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8.1   Introduction

With evidence accumulating that greenhouse gas concentrations are warm-
ing the world’s climate, there is growing interest in the potential impacts that 
may occur under different warming scenarios and on how economies might 
adapt to changing climatic conditions. Agriculture is of particular interest 
due to the fact that climate is a direct natural input in the production pro-
cess. Agriculture in developed nations, and particularly in the United States, 
has received considerable attention. This attention may derive from the fact 
that wealthier nations produce a disproportionate share of the world’s agri-
cultural commodities, at least partly due to their relatively more temperate 
climates. Accordingly, climate change impacts on agriculture in developed 
nations, and particularly the United States, the world’s largest producer, have 
broad implications for food supply and prices worldwide.

In recent research, we conducted detailed statistical analyses of the rela-
tionship between weather and crop yields of corn, soybeans, and cotton in 
1950 to 2005. These crops are among the four largest U.S. crops, all of which 
are important for world commodity prices (Schlenker and Roberts 2009). 
Corn and soybeans are two of the world’s four key staple commodities that 
comprise about three- quarters of  calories produced worldwide (rice and 
wheat are the other two). The U.S. produces about 40 percent of world pro-
duction in these two crops, making it, by far, the world’s largest producer 
and exporter. While less important for global food supply, cotton is grown in 
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the warmer Southern areas of the United States and might be better suited 
to warmer temperatures.

We found that yields of all three crops grow roughly linearly in temper-
ature up to a threshold, above which yield growth declines sharply. The 
threshold varies by crop: 29°C (84°F) for corn, 30°C (86°F) for soybeans, 
and 32°C (90°F) for cotton. For all three crops, the slope of the decline above 
the optimum temperature for yield growth is signifi cantly steeper than the 
incline below the optimum temperature. Cumulative exposure to heat above 
the threshold is the strongest single predictor of yield outcomes. One impli-
cation is that a modest amount of warming could change, markedly, the best 
locations for growing these key crops.

In this chapter, we extend the analysis and construct a fi ne- scaled weather 
data set for the entire twentieth century in Indiana. This prolonged period 
covers weather extremes of the 1930s that led to the Dust Bowl and includes 
observations both before and after the Green Revolution, allowing us to 
examine how the relationship between weather and corn yields evolved over 
time as new seed varieties (double-  and single- crossed hybrids) were intro-
duced. Historic adaptation to weather extremes, or the failure to do so, can 
give valuable insights on how difficult it is to adapt to conditions that are 
predicted to become more frequent under climate change. We fi nd that the 
relationship between various weather measures and yield evolves over time. 
Most notably, the detrimental effects of too much or too little precipitation 
vanishes continuously over time, while tolerance to extremely warm tem-
peratures peaks around 1960.

Extrapolating the relationship we previously discovered for the entire 
United States while holding growing areas fi xed results in severe impacts: 
average yields decrease by 30 to 46 percent before the end of the century 
under the slowest (B1) warming scenario and decrease by 63 to 82 percent 
under the most rapid warming scenario (A1FI) under the Hadley III climate 
model. These projected declines are driven by sharp yield reductions when 
temperatures exceed 29°C to 32°C combined with the sizable increase in the 
projected frequency of these extreme temperatures.

There are several reasons why these projected damages might overstate 
actual potential damages. As the climate warms, agricultural production will 
work to adapt to this warming. The most difficult economic questions per-
tain to how large these adaptation possibilities may be. As climates change, 
so will geographical comparative advantages. We should not expect crops 
to be grown in the same locations as they are grown today. Ascertaining 
the potential impact of climate changes, therefore, calls for an analysis of 
the yield potential of  major crops across the globe, even in places where 
agricultural production does not exist today. Such analysis can be quite 
complex and requires strong assumptions about the potential suitability of 
many crops in various climates and soils. For example, there is uncertainty 
about soil dynamics in the tundra, a region that is currently too cold to farm 
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but might become farmable under warming. Chapin et al. (1995) conduct 
experiments of soil changes in Alaska and fi nd that the three- year response 
in experimental plots are a bad predictor of nine- year changes in experi-
mental plots. The authors emphasize the difficulty of predicting long- term 
changes using short- term heat waves.

A recent study by the International Food Policy Research Institute (Nelson 
et al. 2009) conducts a comprehensive, worldwide analysis that incorporates 
shifts in growing locations. Given its inherent complexity, many assumptions 
enter their model. The amount of uncertainty surrounding their projections 
is probably unquantifi able. But this is the most recent, careful, and compre-
hensive study to date. The study predicts signifi cant declines in commodity 
production and increases in commodity prices stemming from global warm-
ing. Calorie availability will not only be less than the no- climate- change 
scenario, but less than availability in 2000. South Asia will be hit particularly 
hard as yields for rice and wheat decrease signifi cantly.

In neither our earlier work nor in this chapter do we attempt such a com-
prehensive analysis. Rather, by focusing on major crops in the United States, 
a climatically diverse country that generates the world’s largest agricultural 
output and exports the most, we examine forms of potential adaptation 
observable in historical data. These historical adaptations (or lack thereof) 
may provide some insight into the scope and nature of potential adaptations 
that may be available as the climate changes.

8.2   Implications of Earlier Findings for Adaptation

Our earlier research found the same nonlinear relationship between yield 
growth and temperatures, described in the introduction, when the analysis 
is narrowed to consider only cooler northern U.S. states or only warmer 
southern U.S. states. This evidence supports the idea that the nonlinear 
temperature relationship is a generalizable phenomenon. Adding to this 
evidence, we found the same relationship if  we examined only the early 
half  of  the sample (1950 to 1977) or only the latter half  of  the sample (1978 
to 2006). This was particularly surprising given the signifi cant increase in 
average yields.

These comparisons suggest that innovations since 1950, while increas-
ing average yields approximately threefold, did not increase relative heat 
tolerance. And because most regions of the United States currently have 
temperature distributions that are warmer than optimal, there has been 
some incentive to breed or engineer more heat tolerance into plants. Our 
earlier examination of  heat tolerance over time was relatively crude: we 
merely split the sample into an earlier and later period. A key focus of new 
analysis presented in the following is to examine the evolution of heat toler-
ance more thoroughly and over a longer time period.

The stability of the nonlinear temperature- yield relationship over different 
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1. Deschênes and Greenstone (2007) use year- to- year variation in weather to estimate the 
relationship between profi ts or yields and weather. They fi nd that agricultural profi ts and yields 
are independent of weather. However, their weather data set contains many irregularities, and 
their profi t measure, which is the difference between sales in a given year minus expenditures, 
does not account for storage behavior that smoothes profi ts between periods. Once the data 
errors are corrected, projected climate change effects on yields are again unambiguously nega-
tive (Fisher et al., forthcoming).

2. Other examples are provided in Fisher et al. (forthcoming).

subsets of the data helps to provide powerful evidence of a causal link. This 
is particularly true as each specifi cation includes county fi xed effects to con-
trol for time- invariant heterogeneity of soils and farming practices. While 
cross- sectional variation in temperatures may be associated with other fac-
tors correlated with geography, county fi xed effects purge this variation 
from the regression. Remaining variation in weather outcomes over time 
are arguably random from the vantage point of farmers and thereby con-
stitute a viable natural experiment. The stability of results combined with 
strong exogeneity of weather variations in a fi xed location are what make 
the empirical results persuasive.1

While correlations between time series weather variations and economic 
outcomes are persuasively causal, a problem with focusing on time series 
variations is that they cannot account for adaptation. When farmers operate 
in a different climate, the set of adaptation strategies will be very different 
compared to unanticipated changes in weather.

One might be tempted to interpret short- run response to weather as a 
useful lower bound of the impact stemming from climate change. The idea 
is that adaptation would mitigate damages and exploit new opportunities 
that are not available in the short run. Thus, the argument goes, adapta-
tion necessarily improves the outcome relative to the short- run response to 
weather. In our view, such an inference is incorrect. It is true that some deci-
sions are available in the long run that are unavailable in the short run. But 
the converse is also true. For example, an aquifer with limited replenishment 
may provide irrigation water to help a farmer cope with a temporary drought 
but may be insufficient for maintaining crop production if  precipitation were 
permanently reduced.2

Adaptations to changing climate conditions are better captured by cross-
 sectional comparisons. The potential downside is that cross- sectional com-
parisons are more easily confounded by unobserved factors that happen to 
correlate with location. Because many economic and social factors correlate 
with geography, and climate itself  is correlated with geography, there is a 
distinct possibility that any observed association between climate and an 
economic outcome is not causal, but rather refl ects the infl uence of some 
unmeasured factor associated with location and climate.

Considering the strengths and weaknesses of both cross- sectional climate 
variations and time series weather variations, it is important to consider 
both. And in this respect perhaps the most compelling fi nding of our earlier 
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3. Subtracting each year’s nationwide yield from each county’s yield removes the aggregate 
upward trend, which is substantial.

4. Mendelsohn, Nordhaus, and Shaw (1994) fi rst introduced the Ricardian method to mea-
sure the effects of climate change on agriculture by estimating a cross- sectional relationship 
between county- level farmland values and climatic variables in the United States. The predicted 
impact of changing climatic variables depends largely on the set of weights. Under the cropland 
weights (fraction of a county that is cropland), the predicted impacts are severely negative, and 
under the crop- revenue weights (the value of agricultural production sold), the effects are bene-
fi cial. The reason why the results diverged under various weights is access to highly subsidized 
irrigation water rights in the western United States. These subsidized water rights capitalize 
into farmland values (Schlenker, Hanemann, and Fisher 2007). Because access to subsidized 
water rights is correlated with temperature, an increase in temperature implicitly assumes an 
increase in subsidies, which should not be counted as a societal benefi t. The crop- revenue 
weights aggravate the problem because highly irrigated counties in the western United States 
account for a large share of overall revenues, yet the fraction of the county that is cropland 
(cropland weights) is small. Schlenker, Hanemann, and Fisher (2005) show that if  the analysis 
is limited to rainfed agriculture, the results converge and become unambiguously negative 
under both sets of weights.

research is that both methods of comparison give very similar results. We 
isolated the pure cross- sectional relationship between climate and yields by 
pairing the average distribution of temperature and precipitation outcomes 
with each county’s average deviation from the nationwide U.S. yield.3 To 
isolate the pure time series, we paired the nationwide average yield with the 
crop- area- weighted average weather distribution in each year.

Both of these methods of identifi cation show the same distinctly non-
linear relationship between temperature and yield growth described in the 
introduction. While the cross- sectional relationship may be potentially 
confounded by omitted variables, it is robust to inclusion or exclusion of 
controls for soils and other factors. Moreover, we also fi nd it unlikely that 
unobserved confounding factors would happen to align in such a manner 
that would give rise to the same nonlinear relationship as observed in the 
time series relationship that is identifi ed with presumably random weather 
fl uctuations. The fact that these relationships are similar suggests that, at 
least historically from 1950 to 2005, there has been little scope for adaptation 
conditional on the locations where these key crops were grown. This fi nd-
ing is consistent with some earlier work using the hedonic approach, which 
considers cross- sectional variations in climate to land values (Schlenker, 
Hanemann, and Fisher 2006).4 The hedonic approach also accounts for crop 
switching in response to climate change.

8.3   The Evolution of Weather- Yield Relationships over the 
Twentieth Century

Our earlier work found little evidence of adaptation to warmer tempera-
tures between 1950 and 2006. In this chapter, we extend the analysis to 
include the earlier and potentially more interesting period between 1901 and 
1950. Our focus on this period is motivated in large part by Sutch’s (2011) 
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research. Sutch argues that the adoption of hybrid corn, one of history’s 
most remarkable and well- documented technological revolutions, was pre-
cipitated in part by the extreme weather events of the 1930s. In particular, he 
argues that hybrid corn demonstrated high yields relative to open- pollinated 
(nonhybrid) corn during 1934 and 1936, which (by our own key crop- related 
temperature measures) remain the most extreme on record. Thus, it could be 
that our earlier analysis did not look back far enough to the timing of the 
key innovation leading to the Green Revolution.

Specifi cally, in this chapter, we examine a panel of corn yields from 1901 
to 2005, a time period that includes a full thirty- fi ve years before the begin-
ning of the Green Revolution as well as some seventy years after the fi rst 
adoption of hybrid corn. Our analysis focuses on the state of Indiana, which 
sits in the middle of the so- called Corn Belt and is the nation’s third largest 
corn growing state. Our focus on Indiana is mainly due to data availability: 
it turns out that Indiana has the most comprehensive record of  detailed 
daily weather records in the station data maintained by the National Cli-
matic Data Center. Detailed daily weather data are necessary to estimate the 
effect of the entire temperature distribution on yields. The data accounts for 
variations in temperatures, both within and across all days of each growing 
season. This detail facilitates correct identifi cation of nonlinear temperature 
effects, which can be diluted from measurement error, or if  temperatures are 
averaged over time or space. The key focus of our analysis is to examine how 
heat tolerance and drought tolerance has changed over time, with some par-
ticular focus on the time period following the great heat waves of 1934 and 
1936 and subsequent widespread adoption of hybrid corn.

8.3.1   Data: A Century of Yields and Weather in Indiana

Figure 8.1 shows corn yields in Indiana over the twentieth century. These 
yield data are publicly available from the U.S. Department of Agriculture’s 
National Agricultural Statistical Service (USDA- NASS). All of our data 
sources are described in further detail in the data appendix. The graph shows 
the average yield in the state for all years between 1901 and 2005 as black 
diamonds. For years after 1928, when county- level data becomes available, 
a box plot shows the range and interquartile range of yields across counties 
in Indiana.

Before 1940, there was no discernible trend in yields. This is true even if  
one were to extend the time series back many decades before 1901, the earliest 
year shown in the fi gure. Around 1940, yields started a sharp upward trend 
that appears ongoing even today. Typical yields in Indiana were between 
30 and 40 bushels per acre before 1940, yet today, a typical Indiana farmer 
can expect 150 to 160 bushels per acre. Yield variance increased along with 
typical yields, so we model the natural log of yield per acre.

As discussed in great detail by Sutch (2011), the beginning of the upward 
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trend in yields began around the time when many key events occurred simul-
taneously. The Great Depression in the 1930s was followed by the onset of 
World War II in 1938, which caused large fl uctuations in commodity prices. 
At least equally important was the early adoption of hybrid corn, starting 
in Iowa and quickly expanding to Illinois, Indiana, and beyond. The supe-
rior yields of hybrid corn was discovered in 1918, but it was not until later, 
perhaps after 1936, that seed production became commercially viable and 
high- yielding enough for farmers to adopt.

Also, in the decade before 1940, the Midwest, including Indiana, experi-
enced both the hottest and driest temperatures on record for the growing-
 season months between March through August, shown in fi gures 8.2 and 8.3. 
The former shows yearly weather shocks in extreme heat (degree days above 
29°C, further described in the following) over the growing season. The latter 
shows precipitation deviations from average climatic conditions. The decade 
of poor weather in the 1930s was most accentuated in the two drought years 
of 1934 and 1936, which brought about the great Dust Bowl, an event of 
massive wind erosion in states west and south of Indiana. In those years, 

Fig. 8.1 Average yields in Indiana, 1901–2008
Notes: The graph shows history of corn yields in Indiana. State- level averages are shown as 
diamonds. The range of yields among Indiana’s counties is shown as boxplots: The box gives 
the 25 percent to 75 percent quartile range, the median is shown as a solid line, and whiskers 
extend to the minimum and maximum. A locally weighted regression of the state averages 
(bandwidth of ten years) is shown as a black line.
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average yields in Indiana were just 27.6 and 25.6 bushels per acre, two of the 
three worst yields on record for the state during the twentieth century. Note 
that drought years also showed the largest exposure to extreme heat as tem-
peratures and precipitation are interrelated. Indiana still fared much better 
than states west and south of Indiana. Iowa harvested just 60 percent of its 
planted acreage in 1934, an all time low, and Dust Bowl states of Nebraska 
and Kansas lost nearly all of their corn plantings in these years.

It is interesting to note that more recently, and particularly in the last two 
decades, the weather has been good for corn yields. This is in sharp contrast 
with what climate models project in the decades to come. Under the slowest-
 warming scenario (B1) in the Hadley III model, average projected extreme 
heat for the years 2070 to 2099 is predicted to increase by 103 degree days 
above 29°C compared to the 1960 to 1989 baseline under the Hadley III 
model. It is added as a horizontal line in fi gure 8.2. While the B1- scenario 
assumes we curb CO2 emissions sharply in the near future, the predicted 
increase is still worse than the worst of the Dust Bowl years. Average pro-

Fig. 8.2 Shocks in extreme heat in Indiana, 1901–2005
Notes: The graph shows weather shocks (deviations from averages) for degree days above 29°C 
during the growing season March to August. State- level averages are shown as diamonds. The 
range of weather shocks among Indiana’s counties is shown as boxplots: The box gives the 25 
percent to 75 percent quartile range, the median is shown as a solid line, and whiskers extend 
to the minimum and maximum. A locally weighted regression of the state averages (band-
width of ten years) is shown as a black line.
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jected increase in extreme heat under fast- warming A1FI scenario is way off 
the chart at 310 additional degree days above 29°C.

Construction of the weather variables presented in fi gures 8.2 and 8.3 is 
further detailed in the appendix. We construct these data from daily indi-
vidual weather stations in Indiana. Geographical interpolation is achieved 
by linking it with the PRISM weather data sets, which gives monthly obser-
vations on a 2.5 � 2.5 mile grid for the entire United States. Indiana is the 
only state in the United States for which the National Climatic Data Center 
of the National Oceanic and Atmospheric Administration reports having 
more than three weather stations in the early part of the century. The avail-
ability of good, fi ne- sale weather data is essential for identifying nonlinear 
weather effects because these effects can be diluted with measurement error 
or if  values are averaged over time and space. The geographical locations 
of weather stations in Indiana that we use to construct our data set for each 
twenty- fi ve- year period are shown in fi gure 8.4.

The challenge for a regression model that relates yields to weather out-

Fig. 8.3 Precipitation shocks in Indiana, 1901–2005
Notes: The graph shows weather shocks (deviations from averages) for total precipitation 
during the growing season March to August. State- level averages are shown as diamonds. The 
range of weather shocks among Indiana’s counties is shown as boxplots: The box gives the 25 
percent to 75 percent quartile range, the median is shown as a solid line, and whiskers extend 
to the minimum and maximum. A locally weighted regression of the state averages (band-
width of ten years) is shown as a black line.
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comes is in mapping an entire season of temperature and precipitation out-
comes to a single yield outcome. We achieve this by assuming temperature 
effects on yields are cumulative over time and that yield is proportional to 
total exposure. This implies temperature effects are additively substitutable 
over time. That is, we sum the daily outcomes associated with each tempera-
ture over all days of the growing season. The benefi t of assuming additive 
separability is that it allows us to keep the underlying relationship between 
temperatures and yields fully fl exible.

Earlier work has shown that there are three weather variables that give 
the best out- of- sample predictions of corn yields: (a) total precipitation pit 
in county i in year t; (b) degree days above 29°C (ddit

H), which captures the 
harmful effects of high temperatures; and (c) degree days between 10°C and 
29°C degrees (ddit

M), which measures the benefi cial effects of moderate tem-
peratures (Schlenker and Roberts 2009). Each measure is simply a truncated 
integral over the temperature distribution within each day and then summed 
over all days in the growing season, as given in the following.

Degree days above 29°C (high temperature measure) are defi ned as

 ddit
H � 

j = M a rch  1 st

A u g u st 3 1 st

∑  
T = 2 9

∞

∫  (T � 29)hitj(T )dT,

where T is temperature (in degrees Celsius) and hitj(T ) is the estimated density 
of time at each degree during day j in year t in county i. Because the measure 
is sensitive to geographic variation in temperatures, as wells as variations 
within and across all days of the growing season, we spend considerable care 
in estimating hitj(T ). Further details are given in the data appendix.

The second temperature measure is degree days between 10°C and 29°C 
(moderate temperature measure) are defi ned as

 ddit
M � 

j = M a rch  1 st

A u g u st 3 1 st

∑  
T =1 0

∞

∫  min(T � 10, 19)hitj(T )dT.

8.3.2   Regression Model

In this chapter, we take as given the two temperature measures that our 
earlier work found to be the best predictor of corn yields in 1950 to 2005. 
Our focus is to explore how the relationship between yields and weather has 
changed over the 105 years from 1901 to 2005. We use a fl exible restricted 
cubic spline model that allows temperature and precipitation associations 
to change smoothly and fl exibly over time. Specifi cally, the regression 
model is

 yit � �0ddit
M � �1ddit

H � fp( pit) � ft(t) � fM(t) � dd it
M � fH(t)dd it

H 
 � ft2(t)fp2( pit) � ci � �it,

where yit denotes the natural log of yield in county i and year t, dd it
M and ddit

H 
are the degree day measures described in the preceding, pit is total precipita-
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5. In the baseline model each of the spline functions is approximated using 5 knots, located 
at the 0.05, 0.275, 0.5, 0.725, and 0.95 quantiles of the empirical distribution of the relevant 
explanatory variables. For the time trend, knot locations are 1932, 1949, 1967, 1984, and 2001. 
The early knot in the time trend is due to the fact that we have only state- level observations 
prior to 1929 and, thus, fewer data points per year than after 1929 when we have county- level 
observations. To check the stability of the results to specifi cation, we also estimated models 
with 3, 4, 6, and 7 knots for each spline function in the following.

6. We report the confi dence bands obtained from the R package Design after clustering 
errors by year.

tion. The functions fx(�) are cubic splines of time or precipitation.5 We also 
include separate intercepts for each county (i.e., fi xed effects, denoted ci) 
to account for unobserved time- invariant heterogeneity, like soil quality. 
Because we combine state- level averages before 1929 with county- level aver-
ages starting in 1929, we use the corn acreage as weights in the regression 
equation to make the two sets of aggregation measures comparable. Esti-
mation of restricted cubic spline models is easily done using ordinary least 
squares. Because the errors within each year are likely correlated in space, we 
adjust our standard errors to account for this (clustering the errors by year) 
and possible heteroscedasticity using the Huber- White method.

8.3.3   Results

Figure 8.5 shows the effects of each of the four variables: time, precipita-
tion, ddM, and ddH, while holding all other variables at their median values. 
These results are characteristically similar to what we found in our ear-
lier work that focused on the period from 1950 to 2005: there is a sharp 
upward trend in yields over time as shown in the top- left panel. Yields have 
an inverted- U shape, with rainfall as shown in the top right panel. Yields 
increase gradually with temperate degree days between 10°C and 29°C as 
shown in the bottom- left panel. Finally, yields decline sharply with extreme 
heat, measured as degree days above 29°C, as shown in the bottom- right 
panel. Because all regressions include county fi xed effects, the graph will be 
shifted up or down by the county- specifi c intercepts. We hence normalize 
each graph and display impacts relative to optimal outcome of each variable 
in question. For example, the top- right panel shows by how much yields 
decline if  precipitation deviates from the optimum for the season. All four 
panels of fi gure 8.5 use the same scale on the y- axis to make the contribution 
of each variable comparable across plots. The time trend is responsible for 
the largest effect followed by degree days above 29°C.

These median- value predictions, however, do not show how these relation-
ships have changed over time. We explore how these relationships change 
over time in fi gure 8.6 for precipitation, fi gure 8.7 for extreme heat ddH, and 
fi gure 8.8 for moderate temperatures ddM. Each of these fi gures plots the 
relationship of the three weather variables at fi fteen points in time.6

The effects of all three weather variables have shifted markedly over time. 
Figure 8.6 shows that the infl uence of precipitation continuously vanishes 
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over time. Deviations from the optimal precipitation levels have limited 
effects on yields in 2000. We believe that two explantations are most likely 
responsible for the fact that yields are no longer directly linked to rainfall 
during the growing season. First, a lack of precipitation in the growing sea-
son might be counterbalanced with irrigation. Continued mechanization of 
agriculture has led to the gradual expansion of pivot irrigation systems that 
can provide supplementary water during especially dry periods. While only 
a minority of corn fi elds in Indiana have pivot irrigation systems, the ones 
that do are probably more prone to dryness or have sandier soils. Second, 
seed companies may have bred increased drought tolerance into corn plant 
varieties. While climate models vary considerably in their predictions for 
precipitation changes, with some forecasting increases and others decreases, 
evidence from weather and yields in Indiana suggest this may be of little 
economic consideration.

The evolution of heat tolerance, displayed in fi gure 8.7, differs from that 
of precipitation. Heat tolerance increased until 1960 followed by a decline 

Fig. 8.5 Regression results at median values
Notes: The graphs display regression results of  one variable while keeping other variables at 
median outcomes (shown as vertical line in each graph): top- left panel shows yield trend, top-
 right panel shows effect of  precipitation, bottom- left panel shows effect of  degree days 10°C 
to 29°C, and bottom- right panel shows effect of  degree days above 29°C. Graphs are normal-
ized relative to the optimal outcome of a variable.
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after 1960. Figure 8.9 shows the marginal effect of extreme heat, that is, the 
slope of the regression line in fi gure 8.7 over all years in our sample. The 
negative infl uence of an additional degree day above 29°C is lowest around 
1960 and most damaging in recent years when corn varieties were optimized 
for maximum average yields. The magnitude of the negative coefficient on 
ddH is nearly three times as large in 2000 as it is in 1960, and about twice 
as large in 1901 as compared to 1960. This result is qualitatively insensitive 
to how many knots we use in the spline once we include at least 4 knots to 
make the model fl exible enough to capture the nonlinearities. Figure 8.10 
replicates this analysis for the marginal effect of moderate temperature as 
measured by degree days between 10°C and 29°C.

Estimated slopes in the early years of fi gure 8.9 should be interpreted with 
some caution because there are much fewer data points before 1929 as only 
state- level data are available. Our spline model places more emphasis on 
subperiods with more data and linearizes the model in the tails of the data. 
Closer inspection of the data do suggest that much of the increase in heat 

Fig. 8.9 The evolution of the marginal impact of extreme heat on log corn yields
Notes: The graph displays the marginal effect of  extreme temperatures (degree days above 
29°C) on log yields, that is, the slope of the regression lines in fi gure 8.7. Cubic splines with 
various number of knots are used.
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tolerance actually took place between 1940 and 1960, rather than being a 
steady smooth trend up from 1901. This interpretation would be consistent 
with the relatively stable farming technologies between 1901 and 1936 and 
rapid technological progress after 1940. This would also be consistent with 
Sutch’s historical account of the adoption of hybrid corn.

The most interesting and relevant fi nding that speaks to implications for 
climate change is the sharp decline in tolerance to extreme heat since 1960. 
This fi nding is a powerful counterpoint to the apparent increase in drought 
tolerance. Under the latest climate change models, a sharp rise in maxi-
mum temperatures is predicted to signifi cantly increase the occurrence of 
temperatures above 29°C. Because degree days above 29°C are a truncated 
temperature variable, modest shifts in the temperature distribution can have 
a large relative infl uence on this temperature measure. For example, a 1°C 
warming from 29.5°C to 30.5°C triples degree days above 29°C. The historic 
average number of degree days above 29°C is twenty- fi ve in Indiana. Under 
the Hadley II model (IS92a scenario), the number is predicted to increase 
by nineteen at the end of this century. Under the much warmer Hadley III 
model, degree days above 29°C are projected to increase by 103 under the 

Fig. 8.10 The evolution of the marginal impact of moderate heat on log corn yields
Notes: The graph displays the marginal effect of  moderate temperatures (thousand degree 
days 10°C to 29°C) on log yields, that is, the slope of the regression lines in fi gure 8.8. Cubic 
splines with various number of knots are used.
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slow- warming B1 scenario. Thus, even under the slowest- warming scenario, 
typical weather outcomes in the latter part of this century are projected to 
be far worse than the worst drought years in the historical record, 1934 and 
1936 (refer to fi gure 8.1). Under the fastest- warming A1FI scenario, degree 
days above 29°C are projected to increase by 310, making the measure in a 
typical year about 3.5 times worse than the worst year on record.

Finally, the relationship between the precipitation and log yield is highly 
signifi cant, but the interaction between time and precipitation has a p- value 
of 0.06. For all factors besides precipitation, both the combined effect as well 
as nonlinear interactions with time, are signifi cant at the 5 percent level, sug-
gesting that the relationship was not stable over the century but has evolved. 
A summary of signifi cance tests is reported in table 8.1.

8.3.4   Discussion of New Results

The last section extended earlier research on the link between weather 
and yields by examining how key weather variables are associated with 
corn yields in Indiana over the time period 1901 to 2005. We use restricted 

Table 8.1 Analysis of variance for log yield

   d.f.  F- statistic  p- value  

Degree days above 29°C
 All terms 5 18.99 	0.0001
 Interaction terms with time 4 2.82 0.0289
Degree days 10°C–29°C
 All terms 5 5.07 0.0003
 Interaction terms with time 4 3.30 0.0138
Precipitation
 All terms 11 4.09 0.0001
 Interaction terms with time 7 2.00 0.0624
Time trend
 All terms 19 83.80 	0.0001
 Time trend only 4 9.08 	0.0001

 R2 (all variables)  0.95      

Notes: Table reports F- tests for the joint signifi cance of key explanatory variables and their 
interactions with time. Our baseline model uses restricted cubic regression splines with 5 
knots, which will result in four factors (variables) in the regression equation. The weather 
variables Degree days above 29°C and Degree days 10°C to 29°C consist of  the weather vari-
able (1 degree of freedom [d.f.]) as well as the interactions with the four time factors (4 d.f.). 
The weather variable Precipitation consists of  four factors in the amount of precipitation 
(4 d.f.) as well as the interaction of the linear time and precipitation term (1 d.f.) and the in-
teraction of precipitation with the three higher order precipitation factors and vice versa 
(3 d.f. each). Finally, the Time trend consists of  four factors and it is interacted with the fi fteen 
terms outlined for the three weather variables.
We use both the STATA command mkspline as well as the R- package Design. The point esti-
mates are identical, but the clustering option is implemented differently in both languages. We 
report the results from STATA, which tend to be more conservative (with the exception of 
precipitation).
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cubic spline regressions to let the effect of precipitation, moderate heat, and 
extreme heat evolve smoothly over time in a fl exible way. Results for each 
variable, while holding all other variables constant at their median observed 
outcomes, are comparable to earlier results we obtained for a model using 
county- level corn yields for all counties east of the 100 degree meridian in 
the years 1950 to 2005.

The median association, however, obscures signifi cant evolution of pre-
cipitation and temperature effects over time, effects that we had not exam-
ined in our earlier research. The overall infl uence of precipitation during the 
growing season has diminished with time.7 We hypothesize that attenuation 
of precipitation effects stems from increased use of supplemental irrigation 
and possibly the development of more drought tolerant seed varieties and 
cropping systems that have increased planting densities and canopy cover 
of the soil.

The evolution of temperature effects looks rather different from that of 
precipitation effects. The evolution of heat tolerance over time is nonlinear, 
increasing sharply between about 1940 and about 1960 and then declining. 
We found corn in Indiana to be most sensitive to extreme heat in the more 
recent years of  our sample. The later decline in heat tolerance might be 
due to the fact that maximizing corn plants for average yields also makes 
them more sensitive to suboptimal growing conditions. It is interesting to 
note that the key turning points in evolution of heat tolerance align almost 
perfectly with the adoption of double- cross hybrid corn (around 1940) and 
single- cross hybrid corn (around 1960). It is also notable that, from inspec-
tion of Richard Stuch’s fi gure showing U.S. aggregate corn yields from 1866 
to 2002 and our own fi gure 8.1, yields became noticeably more variable as 
corn transitioned from double- cross to single- cross varieties, a pattern that 
could be indicative of greater heat sensitivity.

Why did we fi nd relative heat tolerance to be stable in our earlier study and 
not in this one? We believe there are several interrelated reasons. First, our 
earlier study began in 1950, a while after fi rst adoption of hybrid corn and 
growth in heat tolerance, but well before hybrid corn had been universally 
adopted in all states. Second, we simply split the sample into two subperiods, 
1950 to 1977 and 1978 to 2005, while pooling all states east of the 100th 
median. Because different states adopted hybrid corn at different times and 
heat tolerance grew and then declined, our regressions would have picked up 
average heat tolerance in each subperiod. When pooling all states, it is likely 
that average heat tolerance was about equal in these two subperiods. Note 
that Indiana was relatively early on the adoption curve for hybrid corn.

7. A cross- validation analysis shows the fi ne- scale precipitation data to be less accurate than 
the fi ne- scale temperature data. Because error in an explanatory variable causes attenuation 
bias, it is likely that precipitation is more important in reality than our regressions imply. But 
because the data are likely more accurate in the recent period as compared to the earlier period, 
attenuation bias cannot explain the general trend of decreasing importance of precipitation.
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Our new fi ndings have mixed implications for climate change impacts: on 
the one hand, sensitivity to extreme heat is highest at the end of the sample, 
and the one feature all climate models agree on is that these extreme heat events 
are likely to increase, even though the size of the increase varies tremendously 
between model and emission scenarios. On the other hand, there was a period 
between 1940 to 1960 when both heat tolerance and average yields increased at 
the same time. The question is whether recent increases in yields could only be 
achieved by making plants less heat resistent or whether future breeding cycles 
can increase both heat tolerance and average yield at the same time.

8.4   Conclusions

Since the late 1930s when U.S. farmers began using hybrid corn, commer-
cial fertilizers and other modern farming techniques, average crop yields in 
the United States and around the world have grown tremendously. Today, 
corn yields in the United States equal more than four times the best yields of 
the 1930s. Yields of most other staple commodities have more than tripled. 
Over the same time period, world population grew slightly less than three-
fold. Higher yields have brought lower commodity prices, which have re-
lieved hunger in less- developed nations and have fed a growing (and likely 
unhealthful) appetite for meat and processed foods in rich countries. Yield 
growth has probably also attenuated expansion of cropping areas and defor-
estation. Recent adoption of genetically modifi ed seeds have a spurred yield 
gains in developing nations that have adopted them (Qaim and Zilberman 
2003) and may hold promise for further yield gains in both developed and 
developing nations.

But global warming now poses a signifi cant threat to crop yields. Crop 
scientists have long predicted that warming will cause yield declines in tropic 
and subtropic regions of the world. Climates in these regions are already 
too warm for optimal growing conditions for most crops, so further warm-
ing will not help. More recent evidence suggests warming will also harm 
yields in more temperate regions where current production is greatest. Our 
previous statistical analysis of  the United States, by far the world’s larg-
est producer and exporter of agricultural commodities, is dismal. Holding 
growing areas fi xed (an important caveat), we predict yield declines of 38 to 
46 percent for soybeans and corn between 2070 to 2099 under the Hadley III 
slow- warming scenario (B1, which presumes sharp reductions in CO2 emis-
sions), and declines of 75 to 82 percent under the Hadley III fast- warming 
scenario (A1FI, which presumes the fastest growth in CO2 emissions). Pro-
jected declines in medium term (2020 to 2049) are also substantial, 18 to 
23 percent under the slow- warming scenario and 22 to 30 percent under 
the fast- warming scenario. The largest driver behind these reductions is 
the predicted increase in very hot temperatures. It is important to note that 
these predicted declines are relative to what yields would be without climate 
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change, not what yields are today. They also hold growing locations fi xed 
and do not account for CO2 fertilization, which may increase yields.

One way of adapting to warmer climates will be to change the locations 
where crops are grown. Corn and soybean production is likely to shift north-
ward toward traditional wheat growing regions and wheat (perhaps) to areas 
that were not previously cropped. Given the world’s currently most produc-
tive areas are predicted to be harmed signifi cantly, it is not clear how much 
of these losses may be mitigated by crop switching.

A team of researchers at the International Food Policy Research Institute, 
led by economist Gerald Nelson, recently developed the most comprehen-
sive analysis to date (Nelson et al. 2009, vii). Their model accounts for yield 
effects, crop switching, trade, and price effects throughout the world, but 
takes population and gross domestic product (GDP) as exogenous to agri-
culture and does not account for sea- level rise, which could be important for 
rice production in south Asia. They predict that by 2050, calorie availability 
“will not only be lower than in the no- climate- change scenario—it will actu-
ally decline relative to 2000 levels throughout the developing world.”

Thus, at present, it would appear that technological solutions, in addition 
to crop switching, will be necessary to overcome anticipated impacts from 
global warming. It is in this vein that we have explored historical innova-
tion as it relates to heat tolerance. In particular, we examined the evolution 
weather effects on corn yields in Indiana and how these effects have changed 
over time with adoption of new crop varieties and farming techniques.

Sensitivity to extreme heat is critical determinant of corn yields. In recent 
research, we have found this sensitivity to be similar in warmer southern 
states and cooler northern states. Moreover, we found no evidence that 
warmer areas have adapted to warmer- than- optimal climates: the cross-
 section of yields and climate matches the link between yields and weather 
in a fi xed location.

In this chapter, we present new evidence that may be somewhat more 
encouraging. We fi nd that, following the Dust Bowl years—the hottest, 
driest and lowest- yielding years on record—heat tolerance in corn grew 
markedly until about 1960. After 1960, however, heat tolerance declined, 
even though average yields continued their steady rise. At the end of our 
sample in 2005, corn appears to be less tolerant to extreme heat than it was 
in the 1930s.

The key question is whether plant scientists and seed companies can con-
tinue to breed or engineer crops that have both greater yield potential and 
greater tolerance to extreme heat. At present, these prospects seem uncer-
tain, and greater agricultural productivity investments would seem prudent. 
The private sector may foresee higher future commodity prices and, thus, 
engage in these investments on their own. There may also be a role for public 
sector investments in basic research, particularly because these have been the 
source of critical innovations in the past. Such innovations have important 
positive spillovers that can lead to suboptimal private investment.
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8. See http://www.nass.usda.gov/QuickStats/Create_Federal_All.jsp.
9. See http://www.nass.usda.gov/QuickStats/Create_County_All.jsp.

On the demand side, we believe it important to recognize that global 
income inequality is a critical obstacle to adaptation. The issue is not so much 
whether it will be technically feasible to feed the world’s population; we see 
little doubt that it will be. But when median incomes of the richest nations 
are hundred times those of the poorest nations, it is easy to see how lower 
commodity supply combined with, say, a taste for meat in rich countries, 
could drive prices of staple commodities to the point that the poorest simply 
cannot afford to survive. Despite the necessity of food, demand response of 
the poor is larger than that of rich due to a much larger income effect.

There is no market failure or malthusian cycle in this story. It’s simply a 
matter of income inequality. If  incomes were not so divergent, prices would 
simply rise until enough people substituted to a presumably more healthy 
diet with less meat. The greatest hope is an uncertain one: that technological 
change will obviate the need for behavioral change.

Appendix

Data Appendix

This appendix outlines in further detail how we construct our data set.

Yield Data

Yield data was obtained from the National Agricultural Statistics Service 
(accessed March 2009). Yearly state- level yields in Indiana are available from 
1866 onward.8 County- level yields in Indiana are available starting in 1929.9 
We follow the defi nition of the Department of Agriculture and calculate 
yields as the ratio of total production divided by area harvested.

The traditional defi nition of yields might overstate actual yields if  some 
fi elds are not harvested. In a sensitivity check, we defi ne yields as total pro-
duction divided by all acres planted. Unfortunately, area planted is only 
available from 1926 onward for state totals and from 1972 for individual 
counties and, hence, signifi cantly reduces our sample period. The left panel 
of Figure 8A.1 displays the fraction of the planted area that was harvested 
in Indiana over time. While there is an upward trend, especially during the 
1930s, the right panel shows that the year- to- year variation in yields is 
similar for each defi nition of yields.

Weather Data

Degree days were constructed from daily weather data. We obtained daily 
observations from the National Climatic Data Center (NCDC) Cooperative 
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10. See http://ols.nndc.noaa.gov/plolstore/plsql/olstore.prodspecifi c?prodnum�C00447- 
CDR- S0001.

11. See http://www.prism.oregonstate.edu/.

station network.10 The data include daily minimum and maximum tempera-
ture as well as precipitation. While the NCDC data has great temporal cov-
erage, we combine it with the PRISM weather data set that provides better 
spatial coverage.11 The latter gives monthly minimum and maximum tem-
peratures on a 2.5 � 2.5 mile grid for the United States from 1895 onward.

To construct a consistent set of weather data, we followed the following 
procedure for each twenty- fi ve- year period starting in 1901, 1910, 1920, 
1930, . . . , 1980.

(i) For each of  our three weather variables (minimum and maximum 
temperature as well as precipitation), we determine the set of stations with 
a consistent record, which we chose to be stations that moved at most by 
2.5 miles during the time period and had at most three missing values in at 
least 90 percent of the months.

(ii) We fi ll the missing observations at stations with consistent records 
obtained in step (i) by regressing daily values at each station on daily values 
at the seven closest stations including half- month fi xed effects. We use a lin-
ear regression for minimum and maximum temperature and a tobit regres-
sion for precipitation, which has several observations at the truncation value 
of zero. Intuitively, the regression estimates are used to fi ll the missing values 
with a weighted average of surrounding stations with nonmissing observa-

Fig. 8A.1 Fraction of corn area planted that is harvested
Notes: The left panel shows the ratio of the corn area harvested to the area planted in Indiana 
in 1926 to 2005 as diamonds as well as a locally weighted regression with a bandwidth of one 
decade as solid line. The right panel shows yields under the two different defi nitions. Produc-
tion divided by area harvested is shown as diamonds, and production divided by area planted 
as triangles.
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tions to give us a complete weather record at the stations with consistent 
weather records.

(iii) We calculated monthly averages for the stations with consistent 
records in step (i).

(iv) We regress the monthly values at each PRISM grid on the monthly 
averages at the seven closest weather stations from step (iii) including month 
fi xed effects, again using a linear regression for minimum and maximum 
temperature and a tobit model for precipitation. The R- squares are generally 
in excess of 0.999, suggesting that the PRISM data set is a weighted average 
of individual stations, and we uncovered the weights.

(v) We apply the regression results from step (iv) to the daily weather sta-
tion data from step (ii) to derive daily weather measures at each 2.5 � 2.5 mile 
PRISM grid cell.

(vi) We fi t a sinusoidal curve between the minimum and maximum tem-
perature of each day to calculate degree days accounting for the within day 
distribution of  temperatures (Snyder 1985). We evaluate degree days for 
each bound between –5°C and �50°C using 1° steps at each 2.5 � 2.5 mile 
PRISM grid.

Once we have the daily observations on the PRISM grid, we aggregate them 
spatially.

(vii) We obtained the fraction of each PRISM grid cell that is cropland 
from a one- time LandSat satellite scan in 1992. County- level weather 
variables are the cropland- weighted average of all PRISM grid cells in a 
county.

(viii) State- level weather data are the weighted average of all county- level 
measures in step (vii), where the weights are the amount of harvested corn 
area reported in the yield data. Because harvested corn area is not reported 
on a county level before 1929, we use the average harvested corn area in each 
county in the years 1929 to 2005 as weights for years prior to 1929.

Finally, we aggregate the data temporally.

(ix) We defi ne the growing season as the months March through August 
and add degree days as well as precipitation for all days in these months. 
Because total precipitation over the growing season is insensitivity to the 
within- day and between- day distribution, we use the monthly totals in the 
PRISM data set. For possibly daily interactions between precipitation and 
temperature, we use the interpolated daily precipitation data.

Because it was impossible to get a sufficiently large set of weather stations 
that had consistent nonmissing records for the entire sample period 1901 to 
2005, we instead derived the measure for twenty- fi ve- year intervals, starting 
in 1901, 1910, 1920, up to 1980. The results of interpolation series for extreme 
heat in the state of Indiana (degree days above 29°C) are displayed in fi gure 
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8A.2. They appear to overlap tightly. One might still wonder whether the 
state results hide the fact that there are substantial errors in the county- level 
data that get averaged out. To examine this further, we take the difference 
of all overlapping series in the county data. The mean absolute difference is 
2.2 degree days above 29°C, and the root mean squared prediction error is 
3.1 degree days above 29°C, suggesting that the overlapping fi t is reasonably 
close. Our weather data uses the average of all overlapping series.
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