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6
The Quantifi cation of Systemic 
Risk and Stability
New Methods and Measures

Romney B. Duffey

6.1   The Risk Measures and Assumptions

Financial markets do not just involve money and statistics; just like all 
other modern systems, they include people. Therefore, to understand and 
predict markets it is essential to understand people, predicting their actions, 
mistakes, skills, decisions, responses, learning, and motivation. To under-
stand people we must explicitly include their learned and unlearned behav-
iors with experience and risk exposure. This is what we attempt here, based 
on what has been learnt from other systems data. We treat all outcomes—
such as failures, crises, busts, and collapses—as occurring with some prob-
ability, and that these adverse or unwelcome events refl ect the inherent stabil-
ity characteristics of fi nancial markets. As noted by a well- known investor 
(Soros 2009): “Since markets are unstable, there are systemic risks in addi-
tion to risks affecting individual market participants. . . . Participants may 
ignore these systemic risks . . . but regulators cannot.”

We wish to make a failure prediction, using objective measures for risk 
and risk exposure, since all homo- technological systems have failures and 
we learn from them.1 The past outcomes for all homo- technological sys-
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1. We defi ne a homo- technological system as the complex and inseparable involvement of 
humans in any and all aspects of design, construction, operation, management, maintenance, 
regulation, production, control, conduct, and decisions.
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tems (industrial, transportation, production facilities) show clear evidence 
of  trends, and the failures, busts, and crises are due to both known and 
unknown causes and may be “rare” or “unlikely.”

Inability to predict failures is due to the improper and incomplete treat-
ment of human error, learning, and risk taking as part of the overall system. 
Traditional risk analysis and prediction techniques do not explicitly include 
the dynamic variability due to the inherent human characteristics embedded 
in and inseparable from the system. All major events and disasters, especially 
fi nancial ones, include the dominant contribution not only from individual 
mistakes, but also management failures and corporate- wide and regulatory 
errors and blunders. Risk is a measure of our uncertainty, and that uncertainty 
is determined by the probability of error. We must also estimate and predict 
risk that also includes the unknown or rare event.

We try to fi nd a dynamic objective measure that would actually anticipate 
instability, thus allowing predicting the onset of failure or large excursions 
(i.e., hence managing that risk and its consequences—equivalent to “emer-
gency preparedness”). In the popular fi nance articles, the risk mitigation pro-
cess seems to be referred to as “pricking bubbles,” and traditionally involves 
some kind of ad- hoc debt, credit and trading limitations, and / or restraints. 
These types of regulation or reactions are very much a posteriori and case- 
by- case, but are neither predictive nor general. As noted for risk in Nature 
Nanotechnology: “the real issue is how to regulate in the face of uncertainty” 
(Brown 2009, 209). Our work suggests that learning is effective as a risk 
management and predictive tool, but only if  we have adopted the “correct” 
risk exposure and uncertainty measures that we now attempt to determine.

Obviously, as humans we learn from experience, both good and bad. We 
also take risks and must make mistakes in order to improve. A universal 
curve is derived for both collective and individual learning trends, naturally 
including the inevitability of outcomes and risk. Based on our work study-
ing and analyzing over 200 years of real data on and for risk in technologi-
cal, medical, industrial, and fi nancial systems, fi ve measures are presented 
and discussed for the objective measure of risk, failure probability, and risk 
exposure. Correct measure(s) for experience enable the prediction and uncer-
tainty estimation for the entire range of rare, repeat, and unknown outcomes 
(e.g., major industrial disasters, facility accidents and explosions, everyday 
auto accidents, aircraft crashes, fi nancial busts, and market collapses).

We also introduce and present the unifying concept of risk and uncer-
tainty derived from the information entropy as a quantitative measure of 
randomness and disorder. We show how this allows comparative risk esti-
mation and the discerning of  insufficient learning. Since these risk mea-
sures and learning trends have been largely derived from data including the 
fi nancial arena, we show how to generalize these to include the presence of 
market pressures, fi nancial issues, and risk measures. We defi ne and present 
the bases, analyses, and results for new risk measures for the quantitative 
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predictions of  risk exposure, failure, and collapse using relevant experience 
including:

1. Universal Learning (ULC), similar to the Black- Scholes concept
2. Risk Ratios (RR) and exposure, as derived from empirical hazard 

curves
3. Repeat Event Predictions (REP) or never happening again, equivalent 

to birthday matching and reoccurring echoes
4. Rare and Unknown Outcome occurrences (UU), as in the black swan 

concept
5. System and Organizational Stability (SOS) or resilience criteria, using 

the information entropy concept

We provide quantifi ed examples for production processes, transportation 
losses, major hazards, and fi nancial exposure. These new concepts also pro-
vide the probability of success, the emergence of order, and the understand-
ing and quantifi cation of risk perception. Note that these measures replace 
and do not include in any way the standard fi nancial techniques utilizing net 
value, value at risk, or variations about or from the mean.

In our analysis we assume fi nancial markets are just another homo- 
technological system and the past failure rates inform the future, and that 
the inherent apparent randomness and chaos conveys and contains infor-
mation. We avoid using traditional statistical approaches where past failure 
frequencies defi ne invariant future failure probability distributions. We also 
explicitly avoid the impossible modeling of all the internal details of assets 
and trading, and avoid any fi ltering of  data; we consider only emergent 
trends at system level based on what we know. We treat risk as determined 
by experience or risk exposure, thus avoiding using comfortable calendar 
time intervals (i.e., as in daily, hourly, monthly, quarterly, or annual report-
ing) as markets operate according to their experience. As in medical and 
other systems, this risk measure is often determined by the dynamic accumu-
lated “volume,” which also provides the learning opportunity. Our research 
approach is predicated on extrapolating known and unknown past failure 
rates based on experience and future dynamic risk exposure, and is tested 
against data, so the concept and measures of  risk and stability are truly 
falsifi able.

6.2   Risk: How We Learn from Experience and What We Know about 
Risk Prediction

Risk is measured by our uncertainty, and the measure of uncertainty is 
probability.

The defi nition, use, and concepts of risk adopted in this chapter utilizes 
measures for risk exposure and for uncertainty that encompass and are con-
sistent with that proposed before in the fi nancial literature (Holton 2004, 19):
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Risk entails two essential components:

•  Exposure, and
•  Uncertainty

Risk, then, is exposure to a proposition of which one is uncertain.

What is the risk of  system failure? What is the measure for exposure? 
What is the measure of uncertainty? To answer those questions we must 
understand how and why systems fail, and show how to make a prediction, 
noting that while fi nancial systems constitute a distinct discipline with its 
own terminology, they actually must behave just like all others that are prone 
to the all too common vagaries, actions, and motivations of humans. We use 
probability and information entropy to quantify uncertainty, and past and 
future experience to quantify exposure.

We fi rst review what is known and not known about predicting and man-
aging risk in industrial, energy, transportation, nuclear, medical, and manu-
facturing systems, and the associated risk exposure measures. We address the 
question of the predictability of a large systems failure, or collapse, and the 
necessary concepts related to risk quantifi cation and system stability that 
are emerging from the physical sciences, cognitive psychology, information 
theory, and multiple industrial arenas that are relevant to current fi nancial 
and economic market and stability concerns. We have defi ned the risk of 
any outcome (being a proposition of which one is uncertain) as caused by 
uncertainty, and that the measure of the uncertainty is probability, p. We 
attempt to use some of these risk concepts, learning, and applications from 
mainly operational systems to inform risk prediction for fi nancial systems.

Risks are due to the probability / possibility of  an adverse event, out-
come, or accident. Simply put, we learn from our mistakes, correcting our 
errors along the way. We all know that we have had a serious failure of 
the fi nancial and investments markets due to excessive risk exposure and 
losses. The key observation is that markets are random, which is confi rmed 
by sampling distributions, but we also know that conventional statistics of 
normal distributions (such as used in VaR and CoVaR techniques) do not 
work when applied to predicting dynamically changing accident, event, and 
outcome trends (Taleb 2007; Duffey and Saull 2008). So while the instanta-
neous behavior appears to be random and hence unpredictable, the failure 
to predict is due to the failure to properly include the systematic infl uence of 
human element, which is nonlinear, dynamic, and varies with experience and 
risk exposure.

In industrial operations, the cardinal rule of operation applicable to any 
system is due to Howlett (2001), which is:

Humans must remain in control of their machinery at all times. Any time 
the machine operates without the knowledge, understanding and assent 
of its human controllers, the machine is out of control. (5)
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Furthermore, the limits to operation are defi ned by a Safe Operating Enve-
lope, with limits that include margins and uncertainty that defi ne “guaran-
tees” for the avoidance of failure. Risk management is then employed to 
protect or mitigate the consequences of failures that might occur anyway 
(Howlett 2001). These well- tried concepts are all translatable to and usable 
in fi nancial systems, just as they are for industrial systems, since all systems 
include human involvement and hence involve the uncertainty due to risk tak-
ing and learning.

We have previously shown that the dominant contribution to all manage-
ment and system failures, outcomes, and accidents is from that same inextri-
cable and inseparable human involvement. Be they airplane, auto, train, or 
stock market crashes, the same learning principles also apply. We have shown 
that to quantify risk we must include the learning behavior, quantifying out-
comes rates, and probabilities due to our experience from human decision 
making and involvement with modern technological and social systems, 
including industrial, transportation, chemical, fi nancial, and manufactur-
ing technologies (Duffey and Saull 2002, 2008). These ideas and concepts 
include naturally not only the collective system (e.g., a bank, railway, power 
plant, or airline) but also the individual human reliability (e.g., an investor, 
driver, manager, or pilot).

What we know is that provided we have prior (outcome or failure) data 
we can now predict accurately the future outcome rates, and defi ne the risk 
exposure based on the past known and the future expected experience. That 
we can learn from experience is what all the data show, and that experience is 
the past risk exposure we have all so painfully acquired as a human society. 
The experience measure is a surrogate for our very human risk exposure, of 
how long, how many, and how much we have been exposed to the chance 
of an outcome, or to the risk of an error.

The prediction of the future rate of failures or outcomes is given from 
the Learning Hypothesis, being simply the principle that humans naturally 
learn from their mistakes, by correcting and unlearning during and from the 
accumulated experience, both good and bad. The experience—however it 
is defi ned or measured—represents also not only the learning opportunity, 
but a measure of the risk exposure. The probability of error, accident, catas-
trophe, or mistake ( p) is determined by the failure rate, which derives from 
the number of either a successful or a failed (unsuccessful) outcome. The 
rate of outcomes decreases exponentially with experience, in the form of a 
Universal Learning Curve (ULC). Over 200 years of experience and millions 
of prior, past, or historic data allow the ULC to be defi ned. The validation 
derives from massive data sets of both frequent and rare events (Duffey and 
Saull 2002, 2008), which now includes multiple sources and outcomes, with 
the historical time spans covering the past 200 years, and major data avail-
able from the last 50 or more years.
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We analyzed auto passenger deaths, railway injuries, coal mining deaths, 
oil spills at sea, commercial airline near- misses, and recreational boating 
deaths. Globally, the learning data set we have amassed now contains mul-
tiple technologies worldwide: coal and gold mining, 20 million pulmonary 
disease deaths, cataract operations, infant heart surgeries, the international 
total of  rocket launches, pilot deaths in Australia, train derailments and 
danger signals passed on railways, and notably, the anti- missile interception 
and destruction effectiveness over England of German VI bombs in World 
War II. Economic data on specifi c unit price variations with increasing out-
put or commercial sales demonstrating the learning trends and so- called 
“progress curves” for manufacturing are observed for millions of units pro-
duced in factories and production lines.

The millions of outcome data analyzed are well represented by the Learn-
ing Hypothesis (Duffey and Saull 2002, 2008), which states that the rate 
of  decrease of  the outcome or failure rate, �, with experience units, �, is 
proportional to that same rate. Thus, very simply, the differential equation 
is the proportionality:

  

d�

d�

⎛
⎝⎜

⎞
⎠⎟

 ∝ 
 �.

The previous cases and data sets show variations in the learning constant: 
when learning trends are present an average learning rate “constant” of 
proportionality value of k ~ 3 is reasonable (see also fi gure 6.1).

Systems exist that do not show signifi cant learning, as measured by 
decrease or declining loss and error trends, are those where the continuing 
infl uence and reliance on the human element and historic practices overrides 
massive changes in technology and the robustness of system design.

6.3   Individual Actions: Predictable and Unpredictable

It is reasonable to ask how the behavior of entire systems refl ect the indi-
vidual interactions within them, and vice versa, including the myriads of 
managers, accountants, traders, investors, speculators, lawyers, and regula-
tors that make up a fi nancial market or system. This link is between the 
unobserved multitudinous and microscopic interactions and the observed 
macroscopic and emergent system trends, distributions, responses, and out-
comes. For just individual actions (as opposed to system outcomes), data are 
available in the psychological literature from many thousands of individual 
human subject task and learning trials. These trials have established the 
rate of skill acquisition as described by the so- called Laws of Practice. We 
have shown (Duffey and Saull 2008) that these laws are entirely consistent 
with the ULC for entire systems and have the same learning constant (or K 
value) with repeated trials. Thus, the data show that external system- learning 
behavior mirrors the internal learning trends of the individuals within. The 
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predicted probability of  error also agrees with published nuclear plants 
events, simulator tests, and system recovery action times. Probabilities for 
power restoration for power losses at over 100 US nuclear power plants are 
also in agreement, as is the power blackout repair probability for customers 
over a period of several days.

In all these data, we have n outcomes occurring in some experience, �. The 
resulting form of the learning curve is shown in fi gure 6.1, which is a log- log 
plot with arbitrary units on each axis of the rate of the undesirable errors 
and outcomes, dn / d�, versus the accumulated experience, which is a surro-
gate for the risk exposure during actual system operation. This risk exposure 
or experience measure, �, is unique for each and every system: for aircraft it 
is the number of fl ights fl own, for railways the train- miles traveled, for ships 
the shipping- years afl oat, for manufacturing the number of units produced, 
for human errors in decision making, skill acquisition, and response time it 
is the number of repetitive trials.

As we increase our experience and risk exposure as both individuals and 
systems, the event or outcome rate depends on whether, either collectively 
and / or individually, we follow a learning curve of decreasing risk or not, or if  
we are somewhere in between. In fi gure 6.1, the line labeled “learning curve” 
(from the Minimum Error Rate Equation, or MERE) is the desirable ULC, 
where learning occurs to rapidly reduce the rate. This is the most likely path, 
and is also that of the least risk as we progress from being a “novice” with 
little experience to becoming an “expert with progressively more exposure 

Fig. 6.1 The ULC and Constant Risk Lines: Failure rates with increasing experi-
ence and / or risk exposure
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and experience.” There are no “zero defects”; there is always a fi nite, nonzero 
residual rate of error, �m, so say all of the world’s data. The equation that 
describes the learning curve is an exponential with experience:2

 Failure rate, �(�) �  Minimum rate, �m 

� (Initial rate, �0 
 Minimum rate, �m) � exp
(k�).

If  we simply replace the rate, �, by the value or specifi c cost, C, and change 
the sign, the MERE turns out to be identical in form to that of the trend-
ing part of  the Black- Scholes equation for portfolio cost and value. For 
manufacturing or production there is a “tail” of  nonzero value that cor-
responds to the minimum possibly achievable, Cm, in any competitive mar-
ket system. Reducing cost with increasing volume, or units produced, thus 
also holds for manufacturing and production cost decreases, just as patient 
volume does for improving individual surgical skill, thus reducing inadver-
tent deaths with increasing patient count (practice or trials). The difference 
is that in these cases the experience parameter, �, is conventionally taken 
as either time (for stock or equity values variation) or accumulated units 
manufactured (for production prices changes), and a key question is what 
measure to adopt in fi nancial systems for the relevant experience and risk 
exposure.

Since fi gure 6.1 is a log- log plot (scale units are factors of ten on each axis), 
any line of constant risk is then a straight line of slope minus one, where the 
event rate, �, times experience, �, is the constant number of events, n. Hence, 
� � n / �, and for the fi rst or rare event, n � 1, which is the dashed “constant 
risk” line for any fi rst or rare event shown in fi gure 6.1. The rate decreases 
inversely with the risk exposure or experience, so importantly, at little or 
no experience or little learning, the initial rate is given by �0 � 1 / �, which 
is exactly the form of the rare events as derived from commercial aircraft 
crashes. As we shall see, this risk path is the initial rate and also emphasizes 
the “fat tail” that worries and confounds conventional risk and value ana-
lysts. We call this prediction a White Elephant when it underestimates the 
risk, since it has no value as a prediction.

In terms of probabilities as a measure of risk, instead of rates, the pre-
vious equation can be integrated to yield an expression that in words implies:

Risk exposure probability is due to the minimum risk plus the initial risk 
exposure less the reduction in risk due to learning.

For any real, not hypothetical system the minimum achievable failure rate 
does not appear to change and has not changed for over 200 years, depend-
ing solely on our experience and risk exposure measure for a given system. So 
conversely, the systemic risk (the probability of failure or a bust) is dependent 
on the risk exposure measure.

2. See the defi nitions and derivations in the appendix.
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6.4   The Seven Commonalities of Rare and Terrible Events: Risk Ratios 
and Predictions

What do large disasters, crises, busts, and collapses in fi nancial systems 
like the Great Crash of 2008 (IMF 2009b) have in common with the other 
major events? These have happened in multiple technologies and indus-
tries, such as in industries as diverse as aerospace (Columbia and Challenger 
Shuttle losses) (CAIB 2003), nuclear (Davis- Besse plant vessel corrosion) 
(NRC 2008), oil (Deepwater Horizon explosion and leak) (US National 
Commission 2011), chemical (Toulouse ammonia plant explosion) (Bar-
thelemy 2001), transportation (the Quebec overpass collapse) (Commission 
of Inquiry 2007a, 2007b), and the recent devastating nuclear reactor melt-
downs at the Fukushima plants in Japan. The common features, or, as we 
may call them, the Seven Themes, cover the aspects of causation, rationaliza-
tion, retribution, and prevention, ad nauseam.

First, these major losses, failures, and outcomes all share the same very 
same and very human Four Phases or warning signs: the unfolding of the 
precursors and initiating circumstances, the confl uence of events and circum-
stances in unexpected ways, the escalation where the unrecognized unknow-
ingly happens, and afterward, denial and blame shift before fi nal acceptance.

Second, as always, these incidents all involved humans, were not expected 
but clearly understandable as due to management emphasis on production 
and profi t rather than safety and risk, were from gaps in the operating and 
management requirements, and from lax inspection and inadequate regula-
tions.

Third, these events have all caused a spate of media coverage, retroactive 
soul- searching, “culture” studies and surveys, regulation review, revisions to 
laws, guidelines, and procedures, new limits, and reporting legislation, which 
all echo perfectly the present emphasis on limits to the bonus culture and 
risk taking that are or were endemic in certain fi nancial circles.

Fourth, the failures were so- called “rare events” and involved obvious 
dynamic human lapses and errors, and as such do not follow the usual sta-
tistical rules and laws that govern large quasi- static samples, or the multi-
tudinous outcome distributions (like normal, lognormal, and Weibull) that 
dominate conventional statistical thinking, but clearly require analysis and 
understanding of the role of human learning, experience, and skill in making 
mistakes and taking decisions.

Fifth, these events all involve humans operating inside and / or with a sys-
tem, and contain real information about what we know about what we do 
not know—being the unexpected, the unknown, the rare and low occurrence 
rate events—with large consequences and highlighting our own inadequate 
predictive capability, so that to predict we must use Bayesian- type likelihood 
estimation.

Sixth, there is the learning paradox that if  we do not learn we have more 
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risk, but to learn perversely we must have the very events we seek to avoid, 
which also have a large and fi nite risk of reoccurrence. Ultimately, we have 
more risk from events we have not had the chance to learn about, being the 
unknown, rare, or unexpected.

Seventh, these events were all preventable but only afterward. Hindsight, 
soul- searching, and sometimes massive inquiries reveal what was so obvious 
time after time—the same human fallibilities, performance lapses, super-
visory and inspections gaps, bad habits, inadequate rules and legislation, 
management failures, and risk- taking behaviors that all should have been 
and were self- evident, and were uncorrected.

We claim to learn from these each time, perhaps introducing corrective 
actions, revised rules, and lessons learned (Ohlsson 1996), thus hopefully 
reducing the outcome rate or the chance of reoccurrence. All of these aspects 
were also evident in the fi nancial failure of 2008, in the collapse of major 
fi nancial institutions and banks. These rare events are worth examining fur-
ther as to their repeat frequency and market failure probability: recessions 
have happened before but 2008 was supposedly somewhat different, as it was 
reportedly due to unbridled systemic risk, and uncontrolled systemic failure 
in credit and real estate sectors. This failure of risk management in fi nan-
cial markets led to the analysis that follows, extending the observations, new 
thinking, and methods developed for understanding other technological sys-
tems to the prediction and management of so- called “systemic risk” in fi nan-
cial markets and transactions. We treat and analyze these fi nancial entities as 
systems that function and behave by learning from experience just like any 
other system, where we observe the external outcomes and failures due to the 
unobserved internal activities, management decisions, errors, and risks taken.

The past outcome data provide the past failure rate. To determine the 
future risk, we must distinguish between the past (statistically, the known 
prior) and the future (statistically, the unknown posterior). So what does the 
past tell us about the future? To predict an outcome, any event, we must go 
beyond what we know, that is, the prior knowledge. Somehow, we have to 
project ourselves into an unknown future, with some measure of confi dence 
and uncertainty, based on both our rational thoughts and our irrational 
fears, using what we know about what we do not know. This leads us into 
the somewhat controversial arena of prediction using statistical reasoning, 
a subject addressed in great detail elsewhere (Jaynes 2003).

The conditional future is dependent, albeit with uncertainty, on the past, 
as per Bayes reasoning (Jaynes 2003; Bayes 1763, 376). The probability or 
chance of an unknown event is dependent on something called the likeli-
hood, which itself  is uncertain but provides a rational framework for pro-
jection. The likelihood itself  is inversely dependent on the prior number of 
outcomes, and if  there are none so far, we just have the Bayesian failure rate 
of the past based on our (known) experience to date.

The Likelihood formally adjusts the past, prior, or known probability and 
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produces the future or posterior probability. So conditionally dependent on 
what we already know we know has already happened in the past, according 
to the thinking of the Reverend Thomas Bayes (1763) and of Edwin Jaynes’ 
(2003) rigorous analysis:

  Future chance (posterior probability, p(P)) 

 � Past or prior probability, p, times Likelihood.

The Likelihood multiplier, p(L), whatever it is and however derived (by 
physical argument, guess, judgment, evidence, probabilistic reasoning, 
mathematical rigor, or data analysis) is the conditioning factor that always 
alters the past whatever and however it is estimated. Even if  the past was 
indeed “normal,” the likelihood can even change the future to include rare 
events and unknown unknowns.

The risk ratio (RR) can then be defi ned as ratio of the future posterior 
probability, p(P), of an adverse event (accident, outcome, error, or failure in 
the future) to some known past or present failure probability, p(�), based on 
the prior accumulated experience, as a function of the future risk exposure 
or experience, or

RR � 
   

p(P)
p(�)

.

From the above Bayesian equation this risk ratio is equivalent to defi ning 
the Likelihood, p(L), where for low probabilities or rare events the posterior, 
p(P), itself  is numerically very nearly equal to the rate of events, or the failure 
rate, p(P) ~ f(�) ~ �. This result follows directly from the so- called “general-
ized Bayes formula” (Sveshnikov 1968 49, 80; Duffey and Saull 2008) that 
defi nes the Likelihood as the ratio of the probability of outcomes occurring 
in the next experience interval to the probability that outcomes have already 
occurred during the past experience.

So for low probability events, outcomes, or disasters ( p(�) �� 1), the risk 
ratio becomes simply the future predicted by the past since:

RR � 
   

p(P)(1 − p(�))
p(�)

 ~ 
   

p(P)
p(�)

 ~ 
   

�(�)
p(�)

,

which is the ratio of the known past rate and prior probability.
We show the risk ratio prediction for rare events with little learning 

(k ~ 0.0001) in fi gure 6.2 versus a series of curves (k from 0.1 – 0.001) rep-
resenting slow to negligible learning, where the risk ratio clearly has a slope 
varying as, 1 / �. The key observation is that the future risk predicted by the 
risk ratio, RR, still does not fall much below ~10–5 at large risk exposure, 
which corresponds to the plateau, or “fat tail,” caused by the lowest attain-
able but fi nite and nonzero failure rate that is observed for any system any-
where and everywhere in the world.
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So what, then, is the resulting Posterior probability, p(P) in the future? It 
is shown in fi gure 6.2 for a series of cases with varying learning or knowl-
edge acquisition from increasing risk exposure or accumulated experience. 
These cases are represented by the range of values shown for the learning 
“constant,” k, where progressively lower values mean less and less learning. 
As can be seen, if  learning is negligible so that k is very small (say, 0.0001) 
then the event probability decreases almost as a straight line of constant risk, 
1 / �, as it should; for larger k values a distinct kink or plateau occurs due 
to the presence of the always fi nite, nonzero failure rate due to the human 
involvement.

6.5   Predicting Rare Events: Fat Tails, Black Swans, and White Elephants

Colloquially, a Black Swan is an unexpected and / or rare event, one that 
dramatically changes prior thinking and expectations.

Because rare events do not happen often, they are also widely misun-
derstood. Perhaps even previously unobserved, they are called “unknown 
unknowns” (Rumsfeld 2002), or “Black Swans” (Taleb 2007) precisely 
because they do not follow the same rules when already having many or 
frequent events. Think of the space shuttle crashes, the global collapse of 
fi nancial companies, or an aircraft apparently falling from the sky as it did 
recently over the Atlantic. These are the things we may or may not have seen 
before, but certainly did not expect to happen. So when they do happen, 
perhaps even when being thought not possible, they do not apparently fol-

Fig. 6.2 Comparisons of the Risk Ratio Predictions
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low the trends, expectations, rules, or knowledge we have built up for more 
frequent happenings.

There is no assured, easy, or obvious “alarm,” indicator, or built- in warn-
ing signal, derivable by adjusting fi lters or data smoothing techniques. As 
noted in World Bank (2009),

Whether these alarms are deemed informative depends on their associa-
tion with subsequent busts. The choice of a threshold above which an 
alarm is raised presents an important trade- off between the desire for 
some warning of an impending bust and the costs associated with a false 
alarm. Nonetheless, even the best indicator failed to raise an alarm one to 
three years ahead of roughly one- half  of all busts since 1985. Thus, asset 
price busts are difficult to predict.

This is a 50 percent or even chance, which are no better odds than just toss-
ing a coin.

In statistical language and usage, the rare events do not follow or fi t in with 
the usual distributions of previous or expected occurrences. The frequency 
and / or probability of occurrence lies somewhere outside the usual many 
expected multiples of the standard deviation for any sample distribution. We 
may not even have a distribution of prior data anyway. In fact, Taleb (2007) 
spends a considerable part of his popular book The Black Swan discuss-
ing, discounting, and dismissing the use of so- called normal distributions 
such as the Gaussian or bell- shaped curves simply because they do not and 
cannot account for rare events even though many humans may think that 
they do. Also rare events, like all events, as we have said, are always due to 
some apparently unforeseen combination of circumstance, conditions, and 
combination of things that we did not foresee, and all include the errors in 
our human made and managed systems (the Seven Themes).

By citing many empirical cases, Taleb (2007) also further argues forcibly 
that this scale variation destroys any and all credibility of using any Gauss-
ian or normal distribution for prediction. In that limited sense, he is right, 
as conventional sampling statistics based on fi tting to some normal distri-
butions using many observations is totally inapplicable for low probability, 
one- of- a- kind rare, so- far- unobserved or unknown events. To make a true 
prediction we must still use what we know about what we do not know, and 
we now know that the relevant “scale” is in fact our experience or risk expo-
sure, which is what we have anyway, and is the basis for what we know or do 
not know about everything.

In fi gure 6.3, we show the one- on- one head- to- head comparison of  a 
normal (Gaussian) bell- shaped distribution,3 compared to the reality of 

3. The example Gaussian (or normal) distribution shown in fi gure 6.3 is p(P) � 
23 exp(–0.5 (� � 290) / 109)2, and was fi tted to the MERE learning curve using the commercial 
statistical software routine TableCurve 2D.
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learning variations as they affect probability: it is clear that the Gaussian or 
normal distribution seriously underestimates risk, in this case the probabil-
ity of an outcome, for large experience. This inability of standard methods 
to predict the extremes of the distributions in itself  is well- known, but less 
well- known is that the probability increase or plateau is due to the human 
element.

So the future chance, or posterior, of  any event, even of  an unknown 
unknown, is in fact given by estimating the Likelihood, p(L), something 
Taleb does not discuss at all. Instead, the concept of scalability was invoked, 
which we have now shown and will demonstrate is actually the same thing as 
a conditional probability of whether it will occur, but disguised as another 
White Elephant.

The impact of rare events can vary, particularly because they were some-
how disruptive, unexpected, or not predicted. So impacts can be large, as for 
a fi nancial crisis that affects everyone’s credit or bank account (Taleb 2007), 
or they can be negligible because they do not affect the overall industry but 
only the participants, as for a commercial airplane crash. But both do not 
happen very often. Because events occur randomly, we fi nd it difficult to pre-
dict when and where they will happen, and can do so only with uncertainty. 
So with rare events we are more uncertain, as we have had limited learning 
opportunity and we fear the unknown. The risk we determine or sense can 
be defi ned as the uncertainty in the chance of such an event happening. It 

Fig. 6.3 Predictions: Illustrating the Gaussian distribution failure to include the 
“fat tail” due to the infl uence of the human element
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is perceived by us, individually and collectively, as being a high risk or not 
based on how we feel about it, and have been taught, trained, experienced, 
learned, or indoctrinated. The randomness is then inherent in the learning 
processes, in the myriad of learned and unlearned patterns, neural fi rings, 
legal rules, acquired skills, written procedures, unconscious decisions, and 
conscious interactions that any and all humans have in any and all systems. 
Perversely, only by having such randomness, learning, skill, trial, and error 
can order and learning patterns emerge. We create order from disorder, 
learning as we go from experience and risk exposure, discerning the right 
and unlearning the wrong behaviors and skills. So a rare Black Swan, even 
if  of major impact, is indeed a White Elephant of no intrinsic value unless 
and only if  we are learning.

We need to know what we do not know. We cannot know what happens 
inside our brains and see the how the trillions of  neural patterns, path-
ways, and possibilities are wired, learned, interconnected, rationalized, and 
unlearned. We cannot know the millions of things that any group of people 
will talk about, learn, exchange, review, revise, argue, debate, reject, use and 
abuse, each and every day. We cannot know all about how a machine or 
system will behave when subjected to the whims of inadequate design, poor 
maintenance, extreme failure modes, external damage, and poor or unsafe 
operation. What we do know is that, because we are human, we do learn 
from our mistakes: this is the Learning Hypothesis (Petroski 1985; Ohlsson 
1996; Duffey and Saull 2002). The rate at which we make errors, produce 
outcomes, and cause events reduces both as we gain experience and if  and 
as we learn. We make mistakes because we are human: the fat tail, the rare 
event, occurs because we are human. If  and as we gain experience, this is 
equivalent to increasing our risk exposure too. The risk increases whether 
by driving on the road, by trading stocks and investments, or by building 
and operating a technological system like a ship, train, rocket, or aircraft.

Consistent with the principles of  natural selection, those who do not 
learn, those who do not adapt and survive, are the failures and extinctions 
of history, overtaken by the unexpected and mistakes, the errors and the 
Black Swans of the past.

6.6   Failure to Predict Failure: Scaling Laws and the Risk Plateau

What do we know about what we do not know? We know that the four 
categories of knowns and unknowns are the Rumsfeld quartet:

Known knowns: What is expected and already observed (in the past)
Known unknowns: Unexpected but observed outcomes (past outcomes)
Unknown knowns: Expected and not yet observed (in the future)
Unknown unknowns: Unexpected and not yet observed (future outcomes 

or rare events)
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This is analogous to drawing both outcomes and nonoutcomes from Ber-
noulli’s urn (Duffey and Saull 2008), and the probability of a rare (unknown) 
event is determined if  all we do is assume that it exists. Thus, we have turned 
a Black Swan into a White Elephant—the fact that we have not observed it, 
do not know if  it exists, but can rationally discuss it allows the fear, dread, 
and risk perception to be quantifi ed. This is precisely what Taleb recom-
mends—taking precautions against what it is we do not know about what 
we do now know.

We have defi ned a risk ratio that depends on the prior failure rate. But for 
a rare or unknown event the posterior probability of an unknown unknown, 
p(U, U ) that has not happened yet is fi nite and is given by analogy to the 
“case of  zero failures” in purely statistical analysis (Coolen 2006, 105). 
We can then obtain the mathematical estimate for knowing the posterior 
(future) probability of the unknowable as Duffey and Saull (2008):

P(U, U ) ~ 
   

1
U�2

⎛
⎝⎜

⎞
⎠⎟
 exp- U,

where U is some constant of proportionality. This order of magnitude esti-
mate shows a clear trend of the probability decreasing with increasing expe-
rience as an inverse square power law, �2. For every factor of ten increase in 
experience measured in some tau units, �, the posterior probability falls by 
one hundred times. It does not matter if  we do not know the exact numbers: 
the trend is the key for decision making and risk taking. The rational choice 
and implication is to trust experience and not to be afraid of the perceived 
Unknown.

But although useful for comparative trending purposes, such a purely 
statistical analysis excludes the key human involvement and uncertainty con-
tribution. Hence the risk of  an unknown unknown decreases inexorably 
with our increasing experience, or risk exposure, only until a risk plateau is 
reached and no further decrease in probability is possible. Therefore, con-
tinuing to extrapolate using such scaling power laws will always ultimately 
underestimate risk. So the White Elephant is precisely the case of little or 
no learning corresponding exactly to a scaled probability inverse law, that 
is, p(P) � n / �, where the number of events, n, is one (n � 1), simply because 
it is that fi rst and rare event that was never previously observed or known. 
So the probability, p, of any single rare event is always, 1 / �, the inverse of 
(one divided by) the exposure or experience measure, or scale. As shown 
before in fi gure 6.2, this is also a measure of the risk ratio and is equivalent 
numerically to the failure rate, �. So also shown in fi gure 6.4 are the so- called 
“scalable” or pure “power” laws discussed by Taleb (2007), where the prob-
ability is assumed to fall as the more general inverse power law, p(P) � l / �
.

Corresponding to the prior and the posterior variations without signifi -
cant learning, for illustration, the “slope” parameter, 
, is often taken as 
lying in the range between 1 and 2, which assumed values nicely cover the 
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“true” curves for novice or zero experience, varying as 1 / �, and for unknown 
unknowns varying as, 1 / �2. But these are constant risk lines that do not give 
the detailed shape or slope variations since they do not refl ect the learning 
opportunity and the ultimate irreducible, fi nite, residual, and nonzero risk 
rate. Basically the incorrect inexorable decrease in risk predicted by a scale 
law is offset by the inevitability of risk due to the human element, causing 
the fat tail or plateau in the probability graph. At a future (posterior) prob-
ability of order p � 10–5 the line intersects the learning curves, and the rare 
event or Black Swan truly becomes a White Elephant, being of less value or 
lower risk than the actual and hence of no predictive value.

Popular because of its simplicity, the inapplicable power law form is widely 
used in the fi eld of economics (known as an “elasticity”) when fi tting the 
exponent to price or response time reduction (Duffey 2004); in cognitive 
psychology (known as a “law of practice”) when applied to trials that consti-
tute repetitive learning (Stevens and Savin 1962); and in damage estimation 
for industrial failures and collapses (Hanayasu and Sekine 2004). This gen-
eral power law form also fi ts social trends, such as word usage, books sold, 
website hits, telephone calls, and city populations, leading Taleb (2007) to 
further argue that this form represents true scalability that we can now recog-

Fig. 6.4 The rare event prediction and risk plateau
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nize as the fundamental connection to learning and risk exposure. Arbitrary 
adjustment of the exponent, 
, in economics, social science, and cognitive 
psychology is an attempt to actually account for and fi t what we observe, but 
without trying to understand why the exponent is not unity nor placing limits 
on the extrapolations made beyond the known data used for the original fi ts.

The exponent is roughly constant only over limited ranges of data, other-
wise it fails in extrapolating magnitude or trend (Duffey and Saull 2008). 
In fact in statistics, this form of inverse power law type of relation is often 
known as a Pareto distribution4 and Woo (1999, 224) explicitly further cau-
tions that “parameterizing a natural hazard loss curve cannot be reliably 
reduced to a statistical analysis of  loss data, e.g., fi tting a Pareto curve: 
damaging events are too infrequent for this to be sound.”

In fact, this failure to predict may even explain the proven poor capabil-
ity of many economic models, which by using a constant elasticity between 
price and demand and extrapolating we now know from data do not predict 
well! We now know and can see from fi gure 6.4 that the exponent is not con-
stant and the variation in reality is due to the presence and effects of learn-
ing, with the larger exponent values and steeper slope encompassing the 
variation between the learning curves (fi gure 6.3). This variation represents 
uncertainty and constitutes the measure of risk if  taken as a technique for 
making investment decisions.

Figures 6.3 and 6.4 contain much useful information. Not only are the 
trends with learning clear, there is the tendency for risk to be smaller initially 
with more learning; and greater at larger experience due to the forming of 
a plateau of nearly constant risk (a fat tail, or potential Black Swan). If  we 
neglect this large human contribution and effect at large risk exposure then 
Pareto lines, power laws, normal and log- normal distributions become White 
Elephants of little value, as being extrapolated they underestimate the risk. A 
similar argument can be made for not using results from static or equilibrium 
VaR and CoVaR techniques (see Taleb [2007], the papers presented at the 
NBER systemic risk conference, and the chapters in this book).These tech-
niques fi t standard statistical distributions to fi nancial asset data and then 
seek signifi cance in the differences and trends out at the 1 to 2 percent tail, 
while ignoring again the dynamic human contribution and hence unaware of 
and not accounting for the systematic existence of the systemic risk plateau.

This presence of learning effects nicely explains the actual range of empir-
ical values for the exponent, 
, quoted by Taleb and others of between 1 
and 2—some systems evidently exhibit more or less initial learning than oth-
ers, as is shown in fi gure 6.4. Including the statistical limit of  unknown 
unknowns, the inverse power law simplifi cation shows by defi nition that if  

4. Also termed the hyperbolic or power law distribution, the form given by Woo for natu-
ral catastrophes is p(�) � bab / �b�1, where a and b are constants, the so- called “location” and 
“shape” parameters.
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there are no events there is and can be no learning. Strictly, we know this 
is not true, as we also learn something from the many and often irritating 
nonevents, minor losses, and near misses. This so- called incidental learning 
leads to the other extreme case of “perfect learning” (Duffey and Saull 2008), 
where the event outcome probability still follows a learning curve until we 
have just one event, and then subsequently plummets to zero.

We stress here that the power law form is a natural, simplifi ed limiting vari-
ant of the more general “learning curve,” which naturally then also encom-
passes the occurrence of rare events.

The analysis of risk ratios due to the fi nancial cost of individual events 
assumes that big losses or damage occur less often (i.e., are rare or lower in 
frequency). For example, Hanayasu and Sekine (2004) argue that the rate of 
fi nancial damage of events in industry decreases with the inverse of the dam-
age or loss. So generally the frequency of an event decreases with increasing 
cost as the probability density,

  

dp
d�

 ≈ 
  

constant
hq +1

.

Here, q is yet another power law exponent chosen to fi t some damage data, 
and is always such that q � 1, so Hanayasu and Sekine assume that it lies in 
the range 2 � q � 3. When the slope is an inverse cube such that 
 ~ 3, there 
is a very rapid decline. We analyzed this approach (Holton 2004, 19) and 
found the risk ratio or damage ratio referenced to some initial known value, 
h0, and probability, p0, is then given by:

RR � 
  

h
h0

⎛
⎝⎜

⎞
⎠⎟

 � 
  

p
p0

⎛
⎝⎜

⎞
⎠⎟

1/q

.

Extrapolation of the fi tted line beyond the data range given shows a much 
faster decrease in risk ratio than usually observed or expected from a learn-
ing curve with a fi nite minimum that fl attens out. So the basic problem is that 
extrapolation of the size of the loss according to this power law (although it 
is not really a law at all) produces inaccuracy outside the known data range, 
does not account for learning, and also does not allow for the fi nite nonzero 
contribution of the human element (the extra fat tail shown in fi gure 6.2). 
We have fi tted a MERE curve also to these damage data, and as a result the 
forward risk exposure, fi nancial loss, or uncertainty is grossly underestimated 
because of omitting the human learning element. This is really uncertainty: 
we are predicting the variation in how big the losses will be for unknown 
events, based on what we know.

The chance of  an unknown unknown or rare event also depends on 
whether or not you learn! Conversely, rare events and Black Swans are also 
simply events for which we have little or no learning. The argument is then 
wrong that this type of  inverse power variation represents true random-
ness, where there is no pattern other than that which is scale invariant (like 



242    Romney B. Duffey

fractals). In fact, the variation in probability or risk in reality is all due to 
whether we have been learning or not, at what rate we make or have made 
mistakes both in the past and in the future. The true natural scale for all 
human- based systemic risk we have shown repeatedly is our experience, 
however that is defi ned and accumulated, as learning is not invariant with 
risk exposure. What we know about the unknown is that we are human and 
remain so, learning as we go.

For the future unknown experience, the average future failure rate, 〈�〉, we 
will observe over any future risk exposure or operating interval, � – �0, that 
is obtained by averaging the varying failure rate over that same observation 
or risk exposure interval, so:

〈�〉 � 
  

1
(� − �0)

 
  �

�0

∫ �(�)d�.

Clearly, the apparent average rate also depends on the risk exposure inter-
val, � – �0, over which we start and fi nish observing, or choose to record 
outcomes, or happen to be present, or are risk exposed.

We can show how these ideas work in practice by comparing to actual 
data for rare events, although this is strictly an oxymoron, as if  the outcomes 
occur they are no longer rare or become known unknowns. The data avail-
able is the case we have analyzed in detail before (Duffey and Saull 2002, 
2008), for fatal commercial airline crashes between 1970 and 2000. The case 
is relevant as the airline industry is regarded as relatively safe, and having 
perhaps attained the lowest possible event rate. Over this thirty- year period 
using modern jets, some 114 commercial passenger airlines accumulated 
about 220 million fl ights, and there were about 270 fatal crashes, excluding 
hull losses (plane write- offs), with no deaths. The data show a lack of further 
learning trends, as airline crashes attain the lowest rate currently known 
or achievable of about one per 200,000 fl ying experiences or risk exposure 
hours. What has actually happened is that because they have become rare 
events there is an almost constant risk, as shown in fi gure 6.5, where the fatal 
crash rate indeed varies inversely as, � ~ 1 / �, the number of accumulated 
fl ights being the measure of both the learning experience and risk exposure.5

The analysis shows that the airlines having the least experience have the 
highest rate per fl ight, the airlines overall having descended the learning 
curve and achieved their lowest possible rare crash rate. So for this case, 
fl ights accumulated represent a convenient measure of  the risk exposure 
and learning scale. The only larger interval found is for systems like dams, 
where humans are passive and not actively and / or continuously involved in 
the day- to- day system performance and operation.

But the relative future risk of a mature technology, as measured by the 

5. The seeming paradox with using event rate as a measure of risk for rare events is that the 
rate and number seemingly fall with increasing experience (not just time), giving an apparent 
decrease, when in fact the risk of a random outcome is effectively still constant.
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nondimensional posterior outcome rate, is negligible compared to that for 
new technology. The plunge in the future prediction, p(P), of the risk at large 
experience, or the thin tail appearing in the end of the fat tail, is due to the 
prior probability becoming nearer and nearer to certainty ( p → 1) at large 
enough experience or risk exposure since the failure rate (according to all 
the world’s known outcome data) is never, ever zero. Thus, we have found 
a basis on which to make predictions of all such rare unknown unknowns, 
based on the (equally) rare prior outcomes from many disparate sources.

We have already recently used the methods and ideas discussed here and 
in our book (Duffey and Saull 2008) to risk, failure rate, and reliability 
prediction for many important cases. These include human errors and 
recovery actions in nuclear power plants (Duffey and Ha 2010); predict-
ing rocket launch failures and space crew safety for new systems (Fragola 
2009, 657); the time it takes for restoration of power following grid failure 
(or “blackout”) (Duffey and Ha 2009); predicting the rate of failure of heat 
exchanger tubing in new designs (Duffey and Tapping 2009); and the quan-
titative tracking of learning trends (“safety culture”) in management and 
operation of large offshore oil and gas facilities (Duffey and Skjerve 2008); 
and about thirty other key examples. While each case has its own fascinat-
ing and unique experience and data, all examples and cases can be reduced 
to the common learning basis, and all follow the universal laws and rules 
for the outcomes due to us, as humans, functioning in modern society and 
technological systems, whether we know it or not.

Fig. 6.5 The prediction for rare aircraft crashes
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6.7   The Financial Risk: Trends in Economic Growth Rates, Failure, 
and Stability

The fundamental question is, what are the relevant prior data, predictive 
failure rate, and risk exposure measures in fi nancial and economic systems 
when including the essential infl uence of the human involvement?

Like other systems with failures and outcomes, there are a lot of fi nancial 
system data out there, both nationally and globally, and these data are key 
to our understanding and analysis. What are the right measures for failure 
(errors) and experience in fi nancial systems? Can the market collapse be 
predicted using these measures? As an exercise in examining these ques-
tions, we explored the publicly available global fi nancial data from the World 
Bank and the IMF, covering the years up to the great crash or “bust” of 
2008. This was widely attributed to the failure of the credit markets, due to 
the collateralizing of risky (real estate) debt assets as leveraged securities in 
the developed economies and fi nancial markets. The present analysis is to 
determine the presence or not of precursors, the evidence or not of learn-
ing trends, and prediction of the probability of failure using the prior data.

Let us make a fi nancial market system prediction based solely on what 
we know about other system failures. According to the data (and as shown 
in fi gures 6.2, 6.3, and 6.4), we have learned that there is an apparent funda-
mental and inherent inability, due to the inseparable involvement of humans 
in and with the technological systems, for the posterior (future) probability 
of an outcome to occur with a probability of less than p(P) � 10–5. This 
corresponds to the lowest observed rate of one outcome or failure in about 
100,000 to 200,000 experience or risk exposure units (Duffey and Saull 2002, 
2008). If the global fi nancial market, including real estate equities and stocks, 
is now defi ned as the relevant system with human involvement, and a trading 
or business experience of 24 / 7 / 365 taken as the appropriate risk exposure or 
experience measure, this implies we may expect and predict an average “mar-
ket failure” rate ranging from not less than about once every ten years and 
not more than every twenty years. If  lack of economic (GWP and / or GDP)6 
growth, with fi nancial credit and market collapse is taken as a surrogate 
measure of an outcome or failure,7 there has been apparently four relatively 
recent “crises” in the world (in about 1981–1982, 1992–1993, 1997–1998, 
and 2008–2009), and fi ve “recessions” in the United States (circa 1972, 1980, 
1982, 1990, and 2008) in the forty- year interval of 1970 to 2010 (IMF 2009a), 
being an average risk interval of between eight (nationally) to ten (globally) 
years. In fact, in the full interval of 1870 to 2008, the IMF listed eight glob-
ally signifi cant fi nancial crises in those 138 years (the above four listed plus 

6. GWP and GDP are conventional acronyms for Gross World Product and Gross Domestic 
Product.

7. The recent IMF World Economic Outlook 2009 in fact shows for the 2008 crisis there 
is a relation between household liabilities and credit growth in relation to GDP growth (18, 
fi gure 3.10).



The Quantifi cation of Systemic Risk and Stability    245

1873, 1891–1892, 1907–1908, 1929–1931), or ten when including the two 
world wars (IMF 2009b). All these various crises give an average interval 
of about one failure somewhere between every eight to seventeen years, an 
agreement surprisingly close to and certainly within our present predictive 
uncertainty range of one about every ten to twenty years of risk exposure.

This present purely rare event prediction is a result that was not antici-
pated beforehand, and is based on failure data from other global and na-
tional nonfi nancial systems, implying that the very same and very human 
forces are at work in fi nancial systems due to human fallibility and mistakes. 
The present rate- of- failure approach contrasts squarely with many other 
unsuccessful predictive measures (IMF 2009), and short-  and long- term 
bond rate spreads using probit probability curves tuned to the market sta-
tistical variations (Estrella and Mishkin 1996, 1). So although we cannot yet 
predict exactly when, we can now say that the economic market place (EMP) 
is behaving and failing on average in the same manner and rates as all other 
known homo- technological systems. We presume for the moment that this 
is not just a coincidence, and that the prior historical data are indeed telling 
us something about the commonality and causes of random and rare fi scal 
failures, and our ability or inability to predict systemic risk. So we can now 
seek new measures for predictors or precursors of market failure and stabil-
ity based on what we know.

We already know that the chance of such a major event “ever happening 
again” is given by the matching probability using conventional statistics, and 
this has the value of ~0.63, or about an equal chance of happening or not 
(Duffey and Saull 2008). This is a repeat event prediction (REP) of a nearly 
equal chance. So for managing risk, we should expect another collapse based 
solely on this analysis, and probably with about the same average ten to 
twenty- year interval unless some change is made that impacts the human 
contribution. The inevitably of failure is rather disheartening, and although 
uncomfortable seems to be the reality, so we should all at least proactively 
plan for it and hence be able to manage and survive the outcome, which is 
risk mitigation.

Having established the possible relevance of GWP and GDP, as an initial 
step the measure of the outcome rate is taken to be the percent growth in 
GWP and GDP (positive growth being success, negative growth being fail-
ure), and the relevant measure for experience and risk exposure for the global 
fi nancial system as the gross world product, GWP (T$), not in the usual 
calendar years as the interval over which the data are usually presented.8

The result of the ULC analysis is shown in fi gure 6.6 for the interval 1980 
to 2003 (World Bank 2009), where the GDP growth rate, R, is the MERE 
learning curve form:

8. A reviewer noted that for systemic risk it is reasonable and not unexpected that GWP is an 
alternative measure to calendar year, and that experience may also be refl ected in and by trading 
volumes. Indeed, for establishing learning trends we need available and open measures that are rel-
evant to experience and risk exposure, and encourage the study and search for relevant measure.
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R, %GWP � Rm � (R0 
 Rm) exp 
 k(accGWP),

where numerically, from the data comparison in fi gure 6.6,

R � 0.08 � 8 exp 
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.

The growth rate, R, is decreasing exponentially, and this expression is 
correlated with the data to an r2 � 0.9, and importantly shows that by a 
GWP of order $600T the overall global growth rate is trending toward being 
negligible (�0.1%).

In nondimensional form, relative to some initial growth rate, R0, this equa-
tion can be written as:
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It is worth noting that, as might be expected in global trading, the magni-
tude and growth of many economies are apparently highly correlated with 
the accumulated GWP, so will follow similar trends, as we see later. For ex-
ample, the straight line that gives the relation between the US GDP and the 
GWP for the interval 1981 to 2004 is:

GDP(USA, $B) � 15{accGWP($T)} � 3,210,

with a correlation coefficient of r2 � 0.99. The magnitudes are hence very 
tightly coupled; but here we do not have to decide which is cause and which 
is effect (i.e., is the change in one due to the other, or vice versa?).9

To be clear, we really wish to determine a global fi nancial failure rate and 

Fig. 6.6 The GWP growth rate curve

9. As pointed out by one of the discussers of this chapter, the “tight coupling” condition is one 
of those qualities proposed for the occurrence of so- called “normal accidents” (Perrow 1984).
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the rate we are learning. So what is the relevant measure of the failure rate? 
Now, global governments and economies usually aim for increasing, or more 
slowly declining and hopefully nonnegative, growth. We postulate that either 
of the following extremes can be taken as an equivalent and immediately use-
ful measure of economic failure, both varying with increasing accumulated 
GWP as a measure of total risk exposure: (a) the rate of decline in GWP 
growth rate; or (b) the rate of GWP growth rate itself.

By straightforward differentiation of  the growth rate, R, we have the 
global failure or decline rate, �f, given by:

�f � 

 

dR
dGWP

 � k(R0 
 Rm)exp 
 k(accGWP).

Thus, numerically, we may expect the rate of decline of growth (the global 
fi nancial failure rate) to decrease with increasing risk exposure and experi-
ence and be given very nearly by, in units of percent / GWP:

�f � 0.1 exp 
 
  

accGWP
80

⎛
⎝⎜

⎞
⎠⎟
,

with the natural limit, �0 � 0.1, so the relevant nondimensional equation is,

E∗ � 
   

� f

�0

 � exp 
 
  

accGWP
80

⎛
⎝⎜

⎞
⎠⎟
.

The equations for R∗ and E∗ now allow a direct comparison to the sys-
temic learning trends given by the ULC form, E∗ � exp – 3N∗, so we also 
plotted these two growth decline predictions (shown as the large crosses and 
circles)10 in nondimensional form against all other world outcome data with 
the result shown in fi gure 6.7. The data are bracketed by the two extreme 
assumptions, basically: (a) the rate of decline of growth rate, �f , when equiv-
alent to fi nancial failure, is tracking somewhat below other adverse outcome 
data; while (b) the simple decline in growth rate R is somewhat above other 
adverse data. We can indeed establish and cover the range with these two 
failure measures, generally within the data scatter.

To our knowledge this is the fi rst time that fi nancial and economic systems 
have been compared to other modern systems. We take the extraordinary 
fact that we can bring all these apparently disparate data together using the 
learning theory as evidence that the human involvement is dominant, not 
just in accidents and surgeries but also in economics, through the common 
basis of the fundamental decision and learning processes. Globally, there-
fore, we can state that we have indeed learned to reduce and manage the rate 
of overall economic decline, just as we have learned to correct errors and 
failures in other systems.

10. This graph and comparison now responds to a point arising in the discussion at the fi rst 
draft presentation of this chapter as to the relevant measure for failure in global systems that 
exhibit varying growth rates.
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The implication is intriguing: if  a declining rate of  economic growth 
decline is indeed equivalent to an error, then the economies suffering declines 
in growth had even learned to further reduce their rate of decline in growth. 
They have learned or managed how not to grow, eventually reaching an 
almost infi nitesimal asymptotic rate of decline. Further, this result suggests 
that GWP is a useful measure for estimating risk exposure and the learning 
opportunity.

Fig. 6.7 The ULC and the GWP growth and failure rates



The Quantifi cation of Systemic Risk and Stability    249

6.8   Developing and Developed Economies: The Learning Link

It has been suggested that this decline in growth rate represents saturation 
of the developed economies, and that major growth then only occurs in the 
developing economies. To compare growth rates, the IMF and World Bank 
have also separated out the percentage GDP growth rates for “emerging” 
or developing countries / economies from “developed” or “advanced” coun-
tries / economies (World Bank 2009).

Now the percentage growths are based on very different totals, so just for 
a comparison exercise, the percent growth rate, �GR, in each grouping was 
defi ned relative to the absolute growth in the world, or GWP, as:

�GR 
  

%
$T

⎛
⎝⎜

⎞
⎠⎟

 � 
  

% GDP Growth
(GWP $T × World % Growth)

.

In effect, this is a measure of the rate of economic growth rate relative 
to the total available economic growth pie. The relative growth rate data 
calculated in this manner for the two groupings are shown in fi gure 6.8 as a 
function still of the accumulated GWP, as well as the delta (or difference) 
in relative growth rate, {�GR (developed) – �GR (emerging)}, between the 
two types of economies. The reason for taking the accumulated GWP as the 
experience measure is this is presumable some measure of available learning 

Fig. 6.8 The differential decline of rates of GDP growth
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experience and risk exposure in the global trade between the two groups, 
and of the total available pie.

What is seen is illuminating: the two growth rates (top dashed lines) are in 
antiphase or negatively correlated: when one goes up, the other goes down, 
and vice versa. One grows literally at the expense of  the other. There is 
also some periodicity in the divergence pattern, and evidence of emerging 
positive divergence in growth rates toward $600T in 2003�. The opposite 
correlation between the growth rates is clear—the developing economies 
have a positive correlation of ~�0.9 and the developed economies a nega-
tive correlation of about –0.7, with increasing accumulated GWP. As world 
wealth increases, one is declining, and the other is increasing in growth rate. 
The implication is that the relative growth shares part of the global economy 
pie growth, and hence the economies themselves are indeed closely coupled, 
which is perhaps obvious in hindsight.

The prediction is clear based on these trends. The developed world econo-
mies would actually go into near zero or into negative GDP growth rate in 
2003� (the projection is around 2005 to 2006 when GWP exceeds $600T), 
after many years of  decline. The emerging economies would continue to 
grow positively at 5 percent or more. The difference in rates was highly oscil-
latory and perhaps not stable, as the liquidity (credit) needed to fund growth 
in emerging economies cannot come from those developed economies whose 
available assets and economies are in decline. So the implication is that—in a 
globalized economy where all the individual economies are linked or “tightly 
coupled”—there are unknown feedback and stability relationships at work 
that we need to examine.

A very fi rst attempt was also made to predict the actual rate of the known 
global fi scal crises, where the key is again fi nding the relevant units for the 
measure of  the risk exposure / experience, �. For the preliminary results 
shown in fi gure 6.9, as listed in the IMF’s WEO2009, the experience was 
taken as GWP- years for the interval 1870 to 2009, with eight nonwartime 
crises. The resulting global crisis rate, �G, is

�G �  (Number of crises, per accumulated risk exposure years from 1870, 

accY ).

The theory line also shown in fi gure 6.9 is derived from a MERE failure 
rate, which is fi rmly based on human learning, so that the equation is:

�G � 0.059 � 0.2 exp – 
  

accGWPy
230

⎛
⎝⎜

⎞
⎠⎟
,

with a correlation of r2 � 0.958.
Clearly the predicted tail is nearly constant with the lowest presently 

attainable crisis rate of about 0.06 per year (or averaging one every seven-
teen years), suggesting a plateau in the fi nite minimum rate due to human 
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involvement. Crises are occurring much faster than might have been expected 
using simple extrapolation with a power law: the number and rate of crises 
increases with risk exposure (i.e., with increasing GWP), which might seem 
to be rather obvious, producing yet another fat tail. Despite the overall theo-
retical trend suggesting the crisis rate is at best constant and not decreasing 
further, the last four data points indicate that the crisis rate is actually slightly 
increasing and may constitute a new dynamic prediction of more frequent 
crises. While not asserting completeness at this early stage of the analysis, it 
is possible and highly desirable in the future to further examine the trends 
in these crisis data in more detail.

6.9   Risk: Quantifying the Uncertainty

How can we estimate the stability of a global or national system? The 
whole system is too complicated to predict its every move, behavior, or state, 
so how do we proceed? How can we estimate and predict the stability of a 
system when it is unpredictable? Here we introduce the only known objective 
measure of uncertainty, complexity and randomness, and illustrate how it 
can be used to predict system stability.

Early work on economic stability (Solow 1956, 65) focused on presumed 
and arbitrary functional growth relationships between labor (employment) 

Fig. 6.9 Crisis rate estimate
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and wealth generation (capital) for determining equilibrium conditions.11 
The actual form of the economic growth function was not given or known, 
but using simple analytical functions, the possibility was shown for the exis-
tence of multiple alternate steady- states or equilibria. But as clearly stated 
by Soros (2009): “The fi nancial system is far from equilibrium. . . . The short 
term needs are the opposite of what is needed in the long term.”

Since fi nancial markets are actually unstable and dynamic and not in equi-
librium, the real need is to determine and predict the instant of and condi-
tions for instability, not whether some ideal equlilibria or new steady state is 
achievable. Markets just like the entire physical world are random, chaotic, 
and unpredictable, so predicting frequent and rare events is risky and uncer-
tain.12 Learning and randomness are powerful and unpredictable issues for 
risk prediction because we tend to believe that things behave according to 
what we know and, consciously or unconsciously, dismiss the risk of what 
we have not seen or do not know about. After all, we do not know what we do 
not know. We, as humans, are the very product of our norms and patterns, 
our knowledge skills and experience, our learning patterns and neural con-
nections, our social milieu and moral teachings, in the jobs, friends, lovers, 
lives, teachers, family, and managers we happen to have. We perceive our 
own risk based on what we think we know, rightly or wrongly, and what 
we have experienced. But in key innovations and new disciplines, where 
knowledge and skill is still emerging—areas like terrorism, bio engineering, 
neuroscience, medicine, economics, computing, automation, genetics, law, 
space exploration, and nuclear reactor safety—we have to know and to learn 
the risk of what we know about what we do not know. We cannot possibly 
know everything, and these are all complex systems, with new and complex 
problems and lots of complexity, with much uncertainty.

The way to treat randomness and uncertainty has been solved in the physi-
cal sciences, where it was realized that unobserved fl uctuations, uncertainty, 
and statistical fl uctuations govern and determine the actually observed 
behaviors and distributions. Events can happen or appear in many different 
ways, which is literally the “noise” that surrounds and confuses us, whereas 
what we actually observe is the most likely but also contains information 
about the signal that emerges or is embedded as order emerges from disor-
der, and we process and discard the complexity. In fact, not just the physical 
world but the whole process of individual human response time and deci-
sion making has been shown to be directly affected by randomness, in the 
so- called Hick- Hyman law (Duffey and Saull 2008). As individuals and as 
collectives, we do and must process complexity, both in our brains and in 
our behavior, seeking the signal from all the noise, the learning patterns from 

11. The author is grateful to Ms. Christina Wang for pointing out both this reference and 
its relevance: for the present discussion we presume that “wealth creation” can be related or 
correlated to GWP and GDP.

12. The inherent randomness is often termed the aleatory uncertainty by statisticians.
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the mistakes, and the information from all the distractions. Systematic pro-
cessing and the perverse presence of complexity are essential for establishing 
learning distribution patterns.

The number of  different ways something can appear or be ordered in 
sequence, magnitude, position, and experience, is mathematically derivable 
and is a measure of the degree of order in any system (Duffey and Saull 
2008). The number of different ways is a measure of the complexity, and 
is determined by the Information Entropy, H, which is also a measure of 
what we know about what we do not know, or the “missing information” 
(Baierlein 1971), which is a measure of the risk. The relation linking the 
probability of any outcome to the entropy is well known from both Sta-
tistical Physics and Information Theory, and is the objective measure of 
complexity:

Information Entropy, H � Sum( p � natural logarithm, p) � 
 Σ p lnp.

Note that the units adopted or utilized for the entropy are fl exible and 
arbitrary, both by convention and in practice as being a comparative measure 
of order and complexity. So this measure of uncertainty requires a statement 
of probability. Now Taleb (2007, 315) noted that “I am purposely avoiding 
the notion of entropy because the way it is conventionally phrased makes it 
ill- adapted to the type of randomness we experience in real life.” We dismiss 
this assertion, and proceed to make this very subtle notion applicable to 
fi nancial systemic risk simply by rephrasing it.

To make the entropy concept adaptable and useful for “experience in real 
life,” all we have to do is actually relate and adapt the information entropy 
measure to our real life experience, or risk exposure interval, as we have 
already utilized (Duffey and Saull 2002, 2008) and have also introduced 
earlier. So we can now change the phrasing and the adaptability, since before 
we unconventionally phrase entropy as being “an objective measure of what 
we know about what we do not know, which is the risk.” In support of this 
use and phraseology, other major contributors have remarked:

Entropy is defi ned as the amount of  information about a system that 
is still unknown after one has made . . . measurements on the system. 
(Wolfram 2002, 44)

This suggests that . . . entropy might have an important place in guiding 
the strategy of a business man or stock market investor. (Jaynes 2003, 
343 et seq.)

Entropy is a measure of the uncertainty and the uncertainty, or entropy, is 
taken as the measure of the amount of information conveyed by a message 
from a source.” (Pierce 1980, 23)

The uncertainty function . . . a unique measure for the predictability 
(uncertainty) of a random event which also can be used to compare diff-
erent kinds of random events. (Greiner, Neise, and Stocker 1997, 150)
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There is no other measure available or known with these fundamental 
properties and potential, particularly for handling uncertainty and random-
ness, the processing and infl uence of complexity, and providing the objective 
measure of order. This measure also has direct application to the subjective 
concept of resilience engineering, where “resilience is the intrinsic ability of 
an organisation (system) to maintain or regain a dynamically stable state, 
which allows it to continue operation after a major mishap and / or the pres-
ence of a continuous stress” (Hollnagel, Woods, and Leveson 2006, 9). But 
resilience, just like culture, has not been actually measured or quantifi ed any-
where: it is simply a desirable property. We have developed the numerical and 
objective system organizational stability (SOS) criterion that incidentally 
unifi es the general theory and practice of managing risk through learning 
(Duffey and Saull 2008). This criterion is also relevant to crisis management 
policies and procedures, and emergency response centers in major corpora-
tions, facilities, and industries.

6.10   System and Organizational Stability: SOS

The function of any management system is to create order from disorder, 
be it safety, regulatory, organizational, or fi nancial and hence to reduce the 
entropy. Thus, for order to emerge from chaos, and for stability in physical 
systems, the incremental change in entropy, which is the measure of  the 
disorder, must be negative (Kondepudi and Prigogine 1998). Our equiva-
lent SOS criterion or indicator then arises implying from the fact that the 
incremental change in risk (information entropy, H) with changes in prob-
ability must be negative, or decreasing with increasing risk exposure. In any 
experience increment we must have the inequality, expressed in differential 
form to refl ect dynamic change:

  

dH
d�

 � 0.

Stated in words, for fi nancial systems and markets, this SOS criterion states 
that there must be an incremental decrease in complexity with increasing or 
changing risk exposure. Conversely, increasing complexity with incremental 
risk exposure is systemically unstable.

This key condition or indicator also requires that a maximum (peak) 
exists in our changing missing information or state of order as a function 
of experience and / or risk exposure, equivalent to a meta- stable condition. 
To illustrate this variation, consider the limit cases of concern of the prob-
ability / possibility / likelihood of another collapse event, having observed a 
similar one already, considering all our previous knowledge. From the past 
experience we showed that the prior probability for REP is, with little learn-
ing, p ≈ (1 – 1 / e) � 0.63, and also this same value holds for novice mistakes 
with little experience (when �0). For the future risk, the posterior probability, 
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with little learning, is p ≈ 1 / � for rare events and also for highly experienced 
systems (when � → �).

For the two limited learning cases of the prior (past MERE) and posterior 
(future rare event) the entropy increment, dH � –plnp in any risk interval 
can be calculated. The results are shown in fi gure 6.10 as a function of the 
experience or risk exposure interval, N∗, which purely for convenience has 
been nondimensionalized to the maximum experience or risk exposure. For 
the example known prior case, entropy is calculated from the MERE prob-
ability result with little learning (k � 0.0001); the decrease in entropy at 
larger experience or risk exposure for the prior case is due to the probability 
of an outcome fi nally reaching a certainty, p ~ 1, as ultimately there is no 
uncertainty. For the unknown posterior case, the entropy is calculated from 
p � 1 / �; the peak in entropy at small experience is simply due to the greater 
uncertainty, which decreases as experience is gained.

Also shown in the fi gure 6.10 is the purely theoretical prediction obtained 
from SEST, the statistical error state theory (Duffey and Saull 2008), which 
treats outcomes as appearing randomly. The theory derives the most likely 
statistical distribution of outcomes, and relates the probability of the out-
comes with variation in the instantaneous depth of experience or risk expo-
sure in any given risk interval. The information entropy, H, is the measure 
of the complexity in any interval and is given by integrating the resulting 
exponential probability distributions, to obtain:

Fig. 6.10 Entropy variations with experience, knowledge, and risk exposure: Sta-
bility indicator
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At small experience, as N∗ → 0, the previous SEST result becomes H → 0.25, 
which is close to the prior value with little learning of H → 0.29, so the two 
results are also consistent in their limits, as they should be. The value of the 
slope parameter or learning exponent, a, is derived deliberately from very 
diverse prior data sets for failure distributions, which are very detailed and 
complete.13 The theory line in fi gure 6.10 utilizes the “best” a � 3.5 in the 
earlier exponential distribution as a working approximate estimate for com-
parison purposes, which is close to the learning rate constant value, k ~ 3. 
For most of the experience or risk range shown, the entropy is not decreasing 
signifi cantly until sufficient experience is attained.

Figure 6.10 itself  contains information about what we know about what 
we do not know, so is worth some more discussion. Knowns (prior or past) 
apparently contain more uncertainty (H is larger) than unknowns (posterior 
or future), except at very early or little experience (N∗ � 10–4). The shapes 
of the curves are of interest for another reason: for evaluating the system 
organizational stability (SOS) criterion. By inspection of the two cases in 
fi gure 6.10, this stability condition is only met or satisfi ed at small experience 
for the unknowns, and at large experience for the knowns.

Basically, at small experience unless learning is occurring the existing sys-
tem is unstable and in danger of repeat events until very large experience is 
attained. Conversely, any future system is also initially unstable until sufficient 
post- entry experience has been attained. So learning—or decreasing com-
plexity—is essential for stability, and this is plainly relevant to the market sta-
bility when introducing the use of new and / or complex fi nancial instruments.

Quoted at the very beginning of this chapter, we can now return to the 
statement in Soros (2009) that “markets are unstable,” a controversial 
assertion when contrasted with normal economic theory based on near- 
equilibrium markets (the balance between supply and demand as refl ected in 
price). To test this assertion, the data points shown as circles in fi gure 6.10 are 
for the trial crisis entropy estimates calculated using the preliminary prob-
ability values for rare events, p ≈ n / accGWP, where n is simply the number 
of observed crises, and the risk interval or experience has been nondimen-
sionalized on the basis of the accumulated GWP from 1870 to 2009. The 
general data trend is downward (i.e., stable) until the last few data points 
for the crises of 1997 and 2007. Moreover, the greater the GWP becomes, 
the greater the risk. Importantly, the slope of the last four data points being 
positive satisfi es the formal indicator (the criterion dH / d� � 0) for inherent 
global market instability, as has been previously suggested (Soros 2009).

13. Specifi cally, we used: (a) US commercial aircraft near midair collisions (NMACs) for 1987 
to 1998, where experience and risk exposure is measured by total fl ights; and (b) Australian 
traffic fatalities from 1980 to 1999, where experience and risk exposure is measured in driver- 
years (as shown in 5, fi gure 8.8).
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The present results and stability indicator are based on the inclusion of the 
uncertainty due to human decision making and risk taking, and thus quan-
tifi es and supports the idea independently and effectively simultaneously 
proposed by Soros (2010) of the Human Uncertainty Principle.14 This prin-
ciple is fi rmly based on experience and learning from investment and market 
behaviors, and proposes that human involvement and risk taking inherently 
introduces risk due to incomplete knowledge and complexity, resulting in 
intervention actions in the market based on imperfect understanding that 
have unintended consequences, in what Soros describes as “refl exivity.”

This new data comparison suggests that entropy is indeed a potentially 
signifi cant indicator that should not be simply avoided as Taleb does, and 
represents our best and most refi ned state of knowledge regarding systemic 
risk. We have now actually quantifi ed the behavior of the chaotic and random 
fi nancial market. As to regulation of systemic risk, this is really about regulat-
ing such unknown uncertainty while meeting the stated goals (Brown 2009; 
RECP 2008). In fact, Brown (2009, 209) suggests that “to be effective and 
worthy of public trust, any governance system must be able to demonstrate 
technical competence. Effective and trustworthy governance arrangements 
must have four key qualities: informed, transparent, prospective and adap-
tive.” We have provided new technically- founded measures for the basis of a 
governance system that are: (a) informed by the actual world data and vali-
dated; (b) transparent both in their calculation and in using the precepts that 
describe human learning and risk taking; (c) prospective and future orien-
tated by being able to make actual predictions; and (d) adaptive to generally 
encompass changes in chaotic markets, risk exposure, and fi nancial systems.

6.11   Concluding Remarks: Our New Methods and Measures Provide This 
Framework for Objective and Predictive Governance

An exercise such as predicting the next recession or crisis becomes simply 
equivalent to determining the probability of and risk interval for the next 
event or outcome. This probability must be based on relevant and correlated 
measures for experience and risk exposure, which include the presence or 
absence of learning. We have analyzed the world economic data to make a 
prediction of the next crisis probability based on the presence and infl uence 
of human risk taking and decision making in fi nancial markets.15

We have summarized some recent ideas on risk prediction for multiple tech-
nological systems, using the existing data, and have explicitly included the key 

14. By delightful chance, within a week of each other on two continents, the verbal Soros “Lec-
tures” were given on October 26–30, 2009, in Budapest, and the present chapter presented at the 
NBER Research Conference on Quantifying Systemic Risk on November 6, 2009, in Cambridge.

15. In response to a question raised in discussion at the conference, the present estimate 
and prediction based on past data is for one global fi nancial crisis occurring at least every 
eight to seventeen years, becoming more frequent in the future as the GWP and concomitant 
risk exposure grow. Knowing this fact, the keys are to be prepared for crisis and proactive 
in risk management.
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impact of human involvement using the learning hypothesis, namely that we 
learn from our mistakes. This ability of homo- technological systems to learn 
from experience reduces risk and errors, but also produces a fat tail as the 
processes of learning, making errors, and risk taking persist. We have related 
these ideas to the prediction of rare events, systemic risk, and organizational 
stability in global systems and, although we do not pretend to have all the 
answers, there are clear directions to follow. Risk is caused by our uncertainty, 
and the measure of uncertainty is probability. The risk of an outcome (acci-
dent, event, error, or failure) is never zero, and the possibility of an outcome 
always exists, with a chance given by the future (posterior) probability. The 
key is to include the human involvement, and to create and use the correct 
and relevant measures for experience, learning, complexity, and risk exposure.

Standard statistical distributions and indicators presently used for fi nancial 
systems (e.g., as used in VaR, or yield spread) are known to not be applicable 
for predicting rare events, systemic risk, crises, and failures. Because of the 
human involvement, the risk becomes greater than just by using a Gaussian, 
normal, or simple power law, until we reach very, very large experience and 
would have had a prior event anyway. We have a greater chance of outcomes 
and unexpected unknown unknowns if  we are not learning than we might 
expect even from and if  using simple scaling or power laws. This is simply 
because we are humans who make mistakes, take risks, and cannot be error- free. 
In colloquial terms, the human adds another fat tail to an already fat tail.

So the past or prior knowledge indeed informs the future risk: what we 
know from what we already know from the probability of what were once 
past unknowns tells us about the probability of the unknown unknowns in 
the future also.

The measure adopted and used and that is relevant for estimating risk 
exposure is key. Over some seven to eight decades (orders of magnitude) 
variation in the rate and in the risk exposure or accumulated experience, 
for the rare event the negligible learning prediction holds. At any future 
experience or risk exposure, the error (or uncertainty) in the risk prediction 
is evidently about a factor of ten in future crisis occurrence probability, and 
about a factor of two in average crisis frequency.

We have suggested several major factors and useful measures that infl u-
ence the prediction of risk and stability in fi nancial systems, based on what 
we observe for all other systems with human involvement:

1. The Universal Learning Curve provides a comparative indication of 
trends.

2. The probability of failure / loss is a function of experience or risk expo-
sure.

3. The relevant measure of failure is the rate of decline in GDP growth 
rates.

4. A relevant measure of experience and risk exposure is the accumulated 
GWP.
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5. Stable systems are learning systems that reduce complexity.
6. An absolute measure of  risk and uncertainty is the Information 

Entropy, which refl ects what we know about what we do not know.
7. Unique conditions exist for systemic stability.
8. Repeat events are likely.
9. Existing systems are unstable unless learning occurs.
10. New systems are unstable at small experience.

The rare events are essentially all the same, whether they be aircraft 
crashes, space shuttle losses, massive explosions, or huge fi nancial crises: 
we know nothing about them until they actually happen, when and if  they 
occur almost magically becoming known unknowns. We learn from them 
only after they have happened at least once. But based on what we know 
about what we do not know, we can always estimate our risk and whether 
we are learning or not. The rare unknown unknowns, or colloquially, the 
fat tails or Black Swans of the unpredictable rate distributions, are simple 
manifestations of the occurrence of these outcomes whenever and wherever 
they happen. We can and must expect them to continue to appear.

In our previous published work (Duffey and Saull 2008), we had quan-
tifi ed the uncertainty or complexity using the information entropy, H, as 
an objective measure of other subjective organizational and management 
desiderata of safety culture and organizational learning as a function of 
experience. This is the fi rst time, to our knowledge, that information entropy 
has been introduced as an objective prediction of the subjective feeling of 
risk exposure in the presence or absence of learning. As to regulation of 
systemic risk, this is about regulating uncertainty, so that we demonstrate 
technical competence. We provide measures and indicators for the guidance 
of effective and trustworthy governance arrangements that possess the four 
key qualities of being informed, transparent, prospective, and adaptive.

The work and concepts discussed in this chapter are only a necessary 
fi rst step in developing understanding for predicting and managing risk in 
complex systems with human involvement. This new application to fi nan-
cial systems and markets, and the adoption of new measures requires time, 
patience, and can also introduce risk. Further work is clearly needed in this 
whole arena of system stability, the selection of relevant experience mea-
sures, and the quantifi cation and prediction of future risk.

Appendix

Probability Defi nition

The outcome probability is just the cumulative distribution function (CDF) 
conventionally written as F(�), the fraction that fails by �, so:
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p(�) � F(�) � 1 
 exp 
 ∫ �dt,

where the failure rate:

�(�) � h(�) � 
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, and the p.d.f. f(�) � dF / d�.

Carrying out the integration from an initial experience to any interval �, 
we obtain the probability of an outcome as the double exponential:

p(�) � 1 
 exp 
   

(� − �m)
(k − �m�)

⎧
⎨
⎩

⎫
⎬
⎭

where, from integrating the minimum error rate equation (MERE), (d� / d�) 
� –k(� – �m), the failure rate is:

�(�) � �m � (�0 
 �m) exp 
 k�

and �(�0) � �0 at the initial experience, accumulated up to or at the initial 
outcome(s), and �0 � 1 / � for the very fi rst, rare, or initial outcome, like an 
inverse power law.

In the usual engineering reliability terminology, for n failures out of N 
total, the failure probability,

p(�) � (1 
 R(�)) � 
 

# failures
total number

 � 
 

n
N

,

and the frequency is known if, n and N are known (and generally N is not 
known).
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Comment Joseph G. Haubrich

In “The Quantifi cation of Systemic Risk and Stability: New Methods and 
Measures,” Romney B. Duffey reminds us that fi nancial markets are com-
plex human systems, and argues that there is a lot to learn from failures in 
other complex human systems, such as airline fl ight, power generation, and 
cardiac surgery. Two key lessons that emerge are the importance of learn-
ing and the proper measure of time. Learning has a somewhat paradoxical 
effect on failures: it is by experiencing failures that humans learn, and in turn 
adjust the system and create the techniques to prevent failures. This notion 
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