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1. Introduction

The purpose of this paper is to present arguments that, for typical eco-
nomic time series data, low-order moments of lag distributions in many
cases can be estimated more precisely than short-run effects. Moreover, the
transformation from short-run effects to moments, again for typical time
series data in economics, orders the precision inherent in the design matrix
so that one can expect to estimate the long-run effect (sum of ordinates in
the lag distribution) with greatest precision, the first-order moment (mean
lag) with next greatest precision, etc. Thus we argue that much can be learned
with available data by redirecting attention away from short-run effects to
a different parameter space. We believe that there are three reasons for this
redirection of interest.

1. Low-order moments are of considerable policy interest. Often the
long-run effect and mean lag are sufficient summary statistics for the in-
vestigator’s purpose. For example, the total return from a. marginal dollar
spent on advertising along with some notion of the timing of the returns
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324 MICHIO HATANAKA AND T. DUDLEY WALLACE

flow may be sufficient for decision purposes. For another, the mean lags for
fiscal versus monetary policy are of direct interest.

2. With the focus on estimation of short-run effects, priors of one kind
or another on the shape of the lag distribution typically have been imposed
on data, usually in ad hoc ways. Many quite flexible probability density
functions require knowledge of only a few low-order moments for complete
specification. If low-order moments can be obtained with precision in a
first round pass, restrictions can be imposed in a second round which are
not at variance with the data.

3. In cases where smoothness priors have been imposed a priori, least
squares estimation of low-order moments of lag distributions serves as an
additional check on specification. As is well known the mean lag, for example,
can be quite sensitive to the form of the prior.

The mean lag usually can be estimated with considerable precision with-
out priors, as we argue in this paper. Therefore, reestimation of a few low-
order moments free of priors may reveal gross inadequacies of those priors.

The weaknesses of the procedure we outline include the following:

1. Except for the sum of coefficients (the “zero-order moment”), trans-
formation from ordinates to moments makes sense only if the lag weights
are of the same sign. Feedback that causes “overshooting” in a delay process
destroys the useful analogy of a lag distribution to a probability density
function. Our procedure works only for lagged adjustment processes where
all short-run effects can be expected to have the same sign.

2. The procedure depends on the assumption that the number of nonzero
lag coefficients is considerably smaller than the number of time series obser-
vations which is available. This leaves the problem of how many lags to
include.

‘3. We assume exogeneity. The response variable depends only on con-
temporaneous and lagged values of an independent variable. This assump-
tion can, of course, be tested in applications.

4. Even in those cases where the design matrix loads precision onto the
low-order moments, the precision inherent in the data still may not be very
satisfactory. An example application is given in Table 4 where the long-run
effect can be estimated quite precisely (large ¢ value) but the mean and
higher-order moments are not estimated with as great precision as one
might wish.!

In summary, the proposed procedure is to transform from ordinates to
moments of a lag distribution. Since the ordinates of a lag distribution do

! Such is not always the case. In an investigation of the lag between consumer and wholesale
prices, even the third-order moment (skewness), was estimated with a ¢ value of 4.0 with mono-
tonically larger ¢ values for variance, mean, and sum of ordinates (Silver & Wallace, 1980).



ESTIMATION OF MOMENTS IN LAG DISTRIBUTIONS 325

not sum to one, the sum of the ordinates is called the zero-order moment.2
The transformation from ordinates to moments is nonsingular so no pre-
cision is gained in a total sense. However, the precision inherent in typical
economic design matrices is loaded onto the low-order moments.

Our theoretical arguments use modern time series concepts in order to
exploit the theorem about approximate inverses of autocovariance matrices
of general stationary stochastic processes. However, the general notion is
that positive linear combinations of negatively correlated random variables
can have lower variances than the original variables. In a distributed lag
problem, the variance-covariance matrix of the estimated short-run coef-
ficients is approximately proportional to the inverse of the autocorrelation
matrix of the process generating the regressor. Most economic time series
are positively autocorrelated; therefore, the inverse is dominated by negative
correlations—the estimated regression coefficients are by and large nega-
tively correlated with each other. Therefore, their sum has a variance smaller
than the sum of their variances. Similarly, the mean lag is proportional to
the weighted sum of the estimated short-run effects with the positive integers
as weights, so that the negative correlations are again exploited. Some care
has to be taken in setting up appropriate criteria because the sums of weights
in the transformations are not unity, and the relevant question is whether
or not (theoretical) ¢ statistics are larger for the estimated moments than for
estimated short-run effects.?

Turning more formally to the proposed method, consider the model

N

Y=o+ ) BX,_,+U, t=1,..,T, 6))
s=0

where U, ~ iid(0,0?) and independent of X,_,, s =0, 1, ..., N. We assume
that the sample size is large enough so that for N < T any lags beyond N
can be neglected. We assume further that all the fs are of the same sign
and also, until a later section, we assume that the X and Y processes are

covariance-stationary.
Converting the estimation problem from short-run lag effects to moments
of the lag distribution motivates the following transformation of the fs:

11 1 1B
Ho 01 2 -+ N |8
/1':1 =0 12 22 ... N2 ‘[}2 or n= Cﬂ. (2)
Un : :

0 1N 2N e NN ﬂN

?In cases for which the implied conceptual experiment is valid, the zero-order moment
can be interpreted as the long-run effect of a unit change in the control variable. Where the lag
distribution arises due to expectations, a once and for all change in the control variable changes
the structure by which the data were generated and therefore is an invalid concept.

® A theoretical ¢ statistic is the square root of the inverse of coefficient of variation.
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Nonsingularity of the transformation to the us is assured since the first
principal submatrix of C is a Vandermonde matrix.

Note that the us are unadjusted moments in a nonnormalized lag distri-
bution. That is, p, is the zero-order moment, u, is the mean of the non-
normalized lag distribution, u, is the second moment about zero in the
nonnormalized lag distribution, etc. What we mean by nonnormalized is
that the fis do not sum to unity. To convert to a proper probability density
function the f ordinates must be divided by ug, the sum of fs. Therefore,
the moments of final interest require the transformations

Mo = po, My = py/po, M, = py/po — M1, etc., ©)

where M, is the long-run effect of a change in X, on Y, M, is the mean of
the lag distribution, M, is its variance, etc.

In the sections to follow we focus first on estimation of the us and for
that purpose, define Cj as the hth row of the matrix C in Eq. (2).

2. Objectives and Precision Criteria

The moments of the lag distribution, pg, fq,..., are various linear
combinations of the f§ vector. Let u, = C;B, where C; is the hth row of the
transformation matrix C of Eq. (2). Least squares estimators for y, are

gy=Ch and b=(X'X)"'X'Y, h=0,1,...,N, (4

where the elements of X and Y are measured in terms of deviations from the
respective sample means. The dimension of X is T x (N + 1) and Y is
T x 1; therefore, b, the least squares estimator for f, is (N + 1) x 1, and
i, is the scalar estimate of p,,.

We claim that (i) some of the g, can be estimated more precisely than f
for typical economic data in a distributed lag context and (ii) the precision
is ordered from low-order to higher-ordered moments; fi, is more precise
than fi;, fi, is more precise than fi,, etc. Of course, the latter claim implies
that those p, which can be estimated more precisely than the elements of
are the lower-order moments—those for which / is small. Our claims are
based on the nature of the typical design matrix in economics for distributed
lag problems—that autocorrelation in the regressor can be exploited by
concentrating on the low-order moments rather than on the short-run
effects represented by the fs.

To substantiate the claims we first define a criterion of relative precision.
The index of precision for fi, is its squared coefficient of variation, SCV(i,),
the square of the inverse of the theoretical ¢ statistic. From standard regres-
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sion theory,
2 GX'X)"IC,
[CiB]*

An analogous scalar reflecting the dispersion of b from f is the mean
squared error of b divided by the length of the f vector. That is, define

SCV(@) = o (5)

E(b - By —-p) 52 TX 'X)"!
BB BB
If (6) were large relative to (5), we would claim that g, is estimated more
precisely than f because of the particular design matrix X'X, i.e., because
of the properties of the exogenous variable. To pin down what is meant by
“large” in this context, consider the case in which X'X is a scalar k times
an identity matrix. Since X'X is proportional to an autocovariance matrix

for large samples, zero multicollinearity is approximated by this case, and for
no multicollinearity, the ratio of (5) to (6) is a function J,(h):

C;,C,,B’ﬁ
(N + DICHT*

Therefore the relative precision criterion that fi, is better than b is for the
ratio of (5) to (6) to be smaller than the standard in (7), which requires a
scalar function that we call 6,(h) to be less than (N + 1)~ L. That is, the
criterion is for

SCV(b) =

(6)

01(h) = 7

GX'X)'C, 1
CiCtr(XX) T N+ 1

d5(h) = ®)

The inequality in (8) is examined in Section 4 for typical economic data
as the procedure for establishing the claim that y, for small & can be estimated
more precisely than f8. The ordering of precision from lower-to higher-order
moments requires consideration of not only that §,(0) < §,(1) < d,(2), etc.,
but that the function J(h) is similiarly ordered, and J,(h) depends upon the
nature of the lag distribution. All we can argue here is that the numerator
of (7) increases quite rapidly with h, and for typically right skewed lag distri-
butions, the declining f; offset the increasing Cj, in the denominator, so for
a large class of lag distribution one would expect §,(h) to be an increasing
function of h. Therefore, we work henceforth with the criterion in (8) to
establish both claims. Note, however, that only the ordering conjecture
depends on d(h). The conjecture that i, can be estimated more precisely
for some I than the f§ vector for typical design matrices in economics depends
only on establishing the inequality in (8).
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3. A Numerical Example Using &, (%) Criterion

To illustrate the criterion, consider quarterly U.S. GNP in current prices,
seasonally adjusted, with T = 60.* We designate the raw data by X/, ; set
N =19, and construct X'X. Let V; be the tenth diagonal element of X'X
and V72X, be the first of three data sets among which some comparisons
are made. Derive X,, = X, — exp{&@ + ft}, where & and J are obtained by
regressing log X, upon ¢. Again, T = 60 and N = 19, and the second data
setexamined is V'3 /% X,,, where V, is obtained in the same way as V,. Third,
let Xy3,=X,,—da— EXZ,,_I, where @, b are obtained by regressing X,
upon X,, ;. In this case T =59 and N =19, and V32X, is the third
data set.

Strength of autocorrelation is successively reduced, moving from the
first through the third sets of data. In the first set the estimated autocorrela-
tion function declines slowly and steadily from 1.0 to .63, up to N = 19,
while the third series has autocorrelations of .25, —.18, .16, —.20, —.12,
—.12,0, —.18,for lags 1,2, . ...

Row 1 of Table 1 confirms the comment that multicollinearity is reduced
in the successive data sets. The standard for 6,(h) mentioned earlier is
107" x .5, and the last three rows show that least squares estimators for
Ho> 11, and pi, would compare favorably with the standard, especially for the
first two data series.®

TABLE 1
DATA SETS
VitiXy, ViY2X,, Vil2X,,
tr(X' X))~ ! 10° x .81 103 x .49 10% x .72
5,(0) 1074 x .18 1072 x .21 1071 x .84
8,(1) 1073 x 45 1072 x 21 107! x .98
3,(2) 1073 x .87 1072x.23 107!x .95

4. Theoretical Arguments Supporting Claims of Precision

To furnish theoretical support for the claims that low-order moments in
lag distributions can be estimated more precisely than short-run effects for
typical economic data we employ some concepts from modern time series

* The time period for the data is from the fourth quarter of 1960 through the third quarter
of 1975.
5 Scaling by V; 12 does not affect 8,(h).
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analysis later in this section. For the reader not familiar with those concepts
we start this section with two examples that can be worked out using time
domain approaches. For the first example we assume that the stochastic
process generating the exogenous variable X, is a first order autoregressive
scheme and that the sample is large. In this case X'X, the critical matrix in
the 6,(h) function of Eq. (8), is proportional to the well known autocorrela-
tion matrix for a first-order autoregressive process. We further restrict the
example by assuming that there are only three short-run effects. f, is the
contemporaneous effect of a unit change in X, on the dependent variable,
B is the first lag effect, and f, is the second lag effect. All higher-order
lags are assumed to have zero coefficients so that the basic underlying
regression is ¥, regressed on X,, X,_,,and X,_,.
Therefore, for a large sample

1 —p 0
X'X)loc| —p 1+4p* —p| ©)
0 —p 1

where oc indicates “proportional to” and p is the autocorrelation coefficient
for the X, process (|p| < 1).
Applying the 6,(k) formula in (8), we have

3+p%—4p 5+ p2—4p 5(2)_17+p2—4p
33 +p?) 53+p%) 7 BT 173+ pY

Table 2 gives values for the d,(h) criterion for the example for h =0, 1, 2
and various values of p. Note in Table 2 that for positive autocorrelation

9,(0) = d5(1) = (10)

TABLE 2

d,(h) CRITERION VALUES
FOR EXAMPLE 1°
AND VARIOUS VALUES OF p

h

P 0 1 2

=75 .61 48 34
—.50 .54 45 35
-.25 44 40 35
0 33 33 33
.25 22 27 31
50 13 .20 .28
75 .05 14 .24

“h=0,1,2.
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in the independent variable, the §,(h) values are less than .33 for all three
moments and are monotonically smaller for larger positive values of p,
thus substantiating the first claim made in Section 2. Note also that for
positive p the zero-order moment is estimated with more precision than the
first-order moment, etc., consistent with our second claim. Thus for positive
p, the parameters puo = o + f1 + B, py = By + 28, and p, = B, + 4,
can each be estimated more precisely than the f vector according to the
inequality criterion (8); moreover, the precision is monotonically decreasing
with h.°
For a second example assume that XX is proportional to

R=(1—-pI+pJ, (11)
where Jis an N + 1 order matrix of ones and 0 < p < 1. The inverse of R is
al + bJ =R}, (12)
where a =1/(1 — p)and b = —p/(1 — p)(1 + Np). For this example,
1—p
= . 13
500 = N+1[1—p+Np] a3

Therefore, 0,(0) is smaller than the standard for zero multicollinearity.
That is autocorrelation in this particular process works in the direction of
improving efficiency of the least squares estimate of the zero-order moment
Ho-

One can also show that for the preceding example

1 1 1
0,(1) = 1+- . 14

(D N+11+Np—p[ +4N”] (14)
For large N the result in (14) indicates that 4, may be estimated about four
times more precisely than individual . Also note that

0,(0)/65(1) = (1 — p)/(1 + &Np), (15)
which can be of order of magnitude less than one, again substantiating in
this case the ordering of the precision from lowest-to next lowest-order

moment.
Similarily to the approximation given in (14) above, we derive

1 1 4
%) = “Np . 16
9:2) N+11+Np—p[1+9Np] (16)

% The joint confidence interval in the y, parameter space translates one to one into a joint
confidence interval in the §; parameter space so that nothing is gained in a total sense by the
transformation. The point was made earlier that the transformation is nonsingular, and therefore
no precision is gained in a total sense. Our criterion is in terms of widths of marginal confidence
intervals on the ss and does not account for correlation among the p, estimators. This explains
why, in the example, all three linear combinations of fs meet the standard in inequality (8).
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Thus for p, for the example, one can expect to beat the standard of zero
multicollinearity by an efficiency factor of slightly larger than two. Also,
the efficiency ordering conjecture is again substantiated by the results in
(14) and (16).

A more general explanation for high efficiency of ordinary least squares
(OLS) estimators of low-order moments of lag distributions can be given
for covariance-stationary processes on the causal variable, using some
concepts from modern time series analysis. In the discussion to follow we
assume that the spectrum of the {X,} process has maximum power at the
origin, displaying the typical shape for most economic time series.” Addi-
tionally, we assume that (1/T)X'X is a consistent estimator of the auto-
covariance matrix I" for any N + 1 contiguous observation space on the
process. The explanation is by way of approximate diagonalization of T

From Fuller (1976) and Wahba (1968), if {X,} is a covariance-stationary
process with an absolutely summable covariance function o(h), there exists
an orthogonal matrix Q independently of o(h), such that

OTQ = A = diag{As, Ay, . ., Ans 1), (17)

where I' is the N + 1 order autocovariance matrix. The matrix Q is defined
here for N even (N + 1 odd). The other case is similar and the argument

is not changed by consideration of the case in which N + 1 is even (see Fuller
(1976)).

r2—1/2 212 2-1/2 . 2-1/2 ¢ -
1 cos 2n cos 2m-2 * CcoS 2n N
N+1 “N+1 N+1.
0 sin 2n sin 2m:2 . sin 2n N
(N + 12129 = , N+1 N+1 ' N+1/| (18
1 cos 4n 0S dm-2 cos 4mN
c
N+1 N+1 N+1
sin Nn i Nrn-2 s1.nNn-N
n
| N+1 N+1 N+ IJ

From Fuller, as N increases, the elements of Q'T'Q converge to the ele-
ments of a diagonal matrix A, and those elements are

o0

o= Y oll)=2nf(0), (19)

h=—o

7 See Granger (1966).
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and

[s0] . . 2 >
Dyy = Agres = a2+ —ope( 29 Ny N oog
d g N+1 2

h=—w

where fis the spectral density function of the process and an approximation
to the characteristic roots of I

To make use of the diagonalization theorem in evaluating the §,(h)
criterion, it is required that QT ~'Q tend to A~L. For invertible moving-
average processes, the inverse of the covariance matrix of the process is
approximately a covariance matrix for the same order autoregressive scheme.
Hence the required convergence is assured for a wide class of processes with
absolutely summable covariance functions. In general, it is required that '™ !
be an autocovariance matrix with absolutely summable rows.?

We shall now evaluate the d,(h) criterion in terms of the I matrix and
its inverse, first for the estimator C(0)b, where C(0) is an N + 1 vector of
unit elements and b is the OLS estimator of the lag coefficients. In terms of
I, and recognizing that the roots of ' * correspond to 4; %, j=1,...,N+1,
we have

. aorico) At
5,0 = (N+Dur-t Y- @D

Thus for stationary processes having maximum power at the origin, the J,
criterion is minimized for C(0) over all other nontrivial linear combinations
of OLS estimators of f, in the approximate sense made clear in the preceding
argument.® Equation (21) also shows that CoB is estimated by OLS with
equal precision to individual coefficients for the case of identically and
independently distributed processes on the independent variable.

For the remaining moments, C,f, note that the matrix Q' is such that
Q'C, displays the coefficients of a Fourier representation of the vector C,
i.e, that

Q'C(h) = ¢(h), h=1,...,N+1, (22)
where

o(h) = [aOh’alh’blh’azh’bZhr e ,azvh/z,bzvh/z],

® We have assumed that the (N + 1)-order matrix T~ }{(X'X) converges in probability to
I"'as T — o0; hence we assume thatas N — oo and T — oo then N/T - 0.

? For some processes the convergence of Q'TQ to Ais not fast (see Gallant & Goebel (1976)),
and the approximation is compounded since we are dealing with a consistent estimator for '~
rather than I itself.
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and the as and bs are the Fourier coefficients associated with the cosine and

sine transforms of the elements of C at frequencies 0,1,2,...,(N/2). Hence
N+1

Gr1c,= y A7t i), (23)
j=1

where the ¢; are the elements of ¢.
Since the approximate roots of I' come in pairs except for the first (see
Eq. (20), Eq. (23) can be written as

CiI ™ Cyx Ay Yagy) + A5 Ml + bhy) + A5 M3, + b3y)
+ v + Aﬁl(a%”,/z + b%];,/z), h = 1:2:' v s (24)

therefore, approximately,

N+1

Salh) = 24345 / ¢ 3 At 25)

Thus the size of J,(h) depends on a weighted average of the inverse of
the spectrum for {X,}, where the weights are the intensities of the Fourier
transforms of the vectors C,. Again, note that for iid. processes on {X,} the
standard is (N + 1)~ %, '

Table 3 shows the periodigrams for the vectors C,, h = 1,2, 3,4, where
N = 25. Note that the weights decline monotonically for higher frequencies

TABLE 3

PERIODOGRAMS FOR C, °

Frequency® C, C, C, C,

0 735 545 429 354
1 162 .288 342 358
2 .041 068 090 113
3 019 .030 042 .053
4 011 .018 025 .031
5 .007 012 017 021
6 .005 .008 .012 .016
7 004 .007 .010 012
8 .004 .005 .008 .010
9 .003 005 007 .009
10 .003 .005 .006 .008
11 .003 .004 .006 .008
12 .003 004 006 007

“h=1,2,3,4;N +1=25,
* Multiple of 27/25.
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except for column 4, and they pile up fairly closely to the origin. Periodograms
for other choices of N + 1 are similar.

Thus for {X,} processes with typical economic spectra, OLS estimators
for the moments p,, h = 0,1,. .., N, can be expected to be best for low-order
lag moments, and on the §, criterion OLS estimators of the early moments
compare favorably with a situation of no multicollinearity.

These theoretical results are consistent with the empirical results given
in Table 1. Note that the OLS estimator for p, is on a stronger footing than
the succeeding early moments. The theoretical results require only that the
spectral density of the {X,} process has maximum power at the origin for
Ho to be better than the OLS estimator of any other linear combination of
the fs.'° For fi;, fi,, etc., all the spectral weights are involved, and there is
a trade-off between the spectral weights and the spikes in the periodograms
for the C, . Also, estimation of the long-run lag effect is a meaningful exercise
even when the fis alternate in sign.

The previous explanation was based on the condition that the auto-
covariance sequence of X, is absolutely summable. However, we expect that
the explanation may be extended beyond this condition. For example, the
autocorrelation sequence 1, p, p,... for lags 0, 1, 2,... is not absolutely
summable. Such a process arises when X, is an aggregate of X,,, and X, has
an error component in the i direction.'! We have evaluated this case as the
second example in this section. In the next section we also take up an example
in which the {X,} process is nonstationary.

5. Other Considerations

Although p,, the long-run effect of a change in the control variable, is of
immediate interest, uy, u,, etc. are of less interest than the normalized lag
parameters, fi,/to, Hy/lg, €tc.. Some theoretical results on the normalized
mean lag are available (Burdick & Wallace, 1976). In that article it is shown
that for large samples the covariance matrix for the least squares estimators is

1 Nj2
Cov{jig, i1} = 26
OV{ﬂo,ﬂl} K,:N/Z (N/2)? + 5:|, (26)
where 6 > 0. Thus, assuming g, /iy > 0,
A K| (N 2 1
V(d, lﬂo) =— ':{— - &} + 5:| <-— V(i) @7
Bo L2 Mo Ho

10 Therefore, even with seasonals showing up as spikes at higher frequencies, one can expect
fig to be a good estimator for most time series data.
1 See Wallace & Hussain (1969).
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where V(') is variance in the limiting distribution. Hence unless p,, is small,
precise estimation of p; implies precise estimation of yu,/u,, at least in an
asymptotic sense. Similar bounds for higher-order normalized moments
have not been discovered.

Most of economic time series used as {X,} in our model (1) have trends,
and a theoretical explanation on nonstationary {X,} is difficult. However,
the importance of the problem would justify consideration on a special
case, namely,

X,=aX,_ y+b+e, a>1, t=1,...,T, (28)
where ¢, is iid with variance ¢2. Following Quenouille (1957, p. 57), we re-
write (28) as

X,=a'X,y,—atb—ate,, t=TT-1, ..,1.

It can then be shown that if T is sufficiently large, [(T — N) ' X'X] ' is
approximately the autocovariance matrix of a noninvertible moving-average
process,
l4a*> —a - - - 0
-2 —a . .
. . . o ,
: ) —a
0 -+ —a 1+d?

except at the (1,1) and (N + 1, N + 1) elements. Ignoring the differences in
the two exceptional elements and taking the Fourier transform, we obtain
the diagonal matrix having 6, %1 — aexp(—i2n(j — )/N + 1)|%, j=1, 2,
3,...,(N/2), which corresponds to the distribution of A; ! (not A;) in Section 4.
The expression |1 — aexp(— iw)|?,n > w > —m, attains a minimum at & = 0.
Hence the theoretical explanation in Section 4 is applicable to this special
case of nonstationarity.

If one were to go directly for lag moments in a new data set with little
or no prior information about the form of the lag distribution, there is a
problem of choosing N, the number of lagged terms to include. If N is too
small, biased estimates are a result, and if N is too large, variances become a
problem. An empirical approach would be to vary N, looking for stability
in the lag moment estimators.

We suggest that one of the uses of form free estimation of lag moments
is that they provide another specification check. In situations for which
ad hoc priors are employed, fitted lag distributions yield definite implica-
tions about the lag weights. Thus, since form free estimators of the low-order
moments can be expected to be precise, some unconstrained regressions may
reveal specification error not otherwise noticeable. In support of this argu-
ment, Table 4 gives unconstrained estimates of the long-run marginal pro-
pensity to consume and mean lag using U.S. quarterly data given by
Griliches et al. (1962), first quarter, 1955, through the second quarter, 1961.

g
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TABLE 4
ESTIMATES OF LAG MOMENTS, U.S. QUARTERLY CONSUMPTION
Funcrion
N Bo 3 /i, p DW F d.f
6 .905 .856 .946 i 2.26 11450 43
(.034)° (.521) (.325)
10 935 1.741 1.861 .6 2.46 590.0 35
(.029) (1.03) (1.20)
14 952 2,639 2.743 4 1.83 648.0 27
(.016) (1.131) (1.375)
18 961 6.231 6.484 3 1.97 1281.0 19
(.009) (.901) (.869)
22 .954 5.160 5.408 4 2.56 664.8 11

(014  (1.657)  (2.938)

“ Figures in parentheses are standard errors.

The reported js are estimates of a first-order autocorrelation coefficient
based on the Hildreth—Lu (1960) procedure, the DW column reports Durbin—
Watson statistics, the d.f. column gives degrees of freedom for the regression,
and F is the overall regression F statistic.

The estimates of long-run marginal propensity are quite stable for N = 10,
but the mean lag estimates take a large jump between N = 14 and N = 18.
The jumpiness may be due to seasonals, although Griliches et al. reported
“deseasonalized” data. There is also the question about stability of param-
eters in the consumption function. However, the data probably represent
a fairly stable period for price level expectations as compared to the late
1960s and early 1970s. Even with this very rough pass at the data, the mo-
ment estimates are interesting when compared to the Zellner—Geisel (1970)
results, which are derived from the same data. Zellner and Geisel used the
Koyck lag with various error assumptions and various estimation pro-
cedures, including strong priors on po. In some cases they got estimates of
the long-run marginal propensity to consume greater than unity, and in all
cases got estimates which implied very short mean lags (as low as 1/3 of a
quarter and no higher than 3 quarters). Also, standard errors for the estimates
in Table 4 compare favorably with those obtained by Zellner and Geisel,
even in cases where they imposed very tight priors on Ho-
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