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“Healthy, Wealthy,

and Wise?” Revisited

An Analysis of the Causal
Pathways from Socioeconomic
Status to Health

Till Stowasser, Florian Heiss, Daniel McFadden,
and Joachim Winter

8.1 Introduction

In health economics, there is little dispute that the socioeconomic status
(SES) of individuals is positively correlated with their health status. The size
of the body of literature documenting that wealthy and well-educated people
generally enjoy better health and longer life is impressive.! The robustness of
this association is underscored by the fact that the so-called health-wealth
gradient has been detected in different times, countries, populations, age
structures, and for both men and women. Moreover, the results are largely
insensitive to the choice of SES measures (such as wealth, income, educa-
tion, occupation, or social class) and health outcomes.

While the existence of the gradient may be uncontroversial, the same can-
not be said about its explanation. Medical researchers, economists, and other
social scientists have developed a large number of competing theories that
can broadly be categorized as follows: there may be causal effects from SES
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1. Smith (1999) and Goldsmith (2001) provide extensive surveys of the earlier literature. A
brief summary of more recent contributions to this field can be found in Michaud and van
Soest (2008).
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to health, causal effects that work in the opposite direction, and unobserved
common factors that influence both variables in the same direction without
a causal link between the two. Distinguishing among these explanations is
important because they have different implications for public policy aimed
at improving overall well-being. For instance, if causal links between wealth
and health were confirmed, society would likely benefit from more universal
access to health care and redistributive economic policy. Yet, if such causal
links were rebutted, resources would be better spent on influencing health
knowledge, preferences, and, ultimately, the behavior of individuals.

Besides its importance, the discrimination between these alternative hy-
potheses also poses a great methodological challenge because the variation
found in observational data is typically endogenous. This is especially true
for cross-sectional data, which only offers a snapshot of the association
between health and wealth. Without further information on the history of
both variables, the researcher faces a fundamental simultaneity problem,
which makes the identification of causal paths a hopeless venture. A pos-
sible remedy consists of finding some sort of exogenous variation in SES or
health to infer causality and the direction of its flow. This search, however,
is typically quite difficult because convincing instrumental variables are very
hard to come by. As a consequence, researchers often face the unattractive
choice between the easy path of ignoring the endogeneity problem, which
casts serious doubts on any drawn conclusions, and the more involved use
of instrumental variable (IV) strategies that critically rely on the untestable
quality of the instruments.

The nexus of health, wealth, and wisdom is also the subject of the study
by Adams et. al. (2003; HWW henceforth). The authors propose an innova-
tive approach that attempts to solve the preceding trade-off, on the premise
that causal inference may be possible without having to isolate exogenous
variation in SES. Their identification strategy consists of two main ingredi-
ents: first, they exploit the dynamic nature of panel data, focusing on health
innovations rather than the prevalence of medical conditions. Second, they
make use of the so-called Granger causality framework, which represents a
purely statistical approach to the theory of causation. The great advantage
of working with this alternative concept is that the detection of potential
Granger causality is a rather easy task. While knowledge on the existence
of Granger causality may not be useful in its own right, it allows for tests
on the absence of “true” causality in a structural sense.

Applying this framework to the first three waves of the Asset and Health
Dynamics among the Oldest Old (AHEAD) survey study, HWW find that
in an elderly US population, causal channels that operate from wealth
to health are an exception rather than the rule: while causality cannot be
ruled out for some chronic and mental conditions for which health insur-
ance coverage is not universal, SES is unlikely to be causal for mortality
and most other illnesses. Considering these strong results, as well as the
methodological novelty of HWW’s approach, it is not surprising that their
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work has subsequently been the subject of vivid debate within the literature.?
So far, the focus has clearly been on the validity of HWW?’s identification
strategy in general, with some calling into question the ability to truly infer
causality with a concept that arguably is a rather sparse characterization of
causal properties.

We certainly agree that HWW’s model would benefit from certain meth-
odological refinements and plan to implement these in future research.
For the present project, however, we deliberately leave the econometrics
unchanged, to study a different aspect that also merits attention: the sta-
bility of HWW’s results when confronted with new data that allows for
hypothesis tests of greater statistical power. Special interest lies in assessing
whether the somewhat surprising absence of direct causal links from SES
to most medical conditions is a robust finding or perhaps the artifact of a
particular data sample. Since the publication of HWW’s original article,
the AHEAD survey has been incorporated into the more-encompassing
Health and Retirement Study (HRS). This permits deviations from HWW’s
data benchmark along the following dimensions: the same individuals can
be tracked for a longer period of time, the analysis can be extended to new
cohorts of respondents, and the working sample can be widened by includ-
ing younger individuals aged fifty and older. The last point is of special
interest as it offers variation in health insurance status that is not available in
a Medicare-eligible population. To understand which of these data changes
contribute to any deviating conclusions, we do not apply the whole bundle
of modifications at once. Instead, we estimate the model multiple times, by
applying it to several different data samples, which are gradually augmented
along the dimensions just outlined.

We lay out the theoretical background of our analysis in section 8.2, where
we review the potential explanations for the association between SES and
health and specify the econometric challenges that arise when trying to dis-
criminate among them. This is followed by a discussion of how to address
these challenges. Section 8.3 describes the approach proposed by HWW. A
reanalysis of HWW with new data is presented in section 8.4. Section 8.5
concludes and outlines topics for future research.

8.2 The Difficulty of Causal Inference

8.2.1 The Issue: Potential Channels between SES and Health

Correlation does not necessarily imply causation. This insight is one of
the main lessons every empiricist needs to internalize. At times, however,
it can be tempting to neglect this admonition, especially when a causal

2. As an example, consider the comments to HWW by Adda, Chandola, and Marmot (2003),
Florens (2003), Geweke (2003), Granger (2003), Hausman (2003), Heckman (2003), Hoover
(2003), Poterba (2003), Robins (2003), and Rubin and Mealli (2003) published in the same
issue as the original article.
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Table 8.1 Median wealth by self-rated health status by year

Self-rated health 1992 1996 2000 2004 2008
Excellent 155.6 192.0 256.0 3314 363.0
Very good 122.1 159.0 202.6 240.0 304.0
Good 82.5 106.2 130.6 160.0 194.0
Poor 46.7 62.2 69.0 75.1 86.1
Fair 19.5 35.0 36.5 39.7 48.1

Notes: Calculations by authors based on HRS data. Numbers reported in thousands of USS.

interpretation of a joint motion of two variables is very intuitive. The rela-
tionship between SES and health is a prime example for such a situation.
As an illustration, consider table 8.1, which lists household median wealth
of HRS respondents arrayed against self-reported health status. Here, the
wealth-health gradient is prominently on display as median wealth mono-
tonically decreases with impairing health self-reports—an observation that
is remarkably stable over time.

What could be more natural than to interpret this strong correlation as
a causal influence of wealth on health? After all, it is the explanation best
in line with conventional wisdom: money can buy (almost) anything—even
better health. Yet the most intuitive conclusion may not necessarily be the
only valid one. In fact, there are two additional hypotheses for the associa-
tion of SES and medical conditions: the causation could flow from the lat-
ter to the former, and the correlation may actually be spurious, with third
factors affecting health and wealth in a similar way. This section describes
these rivaling theories and gives an overview of the most commonly cited
potential pathways between SES and health (see Adler and Ostrove 1999;
Smith 1999; Goldsmith 2001; and Cutler, Lleras-Muney, and Vogl 2011) for
more extensive reviews).

Hypothesis A: SES Has a Causal Influence on Health Outcomes

This is the hypothesis most energetically advocated within the epidemio-
logical literature. While it is true that the main contribution from economists
consists of formulating alternative interpretations of the SES health gradi-
ent (see hypothesis B in the following), it should be emphasized that they
are not on record of categorically challenging hypothesis A, either. In the
following, we list the most prominent theories of channels through which
SES may have a causal effect on health.

Channel Al: Affordability of Health Care. This potential channel is arguably
one of the most intuitive explanations and may be active both before and
after an individual is diagnosed with an illness. For one, varying SES may
be responsible for differentials in the onset of health conditions as poorer
people may be overly sensitive to the costs of preventive health care. In
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addition, wealth could play a crucial role in determining the quality or even
the plain affordability of medical treatments once they become necessary.

Channel A2: The Psychological Burden of Being Poor. Medical scientists
increasingly emphasize the importance of psychological consequences of
low SES. They argue that low-wage employment is typically associated with
a high degree of work monotonicity and low job control, leading to psycho-
social stress. Similarly, economically disadvantaged individuals are believed
to be repeatedly exposed to episodes of high emotional discomfort, either
due to long phases of unemployment or a general feeling of social injustice.
When accumulated, these stressful experiences may well have strong adverse
effects on physical health as well. Furthermore, adverse wealth shocks—
such as the loss of life savings in a stock market crash—are likely to cause
anxiety and depression, representing a more immediate avenue through
which SES may impact health.

Channel A3: Environmental Hazards. Another line of argument is that the
exposure to perilous environments is considerably higher for the poor. This
may concern job-related risks because it can be argued that workplace safety
is lower and physical strain higher for poorly paid occupations. The reason-
ing also extends to people’s living environments as neighborhood safety,
dwelling condition, air and water quality, and so on are usually much better
in exclusive residential areas.

Channel A4: Health Knowledge. Considering that education is an integral
component of SES, it is conceivable that part of the correlation between
SES and health is attributable to differences in health knowledge. According
to this argument, information on medical risk factors or the importance of
preventative care may be more widespread among the highly educated and
wealthy, leading to healthier lifestyles and lower morbidity rates among
this group.

Channel A5: Risk Behaviors. An often-cited pathway through which SES
may influence health is the asymmetric distribution of unhealthy lifestyles
such as smoking, drinking, and poor diet. To the extent that all of these vices
are less common among the rich, health differentials may in fact be driven
by SES variables. Note that the question of why smoking, excess alcohol
consumption, and obesity are especially prevalent in lower social classes is
interesting in its own right, with channels A2 and A4 potentially accounting
for part of this relationship.

Hypothesis B: Health Has a Causal Influence on SES Outcomes

Economists and other social scientists were among the first to challenge
the conception that causal mechanisms would work their way exclusively
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from SES to health. Much of this research is inspired by Grossman’s (1972)
health production framework, which models the impact of health capital
on savings, labor market participation, and retirement decisions. We believe
the following three channels to be the most important in describing causal
effects from health to SES outcomes.

Channel Bl: Productivity and Labor Supply. Arguably, the most relevant
reason why health may be causal for SES outcomes can be found on the labor
market. The productivity of an individual in poor health is generally lower
than that of someone whose physical robustness allows for longer working
hours, less absenteeism, and better career options. As a consequence, frail
people will tend to earn lower wages and accumulate less assets throughout
their life course. Adverse health shocks may even be so severe that people are
forced to leave the labor market altogether, depriving them from any realistic
chance to improve their SES.

Channel B2: Life Expectancy and Time Preferences. To the extent that severe
illnesses increase mortality risks, there may be an impact of poor health on
time preferences. Life-cycle models predict that the optimal response to
a perceived reduction in life expectancy is to move consumption from an
uncertain future toward the present. Thus, a history of dire medical events
may induce individuals to dissave faster, establishing a causal link from
health to SES.

Channel B3: Medical Care Expenditures. The most immediate form of im-
pact health events can have on financial endowments are out-of-pocket
costs of medical care. While it can be argued that the influence of this path-
way should only be modest in size, this is certainly untrue for people without
health insurance. In many cases, not even the insured are completely shielded
from medical bills: the existence of deductibles and lifetime coverage limits
poses great financial threats especially for the chronically ill.

Hypothesis C: SES and Health Are Jointly Caused
by an Unobserved Third Factor

This hypothesis makes the case that the association between health and
wealth could have other reasons than causal mechanisms between the two:
there may be hidden third factors with a common influence on both SES
and health, rendering the correlation among the latter spurious. This distinc-
tion is vital because policies that aim at improving health outcomes by, say,
redistributing wealth are bound to be ineffective, as long as the true common
cause remains unaffected.

Channel C1: Unobserved Genetic Heterogeneity. A good candidate for an
unobserved common cause is genetic disposition. For instance, genetic
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frailty may reduce the physical resistance as well as the intellectual and pro-
fessional skills of an individual. In such cases, health will be poorer and SES
will be lower despite the absence of causal links among the two.

Channel C2: Unobserved Family Background. Genetic endowment is not the
only determinant of people’s physical and personal traits. Similarly influen-
tial are matters of parentage and upbringing. Especially, prenatal and early
childhood nutrition as well as stress are believed to have lasting negative
effects on well-being and functional abilities, establishing an association
between health and SES that is similar to that of channel CI.

Channel C3: Unobserved Preferences. Irrespective of whether they are inher-
ited or learned, preferences that influence certain behavior and lifestyles
are another often-cited source of common effects. The prime example are
descendants of dysfunctional families, who adopt both the unhealthy life-
styles (such as poor diet or smoking) and the unambitious attitudes toward
education and work by which they are surrounded. Another example are
time preferences: overly myopic people will underinvest in preventative med-
ical care and in education because in both cases pay-offs will materialize in
a distant future, to which only little importance is attached.

8.2.2 The Challenges: Simultaneity and Omitted Variables

The fact that all of the aforementioned hypotheses are generally plausible
makes the inference on causation a methodologically challenging task. Sup-
pose—as s the case for the remainder of this chapter—we were interested in
testing the validity of hypothesis A, that is, whether SES has a causal effect
on health outcomes. Ideally, we would want our analysis to rely on truly
exogenous variation in SES variables, similar to that attained in controlled
experiments. The reality for economists, however, is far from being ideal
because the sources of variation we find in observational data is unknown
to us. As a consequence, causal variables are potentially endogenous them-
selves.

The possible sources of endogeneity in the wealth-health case have been
described in section 8.2.1. Ultimately, they generate two fundamental econo-
metric challenges: we have to distinguish hypothesis A from hypothesis B
and hypothesis A from hypothesis C. As we discuss in the following, the first
consists of dealing with a simultaneity problem and the second of finding a
solution to the problem of omitted variables.

Challenge 1: The Simultaneity Problem
( Hypothesis A versus Hypothesis B)

Imagine for a moment that hypothesis C could be dismissed so that any
association between SES and health had to be due to either hypothesis A
or B. Even with this kind of simplification in place, the identification of
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SES causality for health is still difficult. Of course, we could regress our
health variable of interest (H;) on SES (S;) and a vector of exogenous control
variables (X,), estimating the following equation with OLS:

(1) H.=0,+6.5S, +X0, +m,

where i denotes the unit of observation, and r),is the residual. Yet the crucial
question is if we could interpret the parameter estimate és as the causal effect
of SES on health. The answer would be affirmative if the structural model
were to look like

E(H|S,X) =a + BS,+ Xy,
E(S;|H,, X)) = E(S,IX;).

This model describes a world in which causality only flows from SES
to health, with B capturing the true causal effect. In this world, @S would
indeed have a causal interpretation, with plim és = B. However, the existence
of hypothesis B indicates that the preceding model may not be a realistic
description of reality. In fact, the true structural model is likelier to look like

(2) E(H]S, X)) = o+ BS, + Xy,
(3) E(S)|H,X)=a+ bH,+ Xc,

with B again measuring the true causal effect of SES on health and b captur-
ing any causation working its way in the opposite direction. Equations (2)
and (3) describe a standard simultaneous-equation model (SEM) as both
dependent variables are jointly determined with each being a function of
the other. When trying to estimate this SEM by simply running regression
equation (1), és will be subject to simultaneous-equation bias, picking up
the information conveyed in b as well. As a result, the parameter of inter-
est, B, is not identified, making a test for causation of SES to health all but
impossible.

Challenge 2: The Omitted-Variable Problem
( Hypothesis A versus Hypothesis C)

Even in the absence of challenge 1, we would still face the problem of
having to discriminate between hypotheses A and C. Presume we were able
to plausibly exclude causal paths from health to SES. In this case, the iden-
tification problem no longer consists of confounding the causal effect of
wealth on health with reverse causality. Instead, the question arises if an
association between both variables is attributable to causality at all because
it could also stem from a joint reaction to a third factor. As the review of
hypothesis C has shown, all of these potential common causes (such as
genetics or preferences) are inherently unobservable, rendering challenge 2
an omitted-variable problem.

Suppose the true structural model is best described by
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(4) E(H|S,X, C)=a+BS,+ Xy +3C,

with C,standing for an individual-specific variable that influences both SES
and health. If this common cause were observable, we could simply include it
in our regression function, and the causal effect, B, would be readily identi-
fied. However, given its omitted-variable nature, C, will be swamped into the
error term, as the comparison of the structural model in error form (equa-
tion [5]) with the estimable model (equation [6]) demonstrates:

(%) H =o0+BS +Xy+3C +¢g,
(6) H,= o+ BS, + Xy +u,

Here, the well-behaved structural error is denoted by €, whereas the com-
posite residual is u; = 8C; + €, Given that C;has an impact on our explana-
tory variable of interest, S,, the latter will be endogenous because cov(S,, u,)
# (. As a consequence, the estimation of this model by means of regression
equation (1) will yield a parameter estimate @S that suffers from omitted-
variable bias, with plim és # B. Importantly, és will absorb any causal impact
that C, may have on H.. As a result, the presence of common effects could
easily lead to erroneous conclusions of active causal links between wealth
and health in cases where 3 actually equals zero.

Causal Inference in the Face of Both Challenges

Naturally, there is no reason to believe that both econometric problems
are mutually exclusive. As a rule, they will be present at the same time, aggra-
vating causal inference even more. Ultimately, we have to estimate a struc-
tural model that takes the following form:

(7) H =a+BS,+X[y+3C, +¢,,
R
®) S, =a+bH +X{c+dC, +e,,
—

=V,

with e, denoting a structural error and v, representing the composite unob-
servable. Given this multitude of potential confounders, we truly cannot
expect the simple regression function 1 to uncover 3, the structural param-
eter of interest. While this assessment is certainly sobering, it also sets a
clearly defined bar for any alternative identification strategy: in order to be
convincing, it has to live up to the challenges of simultaneity and omitted
variables.

A common way of dealing with the potential endogeneity of SES is the
use of instrumental variable (IV) estimators. The virtue of this approach
is that—at least in theory—it solves both of these challenges at once. A
good instrument is, however, hard to find in practice. In the context of SES-
health causality, exogenous wealth shocks have been used as instrumental
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variables. For instance, Meer, Miller, and Rosen (2003) as well as Michaud
and van Soest (2008) use inheritances. In a similar vein, Smith (2005) inter-
prets the strong stock market surge in the 1990s as a positive wealth shock,
and it is probably just a matter of time until we will see the first papers that
make use of the exogenous variation in wealth caused by the recent global
financial crisis.

We do not discuss I'V approaches in detail, but we would like to point out
one problem that arises in the analysis of the SES-health gradient. While
the preceding instruments may well be exogenous and certainly have an
impact on wealth, it is not entirely clear if the SES variation they induce is
really that relevant for health. According to Grossman’s (1972) standard eco-
nomic model of health, an individual’s general health status can be viewed
as a latent capital stock that reflects the entire history of medically relevant
events and behaviors. As a result, the human body will certainly react to
current influences, but it will not forget how it was treated in the past either.
This “memory effect” likely extends to any influence SES may have had dur-
ing one’s lifetime. In light of this, it is questionable whether sudden changes
in wealth are really that informative when testing for causal links between
SES and health. In fact, because an IV estimator makes use of exogenous
variation in wealth at one point in time to identify 3, there is a great chance
that causal links from SES to health are statistically rejected even though
they have been operating in the past.’> Admittedly, an IV estimator will still
capture any instantaneous impact a wealth shock would have on health out-
comes. As a renewed look at the potential causal pathways for hypothesis
A suggests, immediate effects are most likely to arise through channel A2 if
wealth shocks are severe enough to have direct psychological consequences.

8.3 The Approach of the HWW Study

The previous section demonstrates that the identification of causal paths
between health and wealth with IV approaches is not always feasible. Espe-
cially, the isolation of truly exogenous and yet meaningful variation in SES
poses considerable problems. On this account, HWW propose an alternative
identification strategy that avoids this critical step altogether. In fact, they
make use of the entire observed variation in SES variables, tacitly accepting
that some of it may well be of endogenous nature. The authors argue that,
in spite of this methodological simplification, their approach still allows for
at least indirect inference of causal links from SES to health.*

3. In this light, it is not too surprising that none of the aforementioned studies using wealth
shocks as an instrument for SES was able to find evidence supportive of hypothesis A.

4. In their article, HWW also formulate tests on causality working in the opposite direction.
However, the authors themselves are quite skeptical about this part of their analysis, admit-
ting that it is likely subject to model misspecification. As they stop short of endorsing their
own results, we follow their lead and concentrate on the more promising test of hypothesis A.
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Naturally, HWW need to find convincing answers to the two econometric
challenges described in section 8.2.2. When testing hypothesis A, they face
challenge 1 of excluding the possibility that any observed comovement of
wealth and health is in reality due to reverse causality. In addition, they
have to tackle challenge 2 of ruling out that the association is driven by
unobserved common effects.

8.3.1 Challenge 1: Ruling Out Hypothesis B

Distinguishing hypotheses A and B without the aid of IVs is a difficult
task. We may observe that the poor are less healthy, but we have no informa-
tion on which happened first: were people already poor before they got sick,
or were they already sick before they became poor? With cross-sectional
data that only offers a snapshot of this association, there is no way of find-
ing out. Panel data, on the other hand, provide valuable information on
transitions in health and wealth, making it possible to analyze the dynam-
ics of their relationship and to identify the direction of the causality flow.
Imagine we were to analyze the dependence of health innovations on past
levels of SES. As long as one agrees that a cause must precede its effect, we
can be sure that the (unanticipated) onset of an illness at time ¢ cannot have
caused the amount of wealth or education at time 7 — 1. Given there is any
causation at work, it must flow from the past to the present, or—as in this
case—from SES to health innovations.

HWW take this insight to heart by applying their framework to the first
three panel waves of the aforementioned AHEAD survey study, which spans
the years between 1993 and 1998 and is representative of the US population
aged seventy and older. They propose a dynamic model of health incidence
that takes the following form:

(9) f(HI{[|HI,/;<j, Hitfl’ Sir71> Xit*l)’

where 7/ once again stands for the unit of observation (in this case: household)
and the newly introduced ¢ denotes time. The index j stands for the respec-
tive health condition as the authors apply their model to twenty different
medical outcomes.’ The dependent variable, HF,, measures a new incidence

it
of a given health condition.® According to this model, a health innovation
is potentially influenced by the following explanatory variables:

5. These include acute illnesses (cancer, heart disease, stroke), mortality, chronic conditions
(lung disease, diabetes, high blood pressure, arthritis), accident-related events (incontinence,
severe fall, hip fracture), mental problems (cognitive impairment, psychiatric disease, depres-
sion), as well as information on interview status (self versus by proxy), BMI, smoking behavior,
ADL/IADL impairments, and self-rated health.

6. Note that this measure of health innovation cannot be interpreted as a simple change in
health status (AH/, = H/,— H, |) because HI, generally captures deteriorations in health only.
For chronic illnesses, such as diabetes, it measures when the condition was first diagnosed. For
acute health events, such as stroke, HI/, indicates every new occurrence.
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Past Level of SES

The vector S, | includes five SES variables, namely wealth, income, years
of education, dwelling condition, and neighborhood safety. These are the
variables of main interest. Conceptually, if SES had any direct causal impact
on health, we would expect to observe that rich individuals are less likely to
develop a new medical condition compared with poor individuals. While this
finding alone would not yet prove the existence of a causal link from SES to
health, confounding with reverse causality could be ruled out because S, ,
precedes HE,.

Past Health Status

New medical events are likely influenced by a respondent’s health history
as well. This may take the form of state dependence (e.g., past cancer influ-
ences the onset of new cancer) and comorbidities (e.g., past cancer influences
the onset of depression). For this reason, HWW control for vector H
containing the past levels of all twenty health conditions.

it—1°

Current Health Incidences with Immediate Impact

In theory, health innovations could also be influenced by contemporane-
ous shocks in SES or other health conditions. This constitutes a problem
for HWW’s concept of dealing with simultaneity as it critically relies on the
ability to observe the timing of innovations in both variables. HWW solve
this problem by imposing further structure: On the one hand, they make the
assumption of no instantaneous causation of SES to health shocks, arguing
that any causal action as described by channels Al to A5 takes time.” On
the other hand, they impose a chain structure on contemporaneous health
innovations, grouping them in the order in which instantaneous causality
is most likely to flow.® Thus, they include the vector HIX</, containing the
incidence variables for all health conditions (1, . . ., k) that are causally
arranged upstream of condition j.

Demographic Control Variables

Finally, the authors control for a number of demographic factors that
could have an impact on health events, too. The corresponding vector, X, |,
includes the respondent’s age, marital status, as well as information on the
parent’s mortality and age at death.

7. The authors themselves make the point that this assumption loses its innocuousness if the
time intervals between panel waves become too large because even the more inertial causal links
will then have enough time to unfold. Given that the AHEAD study is conducted biennially, the
time aggregation to observation intervals may indeed reintroduce some degree of simultaneity.

8. HWW list cancer, heart disease, and stroke first because they can have an immediate
impact on mortality. The other medical conditions are grouped such that degenerative illnesses
can cause chronic diseases, which, in turn, may influence accidents and finally mental health.
Importantly, instantaneous causality is not designed to flow in the opposite direction.
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Building on model 9, HWW design a test for noncausality of SES in the
spirit of Granger (1969) and Sims (1972). This so-called Granger causal-
ity (or G-causality) approach is a purely statistical take on the concept of
causation, having its origin in the time series literature. Formally, SES is not
Granger causal for health condition j if

(10) SHLIHETH, S, . X, ) = fHEHE, H, o, X ),

it it > it—1°

that is, HI, is conditionally independent of S, |, given HI*~, H,, ,, and X, ,.
Intuitively, given health history, knowledge of SES history must not con-
tribute to the predictability of health innovations. The test is implemented
by estimating the model by maximum likelihood (ML) both unconstrained
(with S,, | asregressors) and constrained (without S,, |) and by subsequently
comparing the log likelihoods of both versions. The motivation for this
likelihood ratio test is that the two values should be the same if the null
hypothesis of noncausality is true.

The detection of Granger causality, however, does not guarantee the
presence of “true” causality in a structural sense, which is the concept we
are ultimately interested in.° Admittedly, information on the presence of
G-causality is helpful when predicting health innovations for an individual
with given health and SES history. However, the reduced-form nature of
G-causality renders it unsuitable to predict the effects of (economic) policy
interventions. If SES is Granger causal for health innovations, we only know
that, for instance, the onset of an illness is likelier for a person with low SES.
Yet we do not know if this statistical dependence is due to a real causal link
from wealth to health (hypothesis A) or due to unobserved common effects
(hypothesis C). Given the diverging policy conclusions both interpretations
would trigger, HWW also need to address the second methodological chal-
lenge of dealing with the omitted-variable problem.

8.3.2  Challenge 2: Ruling Out Hypothesis C

Most of the omitted variables identified in section 8.2.1 to potentially
have a common influence on health and SES are unobservable by definition.
As a result, challenge 2 cannot simply be resolved by improvements in data
quality and the addition of missing variables to the vector of covariates.
HWW also refrain from making use of fixed-effects estimation, which repre-
sents another common strategy to heal omitted-variable bias in cases where

9. There are three major “schools” of causal analysis: the structural approach (S-causality)
described by Hoover (2001) and Hausman (2003) that is grounded in econometric simultaneous
equations models, the potential-outcomes approach (P-causality) characterized by Rubin
(1974) and Heckman (2000) that is based on the analysis of experimental treatments and the
time series prediction approach (G-causality) employed here. The conventional interpretation
of “true” causality is arguably best described by S- and P-causality treatments. In fact, Pearl
(2000) demonstrates a formal equivalence between the two concepts. Both of these schools
are critical of G-causality, arguing that its purely positivistic approach does not realistically
characterize causal properties.
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panel data is available. In fact, the efforts made by the authors to distinguish
between structural causality and common effects are limited to using a rich
set of covariates in the hope that this will mitigate the importance of unob-
servables. They argue that:

[Flor example, genetic frailty that is causal to both health problems and
low wages, leading to low wealth, may be expressed through a health con-
dition such as diabetes. Then, onset of new health conditions that are also
linked to genetic frailty may be only weakly associated with low wealth,
once diabetic condition has been entered as a covariate. (6)

Despite this conciliating argument, HWW acknowledge that the failure
to cleanly identify causal structures questions their approach’s ability to
gauge the effects of “out-of-sample” policy changes. To address this issue,
they scrutinize the generality of their results by adding invariance tests to
the analysis. Intuitively, a model is only suitable for the sort of predictions
HWW have in mind if it remains valid under different scenarios than those
covered by the data, or—as the authors put it—if it has the invariance
property of being valid for each possible history. For instance, if the applica-
tion of the model to different populations, time periods, and policy regimes
had a negligible impact on estimation results, there would be reasonable
hope that the Granger noncausality tests are indeed informative. The invari-
ance tests as implemented by HWW mainly inspect the stability of findings
across time. Model 9 is estimated by stacking the data for the two available
panel wave transitions (i.e., W1 — W2 and W2 — W3) above another. The
same model is also estimated for both wave transitions individually, and a
test statistic is constructed that compares the log-likelihoods of these three
estimations. The motivation for this likelihood ratio test is similar to that
of a Chow test. If the null hypothesis of model invariance is true, estimated
parameters of the stacked model should not differ from those of the two
single-transition models.

Alltold, HWW apply the following system of noncausality and invariance
tests to the estimations of all twenty health conditions: First, they test for
Granger noncausality of SES for health innovations in the stacked version
of the model under the maintained assumption of invariance (S|I). Then,
they employ an unconditional invariance test, as described in the preced-
ing (I), followed by an invariance test with noncausality imposed (I|noS).
Finally, they implement a joint test of invariance and noncausality (S&I).
Conceptually, HWW condition the validity of their noncausality tests on
the outcome of the corresponding invariance test: only if invariance is con-
firmed will they put faith in the model’s results. The authors are optimistic
that with these refinements in place, their model is well placed to make mean-
ingful predictions even if it fails to identify true causal links, stating that:

[I]t is unnecessary for this policy purpose to answer the question of
whether the analysis has uncovered a causal structure in any deeper
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sense. Econometric analysis is better matched to the modest task of test-
ing invariance and non-causality in limited domains than to the grander
enterprise of discovering universal causal laws. However, our emphasis
on invariance properties of the model, and on tests for Granger causality
within invariant families, is consistent with the view of philosophers of
science that causality is embedded in “laws” whose validity as a descrip-
tion of the true data generation process is characterized by their invari-
ance properties. (10)

They even go a step further and suggest that their approach—while not
powerful enough to distinguish between causation and common effects—
permits at least the one-sided test for the absence of true causal links. Essen-
tially, they view Granger causality as a necessary but insufficient condition
for a structural causal pathway from SES to health. Their decision crite-
ria when interpreting results are as follows: if the invariance test fails, one
should question the validity of the model for this particular health variable
and refrain from drawing any conclusions. If invariance holds and Granger
causality is present, one cannot distinguish between a direct causal link and
a common factor. Yet, if invariance holds and Granger causality is ruled
out, it should be safe to deduce that SES does not have a causal impact on
the health condition under consideration.

8.3.3 Summary of HWW’s Findings

Contrary to conventional wisdom, the evidence from applying HWW’s
approach to the elderly US population is not universally supportive of
hypothesis A. In fact, they find that SES is unlikely to be causal for mortal-
ity, most acute health conditions, accidents, and a large number of degen-
erative diseases. Medical conditions, for which direct causal links cannot be
ruled out, include self-rated health status, most mental illnesses, and some
chronic conditions such as diabetes, lung disease, and arthritis. This pattern
loses some of its mysteriousness when viewed in the context of US health-
policy characteristics. The population under examination is of advanced
age and eligible for Medicare, which will likely weaken any causal impact
wealth could have on well-being via the affordability of health care. Yet
even Medicare coverage is not fully comprehensive and tends to focus on
acute care procedures, while generally failing to limit out-of-pocket costs
for treatments of chronic and psychological conditions.!® This lends indi-
rect evidence for the importance of channel Al because the socioeconomic
gradient emerges exactly for those health conditions, for which the ability
to pay is most likely to be an issue.

Reflecting the substantial degree of ambiguity in these results, the policy

10. Note that the study was conducted well before the introduction of Medicare Part D in
2006 that especially benefited the chronically ill by improving the coverage of prescription
drugs.
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conclusions formulated by HWW are rather contained in both phrasing
and substance. On the one hand, they cannot overcome the methodologi-
cal challenge of inferring true causality when G-causality is detected. This
leaves open whether SES-linked preventive care induces onset of chronic
and mental illnesses or whether persistent unobserved factors are to blame
for the observed health-wealth association. On the other hand, even con-
vincing evidence for the absence of direct causal links might not necessarily
warrant the bluntest form of policy recommendation. Sure enough, SES-
linked therapies for acute diseases do not appear to induce health and mor-
tality differentials, which—to quote HWW-—should theoretically permit
the strong conclusion that “policy interventions in the Medicare system to
increase access or reduce out-of-pocket medical expenses will not alter the
conditional probabilities of new health events” (10). However, the authors
stop short of actually drawing this conclusion, which reflects their reluctance
to base overly aggressive policy proposals on a concept whose ability to
simulate the effect of system shocks is not indisputible.

8.3.4 Discussion of HWW’s Approach

All things considered, what should we make of HWW’s approach of infer-
ring causality and yet avoiding the cumbersome search for exogenous varia-
tion in SES? Does their reliance on Granger causality and their decision to
focus on health innovations really do the trick of solving the endogeneity
problem, or have they entered a methodological dead-end street? Overall,
the response within the literature has been fairly critical, albeit not excoriat-
ing, pointing out a number of issues briefly discussed in the following.

Existence versus Activation of Channels

Itis important to understand the limitations of an approach that focusses
on innovations in health, rather than health status itself. HWW detect a
strong and ubiquitous association of SES and prevalence of health condi-
tions in the initial wave of their sample. This suggests that the elderly popu-
lation under consideration has potentially been affected by some of the
causal channels between health and wealth in the past. This history, however,
remains a blind spot for HWW’s model: by concentrating on future health
events, they are unable to explain what factors lead to the preexisting SES
gradient. By contrast, they study the question whether SES has an impact on
the onset of additional medical conditions, given an individual is already old,
still alive, and has gone through a long and unexplained health-wealth his-
tory. While the analysis of an elderly population is not illegitimate and cer-
tainly interesting in its own right, one should entertain some doubts about
its external validity. In theory, HWW’s findings could—if extrapolated
backward—also provide a retrospective explanation for the early relation
between SES and health. However, as pointed out by Adda, Chandola, and
Marmot (2003), Heckman (2003), Poterba (2003), and HWW themselves,
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this extreme form of time invariance over the entire life cycle is unlikely to
hold as certain causal channels are probably relevant at different stages in
one’s life.!! In light of this, an accepted noncausality test should perhaps not
be taken as evidence against the plain existence of a causal link but rather
against its activation within the class of invariances under consideration.

Unobserved Common Effects

As argued in the preceding, the major weakness of HWW’s approach
is that it cannot separate true causality from hidden common effects. Yet,
according to the authors, this will only constitute a problem if Granger
causality is detected. In the absence of G-causality, causation in a structural
sense should be ruled out as well. This interpretation implies that the detec-
tion of conditional dependence is a prerequisite for an active causal link—an
assumption that is questioned by Heckman (2003), who argues that per-
sistent hidden factors may also work in the opposite direction of causal
pathways and offset them. If this were the case, information on G-causality
might actually not tell us anything about true causal mechanisms, rendering
HWW’s strategy ineffective. However, the likelihood of direct causal effects
being exactly offset by unobserved common factors should be practically
zero, making this argument irrelevant for identification. Then again, there
are obvious limits to this defence in finite samples so that statistical inference
of causation could indeed be seriously jeopardized by the failure to account
for hidden common causes.

Invariance Tests

Anticipating that their framework might fall short of inferring deep
causal structures, HWW subject their model to the aforementioned invari-
ance tests. On a conceptual level, model invariance would arguably justify
predictions of policy effects, but there are legitimate concerns whether the
actual tests implemented in their paper are statistically powerful enough.
Granger (2003), Hausman (2003), Heckman (2003), and, once more, HWW
themselves point out that invariance under historical interventions is of little
use when the panel is as short as AHEAD, offering hardly any in-sample
variation in populations, age structures, and—most important—policy
regimes. As a consequence, an accepted invariance test as implemented by
HWW is unlikely to be a sufficient condition for the sort of model validity
necessary to make out-of-sample predictions. On top of that, Poterba (2003)
even questions whether one should view the acceptance of HWW’s invari-
ance tests as a necessary condition for meaningful analysis. Instead of dis-
carding results when invariance tests are rejected, one could follow up on the

11. For retirees, pension income is not affected by (contemporary) ability to work, occupa-
tional hazards vanished on the day of retirement, and Medicare provides basic health insur-
ance, rendering channels B1, A3, and A1, respectively, of little importance when late in the life
cycle. At younger ages, however, all of these pathways may well have played an important role.
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reasons for time invariance failures as they may be informative of structural
breaks in causal relationships. For instance, certain causal pathways may
switch on or off in the course of policy changes or as the observed cohort
grows older. In such cases, failed invariance tests would actually shed light
on the circumstances under which causal links will be active or unexpressed,
allowing for sharper, channel-specific causality tests.

Health Dynamics

Another reason for concern is the fact that HWW model health dynam-
ics as a first-order Markov process, which cannot be expected to properly
capture the medium and long-run evolution of health. Intuitively, this is
because the Markov model assumes that all relevant information about the
whole past is captured in the observed variables one period ago. This is
unrealistic because knowledge of longer histories would better capture the
stock characteristics of health capital as envisioned by Grossman (1972).
Taking functional limitations as an example, a respondent who reported
difficulties with walking one year ago and no limitations previously has a
different outlook than a respondent who consistently reported difficulties
with walking for the last ten years.

Instantaneous Causality

Finally, Florens (2003), Geweke (2003), and Heckman (2003) express their
skepticism about HWW?’s handling of instantaneous causality. The hier-
archy imposed on health conditions (with the assumption that incidence
of each condition is conditioned on upstream incidences but not on down-
stream ones) may be acceptable as a reduced-form assumption and is etio-
logically fairly reasonable. Yet it likely falls short of the structural stability
explored by invariance tests and is a potential source of serious model mis-
specification, making it a prime target for methodological improvements in
the course of future research.

8.4 Reanalysis of HWW with New Data

The preceding discussion indicates that HWW’s approach of disentan-
gling the association between health and wealth while avoiding the often
futile struggle of finding exogenous variation in SES comes at the price of
limited methodological persuasiveness. However, because the generic alter-
native—instrumental variables—is not exempt from substantial criticism
either, we certainly feel that this identification concept merits methodologi-
cal refinement rather than being dismissed altogether. Some weaknesses,
such as the treatment of common effects, health dynamics, or instantaneous
causality, require significant modifications to the original model, and we
plan to implement these in future research.

Yet one of the major downsides of HWW?’s study—the lack of invari-
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ance test power—can be addressed without the need for complex changes
but instead by applying the largely unaltered model to a more apposite set
of data. Recall that the root of this problem is that the invariance tests are
based on rather limited variation in “histories” of states relative to the uni-
verse of potential histories. Increasing the N as well as the 7" dimension of
the panel data will arguably raise the number of histories and enhance the
power of these tests. Of course, we can also expect larger sample sizes to
boost the statistical power of noncausality tests, effectively reducing the risk
of committing type-II errors. But sample size is not everything. We believe
that the analysis will also greatly benefit from larger sample “diversity,”
with data covering different kinds of populations that are subject to vary-
ing institutional setups. For instance, the inclusion of younger respondents
could shed light on the question if the activation of causal links is stable
throughout the life cycle or if reaching the retirement age induces some sort
of structural break.

Given that the HRS survey study provides panel data that meets all of the
preceding requirements, the present analysis keeps methodological changes
to an absolute minimum and assesses the stability of HWW’s results when
applying their model to new and more encompassing data.'> Of particular
interest is the question whether HWW’s somewhat surprising result of SES
not having any direct causal impact on most health conditions is confirmed
as test power increases.

8.4.1 The HRS Panel Data

Sample Characteristics

Our data—which are representative of the noninstitutionalized US
population over the age of fifty—come from the Health and Retirement
Study (HRYS), a large-scale longitudinal survey project that studies the labor
force participation and health transitions of individuals toward the end of
their work lives and in the years that follow. While the data is collected by
the University of Michigan Survey Research Center for the National Insti-
tute of Aging, we use the public-release file from the RAND Corporation
that merged records from the nine panel waves available to date. The wave
1 interviews were conducted in 1992 and then repeated every two years so
that HRS incorporates data from 1992 to 2008. Due to significant changes
to the survey design between waves 1 and 2, the first cross-section cannot be
directly compared to subsequent observations and is, therefore, not used in
our analysis. To ensure that HRS stays representative of the population as

12. In fact, this study exactly replicates HWW’s model of health incidence with one notable
exception. For simplicity, we skip their treatment of interview delay, which accounts for the
fact that interview timing appears to depend on health status. While this potentially calls into
question the comparability of responses from healthy and severely ill individuals, we find that
results are virtually unaffected by this nonrandom distribution of time at risk.
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time goes by, the panel is periodically refreshed with new cohorts of respon-
dents. Up to now, the sample consists of five different entry cohorts: the
original 1992 HRS cohort (born 1931 to 1941), the 1993 AHEAD cohort
(born 1923 or earlier), the CODA (Children of Depression, born 1924 to
1930) and WB (War Baby, born 1942 to 1947) cohorts entering in 1998, and
the EBB cohort (Early Baby Boomer, born 1948 to 1953) added in 2004.

At baseline in wave 2 (covering interviews conducted between 1993 to
1994), the data set contains 18,694 individuals with usable records. The panel
is subject to considerable attrition, which reduces sample sizes from wave to
wave—a trend that is only temporarily disrupted when a refreshment cohort
is added to the sample (see figure 8.1). The two sources for attrition are
mortality (especially for the elderly AHEAD cohort) and “sample fatigue.”
Death-related attritors are kept in the working sample because mortality is
one of the key outcomes of interest. With respect to all others attritors, we
apply two alternative sampling schemes. The first exactly mirrors HWW’s
benchmark in that it categorically excludes nonrespondents from the work-
ing sample, irrespective of when their drop-off occurs or whether they rejoin
the survey in later waves. As detailed in the following, the second sampling
procedure assures that the information of these households is used for as
long as they are part of the sample.

Much like in HWW’s original study, we exclude all individuals with miss-
ing information on critical variables. This includes item nonresponse for
key demographic variables as well as cases where information on health
conditions is generally unavailable. If respondents merely fail to answer
isolated health queries, these gaps are filled by means of simulation-based
imputation. Certain health questions on cognitive ability, severe falls, and
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Fig. 8.1 Sample sizes, decomposed by entry cohorts
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hip fractures are not asked to participants below the age of sixty-five, which
is why these variables are excluded from all estimations that include younger
subpopulations. While HWW went to great lengths to impute a large number
of wealth and income observations with first-order Markov cross-wave hot
deck imputation methods, we are in the more convenient position to rely
on the imputations that are now readily available within the RAND/HRS
data. We should note that, in spite of this data cleaning, the self-reported
wealth and income measures are still suspect of considerable measurement
error. The summary statistics for all variables used in our analysis is given
in table 8A.1.

Comparison with HWW’s Data Benchmark

HWW’s original data sample consists of the AHEAD cohort of US
Americans aged seventy and older who are tracked through panel waves 2
to 4. Using the HRS data that are available to date, allows for deviations
from this benchmark along several dimensions. Naturally, we can follow the
same individuals for more time periods because the AHEAD cohort is now
biennially observed between 1993 and 1994 and 2008. Given the introduc-
tion of the four additional entry cohorts, the analysis can also be extended
to different individuals with potentially diverging histories compared to those
in the original study. In addition, it is now possible and certainly interesting
to also widen the working sample by incorporating younger individuals, aged
fifty and older. Finally, it should be noted that there is an additional, albeit
minor, deviation from HWW’s data benchmark even for the same observa-
tions as in the original study. One reason for this is that the early AHEAD
data have subsequently been subject to data updates and revisions within the
HRS project. Similarly, there may be differences between the SES imputa-
tions carried out by HWW and those conducted by RAND/HRS.

8.4.2 Results

Following the strategy described in section 8.3, we fit model 9 as bino-
mial probits except for body mass index (BMI) and Activities of Daily
Living/Instrumental Activities of Daily Living (ADL/IADL) impairments,
which are estimated with ordinary least squares (OLS) and ordered probit,
respectively. Appendix tables 8A.2 and 8A.3 contain the empirical signifi-
cance values for the system of noncausality and invariance tests specified
in the preceding. For a more concise overview of results, refer to tables 8.2
and 8.3. In a nutshell, the reanalysis with fresher and more encompassing
data suggests that direct causal links from SES to health can be ruled out
for much fewer health conditions than in the original study. This casts some
doubt on the stability of HWW’s findings. In order to understand which of
the data changes contribute to these deviating conclusions, we estimate the
model multiple times, using several different data sets by augmenting them
stepwise along the dimensions outlined in the preceding. In the first step,
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Table 8.3 Tests for noncausality (pre- versus postretirement population)

Test results for Granger noncausality

Waves 2-9

Step 4 (0-64) Step 4 (65+)
Health condition Female Male Female Male
Cancer
Heart *
Stroke *
Mortality X . ok
Lung *
Diabetes o ok .
High blood pressure .
Arthritis Ak oAk
Incontinence HEE o HHE
Fall n/a n/a * *
Hip fracture n/a n/a
Proxy xx: o ‘o0
Cognition n/a n/a o HoEE
Psychiatric ok .
Depression seokok sekok skok skskok
BMI . (X4
Smoke now (XX} X X3
IADL ok XX * XX
Self-reported health xx: s XX XX

Note: See table 8.2 notes.

we rerun HWW’s benchmark study for the same cohort and time periods,
yet reverting to the current version of HRS data instead.!* This will detect
any impact arising from data revisions and differences in imputations. The
second step consists of extending the analysis to the other three cohorts in
the sample, hence testing whether HWW’s conclusions are also valid for
different individuals. The third step addresses the question of how results
are affected by increasing the number of time periods under consideration.

13. To ensure that none of the observed changes is confoundedly rooted in the way certain
variables are constructed and program codes are implemented, we also reran HWW’s study
verbatim using their original data. While the goal to exactly reproduce HWW was ultimately
achieved, it should be noted that results are identical to those published as log files within
the appendix of the original 2003 paper but not to those in the article itself. This difference is
attributable to data revisions that HWW accounted for shortly after the paper was published,
which means that the outcome from the appendix should be preferred as the ultimate bench-
mark. Asis evident from comparing columns (1) and (2) of table 8A.2, said differences are not
always trivial in size. Most strikingly, invariance tests tend to fail less frequently when applied
to HWW’s postpublication data set. Yet the impact on causality tests is negligible, thus not
challenging the author’s main conclusions from the article.
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Because in HWW’s model there is no self-evident way to aggregate the
information from multiple time intervals, we compare two different sam-
pling approaches: one that refills the sample after each wave with applicable
observations and one that does not. In the fourth and final step, we evaluate
the impact on estimation results when younger individuals are included in
the analysis as well. This stepwise decomposition of all data and sampling
changes appears to be more informative than applying the whole bundle of
modifications at once.

Step One: Reestimating HWW with Revised Data

In order to gauge the result’s sensitivity to data revisions and imputa-
tions, the model is reestimated with fresh HRS data for the exact same
cohort (AHEAD) and time periods (waves 2 to 4) as in the original study.
The differences between the new results and HWW’s benchmark are quite
modest, and outcomes of causality test are mostly unchanged. The most
notable exception is diabetes for which the noncausality test had to be previ-
ously rejected among male respondents. With revised data, however, a direct
causal link from SES to diabetes seems unlikely to exist. For further details,
compare columns (2) and (3) of table 8A.2.

Step Two. Adding New Cohorts

While the relative stability of results in face of data revisions is certainly
encouraging, a much stricter test is posed by extending the analysis to all
available cohorts. To achieve this, we run three separate estimations on the
following samples: first, we revisit waves 2 to 4 but allow members of cohorts
other than AHEAD to be part of the working sample. This barely changes
the sample composition because the only other cohort that is part of the
survey in this early stage is HRS, which hardly contains any individuals
aged seventy+. For the other two estimations, HWW’s data benchmark is
additionally changed inasmuch as later waves are used. The second estima-
tion starts at wave 4, when the new cohorts CODA and EB are interviewed
for the first time. Note that we do not restrict analysis to these two cohorts.
Rather, all respondents who are at least seventy years old at wave 4 and who
are not subject to subsequent sample attrition are followed until wave 7. This
closely mirrors HWW?’s approach of analyzing a three-period panel, hence
still keeping the deviations from the benchmark to a minimum. The third
estimation repeats the second for waves 7 to 9, coinciding with the entry of
the most recent cohort, namely WB.

Not surprisingly, the first estimation (table 8A.2, column [4]) yields results
that are almost identical to those of HWW’s benchmark with revised data
(table 8A.2, column [3]). The hypothesis tests associated with the other two
estimations, however, prove to be rather different. As far as noncausality
tests are concerned, the differences seem to be unsystematic. For some
medical conditions, such as depression and ADL impairments for females



Analysis of the Causal Pathways from Socioeconomic Status to Health 291

and incontinence for males, causality from SES can no longer be ruled out
as noncausality tests are now consistently rejected. For other health con-
ditions, namely diabetes and lung disease for males as well as psychiatric
disease for females, the opposite holds true, as noncausality tests can no
longer be rejected. In addition, there are a number of diseases for which the
benchmark causality test results are not confirmed for only one of the sub-
samples. For further details, compare columns (4), (5), and (6), respectively,
with column (3) of table 8A.2. Invariance tests, on the other hand, tend to
be accepted more often than those under the benchmark scenario. At first
glance, this may seem contradictory because causality tests have yielded
fairly different results depending on which panel waves are under consider-
ation. One should, however, not forget that the invariance tests merely check
whether the model is time invariant within each of the three estimations but
not among them. This is changed in the third step when the information
from more than just three waves is incorporated.

Step Three: Increasing the Number of Time Periods

Step two has indicated that results depend on which panel waves are cho-
sen to form the working sample. In order to reduce this arbitrary element
and to maximize the use of available information in the data, it makes sense
to increase the number of panel waves. Because there is no unequivocal way
to implement this in practice, we propose two different sampling approaches.
The first approach is a simple extrapolation of HWW’s sampling method.
The working sample consists of all individuals who participated in the sur-
vey in wave 2 and who were not subject to sample-fatigue-related attrition
in later waves. This cohort is then followed for as many waves as possible.
This sampling scheme has two major disadvantages. First, by restricting
the sample to individuals who were part of the survey from the very start,
we exclude refreshment cohorts CODA, EB, and WB, basically discarding
useful information. The second drawback is of a more practical nature:
death-related attritors cause the sample to dramatically thin out over time
so that sample sizes eventually become too small to conduct any mean-
ingful analysis. Moreover, as time moves on, the sample arguably becomes
less representative of the true population because the ongoing attrition will
select against the most frail. Nevertheless, and for the sake of maximum
comparability with HWW, we estimate two versions of this first approach:
one that follows individuals from wave 2 until wave 6 (covering cohorts HRS
and AHEAD) and another that follows individuals from wave 4 until wave 9
(covering HRS, AHEAD, CODA, and EB). The number of waves is chosen
so that sample sizes in the last respective wave are still reasonably large.

The alternative sampling scheme directly addresses the downsides of the
preceding approach. Instead of limiting the sample to respondents who are
part of the survey from the beginning, it is now refilled in each wave with all
available respondents who meet the respective age criterion (i.e., seventy+)
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and who answer all relevant questions for two consecutive waves. That way,
all cohorts are used for analysis, sample sizes never diminish to levels too
low for efficient estimation, and, consequently, all 8 waves can be used si-
multaneously. As a positive side effect, attrition bias is reduced as well, as
the mortality-induced loss of observations is offset by filling up the sample
with new respondents, once they become age eligible. One might object that
this approach reduces the power of panel analysis as it does not make much
use of its potential time series length. For the purpose of reproducing HWW,
however, we deem it suitable because the original model does not use the
theoretical length of the panel either, assuming that health and wealth tra-
jectories are sufficiently described by single lags. Given that the models are
estimated by simply stacking the data of all two-waves transitions above
another, it is irrelevant how long an individual is part of the survey. The
information conveyed in the responses of a person who only participates
in, say, waves 4 and 5 is no less valuable than that of a respondent who
participates from the very beginning to the end and should, therefore, not
be excluded. !

It is noteworthy that the invariance tests of both sampling schemes have
slightly different interpretations. In both cases, they test whether parameter
estimates stay constant over time by comparing the log likelihood when
all single wave transitions are pooled together with those when estimated
separately. For a sample with refilling, an accepted invariance test indicates
that the uncovered (non)causal relationships hold for different populations
at different times, underlining the generality of results. Invariance tests for
samples without refilling, however, cannot answer the question whether
causal links hold for different populations because only one cohort is being
followed. They rather check whether these links remain constant as a steadily
diminishing cohort becomes older over time, ultimately comparing the frail
(who exit the sample early) with the medically more robust.

The main change in results from using a larger number of sample waves is
that causality from SES to health can no longer be ruled out for a large array
of conditions, even for an elderly population aged seventy and older. This
observation holds, no matter which of the two preceding approaches is used,
even though there are some differences. As columns (7), (8), and (9) of table
8A.2reveal, there are seven health conditions for which the samples without
refilling yield a rejection of noncausality tests, even though this was not the
case for shorter samples. This number even increases to ten conditions if the
sample with refilling is used instead. The most unambiguous evidence exists
for six conditions (mortality and falls for males, proxy and BMI for females,
and cancer irrespective of gender) for which both approaches suggest that,

14. Of course, the validity of this argument relies on HWW’s conceptualization of health
trajectories as a first-order Markov process. The future development of more realistic models
of health dynamics will require a more sophisticated sampling procedure as well.
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contrary to earlier evidence, causality may well play a role. The reversed case
of causality becoming less likely to exist as panel length grows is as good
as nonexistent. The influence of analyzing more time periods at once on
invariance tests is about the same for both approaches and not very strong.
If anything, invariance failures tend to be somewhat likelier—a result that
makes sense because it is more demanding for a model to be valid for eight
waves than a mere three.

Step Four: Adding Younger Individuals

So far, the consequence of applying HWW’s model to data that include
more individuals and time periods is that the number of medical conditions
for which SES causality may play a role has considerably increased. How-
ever, for a population aged seventy and older, there remains a large number
of diseases for which causal links are not detected, despite the fact that high
SES is associated with a lower prevalence of these conditions. While this
cross-sectional correlation cannot be interpreted causally, it indicates that
causal channels may have been at work earlier in life, before the individual
even entered the sample. In light of that, it is interesting to also include
younger individuals to test if the data will pick up additional causal links
that are already mute in an elderly population.

First, the sample is opened up to people who are at least sixty-five years
old so that it represents (with some exceptions) the whole Medicare-eligible
subpopulation. This yields a net increase of three to six health conditions
(depending on whether samples with or without refilling are used) for which
causality can no longer be rejected, affirming the preceding speculation. See
columns (2), (6), and (10) of table 8A.3 for details. A similar effect can be
observed when the sample is opened up even further to include individuals
aged fifty+, exploiting the entire age range available within HRS. This time,
the net increase amounts to another three to nine conditions, rendering cases
for which causal links can be ruled out the exception rather than the rule.
Among the latter are illnesses such as strokes and high blood pressure for
males, lung disease for females, and cancer for both men and women. For all
other health conditions, the existence of causal links cannot be refuted. For
further details, consider columns (3), (7), and (11) of table 8A.3.

It is also worthwhile to split up the sample into older (sixty-five+) and
younger (fifty to sixty-four) individuals to study how the activation of causal
channels differs between a mostly retired, Medicare-eligible population and
people who are typically still on the labor market and not quasi-universally
health insured. As table 8.3 shows, there is quite a number of medical condi-
tions for which SES may be a causal driving force irrespective of age. These
include depression for both genders, IADL impairments, incontinence, and
diabetes for women as well as ADL impairments for men. For other condi-
tions like arthritis, heart disease, strokes for females, or incontinence for
males, SES is only a good predictor of new medical incidences at a higher
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age. On the other hand, smoking behavior as well as psychiatric problems
for women are among the conditions for which a causal link may only be
active at a preretirement age. Intriguingly, when young and old people are
studied separately, results appear to be sensitive to whether samples with
or without refilling are chosen (see table 8A.3). For older individuals, the
sample with refilling suggests more cases of Granger causality than its coun-
terparts without refreshment do. The exact opposite, however, is true for
younger individuals, because for them rejected causality is a less frequent
outcome in samples without refilling. The latter observation is likely an arti-
factual side effect of the way the sampling methods are defined: Sampling
with refilling effectively excludes people from the fifty to sixty-four sample
once they become older than sixty-five, whereas sampling without refilling
follows all individuals until they die, even if they grow much older. As a
consequence, unrefilled “young” samples may arguably pick up some of the
causal effects that are exclusively active for the older subjects of the cohort.

Model invariance is not systematically influenced by adding younger
individuals to the data set. The fact that the seeming structural breaks in
the relation of SES and health as people grow older are not detected by
HWW’s invariance tests, should, however, not be surprising. Recall that the
test design does not pit the young against the old but the past against the
future. Theidea is to check parameter invariance as time progresses. Because
the age structure within the sample varies only little from wave to wave
(especially when it is regularly refreshed), the invariance test will not permit
a direct comparison of, say, pre- and postretirement populations. In light
of this, the results in table 8 A.3 merely suggest that the zime stability of the
model is rather insensitive to changes in the age composition of the sample.

Changes in Results of the Underlying Prediction Models

Given the strong dependence of noncausality test results on both the size
and age coverage of the estimation sample, it seems natural to investigate
how these changes are related to the size and the precision of coefficients
of the underlying prediction models.!® As table 8.4 exemplifies, precision
of SES coefficient estimates does generally increase with the size of the
respective sample, even though this relation is not perfect. While standard
errors remain fairly constant across estimations based on similarly sized
three-waves samples (step 2), they surprisingly spike upwards once all waves
are pooled together in step 3. This observation may well be rooted in the
aforementioned switch from a sampling procedure without (steps 1 and 2)
to one with refilling (steps 3 and 4). Precision follows a more predictable
pattern within step 4, as standard errors are invariably smaller the larger the
respective sample (note that Ny, > N, > N,, > N, (). The same pattern

15. HWW did not report the coefficients of the prediction models, but these estimates are
also available in their online appendix.



Analysis of the Causal Pathways from Socioeconomic Status to Health 295

Table 8.4 Prediction model: Average standard errors of socioeconomic status (SES)
coefficients: average of all health conditions and SES regressors

Step 2 Step 3 Step 4
HWW (70+) (70+) (W2-9)

W24 W24 W4-6 W7-9 W2-9 65+ 50+ 0-64

Female 0.081 0.083 0.087 0.091 0.126 0.107 0.085 0.172
Male 0.108 0.105 0.111 0.110 0.167 0.135 0.098 0.185

Notes: Reported are average standard errors of SES coefficients obtained from estimating
model 9. Each entry is an average of 160 single standard errors (twenty health variables and
eight SES regressors). Individual standard errors follow the depicted pattern quite uniformly.
HWW = Healthy, Wealthy, and Wise (Adams et al. 2003); W = waves (e.g., W2-4 = waves
2-4).

emerges when comparing results by gender, as the number of women exceeds
that of men in each of the subsamples.

Despite increased precision, table 8.5 suggests that the number of sta-
tistically significant SES coefficients does not seem to be systematically
affected as samples become more encompassing. In HWW’s benchmark
sample, there is a total of twenty-nine SES regression coefficients that are
significant at the 5 percent level. This number stays rather constant across
the performed steps. Yet note that in the benchmark case, there is a fair
amount of cases for which coefficients have an unintuitive sign, suggesting
that respondents with high SES are likelier to develop a new health condi-
tion. The share of these cases stays rather high for three-waves samples and
drops significantly once all waves are used at once. This means that, while the
overall number of significant SES coefficients does not increase, the direc-
tion of effects is now more in line with theory. This is an additional insight
because noncausality tests as implemented here do merely check whether
health innovations are conditionally independent of SES variables, whereas
the quality of this dependence is not under consideration.

8.5 Conclusion and Future Research

Allin all, reestimating HWW’s model of health incidence with new HRS
data alters conclusions about SES causation quite significantly. While the
impact of data revisions within HRS is encouragingly small, the addition
of new cohorts shows that causal inference critically depends on which time
periods are used for estimation. Using the information of many—ideally
all—waves at once has the greatest effect on results, with many health con-
ditions moving to the column of illnesses for which SES causality may well
play a role. Adding younger individuals to the sample has a very similar
effect, reducing the number of medical conditions for which the existence
of causal links can be statistically rejected even further. As a consequence,
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the only health conditions for which SES causation can be ruled out when
estimation is based on the most encompassing data set with refilling are
cancer (irrespective of gender), lung disease for females, and high blood
pressure for males. For all other health incidences, SES is either G-causal
or the failure of invariance tests does not permit reliable conclusions. This
represents a stark contrast to HWW?’s original findings, where the rejection
of structural causality was the most frequent outcome.

Given that the greatest changes are triggered by the addition of panel
waves (step 3), the main driving force behind this reversal in results is most
likely an increase in test power as sample sizes soar. After all, in HWW’s
stacking model, a longer panel is equivalent to a larger sample (with respect
to V) because all waves are pooled together and treated as if they formed
one cross-section. This interpretation is corroborated by the fact that test
results from long panels do not always reflect the average outcome of the
respective three-wave panels they consist of. As the example of cancer
in table 8A.2 illustrates, noncausality tests are often rejected in the long
samples, even though they are consistently accepted in each of the short
panels. Similar observations can be made when comparing test results by
age group. In some cases, a noncausality test is only rejected for the largest,
most-encompassing sample of all individuals aged fifty and older. However,
in all smaller subsamples (fifty to sixty-four, sixty-five+, and seventy +) the
same null hypothesis cannot be rejected. As an example for the latter case,
see heart disease for females in table 8A.3. All of this evidence permits the
emergence of a clear picture: the larger the sample under consideration, the
likelier the rejection of noncausality.

We also find that causal inference depends on the age structure of the
underlying population, with certain conditions being Granger caused by
SES at younger or older ages only. This yields at least indirect evidence that
the activation of causal links may indeed change over the life cycle. However,
we recommend to take these results with a grain of salt because their lack
of robustness is far from comforting, as evidenced by the sensitivity to the
choice of sampling schemes. In addition, we should note that the data set
for the sixty-five+ population is about three times as large as that of the
preretirement group. As a consequence, we face the risk of confounding
the true effect of age structures with the impact of varying sample sizes
identified in the preceding. This may well provide an alternative explana-
tion for the failure to detect many cases of G-causality among the fifty- to
sixty-four-year-olds if estimation is based on a refilling sample—a result
that is not confirmed if samples without refilling are used instead.

From a methodological point of view, the results of this study pose bad
news for a model whose identification strategy relies on Granger causality.
Recall that the reduced-form nature of G-causality cannot discriminate
between structural causation and ecological association due to common
unobserved effects if G-causality is detected. Ultimately, HWW’s framework
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allows only the one-sided test for the absence of direct causal links, which is
confirmed if G-causality is rejected as well. While HWW’s original data set
provided us with a large number of such cases, the more-encompassing data
samples analyzed here do not do us this favor. As a result, we find ourselves
in the unfortunate situation that little can be learned about the true links
between SES and health, making it impossible to draw meaningful policy
conclusions.!®

In light of this, the need to improve the empirical model within future
research so as to account for the confounding influence of hidden common
factors becomes even more pressing. In our view, there are two alterna-
tive ways to achieve this. The first mirrors the identification strategy of IV
approaches: instead of using endogeneity-stricken SES histories as regres-
sors, one could concentrate on the impact of clearly exogenous changes in
these variables. If these SES innovations meet the standard IV assumptions,
we would be able to formulate two-sided tests that permit the clean identifi-
cation of causality in a structural sense. Among the natural experiments one
could exploit are the major negative shock to housing and financial wealth
that many people experienced during the ongoing financial market crisis of
2008 to 2009, the positive shock Medicare households received as a result
of the introduction of the heavily subsidized Medicare Part D program in
2006, and the shocks some employed individuals received from changes in
employer-provided health insurance.!” Particular attention could be given
to the differential exposure to wealth shocks in the presence of health care
delivery systems that vary in the financial impact of copayments, premiums,
and coverage, particularly for chronic conditions and preventative and pal-
liative therapies. Provided that the causal link in questions even exists, wealth
shocks will take some time to affect health outcomes. Therefore, we expect
any effects of the 2008 to 2009 financial crisis or Medicare Part D to leave
their marks only in future waves of the HRS data set.

However, the use of such natural experiments is not immune to objec-
tion, which leads to a fundamental trade-off. On the one hand, we can try
to infer causality by relying on wealth shocks like the ones just described,

16. While invariance tests have arguably gained power by the inclusion of different time
spans, cohorts, and age structures, we are still doubtful that their acceptance would attest the
model the kind of stability necessary to make out-of-sample predictions of policy effects. The
reason for this is that—with the notable exception of the introduction of Medicare Part D in
2006—the observed variation in relevant policies remains rather low.

17. When it comes to the recent financial crisis, we acknowledge that the equity shock might
not be large enough to provide strong identification. Using HRS data, Gustman, Steinmeier,
and Tabatabai (2010) report that equity accounted only for about 15 percent of assets prior to
the 2008 to 2009 crisis. Whether this is sufficient exogenous variation would have to be scruti-
nized as part of future research. Alternatively, one could explore negative shocks to housing
wealth, which represent another aspect of the financial market crunch. Exogenous variation
in these shocks is provided by regional differences in house prices and the severity of declines
in real estate value during the crisis.



Analysis of the Causal Pathways from Socioeconomic Status to Health 299

which has the advantage of not having to worry about endogeneity issues.
Yet, as argued in section 3, there is a risk that these shocks may not be all
that relevant for health, especially when occurring late in life. On the other
hand, the information contained in past levels of SES—the regressor used in
HWW’s G-causality framework—is certainly of great relevance as it reflects
the entire history between SES and health status. The disadvantage is that
this pool of information may also include confounding elements, such as
the impact of hidden common causes, calling into question the exogeneity
of such explanatory variables.

The other alternative we deem feasible of discriminating among hypoth-
eses A and C seeks to solve this trade-off by exploiting the relevant informa-
tion contained in SES histories, while eliminating the misleading influence of
common effects. As extensively argued in the fixed and random effects litera-
ture, this may be achieved by interpreting the problem of common effects as
an issue of unobserved individual heterogeneity, whose effect is controlled
by fully exploiting the panel structure of HRS. This being said, the choice
of a suitable estimator is not trivial because it needs to combine three impor-
tant features that often tend to be mutually exclusive. First and foremost,
the estimation strategy must allow heterogeneity to be correlated with SES,
which makes fixed effects (FE) estimators a logical candidate. However, FE
estimation is generally ridden by matters of inconsistency, once confronted
with the other two features, namely a dependent variable that is both binary
(requiring a non-linear specification) and state-dependent (reflecting the
dynamic nature of the model). A feasible way of tackling these three issues
at once, promises to be a dynamic correlated random effects (RE) probit
approach as implemented by Contoyannis, Jones, and Rice (2004). It solves
the usual trade-offs between FE and RE setups by allowing for correlated
heterogeneity and the estimation of time-invariant regressors even when
confronted with nonlinear data structures and lagged dependent variables. '
We acknowledge that this alternative strategy of coping with common ef-
fects is not devoid of criticism either, which is why we consider it reasonable
to independently explore both routes in what lies ahead. This is especially
true inasmuch as both approaches are expected to uncover different causal
channels: while the latter strategy of modelling individual heterogeneity may
allow the detection of average causal effects as manifest in SES histories,
the exploitation of natural experiments will predominantly shed light on the
most immediate (mental) health consequences of wealth shocks.

18. Michaud and van Soest (2008) adopt a similar strategy by eliminating the effect of
individual heterogeneity with GMM estimators in the spirit of Arellano and Bond (1991). In
analyzing the HRS population aged fifty-one to sixty-one, they find that causal effects of wealth
on health can be ruled out if unobserved heterogeneity and a more realistic lag structure are
accounted for. However, given that their approach is incompatible with nonlinear models, it is
not directly applicable to our research question.



300 Till Stowasser, Florian Heiss, Daniel McFadden, and Joachim Winter

A second opportunity for future research lies in improving the limited
microfoundation of causal pathways, which is inherent in the reduced-form
nature of Granger causality. Even if we were able to univocally confirm the
presence of causal effects from wealth to health, we still would not know the
channels through which they operate. Yet the latter information is absolutely
critical from a policy perspective: interventions to increase the affordability
of health insurance would be warranted if channel A1 were to be active,
but would prove ineffective if the causal link were to work through, say,
channel A3 instead. To address this issue, we intend to specify and test more
differentiated hypotheses that may facilitate the discrimination among these
channels. For instance, if channel A1 is truly relevant, we should observe a
certain sensitivity of results to the availability and generosity of health care
systems. Possible comparisons include the time before and after Medicare
Part D, individuals with and without health insurance, or cross-country
differences in health care regimes.!” Another way of gauging the impor-
tance of health care affordability is to compare individuals with and without
health insurance. Of particular interest will be the preretirement population
not yet eligible for Medicare as their insurance status will be endogenous
unless they are covered by employer-provided health care. Even if health
insurance proves to be of little importance for the onset of a health condi-
tion, it may well be decisive in determining whether and how it is treated,
given that the individual has already gotten sick. On this account, we intend
to follow the health trajectories as well medical care use of respondents that
share the characteristic of having developed a certain medical condition.

Finally, the model would certainly benefit from addressing another of
the methodological shortcomings identified in section 8.3: the treatment
of health dynamics. In our view, there are several ways to accommodate
the long memory effects that prove to be so critical for a realistic descrip-
tion of health trajectories. The simplest fix consists of adding higher-order
lags of health condition prevalences to the list of explanatory variables. A
better, albeit more demanding, alternative is a hidden Markov structure in
which health is controlled by a latent random process that drives the onset
of health conditions, self-rated health, and mortality. According to Heiss
(2010), such models are parsimonious and capture the observed dynamics
better than commonly applied random effects or conditional Markov chain
models.

19. In fact, Hurd and Kapteyn (2003) find that causal effects from SES to health status are
less pronounced in the Netherlands than in the United States. Given that the Dutch health care
system is basically universal, they see this result as an indication of the general importance of
differential access to health care: SES gradients in health are strongest in institutional environ-
ments in which affordability should a priori matter most.
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Comment Robert J. Willis

This paper revisits the important and controversial paper of Adams et al.
(2004)—denoted HWWA—which sought to uncover the causal direction
of the correlation between health and economic status using longitudinal
data from the Asset and Health Dynamics among the Oldest Old (AHEAD)
cohort of the Health and Retirement Study (HRS). Their methodology and
their finding that they could not reject the hypothesis that economic status
has no causal effect on health, a test of Granger noncausality together with
tests of invariance, stimulated much controversy. Indeed, an entire issue of
the Journal of Econometrics was devoted to the HWWA paper and to a set
of detailed comments on its methodology and findings by an exceptionally
distinguished group of scholars from economics, epidemiology, philosophy,
and statistics.

Much of the importance of the earlier paper stems from the importance
of the basic questions it addresses. Do economic resources determine health?
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