∀ t ≥ T.

Theorem 1 implies that for any sample size 
 N ∈ , given any finite 

sequence of realized initial prices 
  {pm, pm+1,, pm+ N -1}, we have the following 

bound on the joint probability of the gross discounted relative price changes 
from each initial price in the sample, beyond a finite  ′T , where  ′T  is indepen-
dent of the finite sequence of initial price realizations:

   
Prob

t pm+t

pm

< ,
t pm+1+t

pm+1

< ,  ,
t pm+ N -1+t

pm+ N -1

<  | pm+ N -1






≥ 1 - e,

for all   t ≥ ′T .6

The existence of a unique invariant distribution, which is a global attrac-
tor, implies for this price process that, with probability one, the sequence of 
price realizations is dense on the support 

  
[ p,∞] of the invariant distribution. 

The infinite sequence of price realizations visits every neighborhood of every 
price in the support, no matter how high, infinitely often, almost surely. 
Given this fact, the following proposition regarding discounted prices might 
not be surprising:

ProPosiTion 1: Let    < 1. For any given price realization   pm, for arbitrary 
positive real number D, there exists a horizon 

  d ∈ , such that:

   Prob[t pm+t > D | pm] > 0, ∀ t ≥ d.

For the case 0 < α < 1, the maximum of the support of the conditional 
distribution of discounted price goes to infinity as the horizon increases, in 
contrast to the case for the standard Gustafson model with bounded price, 
where the maximum goes to zero. To prove Proposition 1, we need Proposi-
tion 2, which might seem counterintuitive given Proposition 1.

For the discussion that follows, given a price realization   pm, let   Em[⋅] denote 
the expectation conditional on   pm.

ProPosiTion 2: Let    < 1. Given any price realization   pm, the sequence of 
discounted prices,    {t pm+t}t ≥0, goes to zero, almost surely (as   t → ∞).

Proof of ProPosiTion 2: The Euler condition for storage arbitrage (1) 
implies that, if    > 0,    {t pm+t}t ≥0 is a martingale and sup{Em[δtpm+t]: t ≥ 0} = pm 
< ∞. In the case    = 0,    {t pm+t}t ≥0 is a supermartingale and sup{Em[δtpm+t] :  
t ≥ 0} = p* < ∞. In both cases, by the Martingale Convergence Theorem (due 
to Doob) we conclude that   

t pm+t → Y  a.s. (as   t → ∞), where  Y  is a real 
random variable. By Theorem 1,    

t pm+t → 0 in probability (as   t → ∞), and 
hence   Y = 0 almost surely.  Q.E.D.

6. In the proof presented in the appendix, we use the facts that the Markov operator is stable 
and quasicompact, and that given any initial price, any neighborhood of infinity, and any 
integer k, the price process visits that neighborhood in a time that is some multiple of k, with 
positive probability.
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Proof of ProPosiTion 1: For the nontrivial case   0 <  < 1, we prove 
the result by contradiction. If  not, there exists a price realization   pm, a real 
number D > 0 and a sequence of  natural numbers 

  {tk}k ∈ ↑ ∞ with 

   
Prob[tk pm+tk

> D | pm] = 0, for all tk. Therefore 
  
tk pm+tk

≤ D a.s., for all   tk. 
Then the Lebesgue dominated convergence theorem and the fact that 

   
limtk→∞

tk pm+tk
= 0 a.s. imply that 

   
limtk →∞ Em[tk pm+tk

] = 0, a contradiction 
to 

   
Em[tk pm+tk

] = pm > 0, for all 
  tk.  Q.E.D.

If    0 <  < 1, we have that    Em[t pm+t] = pm, ∀ t ≥ 0. Nevertheless, Prop-
osition 2 states    {t pm+t}t ≥0, converges to zero almost surely, implying that 

   {Em[t pm+t]}t ≥0 does not converge to the expectation of the almost sure limit 
of    {t pm+t}t ≥0. As a consequence, the sequence of discounted prices is not 
uniformly integrable.

Proposition 2 is easy to understand in a model with α = 0, but if  0 < α < 1, 
how can the discounted price be going to zero, almost surely, if  there is pos-
itive probability that discounted price exceeds  D at any suYciently far hori-
zon? The explanation hinges on the distinction drawn above between a profile 
of expectations conditional on a price realization and the path of realizations. 
By Proposition 2, with probability one, for any given path of discounted price 
realizations there is a time beyond which that path is permanently below D. 
But by Proposition 1, there is no finite horizon beyond which all paths pos-
sible from date  m are below  D. In fact, at any finite horizon, with positive 
probability price rises at a rate greater than the discount rate r, continuously 
within that horizon. Although any path of discounted price realizations even-
tually remains permanently below D, before it does so, it can exceed any given 
arbitrary high finite bound. It is recognition of such a possibility that keeps 

   Em[t pm+t] equal to  pm as the horizon, and the probability that the discounted 
price will be below  D at that horizon, both increase.7

Proposition 2 implies that, given a price realization   pm, the sample mean 
and sample variance of a discounted price sequence go to zero almost surely, 
that is:

   
N -1 t

t =0

N -1

∑ pm+t → 0 a.s. (as N → ∞),  and

   
N -1 t pm+t - N -1  j

j =0

N -1

∑ pm+ j






2

t =0

N -1

∑ → 0 a.s. (as N → ∞).

Thus the estimators are consistent with respect to the first two moments 
of the limiting distribution of discounted price. For the case   0 <  < 1, the 
sample average of discounted price realizations starting at any price realiza-
tion,   pm, is eventually permanently below any arbitrary positive fraction of 
the profile of expectations, conditional on   pm, of discounted price. Neverthe-
less the variance of the distribution of discounted price, conditional on   pm, 
goes to infinity as   t → ∞.

7. José Scheinkman has pointed out that similar behavior is discussed in a different model 
by Martin (2012).
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The behavior of  the price path is related to the profile of  conditional 
expectations at time  m by the following theorem:

Theorem 2: Let   0 <  < 1. Given any price realization   pm, with probabil-
ity one, for any   1 ≤ l < ∞, there exists a finite time    (l ), which depends on the 
sequence of price realizations, such that:

   

Em[ pm+t]
l

> pm+t,  ∀ t ≥ (l ),

implying that

  pm+t = o(Em[ pm+t]), a.s.

Proof of Theorem 2: By Proposition 2,    
t pm+t → 0 (as   t → ∞), with 

probability one. Therefore, given any   l,1 ≤ l < ∞, there exists a time    (l ) 
that satisfies    

t pm+t ⋅ l < pm = tEm[ pm+t],  ∀ t ≥ (l ). Q.E.D.

Theorem 2 defines a sequence of upper bounds on the path of price real-
izations. Note that the profile of conditional expectations   Em[ pm+t] is itself  
an upper bound beyond some date   (1). Any given fraction of the profile of 
expectations conditional on initial price is an upper bound on any price 
realized beyond some fixed horizon, with probability one.

5.4 Price Behavior in this Model: Do We See Bubbles?

The behavior of price expectations and realizations in the model is illus-
trated in the example in figure 5.1. At time  0 the profile of conditional expec-
tations,   E0[ pt], rises to infinity at the discount rate. A possible sequence of 
price realizations is illustrated as a grey curve.8 After period 23, all the real-
izations of price lie below   E0[ pt]. The curve   E0[ pt]/2 shows another bound 
at half  the price expectations is eVective beginning at date 39. It is obvious 
that further bounds generated by successively higher values of  l would imply 
that the long- run rate of increase of realized price is strictly lower than the 
discount rate,  4%, even though the storage arbitrage condition  (1) holds, with 
equality, each period, and that price runs of any finite length, understood 
as sequences of prices rising faster than the interest rate, recur infinitely often 
along the path of realizations, almost surely. Figure 5.2 shows the logarithms 
of the same price series, dramatizing the runs of price increases greater than 
the rate of interest.

These figures show that runs of prices rising for several years at a rate 
greater than the rate of  interest before crashing, denoted “explosive” by 
Phillips, Wu, and Yu (2011), and fulfilling the empirical ex post criterion for 
identification of bubbles in grain prices enunciated by Timmer (2009, 2010), 
are consistent with our equilibrium model with rational expectations. In this 

8. Bobenrieth, Bobenrieth, and Wright (2008) oVers a foundation for a strategy for numerical 
solution of marginal values in cases where they are unbounded.



Fig. 5.2 Logarithms of expectations of prices conditional on price at time 0 and 
logarithms of a sample of price realizations

Fig. 5.1 Expectations of prices conditional on price at time 0 and a sample of price 
realizations
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model, they do not signify the disruptive eVects of irrational speculation, 
but rather the dampening eVect of storage that prevents sharper price jumps, 
but with declining eVectiveness if  low harvests persist.

Discussions of volatile grain price behavior often raise the issue of price 
bubbles, frequently without defining the term. Brunnermeier (2008, 578) 
includes a key feature of most definitions of finance economists when he 
states, “Bubbles arise if  the price exceeds the asset’s fundamental value. 
This can occur if  investors hold the asset because they believe that they 
can sell it at a higher price than some other investor even though the asset’s 
price exceeds its fundamental value.” Are price runs characteristic of price 
behavior in our model, as illustrated in figures 5.1 and 5.2, consistent with 
this definition? In our model we have assumed no convenience yield, and 
the law of  one price holds. In that setting, when storage is positive, the 
value of a commodity such as food grain equals its value in consumption, 
as indicated in the envelope condition after equations (1) and (2) above. 
Storage is a one- period investment, so its “fundamental” is the market price, 
which derives its marginal value from its value in consumption. Thus, in our 
model, bubbles consistent with Brunnermeier’s definition cannot occur. In 
this model, they do not signify the disruptive eVects of rational or irrational 
speculation, but rather the dampening eVect of storage that prevents sharper 
price jumps, but with declining eVectiveness, during episodes of repeated low  
harvests.

5.5 Some Empirical Implications

Implications of the model for the empirical behavior of sample averages 
of returns on the stocks, held over specific intervals, are summarized in the 
following theorem:

Theorem 3: Let   0 <  < 1. With probability one, for any given path of 
price realizations   {pt}t ≥0, for any 

 n ∈  and for any    > 0, there exist 

   J = J({pt}t ≥0,n,) ∈ ,  k = k({pt}t ≥0,J,) ∈ , k > n, and K = K({pt}t>0, 
k, β) 

  ∈ ,  K > J, such that:

(i) 
   
J -1 n pt + n - pt

pt





t =0

J -1

∑ ∈(-,  ),

(ii) 
   
J -1 k pt + k - pt

pt





t =0

J -1

∑ ∈ (-1,-1 + ), and

(iii) 
   
K -1 k pt + k - pt

pt





t =0

K -1

∑ ∈ (-,  ).
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Proof of Theorem 3: For 
 j ∈  and for 

  t ∈  ∪ {0}, let Yt+j ≡ 

   
( j pt + j - pt)/pt. The arbitrage equation for storage  (1) implies that there exists 

  p ≥ p(x j(zt)), p depends on   zt, such that    
j1

j p = pt, where   1 is the size of 
the atom at zero of the distribution of   ,  and 

  x
j ≡ x  x    x ( j  times). 

Therefore,

   
-1 ≤ Yt + j ≤  j p

pt

= 1
1

j .

The arbitrage equation  (1) also implies 
  
Et[Yt + j ] = 0. It follows that the se- 

quence   {Xt}t ≥0, where 
 
Xt ≡ Yt + j , is uniformly bounded, and   ∑i =1

∞ supt |Cov(Xt, 

  Xt - i) |< ∞. A strong law of  large numbers (see Davidson 1994, 297) 
implies that

(2) 
   
lim
N →∞

N -1  j pt + j - pt

pt





t =0

N -1

∑ = 0, a.s.

Evaluating  (2) for  j = n we conclude that there exists 
 J ∈  such that   (i) 

holds. For this J, by Proposition 2,

   
lim
k →∞

J -1 k pt + k - pt

pt





t =0

J -1

∑ = - 1, a.s.,

establishing expression   (ii) for large enough k. Finally, evaluating (2) for 

 j = k we obtain   K, K > J, satisfying expression   (iii). Q.E.D.

Expression   (i) of Theorem 3 shows that the average excess rate of return 
on stocks held over  n periods is greater than a given, arbitrary   -, for a 
suYciently large sample size J, as implied by a strong law of large numbers.9 
Expression (ii) states that, with the same sample of initial holding dates, if  
we increase the holding interval suYciently to  k periods (and increase the 
sample size by  k - n periods to accommodate the extended lead), the aver-
age gross discounted return is within an arbitrary 

 
 of  a total loss. At this 

sample size, the sample average of  expression   (ii) could be considered a 
downward- biased estimator of the expected  k - period rate of increase in 
price, which in this model is constant. Thus for any sample of prices of any 
given length, one can find a suYciently far horizon such that the estimated 
average return can be taken to imply mean reversion, as defined, for example, 
in Bessembinder et al. (1995) even if  the behavior of prices does not exhibit 
mean reversion, as in the stationary model considered here. Expression   (iii) 
reflects the fact that the sample average for the longer holding period 
approaches the conditional expectation for that horizon when the sample 
size is suYciently increased.

Comparison of results of expressions   (i) through   (iii) has another inter-

9. A similar result is confirmed (on a very diVerent time scale) for daily returns for wheats on 
the Kansas City and Minneapolis grain exchanges in Bobenrieth (1996).
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pretation, more relevant for estimation of the long- run return on storage 
from any given time zero. As the horizon is increased, the discounted present 
value of price realizations conditional on any price  pt in the sample of size 

 J  in expression   (i) eventually converges along the path of realizations, to a 
neighborhood of zero in finite time, as stated in Proposition 2. From this 
point of view, comparison of expression   (ii) with expression   (i) reflects the 
convergence of the gross discounted value to its almost sure limit of a 100 
percent loss over the holding period, as the latter goes to infinity. But expres-
sion   (iii) shows an increase in the average excess rate of return back to an 
arbitrary neighborhood of the conditional expectation of zero when suY-
cient observations are added to include some that have high rates of price 
increase through the fixed horizon. Note that expression   (iii) does not imply 
that an initial investment at time zero can be restored to profitability if  held 
for a suYciently long time.

5.6 Conclusions

The remarkable work of Gustafson (1958) introduced a market model 
that numerically derives the storage demand given consumer demand, yield 
distribution, cost of storage and interest rate, and assuming maximization 
of expected profits. The standard model shows why price distributions tend 
to be skewed, and why they do not closely reflect production shocks. Recent 
empirical results confirm that it can, contrary to previous claims, also match 
the high price correlations seen in annual prices of  major commodities. 
However, the model as presented by Gustafson cannot address the behavior 
of prices if  their profile of conditional expectations are unbounded, as in 
some models of speculative behavior.

Here we consider an extension of the Gustafson model, introduced in 
Scheinkman and Schechtman (1983) and addressed by Bobenrieth, Boben-
rieth, and Wright (2002), in which price expectations are unbounded, and 
derived its implications for price time series and empirical tests of  price 
behavior. We present versions of the model that exhibit price behavior that 
could be characterized as “explosive” or “exuberant” with episodes of price 
runs that might be identified as “bubbles.” In this model, conditional price 
expectations go to infinity as the horizon recedes, consistent with stationary 
behavior. This behavior is indistinguishable from that produced by a version 
of the standard model with bounded conditional price expectations, so a test 
to establish that price is unbounded is infeasible.

The stationary price process that we have examined reveals the impor-
tance of distinguishing any given profile of conditional price expectations 
from the path of price realizations. The rate of increase of any profile of 
conditional price expectations in our model is constant at the discount rate, 
while beyond some future period the path of realized prices lies permanently 
below the profile of expectations conditional on the current price. Returns 
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on storage are returns consistent with “mean reversion” at suYciently 
long holding periods, even though the long- run expectation of price is in- 
finite.

Appendix

Proof of Theorem 1: Consider the probability of the complement,

   
Prob t pm+t ≥  | pm[ ] = Prob pm+t ≥ 

t
| pm







= t


t
,∞



( ),

where   t  is the probability measure of the price at time   m + t, conditional 
on   pm. Furthermore,

   
t



t
,∞



( ) ≤ | t - * | + *



t
,∞



( ),

where   * is the invariant probability measure of  the price process and  |·| 
denotes the total variation norm.

The transition probability of the price process satisfies, with respect to the 
point ∞, what is called in Futia a generalized uniqueness criterion (Futia 
1982, 390). In addition, the corresponding Markov operator  L is stable and 
quasicompact (Theorems 4.6 and 4.10 in Futia [1982], 394, 397). Using 
Theorem 3.6 in Futia (1982, 390), and Theorem 4 in Yosida and Kakutani 
(1941, 200), we obtain the following conclusion: independent of   pm, there 
exists constants    M > 0,  > 0, such that:

   
|| (L*)t - L1* || ≤ M

(1 + )t
∀ t ∈ ,

where   L* is the adjoint of the Markov operator  L,   L1* is a continuous linear 
operator, the image of which consists precisely of the fixed points of   L*, and 

 ||·|| is the operator norm. Therefore, if  
  
 pm

 denotes the unit point mass at   pm, 
then:

   
| t - * | = | (L*)t( pm

) - L1*( pm
) | ≤ || (L*)t -  L1* || ≤ M

(1 + )t
∀ t ∈ .

Finally, since   * has no atom at infinity, we have that    limt→∞*(/t,∞) = 0.
 Q.E.D.
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Comment Jock R. Anderson

This meeting has been fascinating for me, bringing together as it has many 
aspects of risk management that I have struggled with over the decades.1 It 
has been long since I ventured into the field of staple grain price volatility 
per se, so the opportunity to react to this new chapter is welcome indeed.2

I have, longer than most because of my advantage of seeing him at work 
(and play) as an undergraduate, long been a great admirer of Brian Wright’s 
work, and this occasion does not disappoint. This is an elegant, albeit rather 
mathematical piece, that serves a most useful purpose; to wit, substantiating 
the relevance of the standard model of storage roles in commodity markets.

Brian (Wright 2011, 37) speaks of “the remarkable work of Gustafson 
(1958)”; I think we should also acknowledge the remarkable work of Brian 
Davern Wright, who has taken the Gustafson conceptualization of stor-
age and its economics to enviable heights. In the present and related work, 
Brian has been perspicacious in teaming up with the Chilean fraternity for 
this intriguing piece.

As best I can tell the mathematics is cogent and correct, albeit thankfully 
sparse; I leave it to others more able to judge to pronounce on this aspect. 
The approach is commendable; construct a parsimonious model that cap-

Jock R. Anderson is emeritus professor of agricultural economics at the University of New 
England, Armidale, Australia.

For acknowledgments, sources of research support, and disclosure of the author’s material 
financial relationships, if  any, please see http://www.nber.org/chapters/c12813.ack.

1. My modest eVorts have included Anderson, Dillon, and Hardaker (1977), Hardaker, 
Huirne, and Anderson (1997), and Scandizzo, Hazell, and Anderson (1984) on dealing with 
agricultural risk management in general, and on unpredictable food price variability (volatility) 
more specifically in Anderson and Scandizzo (1984), and Anderson and Roumasset (1996).

2. For example, Quiggin and Anderson (1979, 1981), seemingly never cited by Brian Wright, 
perhaps because we rather dodged storage aspects per se.




