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8
Land for Food and Fuel Production
The Role of Agricultural 
Biotechnology

Steven Sexton and David Zilberman

8.1   Introduction

The global food crisis of  2008 ended three decades of  declining food 
prices and highlighted a growing challenge for agriculture: to supply food 
and clean energy to a world population growing to nine billion by 2050. In 
roughly the last half  of the twentieth century, agriculture accommodated a 
near doubling of the world population through intensifi cation. Farm yields 
more than doubled with the use of high- yielding seed varieties, agricultural 
chemicals, irrigation, and mechanization. Per capita calorie production 
grew despite the rapid population growth and despite an exodus of land 
from production. Since the 1990s, however, yield growth in staple crops has 
been slowing and stalling as traditional sources of yield improvements are 
depleted. Absent intensifi cation, demand growth will be met by extensifi ca-
tion, which is unpalatable amid growing concern about climate change and 
biodiversity loss.

First- generation agricultural biotechnology has been promoted as a tool 
for improving the control of agricultural pests that diminish effective yields. 
To the extent adoption of the technology generates yield growth, it con-
stitutes a mechanism for expanding farm output without expanding the 
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area under cultivation.1 A number of studies in a variety of countries have 
documented yield gains caused by the adoption of genetically engineered 
(GE) crops. The studies have been limited in size and scope, however, and 
have generated widely varying estimates of the yield gains from GE crop 
adoption. Absent agreement among empiricists on the magnitude of yield 
improvements, agricultural biotechnology remains controversial. Potential 
risks to human health and the environment are weighted heavily against the 
uncertain benefi ts. This chapter overcomes some of the limitations in earlier 
empirical work in order to assess the degree to which the technology has 
increased food supply on a global scale.

8.2   Background

8.2.1   Agricultural Biotechnology

Farmers around the world have rapidly adopted GE seeds since they were 
fi rst commercialized in 1996. The GE seeds are intended to reduce pest dam-
age and lower production costs. By 2008, 13.3 million farmers in twenty- fi ve 
countries annually planted 8 percent of  global cropland with transgenic 
crops. In 2009, U.S. farmers planted more than 80 percent of the sugar beet 
crop with transgenic varieties that had only been introduced one year earlier 
(James 2009). Despite the popularity of agricultural biotechnology on the 
farm, its introduction in the marketplace has met strong resistance from 
critics who advocate a precautionary approach to the technology because 
of potential risks to humans and the environment. Consequently, GE seeds 
and crops are banned in some countries and highly regulated in others, 
including those that lead in adoption. The European Union, for instance, 
imposed a de facto ban on GE seeds in 1998. The ban was lifted in 2008 
amid pressure from the United States and the World Trade Organization. 
Consumer sentiment against GE foods has also constrained the market for 
GE seed. Products derived from GE seed have been relegated to feed and 
fi ber uses only. Producers must segregate GE crop output throughout the 
supply chain in order to ensure the transgenic material is not comingled with 

1. Yield improvements from exogenous technical changes can, in theory, induce cropland 
expansion by making farming more profi table. Yield gains increase output on existing land, 
which tends to reduce prices, but also lowers costs of production, potentially making expan-
sion to more marginal lands profi table, as we note in section 8.3. Feng and Babcock (2010) 
provide analytical results that show yield improvements in maize induce cropland expansion 
under unregulated free markets. However, an extensive empirical body of research suggests the 
opposite is true: that yield improvements are associated with reductions in cropland expansion 
(e.g., Waggoner 1995; Matson et al. 1997; Balmford, Green, and Scharlemann 2005). Alston, 
Beddow, and Pardey (2009), for instance, document dramatic increases in agricultural produc-
tivity and only “slow growth” in the use of agricultural land. Barbier (2001) estimates a negative 
elasticity of crop yield with respect to land expansion in tropical forests. This point is also made 
in Zilberman et al. (1991), Mundlak (2001), and Mundlak (2011).
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conventionally bred crop output. In early 2010, China was poised to approve 
the fi rst use of a GE crop for human consumption.

The GE traits have been introduced to four principal crops: cotton, maize, 
rapeseed, and soybean. Rapeseed and soybean seeds have been engineered 
to tolerate broad- spectrum herbicides like glyphosates and gluphosinates, 
chemicals that target a host of weed species and are lethal to conventional 
crops. Adoption of such herbicide- tolerant (HT) varieties permits farmers 
to more effectively control weeds. Absent the HT trait, farmers are forced to 
apply more toxic and narrowly targeted chemicals in order to kill weeds and 
keep the crop safe. They also use mechanical control, like tilling operations, 
to control weeds. Because glyphosates have historically sold at prices below 
the targeted chemicals, adoption of HT varieties is likely to reduce dam-
age control expenditures. Some cotton and maize varieties have also been 
engineered with the HT trait, while others are engineered to produce Bacil-
lus thuringiensis (Bt), a naturally occurring toxin that is lethal if  ingested 
by a number of common insect pests. These are referred to as Bt crops or 
insect- resistant (IR) crops. Some maize and cotton va rieties are engineered 
to express both traits and are commonly referred to as “stacked” varieties. 
The HT traits have also been introduced into sugar beets and alfalfa, though 
both are planted on a relatively small scale. Crops with HT traits have always 
been the dominant GE crop, occupying 63 percent of total GE crop area in 
2008, followed by “stacked” traits (22 percent) and IR traits (15 percent). 
The HT soybeans occupied the majority of total GE cropland (53 percent) 
and constituted 70 percent of the world soybean crop in 2008 (James 2009). 
The GE maize constituted 30 percent of all GE crop areas in 2008 and 24 
percent of the world maize crop.

Adoption of GE crops has been rapid. By 2009, half  of all U.S. cropland 
was planted with GE seed. Approximately 80 percent of the 2008 cotton, 
maize, and soybean crops in the United States were each produced from 
transgenic varieties. The United States has been a leader in adoption, plant-
ing more than half  (62.5 million hectares) of all GE areas in 2008. But other 
countries have been similarly aggressive in their adoption. South Africa, 
Australia, and Argentina all planted more than 90 percent of  their 2008 
cotton crops with GE varieties, up from 1 to 2 percent a decade earlier. 
Canada planted virtually its entire maize crop with GE seed in 2008. Of the 
twenty- fi ve countries that planted GE crops in 2008, fi fteen were developed 
countries and ten were developing (James 2009). Figure 8.1 shows the annual 
area planted with GE crops from 1996 to 2008 by country type.

8.2.2   The Economics of Agricultural Biotechnology

There is a large and growing literature on the adoption and impact of 
GE crops. It is summarized in Qaim (2009) and National Research Council 
(2010). Much of the literature on GE crop adoption follows the threshold 
adoption framework of David (1969). This framework assumes that fi rms 
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are heterogeneous, that they make choices that are consistent with an explicit 
economic decision- making criterion (e.g., profi t maximization), and that 
the costs and benefi ts of technology adoption vary over time in response to 
changes in economic conditions and learning (Feder, Just, and Zilberman 
1985). The threshold model is readily employed in applications with data on 
the behavior of individual agents by using discrete and discrete- continuous 
choice models.

Much of the literature on adoption of  GE- crop technology estimated 
the factors that affect whether producers adopt the technology and the 
extent of adoption. These studies found that biophysical conditions (e.g., 
vulnerability to pest damage), economic conditions (e.g., output and input 
prices), and regulatory conditions affect adoption. The scale of  opera-
tion and human capital are not major factors affecting adoption because 
GE- crop technology is simpler than alternative damage- control mechanisms 
and does not exhibit increasing returns to scale. Crost et al. (2007), how-
ever, did fi nd evidence that farmers in India with higher human capital were 
more likely to adopt.

Another signifi cant body of  literature has investigated the impact of 
GE- crop technology. Most of this literature is surveyed in Qaim (2009) and 
National Research Council (2010). For the most part, these studies com-
pared the performance of GE with non- GE crops under various conditions. 
Some conducted surveys of farmers to assess the reasons for adoption and 
the cause of yield changes post– GE crop adoption. Most existing studies 
were conducted in the early days of GE- crop adoption (from 1996 to 2003) 
or considered early data.

Fig. 8.1  Genetically engineered crop adoption over time
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The potential gains associated with adoption of fi rst- generation GE crops 
are several. They include reduced crop losses from insect pests; reduced 
expenditures on damage control inputs like herbicides, pesticides, and fuel; 
improved worker safety; greater fl exibility in farm management; and lower 
risk of yield variability (National Research Council 2010). The magnitude 
of these benefi ts varies by location, crop, and time. Table 8.1, which is bor-
rowed from Qaim (2009), summarizes existing empirical estimates of some 
of these benefi ts, including yield gains, gross margin impacts, and pesticide 
use. It demonstrates the heterogeneity of estimates in the extant literature.

There has been no rigorous assessment of  the impact of  adoption of 
GE technologies in aggregate even though there is a rich literature on the 
welfare implications of adoption based on stylized assumptions about shifts 
in supply. These studies, too, mostly cover the earlier period of adoption 
of GE crops. The National Research Council (2010) identifi ed the lack of 
recent market impact assessments as one of the major gaps in the economic 
research on agricultural biotechnology. In this chapter, we employ data on 
acreage of major crops and the share of land for each crop that is allocated 
to biotechnology. We use analysis of variance to decompose yield per acre 
to different components. Our analysis applies an approach introduced by 
Just et al. (1990) to decompose variable input among crops. The approach is 
used to allocate output among crop types. We assume that at each time and 

Table 8.1 Farm- level effects of genetically engineered crops

Country  

Insecticide 
reduction 

(%)  

Increase in 
effective yield 

(%)  

Increase in 
gross margin 

(US$/ha)  Reference(s)

Bacillus thuringiensis cotton
Argentina 47 33 23 Qaim and de Janvry (2003, 2005)
Australia 48 0 66 Fitt (2003)
China 65 24 470 Pray et al. (2002)
India 41 37 135 Qaim et al. (2006), Sadashivappa and 

 Qaim (2009)
Mexico 77 9 295 Traxler et al. (2003)
South Africa 33 22 91 Thirtle et al. (2003), Gouse et al. (2004)
United States 36 10 58 Falck- Zepeda et al. (2000b), Carpenter 

 et al. (2002)

Bacillus thuringiensis maize
Argentina 0 9 20 Brookes and Barfoot (2005)
The Philippines 5 34 53 Brookes and Barfoot (2005), Yorobe and 

 Quicoy (2006)
South Africa 10 11 42 Brookes and Barfoot (2005), Gouse 

 et al. (2006)
Spain 63 6 70 Gómez- Barbero et al. (2008)
United States

 
8

 
5

 
12

 
Naseem and Pray (2004), Fernandez- 
 Cornejo and Li (2005)

Source: Qaim (2009, 672).
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location, the yield per acre of each crop with a given technology is fi xed, but 
these yields per acre vary across crops, technologies, and time. This approach 
has been generalized by Lence and Miller (1998) and applied by Khanna and 
Zilberman (1999) to decompose aggregate data of energy generation and 
greenhouse gas (GHG) emissions in different locations. This rather simple 
approach allows us to rely upon a minimal amount of data to decompose 
yields. We use our estimate of the partial effect of GE adoption on yields of 
adopting farmers (a population averaged treatment effect on the treated) to 
estimate the change in food supply attributable to agricultural biotechnol-
ogy and parameterize a model of the food market in 2008 in order to assess 
the effect of GE seeds on food prices during the food crisis.

8.3   Conceptual Model

In this section, we present a conceptual model that provides the theoretical 
foundation for the empirical analysis that follows in the next section. We 
adopt a modeling approach that follows Qaim and Zilberman (2003) and 
Ameden, Qaim, and Zilberman (2005) that employs the damage control 
framework of Lichtenberg and Zilberman (1986). This framework distin-
guishes between inputs that directly affect production, like capital and fer-
tilizer, and inputs that indirectly affect production by reducing crop dam-
age, such as pesticides and mechanical and biological control. Specifi cally, 
assume a constant- returns- to- scale agricultural production function. Let 
yield per acre, y, be the product of potential output, fj(z,a), and damage 
abatement, gi(x,N). Potential output is the output that would obtain if  there 
were no pest damage. It is increasing in production inputs, z, like fertilizer, 
and a heterogeneity parameter, a, which characterizes farm quality and is 
a function of climate, human capital, and land quality. Potential output is 
also a function of seed variety, j, where j � 0 denotes a generic seed variety 
and j � 1 denotes a local seed variety. It is assumed that for all z and a, 
f1(z,a) � f0(z,a). Damage abatement is the share of crop not lost due to pest 
damage. It is increasing at a decreasing rate in use of damage control inputs, 
x, like pesticides, and decreasing in effective pest pressure, n. Effective pest 
pressure is the product of a seed- technology parameter, �i, and initial pest 
pressure N, that is, n � �iN, where �0 � 1 denotes conventional seed tech-
nology, and �1 � 1 denotes GE seed technology. Consequently, for all x and 
all positive N, g1(x,N ) � g0(z, N ). Effective yield per acre under technology 
ij, then is given by:

(1) yij � gi(xij, N ) fj(zij,a).

With this specifi cation, farmers face at most four distinct seed technology 
packages: generic- conventional (i � 0, j � 0), local- conventional (i � 0, 
j � 1), generic- GE (i � 1, j � 0), and local- GE (i � 1, j � 1).

The farmer’s problem is:
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(2) maxz,x,i,j
ij � pgi(xij,N )fj(zij,a) � wzij � vxij � Iij,

where p, w, and v are exogenously determined prices for output, production 
inputs, and damage control inputs, respectively, and where Iij is a technology 
fee associated with technology ij. It is assumed I00 � I01 � I10 � I11.

Farmers adopt the technology that yields the highest expected profi ts. We 
solve the farmer’s problem recursively. First, conditional on seed technology 
choice and farm quality endowments, producers choose inputs to maximize 
profi ts. The profi t maximizing quantity of  inputs given technology ij are 
functions of prices and land quality, such that:

x∗
ij � x∗

ij (w,v,p,N )

z∗
ij � z∗

ij (w,v,p,N ).

Maximum profi ts under each technology are obtained by substituting the 
optimal input demands into the profi t function. Farmers select the tech-
nology that yields highest expected profi ts conditional on profi ts being non-
negative.

Analysis of these optimality conditions yields several results important 
for the subsequent empirical analysis. First, the adoption of GE crops in-
creases damage abatement, which boosts effective yield under typical condi-
tions. This is true so long as farmers face some pest pressure, and the adop-
tion of GE crops does not require farmers to switch to a low- yield generic 
seed variety that would lower potential output. In theory, effective output 
may decline with adoption of GE crops either because a given farmer must 
switch from a local seed variety to a generic variety in order to adopt the 
GE technology or because the insertion of the GE trait into the seed ger-
mplasm causes an interaction that reduces potential output. In order for 
effective yield to decline with adoption, the percentage change in potential 
output must exceed the percentage change in damage abatement in absolute 
value. In practice, such reductions in effective output with GE adoption, 
termed “yield drag,” have not been a signifi cant problem (National Research 
Council 2010). Furthermore, the optimizing farmer would only choose to 
adopt GE seed that exhibited these yield drag effects and thereby reduced 
total output if  the cost savings from reduced damage control expenditures 
exceeded the revenue loss from foregone yields.

Second, the damage- abatement gain is increasing in pest damage and the 
price of conventional damage control inputs like fertilizer. We can defi ne 
the change in damage abatement due to GE crop adoption, assuming no 
change in the j- dimension, as:

(3) �g � g1j(x,N ) � g0j(x,N ).

Then it can be shown that d�g/ dN � 0 and d�g/ dw � 0.
Third, GE crop adoption causes an increase in the use of  production 
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inputs like fertilizer. It boosts potential output as long as it does not require 
a switch from a local seed variety to a generic seed variety. As damage abate-
ment increases, so, too, does the value of marginal product of production 
inputs increase, holding prices constant. Therefore, farmers employ more 
production inputs. The increase in production inputs raises potential output, 
which boosts effective output by more than the reduction in crop damage. 
Though we are unable to test impacts of GE crop adoption on input- use 
in the subsequent empirical analysis due to a lack of global data on input-
 use, this result suggests that the yield gain associated with GE crop adop-
tion exceeds the “gene effect” estimated in much of the previous literature. 
Our empirical estimates of the yield gain associated with GE crop adoption 
incorporates this additional yield effect that operates through the potential 
yield function as opposed to the damage abatement function. This makes 
our yield estimates unique among the estimates of previous analyses.

Fourth, the change in yield due to GE crop adoption is increasing in 
farm quality, a, and pest pressure, N. We can decompose the total change in 
effective yield due to GE crop adoption as:

(4) �y � y1j � y0j � f1j0
�g � �fzg1j1

 � �fjg1j1
,

where the fi rst term on the right- hand side of the second equality is the dam-
age abatement effect, the second term is the production input effect, and the 
third term is the yield drag effect, which can be negative but is typically zero 
(i.e., if  j0 � j1 or if  j0 � 0 and j1 � 1). It is easy to show, then, that d�y/ da � 0 
and d�y/ dN � 0. We do not observe 
 and N in our data, so to the extent 
these theoretical predictions hold in practice, our empirical estimates of 
the yield gain associated with GE crop adoption may be biased. Failure to 
control for farm quality may induce an upward bias in the results. However, 
because the yield gains are expected to be greater with high pest pressure 
and because high pest pressure may be associated with low- quality farms, 
failure to control for pest pressure may induce an offsetting downward bias 
in our results.

8.4   Data and Methods

The empirical strategy of this chapter is motivated by the global pattern 
of GE seed adoption. By 2008, farmers in twenty- fi ve countries had planted 
at least one of the four major GE crops. In most cases, the share of these 
crops planted to GE seed increased year over year in adopting countries 
from 1996 to 2008. In the United States, for instance, 12 percent of cotton 
was planted to GE seeds in 1996, but by 2007, the GE share had reached 
87 percent. Some countries adopted multiple GE crops. Many others did 
not adopt any GE crops. Even some countries that are expected to experi-
ence signifi cant benefi ts from adoption have not adopted because of po-
litical economy considerations. This was the case in European and African 
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countries until 2010. Germany and Romania had deregulated GE technol-
ogies but then banned them for political reasons unrelated to their perfor-
mance on the farm. Countries that did adopt GE crops continued to plant 
other crops exclusively to conventional seed either because GE alternatives 
did not exist or because regulation banned some GE crops.

The variation in GE adoption across countries and across time enables the 
econometrician to control for confounding factors at the country level by 
employing a panel fi xed effects approach that relies on assumptions similar 
to, but weaker than, those required for estimation in triple differencing pro-
cedures. This procedure controls for endogeneity of adoption at the country 
level, that is, endogeneity of  GE crop deregulation. However, estimation 
of a population average effect of GE crop adoption is subject to the biases 
described at the end of the preceding section, which stem from the endoge-
neity of adoption at the farm level, that is, selection on farm quality, which 
is unobservable in this data. These biases do not impede estimation of a 
population average effect of  GE adoption among adopters, which is the 
critical coefficient for estimating the increase in food supply attributable to 
GE technologies.

Motivated by Just et al. (1990), we observe that total output of crop j in 
country i at time t, Qjit, is the sum of output produced by each seed tech-
nology, k. Thus:

(5) Qjit = Qjitk
k=1

K

∑ ,

where Qjitk is the unobserved quantity of crop j produced by country i at 
time t using seed technology k. Defi ne Ljitk as the amount of land planted 
to crop j with seed technology k in country i at time t. Then qjitk � Qjitk/ Ljitk 
is the output of crop j per unit of land using seed technology k in country 
i at time t. The deterministic component of the qjitk, which is denoted q∗

jitk, 
can be decomposed into a crop- specifi c average seed- technology effect, 	jk, 
a crop specifi c time effect, �jt, and a country- specifi c crop effect, �jt. Then 
q∗

jitk is given by:

(6) q∗
jitk � 	jk � �jt � �ji.

The 	jk are of interest and can be estimated by:

(7) Qjit � �jLjit � 	j1Ljit
GE � �jtDjt � εjit,

where Ljit is total land planted to crop j in country i at time t, Ljit
GE is the land 

planted to GE seed for crop j in country i at time t, Djt is a crop- specifi c time 
dummy (the time dummy for the year 2008 is omitted), and εjit is a random 
deviation that is assumed normal and identically distributed. Equation (7) 
is estimated using fi xed effects to control for country effects and secular 
trends. The fi xed effects regression also controls for correlated random 
trends (Wooldridge 2005). Results are reported with White robust standard 
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errors. The �j is the average yield on land that does not adopt GE seeds. 
The 	j1 is the marginal effect on yield attributable to adoption of GE seeds 
(k � 1 denotes GE seed technology).

Data on total crop output are reported in tonnes and come from the Food 
and Agriculture Organization (FAO) of the United Nations. Total crop area 
is reported in hectares by FAO. The area of land planted to GM crops and 
specifi c traits was developed by Graham Brookes using data from the Inter-
national Service for the Acquisition of Agri- Biotech Applications (ISAAA). 
The data cover the period 1990 to 2008. We include data on every country 
that adopted any GE crop from 1996 to 2008, as well as the top 100 gross pro-
ducers of eight principal row crops during the period 1990 to 2008. For these 
100 countries, we include observations on each of the four major GE crops 
(corn, cotton, soybean, and rapeseed) and each of four other principal row 
crops: wheat, rice, sorghum, and oats. These data comprise 10,717 annual 
country- level observations on crop output and GE seed area covering 627 
country- crop groups. Because not all countries planted all eight crops in 
every year, the data constitute an unbalanced panel. Summary statistics are 
provided in tables 8.2 and 8.3.

8.5   Empirical Results

In the fi rst econometric analysis of the global yield effects of GE seed 
adoption, we fi nd that agricultural biotechnology generally produces sig-
nifi cant yield improvements relative to non- GE seed on adopting farms. 
Table 8.4 reports results from estimation of equation (7).2 In all cases, the 
coefficients of interest, the 	j, are statistically signifi cant at the 99 percent 
level. Thus, the partial effect of GE seed adoption among adopters is positive 
and signifi cant. Row (1) of table 8.5 reports the gain in yield from adoption 
of GE seed as a percent of total yield per acre.3 The GE- seed effect on yields 
is greatest for crops with IR traits, that is, maize and cotton. Yield gains 
for GE cotton and maize—available in IR, HT, and stacked varieties—are 
estimated to be 65 percent and 45.6 percent, respectively. Yield gains for HT 
rapeseed and soybean are 25.4 percent and 12.4 percent, respectively. These 
estimates refl ect the theoretical prediction that yield gains are larger for seeds 
expressing IR traits than for seeds expressing only HT traits because the HT 
trait largely permits substitution to cheaper and less- toxic chemicals. The 
primary effect of HT seed, then, is to reduce the cost of damage control and 
lessen the toxicity of chemicals applied to fi elds. As damage control becomes 
more cost- effective, however, increased damage control effort will be under-
taken, which boosts effective yields and may boost potential yield as well.

2. Only coefficients of interest are reported. Full results are available from the authors by 
request.

3. Determined as 100 · �ji / 	jk.
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In order to test the theory that yield gains from GE crop adoption will 
be greatest in regions that suffer high pest pressure and have diminished 
access to chemical pest control agents, we estimate equation (7) separately 
for developed and developing countries. Because many developing countries 
effectively employ chemical pest control agents and because pest pressure 
is expected to be greatest in tropical regions, categorizing countries by eco-

Table 8.2 Summary statistics: Genetically engineered and trait shares

  All  Developing  Developed  Adopters  Nonadopters

Cotton
Yield 15,521.02 14,155.02 27,981.82 19,070.02 14,492.22

(9,278.30) (7,954.58) (11,074.55) (10,174.24) (8,741.64)
Seed share
  Genetically engineered 0.03 0.02 0.11 0.13

(0.14) (0.11) (0.26) (0.27)
  Herbicide tolerant 0.01 0.01 0.08 0.06 NA

(0.06) (0.21) (0.09) (0.18)
  Insect resistant 0.02 0.02 0.08 0.11 NA

(0.11) (0.09) (0.20) (0.21)
No. of observations 1,326 1,195 131 298 1,028

Maize
Yield 34,603.04 25,987.91 68,774.78 43,716.00 31,515.07

(26,844.58) (17,823.54) (29,293.47) (25,478.89) (26,601.66)
Seed share
  Genetically engineered 0.01 0.01 0.03 0.05 NA

(0.09) (0.07) (0.13) (0.17)
  Herbicide tolerant 0.00 0.00 0.01 0.01 NA

(0.03) (0.01) (0.07) (0.07)
  Insect resistant 0.01 0.00 0.02 0.05 NA

(0.07) (0.06) (0.09) (0.14)
No. of observations 1,778 1,420 358 450 1,328

Rapeseed
Yield 16,164.46 13,623.73 20,363.35 17,313.31 15,421.09

(8,082.97) (6,935.72) (8,104.34) (7,674.74) (8,259.82)
Genetically engineered seed 0.02 0.01 0.05 0.05 NA
 share (0.11) (0.07) (0.18) (0.18)
No. of observations 756 471 285 297 459

Soybean
Yield 15,760.13 14,334.70 21,177.71 18,841.01 14,559.26

(8,049.53) (7,789.70) (6,594.89) (5,634.42) (8,518.93)
Seed share
  Genetically engineered 0.03 0.01 0.04 0.12 NA

(0.15) (0.07) (0.17) (0.27)
  Herbicide tolerant 0.03 0.03 0.04 0.12 NA

(0.16) (0.15) (0.17) (0.27)
No. of observations  1,469  1,163  306  412  1,119

Notes: Means with standard deviations in parentheses. NA � not applicable.
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nomic status is admittedly crude. The development literature has struggled, 
however, to develop appropriate country classifi cations according to agro-
ecological factors and doing so is beyond the scope of this chapter. Never-
theless, estimated yield effects from the separate regressions of the developed 
and developing country samples does support the theory from section 8.3. 
The separate estimation of GE- seed effects for developed and developing 
countries are reported in tables 8.6 and 8.7, respectively. The magnitudes 
of these effects relative to conventional seed effects are summarized in rows 
(2) and (3) of table 8.5. The estimated yield gains associated with GE seed 

Table 8.3 Summary statistics: Harvest, genetically engineered, and trait areas

  All  Developing  Developed  Adopters  Nonadopters

Cotton
Harvest area 474,349.90 428,056.00 896,649.60 1,379,338.00 212,009.10

(36,980.19) (37,104.66) (155,609.40) (145,291.90) (14,420.28)
Area
  Genetically 68,553.91 40,843.28 321,334.10 305,041.90 NA
  engineered (13,715.36) (11,320.57) (90,135.19) (59,087.57)
  Heat tolerant 14,809.95 794.37 142,662.00 65,899.31 NA

(4,238.49) (326.75) (41,290.66) (18,581.88)
  Insect resistant 45,593.07 39,889.99 97,617.34 202,873.90 NA

(10,514.57) (11,313.96) (25,651.71) (45,686.30)
No. of observations 1,326 1,195 131 298 1,028

Maize
Harvest area 1,479,825.00 1,360,254.00 1,954,099.00 4,148,485.00 575,534.70

(98,446.21) (88,076.30) (341,315.70) (355,597.30) (21,051.80)
Genetically 109,796.70 15,909.59 482,198.30 433,819.10 NA
  engineered area (30,228.59) (4,282.14) (147,695.10) (118,219.00)
Heat- tolerant area 48,679.08 2,454.09 232,029.60 192,336.50 NA

(18,522.17) (861.15) (91,386.47) (72,822.68)
Insect resistant area 97,552.94 14,295.37 427,792.50 385,442.50 NA

(29,210.24) (3,861.43) (143,092.30) (114,434.10)
No. of observations 1,778 1,420 358 450 1,328

Rapeseed
Harvest area 579,795.00 586,433.90 568,823.40 1,378,898.00 62,728.59

(56,032.14) (78,956.79) (71,337.53) (129,412.50) (5,906.97)
Heat- tolerant area 56,013.80 148,584.00 142,580.60 NA

(16,089.23) (42,155.01) (40,484.63)
No. of observations 756 471 285 297 459

Soybean
Harvest area 955,104.90 729,134.40 1,813,940.00 3,208,778.00 76,662.81

(100,410.50) (78,176.62) (376,048.00) (333,191.70) (5,633.53)
Heat- tolerant area 324,252.10 185,842.00 850,301.00 1,156,132.00 NA

(62,136.70) (42,322.81) (249,257.40) (216,403.60)
No. of observations  1,469  1,163  306  412  1,119

Note: See table 8.2 notes.
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are greater in developing countries than in developed countries for each GE 
crop. These differences are statistically signifi cant at the 95 percent level.

We further estimate equation (7) with the addition of GE and non- GE 
time trends. These results are reported in table 8.8. We fi nd a positive and 
signifi cant trend associated with non- GE crop yields for cotton, maize, 
rapeseed, rice, and wheat. These correspond to 1.37 percent, 0.99 per-
cent, 2.17 percent, 0.65 percent, and 1.16 percent annual growth from 
1990 to 2008 for each of  these crops, respectively. The GE cotton, rape-
seed, and soybean exhibited statistically signifi cant positive yield growth 
over the same time period, suggesting that learning by doing and learning 

Table 8.4 Genetically engineered seed adoption effects

 Crop  Total area (1)  
Genetically 

engineered area (2)  

Cotton 1.313∗∗∗ 0.854∗∗∗
(0.220) (0.130)

Maize 6.363∗∗∗ 2.902∗∗∗
(0.548) (0.419)

Rapeseed 1.499∗∗∗ 0.382∗∗∗
(0.128) (0.107)

Soybean 2.461∗∗∗ 0.307∗∗∗
(0.203) (0.112)

Oats 1.202∗∗∗
(0.0917)

Rice 5.094∗∗∗
(0.545)

Sorghum 1.236∗∗∗
(0.194)

Wheat 2.257∗∗∗
(0.254)

Constant –366,994
(239,633)

No. of observations 10,717
No. of groups 627

 R2  0.728    

Note: Robust standard errors in parentheses.
∗∗∗Signifi cant at the 1 percent level.

Table 8.5 Yield gain from genetically engineered seed as percent of yield

Variable  Cotton (1)  Maize (2)  Rapeseed (3)  Soybean (4)

All countries 65.042 45.607 25.484 12.475
Developed countries 22.886 15.193 24.057 7.040
Developing countries  109.510  56.403  NA  30.189

Note: NA � not applicable.
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by using have fueled yield growth that dominates declines caused by the pat-
tern of adoption (i.e., expansion of GE seed to farms that benefi t less) and 
development of resistance to complementary chemicals. When the GE- seed 
trends are introduced, however, signifi cance of the average GE- seed effect 
is lost except in maize.

The foregoing results demonstrate that GE crop adoption generally has 
statistically and economically signifi cant effects on yields. As the thresh-
old adoption model introduced in section 8.3 demonstrates, farmers select 
to adopt GE technologies based on their expected gain. These gains are 
expected to increase in pest pressure and farm quality. Our estimates do not 
control for the selection at the farm level. To the extent that GE crops are 
adopted on farms of higher quality, these estimates will be upwardly biased 
estimates of the population average treatment effect (PATE). However, they 
represent unbiased estimates of the population- average treatment effect of 
the treated (Imbens and Wooldridge 2009). These estimates of yield gains 
among adopters are not inconsistent with some estimates in the existing 
literature based on fi eld trials that control for the farmer selection problem. 

Table 8.6 Genetically engineered seed adoption effects in developed countries

 Crop  Total area (1)  
Genetically 

engineered area (2)  

Cotton 1.407∗∗∗ 0.322∗∗∗
(0.267) (0.105)

Maize 12.440∗∗∗ 1.890∗∗∗
(2.867) (0.485)

Rapeseed 1.538∗∗∗ 0.370∗∗∗
(0.126) (0.099)

Soybean 2.784∗∗∗ 0.196
(0.624) (0.164)

Oats 2.149∗∗∗
(0.115)

Rice 5.381∗∗∗
(1.154)

Sorghum 4.572∗∗∗
(0.366)

Wheat 2.189∗∗∗
(0.222)

Constant –453,968∗
(262,868)

No. of observations 2,208
No. of groups 150

 R2  0.848    

Note: Robust standard errors in parentheses.
∗∗∗Signifi cant at the 1 percent level.
∗Signifi cant at the 10 percent level.
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Furthermore, unlike studies based on fi eld trials, we have not endeavored to 
estimate a “gene” effect, but rather the “GE- adoption” effect, which incor-
porates behavioral responses to GE adoption, including the adoption of 
other technologies and farming practices and changes in production input-
 use (e.g., fertilizer- use) that theory predicts will boost potential output. The 
GE- adoption effect that we estimate should dominate the gene effect esti-
mated in the extant literature.

While the potential for upward bias of a PATE estimate is real, it should 
also be noted that the upward bias traditionally associated with the endoge-
neity of technology adoption should be somewhat minimized in this case for 
several reasons. First, the technology under consideration serves to reduce 
the complexity of farming, suggesting that farmers with less human capi-
tal may benefi t the most from adoption. Second, while theory predicts the 
gains increase in land quality, it also suggests the benefi ts of adoption will 
be greater where pest pressure is higher. It is not clear this land will be of 
higher quality than land with less pest pressure. It is quite possible that pest 
pressure is negatively correlated with land quality such that the positive 

Table 8.7 Genetically engineered seed adoption effects in developing countries

 Crop  Total area (1)  
Genetically 

engineered area (2)  

Cotton 1.062∗∗∗ 1.163∗∗∗
(0.239) (0.219)

Maize 5.404∗∗∗ 3.048∗∗∗
(0.508) (0.409)

Rapeseed 1.476∗∗∗
(0.210)

Soybean 2.120∗∗∗ 0.640∗∗∗
(0.273) (0.191)

Oats 1.123∗∗∗
(0.091)

Rice 5.058∗∗∗
(0.549)

Sorghum 0.966∗∗∗
(0.124)

Wheat 2.250∗∗∗
(0.390)

Constant –453,968∗
(262,868)

No. of observations 8,509
No. of groups 477

 R2  0.650    

Note: Robust standard errors in parentheses.
∗∗∗Signifi cant at the 1 percent level.
∗Signifi cant at the 10 percent level.



284    Steven Sexton and David Zilberman

selection bias will be muted. Depending on the distribution of pest pressure 
and quality, the selection bias could be negative. Third, GE seed is adopted 
on marginal land that was not profi tably farmed before the introduction of 
the technology. This land expansion effect further diminishes the likelihood 
that the quality of farms that adopt GE crops far exceeds the quality of 
farms that do not adopt.

8.6   Simulating Impacts during the 2008 Food Crisis

In 2008, a global food crisis induced hunger and starvation in poor regions 
of the world as prices for grains rose dramatically and major food producing 
countries slashed exports to protect domestic markets. Food prices reached 
near- record levels in 2008, with some commodity prices nearly doubling 
in just a few years and food indexes climbing 56 percent in one year. The 
dramatic run- up in food prices in 2008 coincided with record biofuel produc-
tion, so much of the blame for food insecurity was leveled at the diversion 
of harvest from food to fuel uses.

Without the increased food supply afforded by agricultural biotechnology 
adoption, prices would have climbed even higher. Using partial equilibrium 
analysis, it is possible to consider what would have happened to food mar-
kets in 2008 if  observed levels of biofuel production had prevailed and the 

Table 8.8 Genetically modifi ed and conventional seed yield trends

Crop  
Total area 

(1)  

Genetically 
engineered 

area (2)  
Conventional 

trend (3)  

Genetically 
engineered 
trend (4)

Cotton 1.240∗∗∗ –0.164 0.017∗∗ 0.077∗∗∗
(0.294) (0.297) (0.009) (0.026)

Maize 5.055∗∗∗ 2.586∗∗∗ 0.050∗∗ –0.033
(1.610) (0.515) (0.024) (0.030)

Rapeseed 1.262∗∗∗ –0.049 0.027∗∗∗ 0.016∗∗∗
(0.101) (0.092) (0.009) (0.005)

Soybean 2.374∗∗∗ 0.005 0.008 0.026∗∗
(0.158) (0.122) (0.015) (0.012)

Oats 1.336∗∗∗ 0.015
(0.092) (0.012)

Rice 5.267∗∗∗ 0.034∗∗∗
(0.545) (0.002)

Sorghum 1.250∗∗∗ 0.002
(0.194) (0.007)

Wheat 2.584∗∗∗ 0.030∗∗∗
  (0.254)    (0.007)   

Note: Robust standard errors in parentheses.
∗∗∗Signifi cant at the 1 percent level.
∗Signifi cant at the 5 percent level.
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additional output attributable to GE seed adoption had not. To this end, 
we employ a multimarket framework to model the impacts of 2008 biofuel 
production on soybean, maize, wheat, and rapeseed. We assume a global 
market for commodities and simulate three separate assumptions on own 
and cross- price elasticities of demand and supply. These scenarios are sum-
marized in table 8.9. Scenario 1 is characterized by reasonable elasticity 
assumptions based on estimated elasticities in the literature. Scenario 2 is 
characterized by more elastic demand, and Scenario 3 incorporates greater 
substitutability among crop supply. The supply attributable to GE crop 
adoption is determined by multiplying the estimated GE yield gain by the 
area planted to GE crops for each crop.4 We further parametrize the model 
based on observed prices and quantities in 2008. We then consider the price 
effect of biofuel production by subtracting biofuel demand and fi nding the 
new equilibrium price.

Global biofuel production in 2008 recruited 86 million tons (10 percent) 
of  global maize production and 8.6 million tons of  global vegetable oil, 
which we assume was equally drawn from soybean and rapeseed produc-
tion to constitute 7 percent of the global rapeseed harvest and 2 percent of 
the global soybean harvest. This increased demand for maize, soybean, and 
rapeseed increased prices 67 percent, 40 percent, 36 percent, and 57 percent 
for maize, soybean, wheat, and rapeseed, respectively. As reported in table 
8.10, world prices for these four commodities would have been between 
26 percent and 40 percent lower without biofuel demand given the assump-
tions of Scenario 1. Without the yield gains of global biotechnology produc-
tion, 2008 prices would have been considerably higher. Corn prices would 
have been 35 percent higher, soybean prices 43 percent higher, wheat prices 
27 percent higher, and rapeseed prices 33 percent higher.5 As is also shown 
in table 8.10, even under the assumptions of more elastic demand (Scenario 
2) and supply substitutability (Scenario 3), GE crop adoption in 2008 alone 

4. We employ the developing and developed- country estimates in the simulations.
5. An estimate of the global production gains attributable to biotechnology adoption was 

determined for each maize, soybean, and rapeseed by multiplying observed country- level pro-
duction in 2008 by the country- appropriate estimate of the GE- induced percentage increase 
in yield and the country- crop- year- specifi c GE- crop share. These estimates determined GE- 
induced output gains to constitute 5 percent, 11 percent, and 4 percent of total output for maize, 
soybean, and rapeseed, respectively.

Table 8.9 Simulation scenarios

  Scenario 1 Scenario 2 Scenario 3

Own- price elasticity of demand –0.300 –0.500 –0.300
Own- price elasticity of supply 0.300 0.300 0.300
Cross- price elasticities of demand 0.050 0.050 0.050
Cross- price elasticities of supply  –0.100  –0.100  –0.075
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signifi cantly reduced food prices. The cumulative effect of GE yield gains 
over the past fourteen years is likely greater still, as inventories carried into 
2008 would have been larger, serving to dampen upward pressure on prices. 
Given the degree of suffering that near- record- high commodity prices in 
2008 induced among poor populations, it is likely that agricultural biotech-
nology adoption helped to avert starvation and death. A more complete 
characterization of the welfare effects of biofuel and biotechnology adop-
tion is the subject of ongoing research.

8.7   Discussion and Conclusions

In 2008, food riots and the doubling of commodity prices in some regions 
served as a reminder that with slowing agricultural productivity growth and 
growing demand for farm output, the victory over hunger could only be 
ephemeral. Agricultural production must grow in order to feed and fuel 
a global population that is at once increasing in size and wealth. Because 
of  growing concern about climate change and biodiversity loss, produc-
tion may need to grow without expanding into natural lands. This chapter 
provides new econometric analysis of aggregate farm yields that suggests 
that among adopting farms, agricultural biotechnology boosts yields of 
the four main crops in which it has been introduced. Consistent with the 
theory developed in this chapter, we fi nd that the yield gains are greatest in 
developing countries, which are generally characterized by high pest pres-
sure and limited access to insecticides. We also show that the yield effect of 

Table 8.10 Simulating food price effects of biofuel with and without biotechnology

Percent change

  2008 price  No biofuel  No biotech  No biofuel  No biotech

Scenario 1: Base
Corn 223.13 133.28 300.24 –40.27 34.56
Soybean 474.74 337.96 676.55 –28.81 42.51
Wheat 268.59 197.87 342.25 –26.33 27.42
Rapeseed 604.92 385.70 802.32 –36.24 32.63

Scenario 2: Elastic demand
Corn 223.13 178.70 256.40 –19.91 14.91
Soybean 474.74 337.96 575.33 –28.81 21.18
Wheat 268.59 197.87 293.51 –26.33 9.27
Rapeseed 604.92 385.70 685.91 –36.24 13.38

Scenario 3: Increased substitutability
Corn 223.13 157.19 274.76 –29.55 23.14
Soybean 474.74 390.71 623.64 –17.70 31.36
Wheat 268.59 227.95 310.92 –15.13 15.76
Rapeseed  604.92  451.37  732.85  –25.38  21.15
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GE crop adoption is growing over time, suggesting that learning effects have 
dominated the effects of expansion into less suitable applications and the 
development of resistance. This analysis, which points to the capacity for 
agricultural biotechnology to drive productivity growth, is constrained by 
data limitations that preclude controls for farm- level endogeneity of adop-
tion. Consequently, our estimates can conservatively be interpreted as a 
population average treatment effect on the treated.

Simulation analysis based on the econometric estimation shows that, at 
the height of the 2008 global food crisis, the additional output generated 
by GE- crop yield gains mitigated price increases, perhaps saving lives in 
poor countries. Absent the intensifi cation permitted by agricultural bio-
technology, an additional twenty million hectares of land—an area equal 
in size to the state of Utah—would have been required to produce the 2008 
harvest of staple crops. Such expansion of farmland would come at a cost 
in terms of GHG emissions (from land conversion) and risk to biodiver-
sity, especially if  forests were cleared to accommodate the additional crops. 
This analysis suggests that agricultural biotechnology constitutes a tool to 
overcome challenges posed by macro trends at the outset of the twenty- fi rst 
century. First- generation GE crops permit the intensifi cation of agriculture, 
which effectively frees land for production of biofuel, or at least diminishes 
the demand for new cropland induced by rising food and fuel needs. In 
future research, we intend to investigate the capacity for yield improvements 
associated with increased adoption of agricultural biotechnology and to 
explore empirically the degree to which agricultural biotechnology adop-
tion is land- saving.
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