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This paper discusses an approach to evaluating a broader class of pre-
dictions than traditionally has been considered in econometric analysis.1
Although a rich variety of predictions may be derived from economic theory,
econometric models are generally restricted to point predictions specifying a
single value of a dependent variable for each observation. However, the event
predicted by economic theory is not always unique. For example, any of a
set of outcomes typically is consistent with the prediction that the result of

For a general treatment of the methods discussed in this paper when all variables are
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bilateral bargaining will be Pareto optimal, that the outcome of a cooperative
game will belong to the core, or that the vector of strategies chosen by the
players of a noncooperative game will be in equilibrium.

Methods are described in this paper for evaluating models which predict
that each observation's value on the dependent variable belongs to a specified
set. Clearly, as the predicted set increases in size from a single point, the
prediction becomes increasingly imprecise. Since imprecise predictions are
more easily correct, the precision of a set prediction should be considered in
addition to its error rate in evaluating the model's performance. This is
accomplished by providing measures of both prediction precision and
success.

These methods can be extended to deal with models that generate actu-
arial or probabilistic predictions about each observation's value on the
dependent variable. Thus extended, this approach can be used to interpret
the coefficient of determination r2, thereby placing the evaluation of standard
regression models within a more general framework.

The argument in this paper begins with some general concepts about
prediction then presents specific methods for statistical analysis of data to
evaluate a prediction's performance. In Section 1 some alternative styles of
prediction are identified to distinguish: propositions that make an event
prediction for each observation versus those that do not, a priori versus
ex post predictions, absolute versus actuarial predictions, and point versus
set predictions. In Section 2 methods are developed for evaluating the pre-
cision and accuracy of absolute predictions that each observation belongs to
some specified set of states of the dependent variable. We apply the methods
to a linear prediction with squared error. In Section 3 the methods are elab-
orated to deal with actuarial predictions and to interpret within this
context. Section 4 covers the evaluation of both the overall performance of
multivariate predictions based on several independent variables and the
contribution of each predictor in the model. In Section 5 statistical methods
are presented for making inferences from sample data. Finally, Section 6
suggests some directions for further development.

1. Forms of Prediction

1.1. EVENT PREDICTION

This paper is devoted entirely to event predictions. A proposition is an
event prediction if it specifies, for each observation, one or more values on the
dependent variable. The error committed by such a proposition can be
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assessed for each observation, one at a time, by comparing the predicted and
observed values for the dependent variable. For example, a linear equation
for which the values of all coefficients are specified represents an event
prediction. However, the proposition that a set of regression coefficients will
be positive is not an event prediction for each observation.

This paper discusses an approach to stating and evaluating the perfor-
mance of event predictions about a dependent variable based on a set of
independent variables. Variables may be qualitative or quantitative. The
latter may be discrete or continuous. The approach is applied here when all
(qualitative or quantitative) variables in the prediction are discrete. The con-
tinuous analogies generally follow by replacing probabilities with probability
densities and summations with integrals. For bivariate propositions relating
discrete variables, we will represent the dependent variable by an exhaustive
set of R mutually exclusive states: Y = {yi,. . . ,y1,. . . ,YR}. The independent
variable has C states and is represented as X = {x1,. . . ,xj,. . . , X}. When
the variables are continuous, we omit subscripts on the variable states: for
example, Y = {y yER1}. When the meaning is clear, we also omit subscripts
for discrete variable states. Multivariate propositions can be translated into
bivariate equivalents by forming Cartesian products. For example, two in-
dependent variables, say X and W, can be transformed into a single composite
variable, V = X x W, with typical state v, = (xi, Wk). When a proposition
pertains to several dependent variables, it can be evaluated with respect to
its success in predicting each of the variables, and also for its overall success
in predicting the composite dependent variable formed by the Cartesian
product set. Initially, we focus on bivariate propositions that predict Y from
X. Although either of these variables might be a composite, we do not focus
explicitly on multivariate prediction until Section 4.

1.2. A PRlORI VERSUS EX POST PREDICTION

The usual regression prediction is ex post, since the coefficients are
estimated from the data being analyzed. On the other hand, a linear model
such as "predicted y = 4.2 + .6x" is a priori for the data to be analyzed if all
coefficient values are specified by theory or prior estimation from an earlier
data set. In general, an event prediction is a priori for a data set if it can be
applied to predict Y for each observation in the set before the conditional
and unconditional distributions on V are known. In ex post prediction,
information about the observed distributions on V must be supplied before
the specific event prediction is selected or applied. Frequently, of course, a
prediction is selected ex post from one data set then applied as an a priori
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prediction in a replication study. The methods discussed in this paper can be
used to evaluate both a priori and ex post event predictions. Nonetheless,
we give primary attention to evaluating event predictions stated a priori.

1.3. ABSOLUTE VERSUS ACTUARIAL PREDICTION

Many predictions are stated in absolute (or deterministic) terms. In abso-
lute prediction, any particular value for the independent variable always
yields the same predicted value(s) for the dependent variable. Absolute pre-
dictions may be stated in the form, "If this, then always predict that." Actu-
arial propositions are stated in probabilistic terms, such as, "If this, then that
with probability .6." Section 2 defines methods for evaluating absolute
predictions. In Section 3 these methods are extended for the evaluation of
actuarial predictions, and this extension provides a basis for interpreting the
coefficient of determination.

1.4. POINT VERSUS SET PREDICTION

Most current methods for evaluating event predictions at least tacitly
rest on an assumption that a single value of the dependent variable must be
predicted for any given value of the independent variable(s). In contrast, we
treat set predictions as admissible. A set prediction states that the dependent
variable value of each observation having a particular value of the predictor
variable(s) belongs to some specified set.

Set predictions play a central role in economics. For one example, the
prediction that the outcome will be Pareto optimal typically is a set pre-
diction. In addition, applications of the theory of games in economics
naturally lead to set predictions. The solutions based on game theory typi-
cally are sets, not points. Perhaps the two most central game-theoretic
solution concepts are the Nash equilibrium of a noncooperative game and
the core of a cooperative game. The solutions based on these concepts need
not be unique. In economic applications of the core, for example, nonunique
solutions have been obtained from game-theoretic analyses of peak load
pricing (Sorenson, Tschirhart, & Whinston, 1976), setting aircraft landing
fees (Littlechild & Thompson, 1977), determining premium rates for automo-
bile insurance (Borch, 1962-1963), dividing profits among companies
forming a business merger (Mossin, 1968), allocating investment and operat-
ing costs among states cooperating within a region to develop and distribute
electricity (Gately, 1974), and apportioning gains achieved by countries
through a common market (Segal, 1970). Thus set predictions derive quite
naturally from formal theory of economic behavior. Typically, strong as-
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sumptions need to be added, thereby restricting the domain of analysis,
before the predicted set can be narrowed to a single point.

Introducing set predictions thus broadens the domain but also creates
problems for evaluating a model's performance. It no longer suffices to
measure only the error rate observed for the model because a set prediction
may be so imprecise that it is guaranteed to have low error. In the limit, the
tautological "prediction" which always predicts the entire set of Y values
must be error free and thus has no scientific value for predicting behavior.

2. Evaluating Absolute Predictions

This section presents methods for taking both prediction precision and
error into account in evaluating the success of an absolute set prediction.
To distinguish issues in the evaluation of prediction success from those of
statistical inference, we assume until Section 5 that the data to be analyzed
constitute the entire population or, at least, a sufficiently large random sample
that questions of statistical inference may be ignored.

2.1. PREDICTION LOGIC

The first task is to present a formal language for stating absolute set
predictions in a way that reveals their basic structure. In the bivariate context,
any such prediction, , may be written in the form

: x1 .9'(x1),. . . . . , &x-">9'(x), (2.1)

where each .9°(x) is a ("success") set of Y-states, and the symbol ">" may be
read "tends to be sufficient for" or "predicts." Thus the prediction includes
a set prediction about Y for each state of the independent variable.
Equivalently, any such prediction identifies the set of error events

= yx e X, y .9'(x)}. (2.2)

We require that 0.
For example, the approach discussed in this paper has been applied in a

number of cross-national tests of the monetarists' impulse theory about the
effect of the money supply on inflation rates (Dutton, 1978; Fourcans, 1978;
Korteweg, 1978). Korteweg has provided us with the cross classification
shown in Table 1 of 24 annual observations for the Netherlands. (While these
observations are treated here as population data, statistical tests and con-
fidence intervals can be found in Hildebrand, Laing, & Rosenthal 1977a,
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(A) Major Diagonal Prediction,

Change in money supply

3 0

Change

in

consumer

prices

TABLE 1

INFLATION AND THE MONEY SUPPLY IN THE NETHERLANoS"'

(B) Asymmetric Prediction, 4
Change in money supply

+ 0 -

Change

in

consumer

prices

0

"Error cells (shaded) for two propositions.
Actual numbers of cases shown for annual data provided by Pieter Korteweg.

pp.210-211.) Both the money supply variable (the predictor) and the inflation
variable (the criterion) are categorized as increase (+), little or no change (0),
and decrease ().

Korteweg has treated monetarist theory as predicting that the data lie on
the main diagonal. That is,

: ++,0*O,&--.
An alternative, but less precise, theory might specify that the change in

the money supply determines only a lower bound for a change in the inflation
rate. Thus, for example, when the money supply was unchanged (0), prices
would either remain unchanged (0) or increase (+). In "prediction logic"
notation, this asymmetric prediction can be written as

d: + +,0-(0or +),& - (,0,or +).
This rule involves set prediction; for instance, the 0 change in money supply
predicts only (0 or +), that is, no decrease in price.

Korteweg's data illustrate the importance of considering prediction pre-
cision as well as error. Note that proposition d for the Korteweg data is more
accurate than proposition , in the sense that d makes only four errors
while makes seven. Yet d is also clearly a less precise prediction than
in that the error set of d is just a proper subset of 's error set. The remaining
tasks of this section are, first, to provide numerical measures of accuracy,

11 2 0

Eo=- 5

=3=1

11 2 0

5

+

0
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precision, and overall prediction success and, second, to discuss the trade-off
between prediction success and precision that arises in the comparative
evaluation of alternative set predictions.

2.2. EVALUATING PREDICTION SUCCESS

We now consider the analysis of cross-classified data to evaluate predic-
tions such as those posed in Table 1. Borrowing the notation of continuous
variables to simplify the notation for discrete variable states, let f(x, y) denote
the joint probability in the cross classification or contingency table that both
X x and Y = y. (Recall that we are ignoring sampling considerations until
Section 5.) The marginal or unconditional probabilities of x and y are f(x)

and f( y). We shall represent conditional probabilities by expressions such as
f(y x).

To conduct numerical analysis, the investigator must specify the error
weights

w(x,y)>O if (x,y)e,
w(x,y)=O if

Unweighted errors, where w(x, y) = 1 for all (x, y) E , are often a natural
choice for categorical variables, but weighted errors (such as the square of
the difference between actual y and predicted y) frequently are appropriate
for quantitative variables.

We now motivate measures of accuracy, K, and precision, LLj as
(weighted) error rates from two different prediction tasks. In the first task,
one simply applies the prediction when the X-state is given for each
observation drawn at random from the population (with replacement). For
each observation drawn having X = x, the prediction is .9'(x). The expected
error rate when X is known equals

K = w(x, y)f(x)f(yx) = co(x, y)f(x, y). (2.4)

xy xy

Note that in this first task, the prediction °(x) is used for an expected fraction
f(x) of the predictions.

The second task provides a benchmark by replicating the same predic-
tions but without knowledge of the X-state. We continue to draw observa-
tions at random. However, for each observation drawn (with unknown
X-state), we instead select each prediction 9°(x) with probability f(x). Since
we predict each 9°(x) with the same probability in the two tasks, the pre-
dictions in the two tasks are equally precise. The only difference is whether
or not the X value is known when the prediction about Y is made. Since in

(2.3)
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the second task observations are drawn randomly from the entire distribu-
tion, error probabilities are governed by the unconditional rather than
conditional Y distribution. Therefore, the weighted error rate expected when
X is unknown equals

U, = w(x, y)f(x)f(y). (2.5)

Statistical independence is sufficient (but not necessary) for U = K. Under
statistical independence, since there is no gain from knowing X-states, the
prediction has no more accuracy than its benchmark. We interpret U as a
measure of precision. With unweighted errors, if >j co(x, y)f(y) is large,
.'(x) is precise in that a success would be rare if ."(x) were applied to an
observation drawn at random from the entire population. The benchmark U
in turn is just a weighted average of the precision of each component pre-
diction 9°(x).

The Korteweg example can be used to contrast K and U. From Table
1(B) we see that for d the prediction "+" will be made with probability

in both the K and U tasks. For this prediction the error probabilities are
- under K but ( + ) = j- under U. Similarly, the prediction is "+ or 0"
with probability ; the corresponding K and U error probabilities are
and , respectively. Finally, with probability ,the prediction is the vacuous
"+, 0, or -" and no error is possible. Combining the above for prediction
d, we find

17 (14\(3\ /8 \/1\ g- - i7- 24ft14) T 4fl) 1 V - .IVF,
TT (14\(11\ i8 \/ 5

- 24)IJ4) -1- + -
As argued at the outset of this section, the success of a prediction involves

not only the actual error rate or accuracy but also the precision. A prediction
with actual error rate K = .01 against a benchmark figure of U = .80 is
highly successful; a prediction with actual error rate .01 against a benchmark
figure of .01 is highly unsuccessful. Our measure of prediction success is thus
the proportionate reduction in error

= (Ug, - K)/Up, 1 - (Kgi,/Up,). (2.6)

In general, V, is undefined if U, = 0. Otherwise, - cij <V 1. If
= 1, then there is no error when .g is applied given each observation's

X-state. If V = 0, then the prediction is in error with the same probability
under the two information conditions. Any value of V> 0 represents a
proportionate reduction in error. For the data shown in Table 1(A), Vd =
(.337 - . 167)/.337 = + .505. Thus the asymmetric prediction d achieves a
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50.5% reduction of the error expected for the prediction under statistical
independence. If V < 0, then use of X information actually leads to more
error for the prediction than had it been applied randomly without that
information, and lvi indicates the proportionate increase in error. Negative
values of V result from an unfortunate choice of a prediction specified a priori.

2.3. DECOMPOSITION OF PREDICTION SUCCESS
AND COMPARATIVE EVALUATION OF ALTERNATIVE PREDICTIONS

One useful property of V, is that it can be expressed as a weighted average
of V-measures for components of the prediction . This property can be used
in evaluating the micro-level support for the prediction and for the compara-
tive analysis of this prediction with an alternative. Consider, first, the elemen-
tary proposition that identifies only (x, y) as an error event (and recall that,
for now, we are dealing only with discrete variables). Then the measure for
this elementary proposition may be written

= 1 - [f(x, y)/f(x)f(y)].

Similarly, given the error weights specified for the component prediction,
x > .9°(x), we can compute

= 1 - = 1 - w(x, y)f(x, y)/, w(x, y)f(x)f(y).

If, for any component, U = 0 so that V is undefined, set UV (= U - K) equal
to zero. Then it follows that V can be expressed as a weighted average of
V-measures for component predictions (or for any partition of the predic-
tion's error set), where the weight given each component V in this weighted
average is the fraction of the overall precision, U, contributed by the
component.

oi(x, y)f(x)f(y) U,(X)'7
(2.7)Vy =

x y Ugp x Up

To illustrate, for the asymmetric prediction d and the data of Table 1(B),
= 1 - .125/.267 = .532, V91(0) = 1 - .042/.069 = .400, U, = Ud(+) +

Ud(o) = .337;henceby(2.7),V = [Ud(+)/Ud]V(+) + [Ud(o)/Ud]V..(o) -
(.794)(.532) + (.206)(.400) = .505.

The weighted average expression (2.7) also can be used in the comparative
evaluation of two alternative predictions, and .', with associated error
weights, {co(x, y)} and {w'(x, y)}. The alternative .1' assigns greater error
weight for the set of events = {(x, y)lw'(x, y)> w(x, y)}, and assigns less
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weight for the set of events - defined analogously. Let Aw, = w'(x, y) -
co(x, y). Then define the measures

= 1 y)

+ Aco f(x)f( y)

V - 1 \wf(x, y)- -
and let U + and U - denote the respective denominators in these expressions.
Note that U' = U + U - U_. Then the success of the alternative prop-
osition .' with weights {w'(x, y)} can be expressed as a weighted average of
the success of the prediction and correction terms that account for dif-
ferences in the two sets of error weights:

v. = v
+

v - v. (2.8)

For example, suppose we consider changing from the asymmetric prediction
d to the alternative main diagonal prediction for the data shown in
Table 1. Then, prediction adds the set of cells (g) above the main diagonal
to the error events. Note that g; therefore, & is empty. Then by
(2.8), the success of proposition may be expressed as the weighted average

= (U/U)V + (U/U)V± = (.337/.583).505 + (.247/.583).493 = .500.
Note that, by adding the cells above the diagonal (d!+) to the error set,
proposition makes a substantial increase in precision over that of proposi-
tion d. Moreover, this increase in precision is purchased with only a small
decrement to overall success (via V +), since the value of Va does not differ
much from Vd. This seems to be a rather small price to pay for the resulting
increase in precision. It is not always so easy to decide about such trade-offs.

2.4. TRADE-OFFS BETWEEN SUCCESS AND P1cCIsIoN

More than one criterion should be considered in selecting one prediction
over another. Clearly, parsimony and theoretical relevance are important
bases for these decisions. In the following discussion we focus on two of the
important dimensions for evaluating propositions: prediction success and
precision. Other things being equal, there is no difficulty in choosing one
proposition over an alternative if the first dominates the second, in that it has
higher values for both U and V. Typically, however, success can be increased
by decreasing precision, and trade-offs between these two dimensions of
prediction performance must be considered.

Although the primary focus in this paper is on the evaluation of predic-
tions stated a priori, the trade-off issue can be illustrated by considering the
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ex post selection of a prediction. Assume the entire population is given
(we will not consider ex post selection from samples in this paper). One might
seek to maximize V, subject to a minimum constraint on U, or vice versa,
reversing the roles of ma4mand and constraint. Suppose that each of the
2RC - 1 alternative (and nonempty) error sets for an R x C table is eligible
for consideration. Then, as suggested by Eq. (2.7) expressing V as a weighted
average of Vs, the maximization procedure basically involves

ranking cells in order of V values, and
constructing the error set, iteratively, by forming the union of events

already included and that remaining cell (x, y) for which is the greatest,
until the constraint is satisfied.

Alternatively, one can maximize total reduction in error, UV = U - K, sub-
ject to a constraint that, for every cell admitted to the error set, V does not
fall below a specified value.2

However the investigator chooses to make it, the V versus U trade-off
appears central whenever set predictions are analyzed. For example, by
choosing to maximize UV, one has decided to accept the trade-off between
U and V that equally weights in U and ln V. Of course, caveats that lead
econometricians to consider other criteria in addition to least squares in
evaluating linear models can also apply here, even with full population data.
If we looked at quantitative measures of inflation and money supply rather
than Korteweg's trichotimizations, we would, for a finite population, find
a perfectly or nearly perfectly fitting polynomial. Both V and U would be
high, but the prediction rules might have little theoretical appeal. Conse-
quently, ex post selection will be influenced by a variety of considerations
as well as V and U values.

Although we acknowledge that model selection is a multifaceted problem,
we have emphasized V and U because they provide a direct means for
comparing the prediction success of models of widely different structure.
Elsewhere (Hildebrand, Laing, & Rosenthal 1977a,b) we demonstrate equiva-
lences that allow V and U to be used for comparative analysis of predictions,
whether they concern single observations or paired comparisons of observa-
tions, or are expressed as actuarial or absolute predictions. As a result, many
of the well-known proportionate-reduction-in-error measures for nominal
and ordinal variables are readily interpretable as V-measures. In this paper
we develop similar equivalences for the correlation ratio and r2, the two
standard proportionate-reduction-in-error measures for interval variables.

2 For details on the maximization procedures and equivalences among certain results,
modifications of these procedures when theoretical or other considerations can be applied to
reduce the set of eligible alternatives, and ex post selection from samples, see Hildebrand,
Laing, & Rosenthal (1977a, pp. 132-145 and Chap. 6).
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Traditionally, the correlation ratio and r2 have been interpreted in terms
of pure strategy predictions with associated error weights equal to the
squared difference between predicted and actual Y values. In the remainder
of this section, we develop a measure for these pure strategy predictions with
squared error, and show that these measures differ from the correlation ratio
and r2. The V-equivalents of these measures are based on the mixed strategy
approach of Section 3.

2.5. THE CORRELATION RATIO AND A PURE STRATEGY
PREDICTION BASED ON CONDITIONAL MEANS

The conventional interpretation of the correlation ratio is based on
ex post, pure strategy predictions. First, given X = x, one predicts the condi-
tional mean, YIx = E(y Ix). Second, when Xis unknown, one always predicts
the unconditional mean, = E(y). These ex post point predictions minimize
the total (sum of squared) error under the corresponding information condi-
tions: K,,2 = Ex[Var(YIX)] and Uq2 = Var(Y). Then, the proportionate-
reduction-in-error expression, 1 - (K/U), yields the correlation ratio

2 - 1 Ex[Var(YIX)]
- Var(Y)

Thus the conventional interpretation is based on the ex post, pure strategy
prediction .t = {.t(x): x when X is known. We could follow the
same approach used earlier in this paper for pure strategy predictions by
applying each component prediction, A'(x), and the associated set of error
weights {(y - t1x)2} with probabilityf(x) under both of the two information
conditions. Note that this differs from the development of in the preceding
paragraph. In particular, when X is unknown, the conventional approach is
to predict j; in contrast, we randomly select each prediction UYIX with
probability f(x) so that this prediction is applied with equal probability in
the two information conditions. In the appendix (Al) we show that the
expected (squared) error when A' is applied under each of the two informa-
tion conditions is

(y - iiyi,c)2f(x)f(ylx) = Ex[Var(Y IX)]
x y

= (y - /2yi)2f(x)f(y) = Var(Y) + E(iy1 -
x y

Therefore,

Ex[Var( ' IX)]- 1
Var(Y) + ExlUyi -

(2.9)

(2.10)

As a consequence of differences in the predictions when X is unknown, Vs,, is
not equivalent to ,j2: either Vf( ,2 = 0 or 1, or U((> U,,2 and V> ,2
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2.6. BIVARIATE LINEAR PREDICTION WITH SQUARED ERROR

The prediction analysis framework may be applied to evaluate a linear
prediction as a pure strategy with squared error. Consider the bivariate linear
prediction .' = x y + 5x} with associated error weights w(x, y)} =
{(y - - x)2}. We write y + x rather than the familiar + fix to empha-
size that the linear prediction may be selected either a priori or ex post; the
parameters y and are not required to be functions of the joint distribution.
Following the same approach as before, the prediction y + ox is applied
with probability f(x) under each of the two information conditions. In the
X-known condition, given X = x, the prediction is y + Ox, and so the value
y and associated error (y - y - Ox)2 occur with proba bilityf(y x). Therefore,
the total squared error expected when X is known equals

K2 = - y - Ox)2f(yjx)f(x).

When X is unknown, the prediction y + Ox is randomly chosen with prob-
ability f(x), and the value y and associated error (y - y - Ox)2 occur with
probability f(y). Consequently,

U2 = - y - Ox)2f(y)f(x).
x y

In the appendix (A.2) we show that

v - 1 K,
- 1 Ex[Var(YIX)] + E(y + Ox - YIx)2 211)2 - U2 - Var(Y) + E(y + Ox

(

Thus K2 is the average conditional variance (i.e., the average squared error
when predicting that Y will be at its conditional mean, tYX) plus the average
squared deviation of the selected prediction from the conditional mean.
The first term in K2 as given by (2.11) is the minimum squared error possible
for any point prediction (linear or otherwise) in this distribution. The second
term in K3, of course, is zero if the linear prediction always chooses the
conditional mean. Analogously, the X-unknown error given by (2.11) equals
the squared error for the prediction that Y = , plus the' average squared
deviation of the prediction from Thus the value of U2 is large if the
Y variance is large or if the prediction y + Ox tends to deviate substantially
from the mean of Y.

The resulting value of V2 is determined not only by the extent to which
the actual relation is linear, but also by what coefficients were chosen for
for linear prediction y + Ox, In the appendix (A.2) we show that

> . . >
V2 0 if correlation(y + Ox, 'yIx) 0. (2.12)

Thus the sign of V2 depends on the sign of the correlation between the linear
prediction y + Ox with the optimal point prediction
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The least squares regression model * = {x + flx} minimizes K2.
If the distribution is, indeed, linear, so that + fix = for all x c X, then
the second term in the numerator of (2.11) is zero and

V 1 Ex[E(ycflx)2x]
2* - Var(Y) + E(c + fix -

whereas the correlation ratio reduces to

r2 - 1 E[E(y - - fix)2 Ix]- Var(Y)

Note that these two measures differ only in their denominators. The denomi-
nator of r2 is a constant for a given distribution, so that the best fitting model
maximizes r2 by minimizing K2. On the other hand, the denominator of
(2.11) depends on what linear model is chosen.

In general, V2 = r2 = 0 if the regression line has zero slope; otherwise,
V2> r2. Thus r2 cannot be interpreted as a V-measure for the least-squares,
pure strategy (absolute), linear prediction

In this section we have developed a model for generating measures for
pure strategy event predictions. One advantage of this model is that it permits
direct comparisons of a wide variety of alternative predictions about the
same data. In the conventional interpretation, the correlation ratio and r2
are based on (ex post) pure strategy predictions. The V-measures developed
above can be used in comparative evaluations of these ex post predictions
with other predictions within the same basic framework. However, the
V-measure for the corresponding pure strategy prediction does not equal the
correlation ratio or r2, and thus cannot be used to interpret these measures.

This gap is bridged in the next section. We extend the method to actuarial
predictions and show that the correlation ratio and r2 can each be inter-
preted as a V-measure for an ex post actuarial proposition. Also, we identify
an equivalence that permits comparisons within the same framework of
actuarial propositions with absolute predictions. Consequently, the V-
measure provides a basis for comparing an ordinary least squares model
with a large variety of alternatives, including other actuarial propositions
and models based on set predictions.

3. Evaluating Actuarial Predictions: An Interpretation
of the Correlation Ratio and r2

Prediction analysis methods can be extended to actuarial propositions
that is, propositions that assign probabilities to various states of the depen-
dent variable. In this section we discuss alternative ways of applying actuarial
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propositions, show how to evaluate event predictions based on a "mixed
strategy" application of actuarial propositions, identify an equivalence
between mixed strategy predictions and absolute event predictions that
facilitates comparative analysis, and, finally, interpret the coefficient of deter-
mination within this framework.

3.1. ACTUARIAL PROPOSITIONS: MIXED
STRATEGIES OVER POINT PuDIcTJoNS

In their simplest form bivariate actuarial propositions assign a condi-
tional probability, given X = x, to each state of the dependent variable Y.
For example, under the conditions described by X = x, the probability of
rain is , and the probability of no rain is -. Such a simple actuarial prop-
osition may be expressed as a statement of the form 2: {(x)lx E X}, where

(x): {q(YIx)IYE Yq(YIx)Oq(Yk)=1} (3.1)

We discuss two ways in which an actuarial proposition can be applied.
First, the proposition may be interpreted as a prediction about proportions.
To evaluate this prediction, one compares the goodness of fit between
q(yx)} and the observed fractions {f(yIx)} if the true population distri-

butions are known (or calculates the likelihood of {f( y x)} appearing in
the sample if the true probabilities were {q(yx)}, as asserted). Thus inter-
preted, is a prediction about proportions in aggregates of observations,
rather than an event prediction about V for each observation in these
aggregates. Consequently, there need be no relation between goodness of
fit and the effectiveness with which may be used to predict each observa-
tion's Y-state. For example, suppose ..2 correctly asserts that the conditional
distributions over V are uniform for every value of X. Then, even if it per-
fectly fits the observed distributions, offers little assistance in predicting
V for each observation. In this paper we focus on event prediction, and thus
will not deal with goodness of fit procedures.

Second, borrowing a term from game theory, a simple actuarial proposi-
tion may be interpreted as a mixed strategy over alternative point predictions.
[From this viewpoint, an absolute event prediction represents a pure strategy:
if X = x, then always predict 9'(x).] That is, the set of statements "If X =
then Y= y with probability q(yx)" can be replaced with statements of the
form "If X = x, then, with probability q(y Ix), predict Y = y." By this inter-
pretation, when X = x, the actuarial proposition implies a lottery (x) over
the alternative point predictions about Y. We next extend the prediction
analysis methods to deal with a more general class of mixed strategy
predictions.
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3.2. MIxED STRATEGIES OVER SET P1DIcTIoNs
WITH WEIGHTED ERRORS

In its most general form, a mixed strategy prediction represents a prob-
ability mixture of set predictions and associated error weights. Each com-
ponent (x) of this mixed strategy prediction consists of a probability
mixture over M alternative set predictions of the form "If X = x, then, with
probability q, predict 9(m)(X), where qm) 0, q' = 1, ,97(m)(x) Y
for every x E X and m = 1,. . . , M. Associated with each prediction ,q(m)(x)

is a set of error weights {W(m)(X, y)}. In applying this mixed strategy prediction,
.(x) is selected for an expected fraction f(x) of the observations. Given that

(x) is selected, the event Y = y is assigned error weight W(m)(X, y) with
probability q. Then, the expected weighted error rate for the mixed strategy

with associated error weights is, when X is known,

K = q'°w(x, y)f(x, y), (3.2)
x ) fli

and, when X is unknown,

U.a = q°w(x y)f(x)f(y). (3.3)
x ym

Finally, as before, define the measure

= [U - K]/U. (3.4)

By comparing these results to the corresponding expressions of Section 2,
it is clear that the pure strategy proposition with associated error weights
{co(x, y)} is V-equivalent to the mixed strategy .92 with associated errors
weights if, for every (x, y) e X x Y,

w(x, y) = qw'°(x, y).
In

This equivalence allows us to compare mixed strategy predictions with pure
strategy predictions using the same framework.3 The comparisons based
on V are unaffected by proportional rescaling of error weights. On the other
hand, values for the measure of precision, U, cannot be compared without
adopting a numeraire for error weights. A similar need for a numeraire arises
in comparing standard regression models where r2 values are independent
of the units of measurement but variances are not.

This equivalence has a simple form if . is a mixed strategy over point predictions with
unweighted errors, the type discussed in Section 3.1: in this case, the pure strategy equivalent
has error weights [w(x, j')} = {1 q(yjx)}. The restrictions on the q(yjx) given by (3.1) imply
that 0 oJ(x, y) and >w(x, y) = R - 1, where R is the number of discrete Y values or
states.
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The equivalence noted above indicates that the mixed strategy model
can be used to interpret or explain the error weights associated with pure
strategy prediction. The mixed strategy approach also enables us to assess
probabilistic models on an observation by observation basis. One basic
probabilistic model is indeed the bivariate linear model with an additive
random disturbance. Applying the mixed strategy approach, we find, perhaps
surprisingly, that the correlation ratio and r2 have a V interpretation.

3.3. A MIXED STRATEGY INTERPRETATION
OF THE CORRELATION RATIO AND r2

This interpretation of the correlation ratio and r2 is based on V for the
ex post best fitting mixed strategy prediction * = {*(x) x E X},

= f(yjx) E Y}. (3.5)

Given X = x, the component *(x) predicts each Y-state with its conditional
probability in the distribution, f(y x). The error weight may be written as
the squared difference between actual (a) and predicted (p) Y values, (a - p)2.

Given X = x, then with probability f(p x), the prediction is Y = p; thus the
event V = a is assigned error weight (a - p)2 with probability f(px) and
occurs with probability f(a x). Altogether, each of the component predic-
tions *(x) is applied with probability f(x). We show in the appendix (A.3)
that the expected error in applying the mixed strategy prediction when
X is known equals twice the average conditional variance:

= (a - p)2f(pjx)f(ax)f(x) = 2Ex[Var(YIX)]. (3.6)
x aeYpeY

When X is known, the component P2*(x) is again selected with probability
f(x). Since observations are being drawn at random from the entire distri-
bution, the probability that Y = a is the unconditional probability. Other-
wise, the same argument as above applies. As shown in the appendix (A.3),
the expected error for the mixed strategy prediction * when X is unknown
equals twice the variance:

U* = (a - p)2f(pjx)f(a)f(x) = 2 Var(Y). (3.7)
x aeYpY

Then define the measure

- 1 2Ex[Var(YIX)]- 2Var(Y)
(3.8)
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Therefore, the correlation ratio and, under the standard linearity assumption
of regression analysis, r2 may be interpreted as a V-measure when the best-
fitting actuarial prediction is applied as a mixed strategy with squared error.4

When all conditional variances are zero, the V predictions become iden-
tical to the conventional E(y x). Also, the K error becomes zero, but the
U error for V remains double the variance. This doubling reflects the descrip-
tive or replication role of V's benchmark where predictions are matched
with the K predictions instead of selecting a single predicted value such as
j for all observations.

The descriptive aspect of the mixed strategy K predictions with nonzero
conditional variances is that they are unique for every distinct conditional
probability distribution, whereas the conventional E(y Ix) reflects only the
conditional means.

The equivalences we have established between the V-measure and the
more conventional correlation measures might seem at first to be little more
than formal curiosities. The existence of this equivalence, however, increases
our confidence is using the prediction analysis approach to assess predictions
that cannot be evaluated with the conventional linear-model framework.

4. Multivariate Prediction Analysis

The previous discussion has been exclusively bivariate. Obviously, to
be of general use, the fomulation should have a multivariate extension.
At present, we consider only the case where a vector of independent variables
V is used to predict a unique dependent variable Y. How "simultaneous
equation" prediction should be treated within a prediction analysis frame-
work is an open question.

4.1. MULTIPLE V

The elementary part of the extension is trivial. If the description of an
observation by the vector of independent variables is v E V, then predict
that its Y value belongs to the set 9'(v). The derivation of multiple V then

The same approach can be used to interpret Goodman & Kruskal's (1954) taua and taub
measures for nominal data and Kendall's tau measure for ordinal data (see Hildebrand,Laing,
& Rosenthal 1977a, pp. 55-56, 123, 175; 1977b, pp. 52-57). Our rule K for the correlation ratio
is equivalent to Goodman and Kruskal's prediction given X for the tau measures. An analogous
prediction, this time relating pairs of observations on the two variables, can also be used to
develop Kendall's tau for ordinal variables. Both of these measures are also special cases of V.
Thus the mixed strategy V approach enables us to interpret these measures for nominal and
ordinal variables and the correlation ratio within a common framework.
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follows directly from that of bivariate V, as given by (2.4-2.6), leading to

U - K - 1
y)f(v, y) (.)

U w(v, y)f(v)f(y)

On the surface there is really no change.

4.2. ASSESSING PARTIAL CONTRIBUTIONS TO ERROR REDUCTION

The subleties arise in actually specifying predictions and in "partialing
out" the effects of various independent variables. The prediction rule pos-
sibilities are completely general. Each component prediction 9°(v) may be
anything a single point, an interval, two disjoint intervals, several widely
spaced points, the whole space, even the empty set. This level of generality
can certainly be awkward. When the statistical method does not impose
arbitrary restrictions, such as linearity and additivity, theory may be hard
pressed to specify an a priori prediction. On the other hand, linearity, or
even polynomial regression, can be unnecessarily,constraining from a more
general perspective.

To emphasize that the issue we are raising is fundamentally one of
prediction analysis and not one of estimation, we now turn to an example.
For both the linear equation y = b0 + b1x + b2w + u, and for y = c0 + c1
max(x, w) + u, estimating the coefficients ex post is an easy task for econo-
metricians (given standard assumptions about the errors u) Similarly, in
the case of the first equation, econometricians have long been able to evaluate
the marginal or partial contribution of the variable, say W, by comparing
(in essence) the simple regression of Y on X with multiple regression of Y
on X and W. But for the second equation we know of no way of using the
conventional methods to evaluate the contribution of each independent
variable to overall error reduction.

This section concerns the evaluation of partial contributions of the
independent variables to the performance of a multivariate prediction. We
discuss only predictions incorporating two independent variables; the
extension to more than two predictors requires simply a sequential applica-
tion of the basic ideas (see Hildebrand, Laing, & Rosenthal, 1975, p. 168;
1977a, pp. 275-276, 281).

Consider first the following hypothetical example. Suppose that an
oligopoly theorist identifies a "price leader" and a "price ratifier" in certain
industries. The claim is that a price change proposed by the leader must
be matched at least in part by the ratifier before it is adopted throughout
the industry. Suppose that the price change in any month by the leader
L or the ratifier R is described by one of four categories: + + (increase by

at least 2%), + (increase, but less that 2%), 0 (no change), and - (decrease).
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The dependent variable F is the average price change of other members
("followers") of the industry described with the same four categories. Suppose
the population data to be as in Table 2.

The prediction may be written formally as a set of component predic-

tions in which L states appear before the ampersand, R states after it, and
F states after the prediction symbol :

FLR ++&(++or+)++,
+&(++or+)+,

O& ++(+ orO), O&(+,O,or )O,
- & + + ( + or 0), - & (+ or 0) 0,&.

The prediction 1FLR identifies the set of error cells indicated by the vertical
shading in Table 2. For these hypothetical data, the trivariate proposition

FLR achieves K = .317, U = .676, so that V = .532.
A natural question concerns the value of the ratifier firm's action in

predicting the action of followers once the leader's action has been specified.

To answer this question, we need a prediction rule which involves only
the leader's action. A natural choice is a simple follow-the-leader model,

FL + + + +, + +, OO, & -
This rule identifies as error events those cells in Table 2 indicated by hori-
zontal shading. For the prediction IY'FL with these data, K = .433, U = .755,

so V = .426. Comparing V values, the "ratifier" variable seems to have
modest predictive value since it, together with the "leader" action, yields a
proportionate reduction in error of 53.2% as opposed to the 42.6% value
for the "leader" alone. However, the precision U of the trivariate prediction
1FLR is lower than that of the simple follow-the-leader prediction
Given our previous comments about the trade-off of precision and success,
it is possible that the higher V value is largely an artifact of the lower precision.
We need a method for assessing the value of the "ratifier" variable to the
trivariate proposition which does not merely reflect this trade-off.

To "partial out" the value of the information about the leader's price
change in order to assess the extra value of the ratifier price information
to the trivariate proposition 1FLR, we want to look at conditional proba-
bilities, given the leader's move. This is, of course, directly analogous to the
definition of a partial correlation in the multivariate normal situation.

4.3. SUBPOPULATION PARTIALS

Rather than evaluate the entire two-predictor model, as in the calcula-
tion of multiple V, it is natural to focus here on the subpopulations defined
by the states of the "leader" variable. In each subpopulation, we consider
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TABLE 3

LEADER SUBPOPULATION PARTIALS
FOR THE FLR PREDICTION

Leader's price change

how successfully the model 9FLR predicts for the various price changes by
the "ratifier" variable. (This subpopulation perspective also has its analog
in partial correlation analysis.) For example, in the subpopulation where
"leader" is + +, we use the expression for bivariate V given by Eqs. (2.4)-
(2.6) to define the (subpopulation partial) V for the I?I'FLR predictions based
on the various states of the "ratifier" variable. Given L = + +, the FLR
predictions based on the R predictor are (+ + or + ) + +, & (0 or -)

0. More generally, rewriting the error measure for the trivariate prediction
as w(v, y) = w(w, x, y), the subpopulation partial for the prediction ?1'yxw,
given X = x, is

-
9'YXWI, - TT'.J YxwI

= 1 >1wy0J(W,X,Y)f(W,YIX)
co(w,x, y)f(wx)f(yx)

Table 3 shows the subpopulation results for the FLR example.
When the leader does not decrease his price (+ +, +, or 0), the ratifier

variable adds a modest amount of predictive value for ?I'FLR, but, for the
last category (-), there is no reduction in error as a result of using the

FLR prediction for the various ratifier variable states. (One can easily
construct examples where there is a mixture of positive and negative sub-
population partials.) The ratifier information has different value to
across the leader categories; how can we summarize its overall value?

4.4. OVERALL PARTIAL V

To develop the overall partial V for XH" controlling for X, we use the
same basic strategy as before by comparing error rates when the
predictions are made under two information conditions. Since we want to
control for X, the state of X is always known under both information
conditions. When W also is known, the - error for is K

(4.2)

++ + 0 -
K .341 .350 .087 .500
U .645 .570 .157 .500
V .471 .386 .446 .000
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w(w, x, y)f(w, y x)f(x). When .P}XW is applied to randomly
drawn observations for which X but not W is known, the expbcted error is

U = > w(w, x, y)f(w x)f(y I x)f(x). Then the proportionate reduction
in error for attributable to W(controlling for X) is given by the overall
partial

V 1Yxwix - V ca' 'ITT
Z_x J iXj

- 1 >W ,,
co(w, x, y)f(w, y x)f(x)

- 1X > w(w, x, y)f(w x)f(y j x)f(x)

It follows that the overall partial is a weighted average of the subpopulation
partials

[ f(x)U,, 1
VYxwIx = fx')uJ Yxwl

where a prime indicates a separate summation.
In the example, the value of this overall partial equals .376. Thus, overall,

the ratifier information makes a nontrivial contribution to the performance
of 1FLR in predicting the followers' moves. This indicates that the larger V
value for the leaderratifierfollower model is not merely an artifact of
differential precision rates, but rather reflects the actual predictive value of
the ratifier variable to the trivariate proposition.

4.5. PREDICTION SHIFTS

General results for moving from bivariate to trivariate analysis are not
simple. Partial V can be 0 or negative, even when trivariate V exceeds bi-

variate V. The reason for this is that while one is adding information in the
form of another variable, one is also shifting predictions from, say, P1FL to

IFLR The trivariate prediction will have a different precision, and will also
use the original independent variable differently. For a complete accounting
of changes in going from a bivariate to a trivariate model, one needs to assess
"U-shift"--the ratio of trivariate precision to bivariate precisionand
"K-shift"the ratio of error expected when only the original independent
variable information is used in the trivariate prediction to the error expected
when it is used in the bivariate prediction.

The numerator and denominator in the U-shift and the denominator in
the K-shift are by now familiar quantities. The K-shift numerator is in fact
equal to the partial U error. In our two predictor example, this is

f(1)U,.

(4.3)

(4.4)
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The shift values for the ratifier problem are

U-shift UFLR .676
- .895,- -

K-shift = ' f(1)UFL, .507
= 1.171.

KFL .433

The full accounting equation is

(1-trivariate V)

= (1-bivariate V)(1-overall partial V)(K-shift/U-shift),

or

(l-VFLR) = (1-Vp,FL)(l-VFLRIL)(K-shi ft/U-shift). (4.5)

In the example, the ratio of shifts equals 1.308. Values of the shift ratio that
differ substantially from 1.0 can lead to some strange sounding results. It is
not enough merely to "partial out" a variable; the effect of shifting predic-
tions must also be assessed.

4.6. MULTIPLE AND PARTIAL CORRELATION

The problem of accounting for prediction shifts can be understood rela-
tive to the baseline provided by standard correlation analysis. Our develop-
ment of mixed strategy predictions that led to a bivariate V equal to the
correlation ratio and r2 generalizes readily. For example, if there are two
predictors, the multiple prediction is "With probability f( y x, w) predict
Y = y." The corresponding V measure is

= 1 - (2Ex,w[Var(YX, W)]/2Var(Y)), (4.6)

and the partial V, controlling, say, for X, is

'iwix = 1 (2Exw[Var(YX, W)]/2Ex[Var(YIX)]). (4.7)

If linearity is satisfied conditional on X and on W separately as well as on
X and W jointly, as is true when W, X, and Y have a multivariate normal
distribution, then the multiple and partial correlation ratios are equal to
multiple and partial correlations.

The accounting equations for correlation models are much simpler than
(4.5). It is well known that the accounting equation for a trivariate linear
model is

(1 - R2) = (1 - r)(1 - rwix).
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There are no shifts. There is no U-shift because both the trivariate and
bivariate models lead to U errors that are both equal to (twice, in the mixed
strategy interpretation) the variance of Y. This is easy to see in the standard
approach where, to provide a benchmark U, one always predicts the uncon-
ditional mean of the dependent variable, no matter how many predictors are
used. With squared error, taking expectations over the mixed strategies leads
to the same result. There is no K-shift because, in the standard approach, the
conditional mean of Y given X, say, is both the K prediction in the bivariate
model and the U prediction (with knowledge of X but not W) for the partial.

5. Estimation of V from Sample Data

In the previous sections we have assumed explicitly that the population
joint distribution was known. In practice, of course, one must estimate V
based on limited amounts of data. In this section, we turn to issues of estima-
tion and hypothesis testing. We emphasize that this section pertains to
estimating V values for predictions that are fully specified a priori and not to
estimating parameters of prediction rules as, for example, in ordinary least
squares regression.5 For simplicity, we assume that the data are bivariate
and constitute a simple random sample with neither independent nor depen-
dent variable controlled by the researcher. The general principles of this
section apply equally well to more complex sampling schemes and to the
multiple, partial, and shift statistics of the multivariate methods.

5.1. Ti DISCRETE APPROACH

Once again, we present the argument in terms of cross-tabulated data.
Quantitative variables such as those common in economics can be treated
as discrete. For example, one might identify the categories $00, $01,.
$9,999,999.99. Thus the principles for cross classifications also apply to
quantitative variables which are treated as discrete. In Section 5.2 we indicate
that these principles extend naturally to continuous variables.

The natural (and maximum likelihood) estimator of a cell probability is
f(x, y) = nj/n, where n1 is the number of sample points having X = xj and
Y y1. Similarly, the unconditional (marginal) probabilities may be esti-
mated by the observed fractions f(y) = n./n, and 1(x) = n.j/n. The most

For methods of statistical inference about predictions developed ex post from the joint
probability distribution of discrete variables and the relation of these procedures to clii square,
see Hildebrand, Laing, & Rosenthal (1977a, pp. 221-230, 243-248; 289-292).
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obvious estimator is obtained by replacing true probabilities by these esti-
mates in the definition of V:

= 1 ( w(x, y)!(x, )/ w(x, Y)f(x)f(Y)). (5.1)

We have shown (Hildebrand, Laing, & Rosenthal 1977a, pp. 232-236) that
this estimator is consistent, asymptotically unbiased, and asymptotically
normal; we also show that the approximate variance of c' is

Var() (n - 1)
{

[a(x, y)]2f(x, y) - [
a(x, y)f(x,

where
a(x, y) = U1 {w(x, y) - (1 - V)[ir(x) + it(y)]},

x(x) - w(x, y)f(y), ir(y) = w(x, y)f(x). (5.2)

Since probabilities in Eq. (5.2) can be replaced by sample estimates without
affecting asymptotic normality, the usual normal-distribution methods for
hypothesis testing and confidence intervals can be used, at least for large
samples.

As in any asymptotic theory, the obvious question is How large must a
sample be? In other words, how adequate is the normal approximation for
realistic sample sizes? We have done extensive Monte Carlo studies and, for
special cases, comparisons with exact distributions (Hildebrand, Laing, &
Rosenthal 1977a, pp. 211-216). The conclusions are compatible with general
principles of such statistical approximations, so we feel reasonably confident
of their general applicability. A good index seems to be ii x min[K, 1 - K].
When this index exceeds 5, the approximation is reasonably good, particu-
larly when a continuity correction is made. The point about this index is that
it depends only on the aggregate quantity K and the full sample size n. There
is no requirement that the expected number in each cell be at least one or five
or whatever, as there is in a chi-square test. Therefore, for a priori theory, it
is possible to use normal approximations even when the data are sparse. Thus
our suggestion that quantitative economic data might be analyzed in terms
of discrete variables (with possibly enormous numbers of values) is not so
absurd as it might seem.

5.2. THE CONTINUOUS APPROACH

The direct estimation approach, treating the underlying variables as
continuous, has not yet been worked out fully. We can sketch the natural
estimation procedure for the continuous case. In this section a subscript (t)
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indexes observations (whereas previously subscripts indexed variable states).
To do this, note that

V = 1 - (K/U),

K = J J'
w(x, y)f(x, y)dxdy = E[w(X, Y)], (5.3)

U = co(x, y)f(x)f(y)dxdy = E[w(X, Y*)],

where f(x, y) is the joint density of X and Y, while the marginal densities are

f(x) = f f(x, y) dy, f(y) = f f(x, y) dx.

The interpretation of U requires random variables which are statistically
independent with respective densities f(x) and f(y). For these random
variables, a pair is denoted (X, Y*) to avoid confusion with the (X, Y) pair
which has the joint distribution f(x, y). Now assume that we have n indepen-
dently sampled bivariate observations, (x1, yi),. . .

, (xe, ye),. . , (xe, y,,). The
natural estimator of K is

k =1
co(x,y1), (5.4)

n

which is merely the sample mean estimating the population mean. The
estimator of U is not quite so obvious; the natural estimator, by direct
analogy to the categorized data estimator, is

U w(x,,yt). (5.5)
t=1 t'=l

We then estimate V by

= 1 - (R/U). (5.6)

By the law of large numbers and the central limit theorem, it follows that
1 is consistent and asymptotically normal. We conjecture (in part because
the result holds for the categorical case) that the same holds true for U and
hence for the estimator of V.6 Further, the fact that this estimator is identical

6 Note that one can easily show that [n(n - 1)]_ w(x,, y,.) is an unbiased
estimator of U. The estimator of K also is unbiased. However, since use of two unbiased estima-
tors in the ratio does not imply an unbiased estimator for \7, there is no compelling reason to
use this alternative estimator of U.
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to that for a "fine-grained" categorization of the data suggests that the same
normal approximation which is appropriate for cross classifications also
applies to continuous variables. However, we have not proved such a result.

6. Summary and Directions for Research

This paper outlines an approach for evaluating the performance of models
which make set predictions about a dependent variable and establishes some
links between this approach and econometric methods. Set predictions vary
in precision in the sense that the prediction becomes increasingly less precise
as the size of the predicted set increases from a single point. The approach
provides measures for assessing the performance of a model relative to its
precision and facilitates the comparative evaluation within the same frame-
work of alternative predictions about the same criterion, even though these
predictions might differ in precision.

The approach has been developed for analyzing cross classifications of
qualitative variables or discrete quantitative variables. An initial extension
of these methods to continuous variables was described, but further exten-
sions are clearly in order.

While this paper has emphasized the evaluation of predictions stated a
priori, the framework also has been applied to select predictions ex post facto
(Hildebrand, Laing, & Rosenthal 1977a, pp. 132-145, 221-230, 289-291).
The related statistical theory developed for evaluating predictions selected
ex post provides hypothesis tests that are closely related to chi-square tests
of association. Unfortunately, the tests are extremely conservative. A more
refined approach is needed to generate more powerful tests.

Although there are other important questions related to statistical
inference that deserve attention, the critical questions that are raised by
the framework discussed in this paper pertain not to statistical inference,
but rather to the evaluation of predictions even when the data constitute
the entire population of interest. The prediction analysis methods have been
developed extensively for bivariate analysis. Some essential foundations for
multivariate analysis including the multiple and partial V measures and
associated statistical theoryalso have been developed. However, many
important issues in multivariate analysis have not been touched. For example,
our work has emphasized a "single-equation" model with one dependent
variable. Although some very limited results for recursive systems have
appeared (Hildebrand, Laing, & Rosenthal 1975), the important questions
concerning simultaneous systems of set predictions have not yet been
addressed. Progress on these topics will be of use to economists if economic
theory continues to generate set predictions, whether about qualitative or
quantitative variates.



PRE[)ICTION ANALYSIS OF ECONOMIC MODELS 119

Appendix

We first develop V-measures for the pure strategy, ex post prediction
based on conditional means and for a bivariate linear prediction, then derive

as the V-measure for the best-fitting actuarial proposition applied as a
mixed strategy prediction. Throughout this appendix, error is measured as
the square of the difference between the actual and predicted value of Y.

A. 1. EVALUATING THE ABSOLUTE PREDICTION BASED

ON CONDITIONAL MEANS

This prediction may be written .#: {x-yiIx E X}. The total error for
this prediction when X is known equals

K,g = - i2y1)2f(yIx)f(x) = Var(YIx)f(x)

= Ex[Var(YX)].

When X is unknown for any randomly drawn observation, then with prob-
ability f(x) predict Y = The expected error under this condition equals

= (y -
x y

Expanding the square around ,

U = - + j - .1)2f(X)f(y)
x y

= - /1y)2f(x)f(y) + 2 - 1ti')( - uyi)f(x)f(y)
x y x y

x y

= - t)2f(y) f(x) + 2 >I(iy - ii1)f(x) (y -
3' x x 3'

+ >(j1 - 1f(x) f(y)

= Var(Y) + - Uy)2.

Therefore,

Ex[Var Y X)]V.11 = 1
Var(Y) + E(iti -

as given by (2.10).
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A.2. TJm V-MEASURE FOR A BIVARIATE LINEAR PREDICTION

Given the linear prediction 2' = {x y + öx} and squared error, the
total error expected when X is known, as given in the text, is

K2 - y - ox)2f(ylx)f(x).

Expanding the square around

K2 = (y/1y1)2f(yx)f(x) + 2

+ >CUYX - - 5x)2f(yx)f(x)xy
= Var(YIx)f(x)+ >:(1LyIX -)) - x)2f(x)

Ex[Var(YX)] + E(y + 5x -

Similarly, expanding the square around yields

U2 = - y - óx)2f(y)f(x)
xy

= Var(Y) + E(y + 5x -
Therefore,

v - 1 Ex[Var(YIX)] + E(y + 5x - YIx)2

Var(Y)+E(y+öx)2
To show that the sign of V2 is determined by the correlation between

y + 5x and YIx, note that V2{>, =, <} 0 if and only if U2{>, =, <}K2.
Using the standard identity

Var(Y) = Ex[Var(YIX)] + -
it follows that V2{>, =, <} 0 if and only if

Ex(J4yi

- ity)2{>, , <} [(y + ox - - (y + Ox - 4u1)2]f(x)
x

= - j)f(x) - 2 (y + Ox)(it - /1y)f(X),

where the last equality follows by expanding the square in the bracketed
term. But by another expand-the-square argument,

V'2 2'tI\_V(
L1 'i1YIx - /1Y)J 2) - - lAy)
x

Consequently,

V2 0 if (y + Ox)(/Ayi - lA)f(x) 0.
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The sum in this expression can be replaced by the covariance of the prediction
with the conditional mean:

Cov(y + 5x, YIx) = i [y + ox - E('y + Ox)](,yi - ji)f(x)

= (y + Ox)(iy -
x

Since the sign of the correlation is identical to the sign of the covariance, it
follows that

0 if correlation(y + Ox, u1)

A.3. THE CORRELATION RATIO AS A V-MEASURE

The best fitting actuarial proposition may be written : {*(x) X E X},
where *(x) = {f(yx) ye Y}. Applying * as a mixed strategy, the com-
ponent *(x) is selected with probability f(x) under either information
condition. Given that *(x) is selected, we predict, with probability f(p

I
x),

that Y = p; therefore, the event Y = a is assigned error weight (a - p)2 with
probability f(p x). These comments apply whether or not the X value is
known when the prediction is made for an observation.

In the first information condition, each observation's X value is known
when the prediction is made. Since Y = a occurs with conditional probability
f(a x) in the X = x subpopulation, the total error expected for the mixed
strategy when X is known equals

= (a - p)2f(px)f(ax)f(x).
x aeYpeY

Expanding the square around YIx yields

K5 = 2Ex[Var(Y X)].
If X is unknown, then for any observation randomly drawn from the

entire distribution, the component prediction *(x) is selected with prob-
ability f(x), and Y = a occurs with its unconditional probability, f(a).
Replacing f(a x) with f(a) in the initial expression given for K2 above, we
may express the total error expected for the mixed strategy when X is
unknown as

U.*= (ap)2f(px)f(a)f(x)
x aeYpeY

= (a - p)2f(p)f(a).

Expanding the square around j yields

= 2 Var(Y).
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Therefore,

= 1 - (2Ex[Var(YIX)]/2Var(Y)).

Consequently, the correlation ratio, as given by (2.9).
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