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UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND

1. Introduction

Economic models are often formulated and estimated in terms of aggre-
gated data. In such cases, it is not difficult to show that the aggregated (or
macro-) variables do not relate to each other in the same manner as their
disaggregated (or micro-) counterparts.' Indeed, if the underlying micro-
relationships are nonlinear, the very existence of macro-relationships which
relate only macro-variables to each other is called into question.2 Never-
theless, economists frequently concern themselves with issues relating to
validation of macro-models, most of which contain nonlinearities.

In this paper we suggest that in many cases it may be reasonable to
assume that the independent variables of micro-econometric models are
stochastic. If so, macro-models relating aggregated dependent variables to
each other and to the aggregated independent variables can be defined in
terms of the moments of the joint distribution of the aggregated dependent
variables conditional upon the aggregated independent variables. There-
fore, it would be reasonable to assume, in this stochastic framework, that
macro-econometric models exist. However, our example in the single
equation case will demonstrate that these macro-models will typically be
very complex unless very restrictive assumptions are made. This raises the

1 See, e.g., Theil (1954) and Akdeniz & Milliken (1975). For related issues see Orcutt, Watts,
& Edwards (1968) and Kelejian (1972).

2 See, e.g., F. Fisher (1969), Zarembka (1968), and Green (1964).
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136 HARRY H. KELEJIAN

possibility that macro-models considered in practice are merely approxi-
mations to these "true" models, and hence the question is raised as to which
approximation may be best for the purpose at hand or for the particular
range of values of the variables involved. This also suggests that the issue
of validation concerning macro-models should focus on the purpose for
which the model is considered, rather than on the correctness of the model
specifications. As we will indicate, these two concerns need not coincide
even in the absence of cost considerations relating to the operation of the
model. However, if one wishes to focus on model specifications in a single
equation or systems framework, our results suggest that the objects of
analysis should be the functional forms of the exogenous variables and the
higher moments of the disturbance terms.

If, in our stochastic framework, one can assume that macro-models
exist, the problem of finding conditions under which they can be disag-
gregated arises. This "inverse" problem is also considered, but only in the
context of a single equation or a reduced form equation model. More
specifically, conditions are given under which a correspondence is one to
one between a micro-equation which is nonlinear in the independent
variables and distrubance terms, but identical for all micro-units, and the
resulting macro-equation. The problem of using macro-data and a given
macro-equation to estimate the implied micro-equation is therefore dis-
cussed, and some results presented.3 However, these results are somewhat
academic in the sense that the conditions of the correspondence are (ex-
pectedly) strong, and consequently, aside from a few cases, it may not be
advisable to infer such micro-behavior in practice. Ironically, our results
on inversion seem to drive a wedge between macro-models and revealed
micro-behavior.

We begin our analysis in terms of single equation models in Section 2.
Specifically, the single equation macro-model is defined in Section 2.1; an
illustration along with certain limiting results is given in Section 2.2; the
inverse problem is defined and results concerning estimation are given in
Section 2.3. Generalizations of the single equation results to the systems
framework are given in Section 3, and conclusions are presented in Section 4.

Although there are similarities, the approach taken here is quite different than that taken
by Houthakker (1955-1956) in his study of the production function. Essentially, under certain
conditions, Houthakker demonstrated that if production within each firm of an industry takes
place according to a fixed coefficients production function, but the coefficients vary from firm
to firm in a regular but nonstochastic way, a macro-production function will exist which relates
total output to total input. Several authors (Levhari, 1968; Sato, 1970) extended Houthakker's
results in a variety of ways. However, their results, as well as Houthakker's, were in a non-
stochastic framework and directly related to aggregation problems associated with production
functions. In addition, they did not consider problems associated with empirical implementation.
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2. Single Equation Models

2.1. Tin FRAMEWORK OF ANALYSIS

In this section we define a single equation micro-regression model for
each of N micro-decision units. The independent variables and the distur-
bance terms are assumed to be stochastic. To keep the presentation as general
as possible, the parameters are also assumed to be stochastic. Interpretations
for the stochastic regressor assumption are given. A rule for aggregation is
then specified, and a macro-function is defined in terms of the conditional
distribution of the aggregated dependent variable given the aggregated
independent variables. Special cases are considered in the following sections.

2.1.1. Basic Specifications

Consider a microeconomic regression model specified as

= K(XJ, A1, U3, i = 1,. . . ,N, t = 1, . . . , T, (1)

where 1 is the value of the dependent variable at time t corresponding to
the ith micro unit, X is a vector of stochastic independent variables at time

corresponding to the ith unit, is a corresponding vector of parameters
which may be random, and U, is, possibly, a vector of disturbance terms.
Taking in general, to be stochastic, we assume that the joint distribution
of X1,. . . ,X,i, U1,. . . , UN,Al,,. . . ,A, and the functions are
such that the dependent variables Y, i = 1,. . ., N, have finite first moments.
The assumption of finite moments is a reasonable one in that most economic
variables have finite range.

Consider the assumption that the independent variables are stochastic.
Aside from seasonal and time trend dummy variables, the researcher will
not generally be able to predict with perfect certainty the future values of
the independent variables in a model such as (1). This will be the case whether
the independent variables relate to essentially noneconomic events, such as
rainfall, temperature, and other environmental characteristics, or to eco-
nomic characteristics associated with the individual decision units. Therefore,
at least in a Bayesian framework, the assumption that the independent
variables are stochastic may be a reasonable one.

A variation on a scenario offered by Lipsey (1960) may also be given as
an interpretation of the stochastic regressor assumption as it relates to the
independent variables describing the economic characteristics of the decision
units. For purposes of illustration, assume that all of the independent
variables in (1) relate to such economic characteristics and that these variables
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are independent of the disturbance terms and of the parameters. Then the
scenario is that, in each period, general economic conditions determine
certain parameters of the joint distribution of the independent variables
(e.g., their means) while the actual values of these variables are in part
determined by events particular to each cross sectional unite.g., informa-
tion discrepancies, attitudinal differences, adjustment costs, and various
random occurrences. As an example, suppose the amount of labor hired by
the ith unit at time t, say L1, is the only such economic variable. Suppose
also that the amount hired depends, in part, upon the real wage rate. Then,
in this scenario, we would be assuming that the economy determines the
wage variable and, in doing so, determines, say, the expected value of L,1.
The actual value of this variable, however, will deviate from its mean, and
this deviation would be assumed to be stochastically distributed.

Returning to our general model (1), assume that observations on X
and )' are not available. Instead, observations are available only on the
aggregates4

N N

xt==>xjf. (2)
i=1

Our problem is to define a meaningful (marco-) relationship between }
and X1.

Let fII(X,AI, UJX1) be the conditional density of X, A1, and U0
given X1 which is implied by the joint distribution of X1,. . , X1, A11,.

AN(, u a,.. , U,.5 Then the macro-function is defined as
N

E(1JX,) EEK(XI,A, U)JX,]
i= 1

N

K(X1, A1, U1)f1(X11, A1, U1 X1) dX11 dAt, d U1
i= 1

N

F11(X1) = F1(Xj, (3)
1

where R1 denotes the corresponding region of integration,

F1(X1)
= 5 K,(X11, A1, U1)f(X11, A1, U1 X1) dXi, dA1 dU1,

It will become apparent that, aside from minor modifications, all of the results in this paper,
except those dealing with the inverse problem in Section 2.3, will hold for the more general
aggregates Y = d11Y,, and X = d21X1. The results in Section 2.3 depend upon the condi-
tion d21 = 1, 1 = 1.....N.

For ease of presentation we will not distinguish between the random variables and the
values they take on.
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and, therefore, F1(X1) is a time function of the elements of x 6 Clearly, a

sufficient condition for the "macro-" function F1(X) to be independent of

t, F(X) = f'(X1), is that the variables involved be stationary. However, an
example below will demonstrate that stationarity is not a necessary con-
dition for this result. The example will also demonstrate that, even under
rather strong assumptions, the macro-function will typically not be

tractable.

2.2. AN ILLUSTRATION

In this section an example is given in which a macro-function is calculated
from the specifications of the micro-model. In terms of the results obtained,
the nature of some of the complications concerning macro-model specifi-

cations is indicated. In addition, a certain limiting case is considered in which

one would expect the macro-function to simplify. It is shown that this case
corresponds to an unconditional expectations approach to macro-model
formulation which has been suggested by Ando (1971) and Goldfeld &
Quandt (1976). This correspondence is shown not to depend upon the par-
ticular example considered.

A mathematically "convenient" form of the micro-model (1) is specified
in Section 2.2.1. The corresponding macro-model is calculated in Section
2.2.2, and the limiting results are derived in Section 2.2.3.

2.2.1. The Model

Consider the following specialization of the micro-model (1)

= a1 + b1X11 + c1 exp(dX11 + i 1,. . . ,N; t = 1,.. . ,T, (4)

where }'ft X, and U11 are as defined in (1), but X and U11 are now assumed
to be scalars, and a1, b1, c1, and d. are nonstochastic parameters whose values
vary with i but not t. Assume that U1 is normally distributed with mean zero,

E(U11) = 0, constant variance, E(U) = o, and cross moments E(U11U5) = 0,

for t s, and/or i j. Assume also that the independent variable X11 is nor-
mally distributed with moments E(X11) = ij, and E [(X11 - )(X1 - ,,)] =
so that a denotes the variance of X11. Finally, assume that X11 is independent
of U, for all i and j.

Let the aggregates Y and X be defined as in (2). Then our assumptions
concerning K11 imply that X1 is normally distributed with mean =

6 Chipman (1975, 1976) has also noted that a macro-relationship can be defined in this way

and that the resulting relationship provides a best approximation to themicro-model in terms

of mean squared errors. For a related study see Zellner (1969).



Let z be normal with mean p, and variance o. Then E(e") = exp(ap, + +a2o)see
Mood, Graybill, & Boes (1974, p. 165).
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and variance o = I'VI, when I' is the 1 x N row vector of unit elements,
I' = (1,1,. . , 1), and V is the variancecovariance matrix of X1,. . .

Letting C. denote the covariance of X and X, it is easily shown that

C
=

(5)

It follows that the conditional distribution of X1 given X is normal with mean

E(X1jX) = + (C1/a)(X -
= B11 + B21X, (6)

where B11 - x(C1/o), and B21 = Cl/O. The conditional variance of
X0 given X1 is

var(X1jX) = o(l 1)21 (7)1 fl

where R = (C?/oa11).

2.2.2. The Macro-Function

We are now in a position to calculate the macro-function. Specifically,
(2), (4), and our assumption that X, and are independent for all I and j
imply that

E(YIX1) = [a1 + b1E(X1IX) + c1E[exp(d1X1)IX]E[exp(U11)]]. (8)

Since U1, is normally distributed, and the conditional distribution of X0
given X is normal, (8) can be evaluated by using (6), (7), and a standard
result in the literature concerning the expectation of an exponential involving
a normal variable.7 Specifically,

N

E(YIXI) = A1 + A2X1 + q exp(K1X)

= (9)

where A1 = )'j[a1 + b1B11], A2 = c'I b1B21, q1 = c1 exp(d,B11 +
+d var(X1, I Xj + o/2), and K. = d1B21. Thus the mean relationship for Y,
is a function of X, and so a macro-function exists. However, it is evident
from (9) that the macro-function will typically not be tractable because the
exact specification will involve a functional form that is "unusual," and there
are more parameters than typically assumed. Indeed, an explicit analytical
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form of the macro-function may not exist for certain distributional and
functional form assumptions concerning the micro-relationship. This sug-
gests that if macro-models are viewed as aggregations of micro-relationships,
they should be viewed as approximations, rather than as exact specifications.

One can argue that in some cases the approximations may be "close",

and so a concern with macro-model validation via its specifications is
appropriate in that gross violations will be detected. Abstracting from issues

relating to cost of operation and model maintenance, the implicit assumption
underlying such an argument is that, in the typical uses to which models
are put, models which are correctly specified will "outperform" models which
are not. This assumption, however, will generally not hold for models such
as those typically considered in practice for at least one of the major model
uses, namely forecasting. As an illustration, suppose the conditional mean
of a dependent variable, ;, given an independent variable, w, is h(w; b),
where b is a parameter, and h(w; b) is a function which is nonlinear in b.8
Then it is easily shown that h(w; b) is the minimum mean squared error
predictor of z based on w. In practice, however, the parameters of a model
are typically assumed not to be known, and so a parameter such as b would
have to be estimated. Let b be any estimator of b. Then, unfortunately, the
predictor which would be suggested by the "true" model, namely h(w; b),
cannot also be assumed to have such optimal forecasting properties. There-
fore, other predictors exist, which correspond to incorrectly specified models
and which have mean squared errors of forecasts which are less than that
corresponding to the model forecast, h(w; ). Indeed, Kelejian & Vavrichek
(1978) give an example in which the mean squared error of forecast based
on a linear approximation to a "true" nonlinear model is less than or equal
to that of the nonlinear model whose parameters have been estimated by a
full information, maximum likelihood technique, for all values of the inde-
pendent variable considered. This result and the results above concerning
the complex nature of the exact specifications of macro-models suggest, at
least for the case of forecasting, that macro-models be validated (or evaluated)
in terms of their purpose rather than in terms of the exactness of their
specifications.

Finally, we point out a similarity between the macro-model (9) and the
micro-model (4). Note from (4) that the mean micro-relationship can be

expressed as

E(YX1) = a, + + r exp(dX), (10)

8 This assumption of nonlinearity is reasonable if one recognizes that many macro-models

are simultaneous equation systems which have reduced forms that are nonlinear in the parame-
ters. In addition to this, many macro-models contain nonlinearities in the endogenous variables,

which serve to compound the difficultiessee, e.g., Goldfeld & Quandt (1972, Chapter 8).



where r1 = c exp(r,/2). From the first line of (9) note that the mean macro-
relationship can be expressed as

E(Y,IX,) =
[A + A2X, + qexp(KX,)], (11)

where A11 and A21 are the ith terms in the summation defining A1 and A2:
A11 = a, + b,B1,, A2 = b1B21. In comparing (10) and (11) we see that the
mean macro-relationship may be interpreted as a sum of mean micro-
relationships which differ only in their parameter values and which are all
evaluated at X,

2.2.3. A Limiting Case

Consider again the micro-model (4), but assume, in addition to our other
assumptions, that a, = a, b, = b, c = c, and d1 = d for all i so that the non-
linear function is identical over the micro-units; in addition, assume that r =
0 for i j, and ij = ii for all i so that X1, and X, are independent for all i
and have the same distribution. Finally, assume that the macro-variables of
interest are the sample averages = Y1/N, X, = X,/Nsee (2).

Under these assumptions it is not difficult to show that, for any i, the
macro-function is

E[IX1] = E[1jX]
= a + bX, + p, exp(dX) G(X,), (12)

where p,, = c exp(d2o(1 - N 1) + /2), and where G9(X,) is defined by
the second line of (12)10 Thus, in this case the macro-function GN(X,)
simplifies and is in the same parametric family as the mean micro-function.

If we now assume that N - cc, it is not difficult to show that Plim X, =
and Plim GN(Xt) = G(i), where

G() = a + bi + c exp(th + d2cr + o/2). (13)

Similarly, it can be shown that

= G(ii). (14)

That is, in this limiting case, the macro-function can be obtained by simply
calculating the unconditional expectation of and then equating the sample
average X, to the corresponding moment .

That is, (11) can be obtained from (10) by replacing a,, b,, r, d, and X,,, by, respectively,
A1,, A2,, q,, K,, and X,, and then summing.

'° For a result which is similar to (12) but which is derived in a different setting and under
different assumptions see Ramsey (1972).
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This result generalizes. For instance, consider again the general model
(1), but assume it is identical for all of the macro-units. Then a retracing of
the steps leading to (14) will demonstrate that the macro-function relating
the sample average to the elements of X can be obtained in terms of the
unconditional expectation if the vectors X., A, and U are identically and
independently distributed over the micro-units, and the number of micro-
units increses beyond limit, N cn. Although their framework was dif-

ferent, this. unconditional expectations approach was taken by Ando (1971)
and then by Goldfeld & Quandt (1976) in their studies of aggregation con-

cerning switching models.
One more point concerning the example in Section 2.2.1 should be noted.

The assumptions we made concerning the joint distribution of X1,. . . , Xt
imply that the conditional distribution of X, given X, has parameters that
depend only on the given value of X, au, and N. Therefore, the result in (12)
that GN(X) does not explicitly involve t holds regardless of our assumptions
concerning the unconditional mean of X, e.g., j could be a time function.

In other words, the macro-function can be stationary in the sense that its
form and parameters do not vary over time even if the micro-independent
variables are nonstationary.

2.3. THE INVERSE PROBLEM

In this section the problem of inferring a mean micro-function corre-
sponding to an assumed macro-function, which may be nonlinear, is defined,
and some results concerning estimation are given. However, as one would
expect for such purposes, the assumptions of the model are strong, and
consequently, one may not wish to "invert" many of the macro-models
considered in practice. Nevertheless, the results of this section suggest that
the issue of inversion concerning nonlinear econometric macro-models is
a meaningful one, and one which could be considered in certain restricted
cases.

The specifications of the model are given in Section 2.3.1; the inverse
problem is formally defined in Section 2.3.2; selected problems concerning
estimation are discussed in Sections 2.3.3 and 2.3.4. Finally, an example
illustrating some of the principles is given in Section 2.3.5.

2.3.1. Basic Specifications

Consider the following variation of the micro-model (1):

= j1 G(X1)H(U1j, i = 1,. . . , N; t = 1,.. . , T, (15)
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where 1, and X (a vector) denote the values at t of the dependent and in-
dependent variables corresponding to the ith micro unit, U , j 1,. . . , K,
are disturbance terms, and G() and H(), j = 1,. . . , K, may, in general,
be nonlinear functions of their respective arguments." As in previous sec-
tions we again assume that data are available only on the macro-variables,
Y1 and X, defined in (2).

Assume that is identically and independently distributed over the
micro-units, that it is independent of X for allj, i, t, and s, and that

E[H(U11)] = ce,. (16)

Also assume that X is identically and independently distributed over the
micro-units and that its distribution is known, including its parameters.
Finally, denote the conditional density of X, given X, which may be non-
stationary, as f(X5 X1).

The assumptions above essentially imply that the micro-units are iden-
tical to each other except for random deviations in the values of the variables
involved. Furthermore, because these random deviations are assumed to be
independent of each other, the behavior of each micro-unit is independent
of that of all the others.'2 Although this framework may not strictly hold for
any of the aggregated models considered by economists, it may be a reason-
able approximation for some relationships for certain subgroups of the
population, e.g., the yield equation for small farmers as a function of their
factor input decisions.

2.3.2. The Problem Defined

The assumptions above imply that the conditional distribution of X0
given X is independent of i. In light of this, the macro-function relating 1
to the elements of X can be expressed for any i as

E(X)
=

E[ Gi(Xit)ciiXt]

= 1R N [ ciGj(Xit)1 f(X X) dX5

= D(X5), (17)

Note that a linear model is a special case of (15).
12 It is interesting to note that the assumption of known parameters concerning the dis-

tribution of X1, is not quite as restrictive as one might first expect. For example, if the form of the
distribution of X is specified (e.g., normality), its parameters can be estimated in terms of a
time series of observations on the macro-variables X, if N is known. If N is not known, the
results can be given parametrically in terms of N. For example, since X1 = X11, the mean
value of each element of X1 will be N times the mean value of the corresponding element of X,,.
A similar conclusion holds with respect to the higher moments.
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where R denotes the region of integration, and D(X) is the mean macro-
function.

Now let

Q(X1) = N (18)

that is, from (15) and (16), Q(X1) is proportional to the mean micro-function,
where the proportionality factor is the number of micro-units, N. Then
from (17) we have

J
= D(X). (19)

The inverse problem is then defined to be the problem of inferring Q(X)
from a knowledge of the conditional distribution, f(X1 X1), and the macro-
function, D(Xj. That is, given the conditional density and the macro-
function, can a function be found whose first moment is D (Xe) for all values
of the elements of X?'3

The elements of X can be viewed as parameters of the conditional density

I
Xe). It then follows from (19) that J(X X) and D,(X) will uniquely

determine Q(X) if J(X X) is complete with respect to the elements of X
For instance, assume that J'(X1 X1) is of the form

f(XIX) cc exp(A1(X, t) + A2(X, t) + XCX11), (20)

where cc denotes proportionality, A1(X, t) and A2(X, t) are known func-
tions of the elements of X and X which may involve t, C is a square matrix
of known constants, and the range of possible values assumed by X does not
involve X.'5 Then if Q1(X) and Q2(X1) satisfy (19), we must have

j?R (Q1(X1) - = 0, (21)

for all X Let Q3(X1) = Q1(X) - Q2(X1J. Then, from (20) and (21), we have

1R [Q3(X1) exp(A1(X,, t))] exp[XCX1] dX = M() = 0, (22)

where = XC, and M(1) is the Laplace transform of the product of the
functions in brackets in (22). Since the transform is unique, M(5) = 0 for
all X implies Q3(X) exp(Aj(X, t)) 0, which in turn implies Q3(X1) 0.

13 As an illustration, if the macro-function is known to be of the constant elasticity of
substitution (CES) form, what must the corresponding micro-function be?

14 For a discussion of completeness sec Kendall & Stuart (1961, pp. 190-195). The following
discussion is an adaptation of their material and is given here because all readers may not be
familiar with the concepts involved.

Clearly, a special case of (20) is the multivariate normal.
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2.3.3. Estimation

If I
X) is complete, Q(X) in (19) is unique and therefore identified.

Computationally, Q(X) can be obtained exactly if it can be specified para-
metrically. If the functional form of Q(X1) is not known, an approximation
to Q(X) can be obtainedi.e., the approximation will be meaningful since
Q(X) is identified.

To see this, suppose, first, that the functional form of Q(X) is known
and contains A parameters denoted by the vector B. To make this dependence
on the vector B explicit, we rewrite Q(X) as Q(X ; B). Now let

H(X;B) 5
(23)

and note that, since f(X X) is assumed to be known, the value of H(X; B)
can, in principle, be calculated for an assumed value of the vector B. Then
from (19) we have, for the true value of the vector B,

IT(X ; B) = D(X). (24)

Suppose now that we have a sample of size T on the elements of X,
t = 1,. . . , T, and we know the macro-function D(X)including its param-
eters. Then, from (24), these observations may be expressed as

J(X, B) = D(X), (25)

where H(X, B) and D(X) are T x 1 vectors whose tth elements are, respec-
tively, H(X ; B) and D(X). It follows from (25) that we may obtain B in
terms of X, t = 1,. . ., T, if rank (ôfl'(X; B)/B) = A. This condition holds,
in general, if f(X, X,) is complete, otherwise the solution to (19) would
not be unique.

2.3.4. An Approximation

The calculations involved in solving (25) may be extensive. Therefore,
consider the problem of estimating a polynomial approximation to Q(X).
For ease of presentation assume that X, is a scalar. Then assume

Q(X) = bXç.
j=o

Substituting (26) into (19) we have

SR
bXLf(X1 I J() dXi, = >i: b

SR X1J(X, I
X) dX

j=Q j=o

=
I bJflft(Xt) = D(X)

j=o
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where

H(X) = SR
Xf(X X) dX1.

It follows from the last two lines of (27) that, given D(X1), the r + 1
parameters, b,j = 0....., r, can be estimated from a time series of observa-
tions on X, t = 1,. . . , T, where T + 1 if fl0(X),. . . , lTIrt(Xt) are linearly
independent. For example, the T observations on X can be expressed as

Hb=D (28)

where H is the T x r + 1 matrix whose t, j element is fl(X), b' = (b0 . br),
and D' = (D1(X1) . D(X.)). Again, if J(X11X1) is complete, one would
expect the rank of H to be r + 1. Thus from (28) we obtain our estimate of
b, b, as

= (H'fl)111'D. (29)

It should be clear from (27) that the results of this polynomial approach
will only be approximate unless the macro-function D(X) is expressible as

D(X)
= jO

bE(X,
I
X) (30)

where E(X1
I
X1) is the conditional mean of XI,that is, unless D(X) is

expressible as a linear combination of the (linearly independent) conditional
moments of X. The similarity of (30) to a polynomial approximation of a
function is evident.

2.3.5. An Example

In order to illustrate in a simple manner some of the concepts in this
section consider a multivariate generalization of our earlier example in
Section 2.2. Specifically, in the micro-model (4) consider the case in which
X is an M x 1 vector, b = b and d, = d, where b and d are 1 x M vectors,
and a = a and c, = c, where a and c are scalers. Assume that X is identically
and independently distributed over the micro-units, with mean vector
EX1 = j, and variancecovariance matrix E(X,, - j)(X - )' = J' for
= 1,.. . , N. Again take X = X. Then the conditional distribution

of X, given X is readily shown to be normal with mean vector E(X I X) =
(1/N)X, and variancecovariance matrix V = T'(1 - 1/N).

Under these conditions, fl(X; B) in (23) would be

ll(X;B) = Yi + y2X + y3 exp((1/N)dX1 + dV,d'), (31)

where y = Na, Y2 = b, y3 = c exp(/2), and where B' would now denote
the 2M + 2 vector (y1,y2,y3,d). In (31) let Z = exp((1/N)dX +dJ<,,d').
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Then the rank condition discussed in reference to (25) will be satisfied
since the tth row of 311(X; B)/aB' would be

an(X; B)/ÔB' = (1, X, Z1, y (0Z/ôd)), (32)

where

Z/ôd = z[(1/N)X + dV].

Now consider the moments of the polynomial approximation to Q(X1)
as discussed in reference to (26) and (27). In particular, suppose the approxi-
mation is

P(X1) = A'IX + XA2XI, (33)

where A2 is symmetric and nonsingular. Then the conditional moments
corresponding to the terms Il(X) in (27) are

E[P(X1)lX] = (1/N)AX1 + (1/N2)XA2X + , (34)

where = Trace (A2V). Clearly, thinking of (34) as a regression model, its
1 + M + +M(M + 1) regressors are linearly independent so that the rank
of fl in (28) would be full.

3. A Systems Generalization

In this section we specify a simultaneous equation model which relates to
the micro decision units. We then define the aggregated endogenous and
exogenous variables, and use the structural equation approach'6 to specify
a simultaneous equation model relating the aggregated variables to each
other. We discuss the implications of our results for model "validation."
Finally, an inverse result is given which relates to reduced form equations.

The models are specified and their interpretations are given in Section 3.1.
The inverse result is given in Section 3.2.

3.1. AGGREGATION

Consider the following M equation micro-system

F1(}c1,X) = U, i = 1,. . . ,N, t = 1,. . . , T. (35)

where 1 is the M x 1 vector of endogenous variables at time t corresponding
to the ith micro-unit, X, is the corresponding L x 1 vector of stochastic

16 A nice presentation of this approach is given by Goldberger (1964, pp. 383-387).
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exogenous variables, U is the M x 1 vector of disturbance terms, and F1
is an M x 1 vector of, possibly, nonlinear functions in the elements of l'
and X. In order to avoid unnecessary complications, assume that the joint
distribution of X and U is stationary.

As before, define the aggregated variables as the unweighted sums

N N

xt=xit. (36)
i1 j=1

Then the conditional density of iç given X, say f1( } Xj, is determined by
the equations of(35) and the joint distribution of the vectors X1,. . . , X,,t,
U11,. . . , Taking the structural equation approach to model formula-
tion and assuming (very reasonably) finite moments, we have

E[B1Y + B2GX] SR, (B1}ç + B2G)f1(YjX)dY = H(X), (37)

where R1 denotes the region of integration, B1 and B2 are, respectively,
M x M and M x M1 matrices of parameters, G = G(Y,X) is an M1 x 1
vector of nonlinear functions of the elements of } which may also contain
X, and H(X) is an M x 1 vector of functions of the elements of X1. In
this approach the structure of the matrices, B1 and B2, in terms of zero and
nonzero elements, and the element functions of G would be taken in a
manner suggested by economic theory. However, subject to the finite
moment assumption, the result in (37) holds for every set of assumed inter-
relationships as described by B1, B2, and G.

Equation (37) imples that a macro-model may be specified as

B1Y + B2G, = H(X) + qi, (38)

where E(1P X) = 0. The model in (38) is a typical one with two exceptions.
The first is that the elements of H(X) will generally not be linear in X,nor will
they be functions whose coefficients are known since these coefficients will,
in part, depend upon B1, B2, and the moments of the joint distribution of
U,,. . . , UNt. Second, assuming they are finite, the second and higher
conditional moments of the macro-disturbance vector 'P given X will
generally involve X. Therefore, will not in general be homoscedastic.

The implications of these results for model "validation" are straight
forward. In practice the joint specification of the economic interrelationships
as described by B1, B2, and G, need not be consistent with the specification
of the exogenous vector of variables, nor with the assumed higher moments
of the disturbance vector, 'Ps. Therefore, questions of model specification
should relate to the functional forms of the exogenous variables, and to the
higher moments of the disturbance vector conditional upon the assumed
specifications of B1, B2, and G1. In our framework problems concerning
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the mutual consistency of the assumed specifications of B1, B2, and G do
not arise.17 The reason for this is that, subject to the finite moments assump-
tion, there exists a macro-model corresponding to every joint specification
of B1, B2, and G.

3.2. AN INVERSE RESULT

Assume that the micro-system in (35) does not explicitly involve i and
that X and U are independent for all i and j, and both are identically and
independently distributed over the micro-units. Assume also that (35)
uniquely defines 1 in terms of X, and U for all relevant values of the vari-
ables involved. Express this dependence as } = Z(XI, where Z(X1, U)
is an M x 1 vector of functions of X and U. Then the conditional means
of the elements of } with respect to X, is given by the vector E( I X) =
K1(X15), where

K1(X5) = Z(X1, U11)f2(U)dU1, (39)

where f2 represents the joint density of U1, and R2 denotes the region of
integration.

Consider, now, the problem of inferring K1(X) from an assumed
knowledge of the macro-system in (38). Specifically, suppose the macro-
system in (38) is known, including the distribution of the disturbance terms.
Then, assuming that the parameters are also known (or have been consistently
estimated), the macro-model could, in principle, be used to determine the
"macro-" conditional mean vector, E(}X5) = K2(X5), where K2(X1) is an
M x 1 vector of functions of X, 18 Then, from (36) and (39), we have

K2(X) = E[Z(X1, U1)IX]
i= 1

=
L3 SR2 Z(X5, U)f2 ( U)f3 (Xi, I X,) d U dX

= N 5 K 1(X)f3(X1 X) dX1, (40)

17 Variations on this scheme are possible but not recommended. As an example, one could
focus questions of specifications on the matrix conditional on assumed specifications of B2,
G,, the exogenous variables, and the disturbance terms. However, in practice this formulation
would imply, among other things, that the researcher is willing to commit himself to the func-
tional form specifications of the exogenous variables but not to the economic interrelationships
involving the endogenous variables.

18 One method for doing this would be stochastic simulationsee Howrey & Kelejian
(1970); another method would be the one suggested by Kelejian & Madan (1977).
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where f3(X1 X) is the conditional density of given X, and R3 is the
corresponding region of integration. Clearly, our discussion in Section 2.3
implies that K1(X1) is identified if this conditional density is complete and
its parameters along with N are known.

4. Conclusions

We have argued that the issue with macro-econometric models is not
their existence, but their complexity and their uniqueness. Therefore, we
have suggested that researchers accept the approximate nature of their
models, and evaluate them in terms of their usefulness. In this respect we
have indicated that the usefulness of a model need not relate to the exactness
of its specifications. However, if attention is to focus on model specifications,
our results suggest that the object of analysis shouldbe the functional forms
of the exogenous variables and the higher moments of the disturbance terms.

We have also shown that under certain conditions it is possible to infer
a nonlinear micro-function from macro-data and the corresponding macro-
function. However, the conditions are strong, and so we suggested that in
a majority of cases such inferences should not be made. As a corollary we
suggest that hypotheses which relate to microeconomic behavior may be
of limited value for purposes of macro-model specification. However, to
end on a positive note, we recall that the usefulness of a macro-model need
not relate to the exactness of its specifications.
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